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Abstract
The ability to predict the outcomes of actions based on experience is crucial
for making successful decisions in new or dynamic environments. In animal
studies using electrophysiology, it was found that dopamine neurons, located
in the substantia nigra (SN) and the ventral tegmental area (VTA), have
a crucial role in feedback-based learning. However, human neuroimaging
studies have provided inconclusive results. The present work used ultra-
high field (7 Tesla) structural and functional MRI and optimized protocols
to extract SN and VTA signals in human participants. In a number-guessing
task, we found significant correlations with reward prediction error and risk
in both the SN and the VTA and no correlation with expected value. We
also found a surprise signal in the SN. These results are in line with a recent
framework that proposed a differential role for the VTA and the SN in,
respectively, learning of values and surprise.
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 2

Introduction1

In order to adapt to an ever-changing environment, it is crucial for individuals to2

correctly predict the outcomes of their choices, as well as to update their expectations when3

they happen to be wrong. These learning processes were formalized within the reinforcement4

learning (RL) framework (Sutton & Barto, 1998), unifying the fields of psychology and5

artificial intelligence. In this framework, the reward prediction error (RPE) is defined as6

the difference between the expectations and the experienced rewards or punishments, and7

guides learning: New expectations are a weighted sum of past expectations and the RPE. By8

presenting participants in the lab with different options and providing feedback after every9

decision, psychologists and neuroscientists can investigate the cognitive processes related to10

expectations and feedback processing. Expectations can be separated into the expected value11

(EV), which can be defined as the mean expected outcome, and risk, which is often defined12

as the expected variance of the outcomes (Markowitz, 1952). Feedback-related processes13

are the deviation from previous expectations (i.e., the RPE) and the salience of the outcome14

(i.e., surprise, see Methods section).15

A highly distributed network related to expectations and feedback processing was16

found in both the animal and the human brain. Electrophysiological studies in rodents and17

non-human primates showed that midbrain dopaminergic neurons (i.e., in the substantia18

nigra, SN – specifically in its pars compacta, SNc – and in the ventral tegmental area,19

VTA) fire more, equal, or less in association with a positive, zero, or negative RPE (Bayer20

& Glimcher, 2005; Schultz, 1998, 2015), respectively, and their firing ramps up faster with21

increasing risk expectations (Fiorillo, Tobler, & Schultz, 2003). Firing of cells in the SNc has22

also been associated with surprise (Matsumoto & Hikosaka, 2009). Because dopamine nuclei23

are more challenging to target using non-invasive neuroimaging techniques, studies using24

human participants mainly focused on dopamine target areas (Arias-Carrión, Stamelou,25

Murillo-Rodríguez, Menéndez-Gonzáles, & Pöppel, 2010). Neural correlates of the RPE26

have been found in the ventral striatum and an expected reward signal has been found in27

ventral striatum, amygdala, as well as in frontal areas such as the orbital frontal cortex and28

the ventromedial prefrontal cortex (for an overview see, e.g., Bartra, McGuire, & Kable,29

2013; Clithero & Rangel, 2014; O’Doherty & Bossaerts, 2008). Both ventral striatum and30

anterior insula were found to signal predicted risk and surprise (Fouragnan, Retzler, &31

Philiastides, 2018; Preuschoff, Bossaerts, & Quartz, 2006; Singer, Critchley, & Preuschoff,32

2009).33

The measurement of small dopaminergic nuclei signaling using fMRI is very chal-34

lenging. One challenge pertains to the higher concentration of iron in the SN (Drayer et35

al., 1986). This high concentration causes differences in the magnetic properties of the SN36

compared to, for example, cortical areas, and asks for customized structural and functional37

MRI scanning protocols (e.g., reduced echo times). Another problem is physiological noise38

affecting the fMRI data due to the proximity of these areas to major arteries and cere-39

brospinal fluid. Finally, their limited volume and distance from the receiving elements of40

the scanner, combined with anatomical variability and standard procedures such as spa-41

tial smoothing, lead to a high risk of mixing signals from neighboring nuclei (de Hollander,42

Keuken, & Forstmann, 2015; de Hollander, Keuken, van der Zwaag, Forstmann, & Trampel,43

2017; Eapen, Zald, Gatenby, Ding, & Gore, 2011; Forstmann, de Hollander, van Maanen,44
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 3

Alkemade, & Keuken, 2017).45

Because of these challenges, only very few neuroimaging studies have directly mea-46

sured activation of small dopaminergic nuclei in human participants. Furthermore, these47

studies reported contradicting evidence. D’Ardenne, McClure, Nystrom, and Cohen (2008)48

found positive but not negative RPE in the VTA. Pauli et al. (2015) found only a positive49

RPE in the SNc, a negative RPE in the pars reticulata of the SN (SNr), as well as a neg-50

ative expected value signal in the SNr. Zhang, Larcher, Misic, and Dagher (2017) found51

that, while the medial part of the SN encoded RPE, the lateral and ventral parts encoded52

surprise.53

To the best of our knowledge, previous studies with human subjects (1) have not54

compared the signal of the VTA and the SN (except D’Ardenne et al. (2008)), (2) have55

not looked at the variables related to expectations and feedback processing altogether (i.e.,56

they did not always include EV, risk, RPE, and surprise); (3) have not addressed the above-57

mentioned fMRI-specific challenges. In particular, previous studies have used high-field 358

Tesla (3T) MRI, spatial smoothing, and did not draw individual masks to delineate the59

VTA or the SN, but relied instead on group-based coordinates or atlases.60

Ultra-high-field (UHF) 7 Tesla (7T) MRI can help to increase signal-to-noise ratio61

(SNR) and BOLD contrast-to-noise ratio (CNR), leading to a more refined spatial resolution62

without loss of power or need for spatial smoothing (van der Zwaag, Schäfer, Marques,63

Turner, & Trampel, 2015). In the present study, we used UHF-fMRI in combination with64

scanning protocols tailored to extract signals from subject-specific masks of the midbrain65

to overcome some of the previous limitations and clarify the findings of previous studies,66

especially regarding the function of the VTA and the SN (Trutti, Mulder, Hommel, &67

Forstmann, 2019). By adapting the number-guessing paradigm proposed by Preuschoff et68

al. (2006), we also investigated important variables such as risk and surprise, as well as EV69

and RPE, thereby targeting processes of both expectation and feedback processing.70

Results71

To investigate the role of the VTA and the SN in expectation and feedback processing,72

we tested participants in a number-guessing task (Figure 1) in a MRI session. In this task,73

there are three main events per trial. First, participants have to predict whether the first74

or the second of two numbers (between 1 and 5) will be higher: this prediction corresponds75

to their initial bet, as if the prediction is correct they will win 5 euros and if the prediction76

is incorrect they will lose 5 euros. Then, they are shown the first of the two numbers,77

which changes the EV and risk of the choice options. Finally, participants are shown78

the second number, together with the reward, which is associated with a specific RPE and79

surprise, depending on the initial bet and on the first number. Participants were also invited80

to a separate MRI session, in which multimodal, high-resolution anatomical images were81

acquired (Figure 2). This procedure allowed us to identify the region of interests (ROIs)82

at an individual level and to then extract the signal from each ROI to test for correlations83

with EV, risk, RPE, and surprise.84

In the following sections, we report the behavioral results of the card-guessing task,85

the results of the anatomical segmentation of the ROIs, the fMRI analyses results limited86

to the ROIs, as well as across the whole brain.87
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 4

Behavior88

To check whether participants were engaged in the task, we introduced test trials in89

which, instead of revealing their reward, participants had to say whether they won or lost90

in that specific trial. This was only possible if they still remembered the first number and91

their initial bet. Three blocks (from three different participants) were discarded based on92

behavior: One block was discarded because three out of the five test trials were incorrect,93

and the other two blocks were discarded because twelve out of sixty missed bets.94

In the remaining blocks, and over the two blocks (i.e., 120 total trials), participants95

made on average 1.0 mistakes (SD=1.05, min=0, max=4), missed on average 4.48 tri-96

als (SD=3.65, min=0, max=12), and chose on average the right option on 57.81 trials97

(SD=13.75, min=21, max=88).98

Anatomical masks99

To measure the inter-rater reliability of the individual SN and VTA segmentation, we100

calculated Dice Scores (see Table 1). In general, higher scores were obtained for the SN as101

compared to the VTA. This is not surprising, because Dice scores are sensitive to overall102

size (the SN is approximately 3.7 times bigger than the VTA), and because the VTA lacks103

clear anatomical borders. By only keeping those voxels that both raters agreed on (i.e., the104

conjunction masks), we ensured that the voxels included in the analyses lie exclusively in105

the investigated ROIs.106

In addition to the Dice scores, we also calculated the percentage of overlap between107

our individual conjunction masks and previously proposed group-level subdivisions of the108

SN and the VTA 1 (Pauli, Nili, & Tyszka, 2018; Zhang et al., 2017), transformed to the109

individual space (see Figure 3). This measure gives an idea of how much signal from the110

neighbouring nuclei is mixed with the signal of the targeted structure when using population-111

based instead of individual masks. This measures does not include further mixing of the112

signal due techniques such as spatial smoothing (which may further increase this measure).113

We found significant overlap between the medial parts of the SN of the group-level subdivi-114

sions and our individual VTA masks. Specifically, there was a mean overlap of 7.23 percent115

(SD=10.14, min=0.00, max=34.58, t(53)=5.19, p<0.001) with the medial part of the SNc116

(mSNc), and a mean overlap of 1.3 percent (SD=2.14, min=0.00, max=8.36, t(53)=4.41,117

p<0.001) with the lateral part of the SNc (lSNc) as defined by Zhang et al. (2017); and118

a mean overlap of 1.56 percent (SD=2.21, min=0.00, max=11.93, t(53)=5.13, p<0.001)119

with the SNc as defined by Pauli et al. (2018). We also found a significant overlap be-120

tween Pauli et al. (2018)’s subdivisions of the VTA (i.e., labelled VTA and the parabrachial121

pigmented area or PBP, where VTA denotes the more medial and PBP denotes the more122

lateral part) and our individual SN masks. Specifically, there was a mean overlap of 7.76123

percent (SD=9.81, min=0.00, max=58.76, t(53)=5.76, p<0.001) with Pauli et al. (2018)’s124

VTA and a mean overlap of 8.81 percent (SD=6.47, min=0.00, max=25.76, t(53)=9.91,125

p<0.001) with Pauli et al. (2018)’s PBP.126

To gain better insight into the anatomical specificity of the SN and VTA, we plotted127

Pauli et al. (2018)’s and Zhang et al. (2017)’s subdivisions of the SN and the VTA on128

the individual data using different contrasts: Figure S1, S2, and S3 show, respectively,129

1Defined as the ratio between the number of voxels in common and the number of voxels in the subdivision.
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 5

a comparison between Pauli et al. (2018)’s atlas with our probabilistic VTA and SN maps130

in the MNI space, a comparison between Zhang et al. (2017)’s atlas with our probabilistic131

VTA and SN maps in the MNI space, and a comparison between Pauli et al. (2018)’s and132

Pauli et al. (2018)’s atlases in the individual space of one example subject. Although the133

group-level masks appear to be accurate to some extent, they often include neighbouring134

areas (such as the red nucleus, see the top left quadrant in Figure S3) or exclude parts of135

the targeted areas (such as in the lower right quadrant in Figure S3). Therefore, only by136

drawing individual masks and avoiding spatial smoothing, we can be sure to not mix signals137

from different midbrain nuclei.138

Finally, we calculated the temporal signal-to-noise (tSNR) across the ROIs (see Fig-139

ure S4). The tSNR was lower, yet comparable to the one reported by de Hollander et al.140

(2017).141

ROI-wise GLM142

For the fuctional analyses, two blocks of trials (from two different participants) were143

discarded based on excessive head movements, having a mean framewise displacement (FD,144

Power et al., 2014) over .3 mm. Because one of these blocks was already discarded based145

on behavior, a total of four blocks was excluded from the final analyses. In the remaining146

blocks, and over the two blocks, participants had an average mean FD of .14 mm (SD=.06,147

min=.04, max=.27).148

Results of the ROI-wise GLM are shown in Table 2 and Figure 4. First, we investi-149

gated the signal related to expectations (i.e., EV and risk) in both the SN and the VTA,150

corresponding to the presentation of the first number. We found no parametric correlations151

between signal in any of the ROI with the EV, with the Bayes Factor (BF) pointing to sub-152

stantial (Jeffreys, 1961) evidence for the null hypothesis. However, there were significant153

correlations with risk in both the left-VTA (t(26)=-2.34, p<0.05) and the left-SN (t(26)=-154

2.44, p<0.05). Next, we investigated the signal related to feedback processing (i.e., RPE and155

surprise), corresponding to the presentation of the second number. There were significant156

correlations with RPE in the left- and right-VTA (t(26)=3.12, p<0.05, and t(26)=2.76,157

p<0.05) and in the right-SN (t(26)=2.54, p<0.05). Finally, we found a correlation with158

surprise in the right-SN (t(26)=2.32, p<0.05), and no effect in the VTA, with the BF pro-159

viding substantial support for the null hypothesis. In sum, both the VTA and the SN were160

linked to risk before the outcome was revealed as well as to RPE after the outcome was161

revealed. These results confirm previous findings from Fiorillo et al. (2003) regarding the162

role of dopamine neurons in risk processing and previous findings from, e.g., Schultz (1998)163

regarding the role of dopamine neurons in RPE processing, but not regarding a possible164

role of these nuclei also in EV processing. Only the SN was additionally associated with165

outcome surprise, similarly to Matsumoto and Hikosaka (2009). As a control analysis (see166

Table S2), we also fit a GLM using the design of Preuschoff et al. (2006). In particular,167

we fit separate regressors for the first and second epoch after presenting the first number168

(where the first epoch lasted 1 second and the second epoch lasted 3 seconds). In these169

analyses, we found significant correlation with risk (in both epochs) and RPE across both170

the SN and the VTA. However, contrary to the results of our primary analysis, we also171

found significant correlation with EV in the second epoch with right-SN and left-VTA and172

no significant correlation with surprise. Note, however, that the high correlation between173
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 6

regressors in the first and second epochs (see Figure S5) might limit the sensitivity of our174

analysis given our particular task.175

Voxel-wise GLM176

To explore other sub-cortical and cortical correlates of expectation- and feedback-177

related processes, we fit the same GLM on the whole-brain level. The results are shown in178

Table 3 and Figure 5 (see also Table S1 for automatic labeling based on cluster peak coordi-179

nates). After cluster correction, we found positive correlations with EV in the ventromedial180

prefrontal cortex, frontal pole, ventral striatum, and precuneous cortex, and negative cor-181

relations with EV in the thalamus. We found positive correlations with risk in the middle182

temporal gyrus and posterior insula, and negative correlations with risk in orbital frontal183

cortex, frontal lobe, and anterior insula. We found positive correlations with RPE in ventral184

striatum, orbital frontal cortex, midbrain, precuneus and anterior insula, and no negative185

correlations with RPE. Finally, we found positive correlations with surprise in the orbital186

frontal cortex, inferior frontal gyrus, superior temporal gyrus, and middle temporal gyrus,187

and negative correlations with surprise in precuneus and posterior insula. Even though188

we could not test for temporal differentiation in the anticipatory period (due to identifi-189

ability issues, see above), we could observe a spatial differentiation between EV and risk,190

confirming parts of the results from Preuschoff et al. (2006). We also observed a spatial191

differentiation between RPE and surprise.192

Discussion193

Understanding the dopamine circuit is of great importance for both clinical and cog-194

nitive neuroscience. First of all, the loss of dopaminergic neurons is associated with Parkin-195

son’s disease symptoms (Fearnley & Lees, 1991; Frank, 2006a) and dysregulations in the196

human dopamine circuit are known to play a role in drug addiction (Everitt & Robbins,197

2005) and pathological gambling (Bergh, Eklund, Södersten, & Nordin, 1997). Moreover,198

the dopamine signal reflects different aspects of rewards, including the anticipation of risk199

and the mismatch between predictions and outcomes (Schultz, 2015). While dopamine neu-200

rons are situated mostly in the midbrain, they are part of a much greater and complex201

circuit, involving different cortical and subcortical areas (Frank, 2006b; Haber & Knutson,202

2010; Watabe-Uchida, Eshel, & Uchida, 2017). By transmitting information about changes203

in reward expectations and risk in the environment to areas important for action execution204

and learning, dopamine likely plays a crucial role in adaptive behavior, that is, for survival205

in a dynamic environment, with limited resources and obstacles to avoid.206

To date, most human studies have focused on the target areas (both cortical and207

subcortical) of the dopamine neurons because of methodological challenges. An exception208

was the study of Zaghloul et al. (2009): Using microelectrode recordings during deep brain209

stimulation surgery in Parkinson’s disease patients, they found SN activation in line with the210

RPE. Importantly, human studies that investigated the activity of dopamine nuclei using211

fMRI provided incomplete and partially contradicting results. In this paper, we presented212

the results of a 7T fMRI study involving human participants performing a number-guessing213

task. To the best of our knowledge, this was the first study to investigate the functional214

role of both the VTA and the SN using UHF-MRI to acquire high-quality, high-resolution215
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functional and structural images. While previous studies in these areas focused on expected216

gains or losses and on the RPE signals, we extended the analysis to expected risk and to217

surprise. This was based on previous electrophysiological and fMRI studies that either218

found this signal in the VTA/SN or in their target areas (e.g., Fiorillo et al., 2003; Hayden,219

Heilbronner, Pearson, & Platt, 2011; Preuschoff et al., 2006). While we found no evidence220

for a linear correlation between reward anticipation (involving both gains and losses) and221

VTA or SN activation, we did find evidence for a RPE signal in both regions, as well as for222

expected risk signal. Similarly to Matsumoto and Hikosaka (2009), who found a functional223

dissociation of VTA and SN, we also found a surprise signal in the SN but not in the VTA.224

Given previous findings (Fiorillo et al., 2003) and theoretical considerations (as a225

reward predicting cue could elicit already a RPE, when the reward expectations through226

the whole experiment are known; see Hare, O’Doherty, Camerer, Schultz, & Rangel, 2008),227

one might expect to find EV signals in the SN/VTA. Since participants were explicitly228

instructed that the initial bet’s outcome was random, there was perhaps less focus on the229

action and more on the reward structure of the task (i.e., the distribution of outcome one230

can expect given a certain number and choice pair). Note, however, that we did find positive231

correlations with EV in the ventromedial prefrontal cortex and ventral striatum, in line with232

previous studies inspecting value signaling in the cortex (Bartra et al., 2013; Schoenbaum,233

Takahashi, Liu, & McDannald, 2011).234

The presence of a full RPE signal in both the VTA and the SN confirms previous235

results in animal studies (Schultz, 2015), although most of them are based on signal from236

the lateral part of the the VTA alone (Eshel, Tian, Bukwich, & Uchida, 2016). It also237

clarifies previous results on the VTA/SN signals in fMRI human studies (D’Ardenne et al.,238

2008; Pauli et al., 2015; Zhang et al., 2017). For instance, D’Ardenne et al. (2008) only239

found evidence for a positive RPE in VTA and not in SN. We also found an RPE signal240

in ventral striatum, orbital frontal cortex, and anterior insula, confirming previous fMRI241

results that looked at dopamine target areas (Bartra et al., 2013).242

Here, we showed the presence of a risk signal in both the VTA and the SN, in line243

with electrophysiological studies in non-human animals (Fiorillo et al., 2003). We also found244

a risk signal in insula and orbital frontal cortex, confirming previous fMRI studies linking245

these areas to the coding of risk (Brown & Braver, 2018; Preuschoff et al., 2006).246

The presence of a surprise signal in the SN and not in the VTA fits remarkably well247

with results from the animal literature (Matsumoto & Hikosaka, 2009) and with the frame-248

work proposed by Bromberg-Martin, Matsumoto, and Hikosaka (2010). In this framework,249

there are two distinct functional groups of dopamine neurons, a motivational value group,250

that shows the standard RPE response, and a motivational salience group, that reflects how251

unexpected outcomes are – positive or negative alike. Cells of the first group are situated252

more in the ventromedial part of the SNc and throughout the VTA, while cells of the second253

group are situated more in the dorsolateral part of the SNc as well as in the medial VTA.254

While SNc cells project more to sensorimotor dorsolateral striatum, VTA cells project more255

to ventral striatum. Beyond our ROIs, we also found correlations between surprise and256

posterior (but not anterior) insula.257

Both the SN and the VTA are relatively small subcortical structures (around 511258

mm3 and 138 mm3, respectively, see Table 1), they are adjacent to each other as well as to259

other nuclei with related functions, such as the red nucleus and the subthalamic nucleus,260
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and they are susceptible to other possible sources of noise, such as the physiological noise261

in the cerebrospinal fluid. The small dimension of the nuclei and their spatial contiguity262

increase the risk of confusing the signal from different regions (de Hollander et al., 2015;263

Trutti et al., 2019). To be able to more reliably extract and separate the signals from the264

VTA and the SN, we therefore drew individual masks, based on 0.7 mm isotropic, multi-265

modal, anatomical images that were acquired for each participant in a separate session. By266

restricting the analyses to the individual space, we also prevented misalignment issues that267

usually occur when transforming individual images to a group or standard space. To define268

the final masks, we adopted a rather conservative approach, by keeping the intersection269

of the masks drawn by two independent and trained raters. To illustrate the importance270

of these precautions, we compared our masks to previously proposed VTA and SN prob-271

abilistic masks in the standard space. In particular, we considered the SN subdivisions272

proposed by Zhang et al. (2017) and the VTA and the SN subdivisions proposed by Pauli273

et al. (2018). We found that when transforming these masks to the individual space – as274

it is usually done during ROI signal extraction – the signal from the VTA and the SN is275

indeed partially mixed. This can have serious impact on the interpretation of the results276

of an fMRI study. For instance, Zhang et al. (2017) reported an RPE signal in the medial277

part of the SN, which – according to our analyses and results – is the part that overlaps278

the most with the VTA, and a surprise signal in the lateral part of the SN. To be able to279

draw strong conclusions on the functional specificity of – in this case – SN subdivisions, we280

would thus argue that it is preferable to have individually drawn masks.281

Future studies could attempt to distinguish between the pars compacta and reticulata282

of the SN, as dopamine neurons are mainly situated in the pars compacta (Roeper, 2013).283

However, these two parts are virtually indistinguishable based on MRI contrast alone (see284

Figure 2). Therefore, to avoid making an arbitrary decisions on where to set a border285

between the two, we considered the SN as one structure. By combining different method-286

ologies (i.e., diffusion MRI) future studies might be able to shed light on SN functional287

subdivisions.288

Another limitation of the present study relies in the nature of the BOLD signal.289

Since the BOLD response measured in fMRI is an indirect measure of neuronal activity290

and is mainly thought to measure signals input and local processing of neurons rather than291

their output (Logothetis & Wandell, 2004), it is important to integrate results from different292

methodologies and species in order to understand the complexity of the dopaminergic circuit293

as a whole.294

In sum, in this study we used novel methodologies to investigate how the brain pro-295

cesses gains and losses and updates expectations based on experience. We were able to296

show a risk signal in the dopamine nuclei and provided evidence for a full RPE signal in the297

presence of both gains and losses, thus clarifying previous results of human fMRI studies.298

This study opens the way to a better understanding of the dopamine circuit in the human299

brain, especially regarding the functional specificity of the SN and the VTA (or of their300

subregions) in reward-based decision making and adaptive behavior.301
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Materials & Methods302

Participants and procedure303

Twenty-seven participants [8 male (mean age=24.7, SD=5.0, min=19, max=35), 19304

female (mean age=24.4, SD=4.7, min=19, max=35)] took part in the experiment. The305

study was approved by the ethics committee of the University of Amsterdam. All par-306

ticipants completed two separate sessions, one to obtain multimodal, 0.7 mm isotropic307

structural data, and one to obtain 1.5 mm isotropic functional data while participants en-308

gaged in a number-guessing task. All participants were recruited from the University of309

Amsterdam subject pool, via flyers and posters at the Spinoza center for Neuroimaging and310

at the Academic Medical Center in Amsterdam, and via advertisements in the magazine311

of the Dutch Parkinson Society. All participants were required to be MRI compatible, be-312

tween 18 and 40 years old, right-handed, without previous history of psychiatric conditions313

or neurological diseases, and to have normal or corrected-to-normal vision. Before taking314

part in the sessions they gave written consent, and, before the second session, they received315

written instructions for the behavioral task. Before going in the MRI scanner, they all316

completed a training session in which they could try the experiment on a computer, and317

were given a written questionnaire to test their comprehension of the probability of winning318

and losing in each scenario of the behavioral task. All participants were given 20 euros as319

compensation for the second session. In the second session they could win or lose up to 7320

euros based on their performance in the task, which were either added or subtracted from321

an additional endowment of 10 euro.322

Data acquisition323

All images were acquired on a Philips Achieva 7T MRI scanner, situated at the324

Spinoza Centre for Neuroimaging in Amsterdam (Netherlands), using a Nova Medical 32-325

channel head array coil. During the first session, participants could choose whether to watch326

a movie or not. During the second session, the number-guessing task was presented using327

PsychoPy (Peirce, 2007).328

Structural MRI. T1-weighted, T∗
2-weighted, and Quantitative Susceptibility Mapping329

(QSM, Langkammer et al., 2012) images were simultaneously obtained using a multi-echo330

magnetization-prepared rapid gradient echo (ME-MP2RAGE) sequence (Caan et al., 2018;331

Metere, Kober, Möller, & Schäfer, 2017). The sequence parameters were: TI,1 = 670 ms,332

TI,2 = 3675.4 ms, TR,1 = 6.2 ms, TR,2 = 31 ms, TE,1 = 3 ms, TE,2 = [3, 11.5, 19,333

28.5 ms], TR,MP 2RAGE = 6778 ms, flip angle1: 4◦, flip angle2: 4◦,bandwidth: 404.9 MHz,334

acceleration factor SENSE: 2, FOV = 205 x 205 x 164 mm3, acquired voxel size: .7 x .7 x335

.7 mm3, acquisition matrix: 292 x 290, reconstructed voxel size: .64 x .64 x .70 mm3, turbo336

factor: 150 (resulting in 176 shots). The total acquisition time was 19.53 min.337

Functional MRI. The functional MRI protocol was an adaptation of Protocol 3 as338

reported by (de Hollander et al., 2017), originally designed for a 7T Siemens scanner lo-339

cated at the Max Planck Institute for Human Cognitive and Behavioral Sciences in Leipzig,340

Germany. This protocol was used to optimize the tSNR in iron-rich nuclei in the human341

midbrain. The present protocol consisted of 2 runs of 719 volumes with 30 slices. The342

acquisition time was 23.97 min per run. Other parameters were TR = 2,000 ms, TE =343

17 ms, flip angle: 60◦, bandwidth: 2226.2 Hz, voxel size: 1.5 x 1.5 x 1.5 mm 3, FOV =344
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REWARDS AND PUNISHMENTS IN THE MIDBRAIN 10

192 x 192 x 49 mm3, SENSE acceleration factor, P-reduction (AP): 3, matrix size: 128 x345

128. To acquire images with such TE, TR, and voxel-size, the protocol did not employ Fat346

suppression, and, to increase SNR, the protocol did not employ Partial Fourier. After the347

first run, an EPI image with opposite phase coding direction as compared to the functional348

scan was acquired to help correcting for geometric distortions due to inhomogeneities in the349

B0 field using the TOPUP technique during preprocessing (see below).350

Number-guessing task351

The number-guessing task used in the present study is an adaptation of the task352

by Preuschoff et al. (2006). In each trial (Figure 1A), two numbers were sampled one353

after the other from the set 1, 2, 3, 4, 5 without replacement. At the beginning of each trial,354

before seeing both numbers, participants were asked to bet which of the two numbers will be355

higher: They could win 5 euro if their bet (i.e., their prediction) was correct, and lose 5 euro356

otherwise. Participants were also instructed that the sampling was (pseudo-) random and357

that their choice could not influence sampling. The texts “Second number is HIGHER." and358

“Second number is LOWER." appeared on the left and right side of the screen, respectively359

(the position was counterbalanced across participants), and participants had to press either360

a left or a right button to place their bet. They could do so within 1 second, otherwise361

a bet would be placed for them at random. The choice (either the participant’s or the362

random one) was then indicated by presenting a black frame around the corresponding text363

for another second.364

The first number was subsequently shown for 2 seconds. Based on this first number,365

participants can update the probability to win or lose (both 50% at the beginning of the366

trial). For example, if a bet is placed on the second number being higher than the first367

number, and the first number is revealed to be 2, then three out of the four remaining368

numbers (i.e., 3, 4, and 5) lead to winning (pwinning = 75%), while only one number (i.e.,369

1) leads to losing (plosing = 25%). The expected value (EV) of the gamble is calculated as:370

EV = pwinning · 5− plosing · 5 (1)

and in this case is thus 5 · 0.75− 5 · 0.25 = 2.5 euros. The risk, often defined as the variance371

of the possible outcomes (Markowitz, 1952), is thus 4.3. Note that, when the first number372

is 3, the probability to win remains 50%, the EV remains 0, and the risk is highest, equal373

to 5. On the contrary, when the first number is either 1 or 5, participants already know374

whether they will lose or win (depending on what the bet was), therefore the EV is either375

−5 or 5 euros and the risk is always 0. Since we were interested in neural correlates of376

both EV and risk, it is a crucial aspect of this design that EV and risk are not correlated377

(Figure 1B).378

At last, the second number is shown for 2 seconds, together with the corresponding379

gain or loss. At this point, the reward prediction error (RPE) is calculated:380

RPE = outcome− EV. (2)

In the example above (i.e., bet on 2nd number being higher; first number is 2), if the second381

number is 3, the reward is 5 euros and the reward prediction error is 5 − 2.5 = 2.5 euros.382

The surprise, defined as the absolute value of the reward prediction error (i.e., the reward383
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expectation after the first number) as in Schultz (2015) and in Hayden et al. (2011), is384

thus |5 − 2.5| = 2.5. Since we were also interested in neural correlates of both RPE and385

surprise, it was also crucial that they were uncorrelated. This was the case, since RPE386

ranged between -7.5 and 7.5 and its distribution over trials was symmetrically centered387

around 0, and surprise was simply its absolute value.388

The experiment consisted of 120 trials, divided in two blocks. In each block, 5 test tri-389

als were included to encourage participants to remain attentive throughout the experiment.390

In these trials, instead of showing the reward, we asked participants to indicate whether391

they won or lost. To correctly respond to this question, they needed to remember both392

their bet and the first number. At the end of the experiment, we randomly selected one393

of the 110 regular trials, and participants received the corresponding reward (i.e., 5 or -5394

euros), plus 2 additional euros if they responded correctly to at least 8 of the 10 test trials,395

otherwise we subtracted 2 euros to the final reward. Between each event in each trial, and396

at the beginning of each trial, a fixation cross was presented for a period of time between397

4 and 10 seconds, drawn from a truncated exponential distribution. The long inter-stimuli398

intervals were crucial to allow separating the BOLD signals associated with the first and399

the second numbers (i.e., signals related to either expectations or feedback processing).400

Behavioral analysis401

Because choices are not influencing the chance of winning or losing in this task, be-402

havioral analyses had the purpose to check the quality of the data for the fMRI analyses.403

The most important indicator of data quality was the accuracy in the test trials: Blocks in404

which participants made more than two out of five mistakes were discarded, where misses405

also counted as mistakes. Another important indicator was the number of missed bets:406

Blocks in which participants missed more than ten out of 60 bets were discarded. Finally,407

we checked the percentage of right vs. left responses. Because the position of the texts408

corresponding to the specific bets was counterbalanced across – but fixed within – partici-409

pants, a similar number of right and left responses needed to be made for a balanced design.410

Blocks in which participants made less than ten right or more than fifty right (out of 60)411

choices were discarded.412

Structural and functional MRI data preprocessing413

Registration and preprocessing were performed using FMRIPREP version 1.0.6 (Es-414

teban et al., 2018), a Nipype (Gorgolewski et al., 2011) based tool. Registration across415

session was done by registering the functional images (from the second session) to the T1-416

weighted structural image multiplied by the first echo of the T∗
2-weighted structural images417

(from the first session). Because the T1-weighted, T∗
2-weighted, and QSM structural images418

were acquired simultaneously during the same scan in the first session, there was no need419

to co-register them first.420

Structural images were corrected for intensity non-uniformity using N4 Bias Field421

Correction (Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh. Spatial422

normalization to the ICBM 152 Nonlinear Asymmetrical template (Fonov, Evans, McK-423

instry, Almli, & Collins, 2009) was performed through nonlinear registration with the424

antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using425
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brain-extracted versions of both T1-weighted volume and template. Brain tissue segmenta-426

tion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed427

on the brain-extracted T1-weighted image using fast (FSL v5.0.9) (Zhang, Larcher, Misic, &428

Dagher, 2001). Functional data was motion corrected using mcflirt (FSL v5.0.9, Jenkinson,429

Bannister, Brady, & Smith, 2002). Distortion correction was performed using an imple-430

mentation of the TOPUP technique (Andersson, Skare, & Ashburner, 2003) using 3dQwarp431

(AFNI v16.2.07, Cox, 1996). This was followed by co-registration to the corresponding T1-432

weighted image using boundary-based registration Greve and Fischl (2009) with 9 degrees433

of freedom, using flirt (FSL). Motion correcting transformations, field distortion correct-434

ing warp, BOLD-to-T1-weighted transformation and T1-weighted-to-template (MNI) warp435

were concatenated and applied in a single step using antsApplyTransforms (ANTs v2.1.0)436

using Lanczos interpolation.437

Physiological noise regressors were extracted applying CompCor (Behzadi, Restom,438

Liau, & T.Liu, 2007). Principal components were estimated for the anatomical CompCor439

(aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the440

brain mask, ensuring it only contained subcortical structures. Six tCompCor components441

were then calculated including only the top 5% variable voxels within that subcortical mask.442

For aCompCor, six components were calculated within the intersection of the subcortical443

mask and the union of CSF and WM masks calculated in T1-weighted space, after their444

projection to the native space of each functional run. FD was calculated for each functional445

run using the implementation of Nipype.446

The preprocessing and registration output was visually inspected for each subject447

using the html output files of FMRIPREP. Functional data quality was assessed using448

MRIQC (Esteban et al., 2017) prior preprocessing, to check for visual artifacts and excessive449

head movements. Finally, after preprocessing and registration, tSNR maps were computed450

using Nipype to assess the tSNR across the ROIs.451

Anatomical segmentation452

One main aim of the present study was to obtain anatomically precise masks in the453

individual space for the two ROIs: the ventral tegmental area (VTA) and the substantia454

nigra (SN). Because of its relatively high iron concentration, the SN is most discernible in455

QSM images (Keuken et al., 2014), as shown in the first row of Figure 2. Unlike the SN, the456

VTA lacks clear anatomical borders (Trutti et al., 2019). Segmentation can be performed,457

however, by exclusion from the neighboring iron-rich nuclei (i.e., the SN and the red nucleus,458

RN) and the CSF, so both should be clearly visible. The CSF is not visible in the QSM459

image. It is, however, clearly visible in the T1-weighted image (see Figure 2, third row).460

To ease and improve the segmentation process, we therefore combined the T∗
2-weighted and461

T1-weighted images, by first normalizing them within the midbrain area (i.e., a pre-selected462

area of 1.6 x 1.6 x 3.08 cm3) and finally summing them up. The result can be seen in463

the bottom row of Figure 2: The QSM images in the first row show a high contrast for464

iron rich areas, such as the SN, the red nucleus (situated above and posterior to the SN),465

and the subthalamic nucleus (situated above and anterior to the SN); the T∗
2-weighted and466

T1-weighted images (second and third row) highlight, respectively, iron rich areas and the467

CSF; their sum (fourth row) thus allows to segment the VTA, as it is mainly defined by the468

border it shares with these regions (which are hard to visualize within the same contrast).469
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Manual segmentation was performed using FSLView version 3.0.2, by two independent470

and trained researchers (one of which is the first author of this study). Only the voxels that471

were marked by both researchers were kept in the final masks, that is, the conjunction472

masks. To assess inter-rater reliability (i.e., the agreement between the two researcher),473

we computed the Dice score (Dice, 1945) separately for each participant, hemisphere, and474

structure. The Dice score is computed as the ratio between the union of the two areas and475

the conjunction of the two areas. It therefore depends on the average dimension of the476

structure (with smaller structures usually having lower scores) and has to be interpreted477

accordingly. Scores approaching 1 indicate perfect agreement between raters, while scores478

close to 0 indicate no agreement between raters.479

Drawing individual masks for each subject and area is a time- and resource-consuming480

process: High resolution structural images need to be acquired first, and then two trained481

researchers need to complete a lengthy segmentation process. To forgo this costly approach,482

SN (Keuken et al., 2014) and VTA (Pauli et al., 2018) MRI atlases have been published in483

recent years. These atlases consists of probabilistic maps of different ROIs in MNI space, and484

can be thus transformed in the individual space to extract the signal from these regions.485

The disadvantage of this less resource-intensive approach, however, is a potential loss of486

sensitivity and specificity due to misalignment between the individual and the standard487

spaces, as well as individual differences. To quantify the loss of information in this process,488

we transformed the three SN subregions proposed by Zhang et al. (2017), based on the489

33% thresholded probabilistic masks proposed by Keuken et al. (2014), to the individual490

space and measured the overlap with our individual VTA masks as the number of voxels in491

common, divided by the overall area. A similar procedure was done with the proposed VTA492

and SN subdivisions of Pauli et al. (2018), using their deterministic atlas (50% thresholded).493

fMRI data analysis494

We extracted the fMRI signal for each time point within the ROIs (i.e., left and495

right SN and VTA) for each subject and computed its average time course for each ROI496

separately. We then fitted a GLM to the resulting time series for every region, participant,497

and block using statsmodels (Seabold & Perktold, 2010). Specifically, we used the GLSAR498

AR(1) model, to account for autocorrelation. The design matrices were constructed using499

Nistats (https://nistats.github.io/index.html). In the design matrices, the following500

events were convolved with the canonical, double-gamma hemodynamic response function501

(HRF): the bet at the beginning of the trial, the appearance of the first number, the502

appearance of the second number in regular trials, and the appearance of the second number503

in test trials. On top of these, we added four parametric regressors: EV and risk (with504

onsets at the appearance of the first number and as amplitude the normalized EV and505

risk of each trial), and RPE and surprise (with onsets at the appearance of the second506

number and as amplitude the normalized RPE and surprise of each trial). The duration507

of the parametric regressors, together with their intercepts (i.e., the appearance of the first508

and second number), was set to 2 seconds, as this was the time of presentation of the509

numbers on the screen. Additional nuisance parameters were the six aCompCor, FD, six510

head movement variables provided by fmriprep, and cosine regressors for high-pass temporal511

filtering. No spatial smoothing was used. After averaging across blocks, we performed512

independent two-sided t-tests, separately by ROIs and hemisphere (i.e., left vs. right) for513
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the mean of the parameters corresponding to EV, risk, RPE, and surprise being equal to514

zero. We also estimated the equivalent Bayesian t-tests, as implemented in the BayesFactor515

R library (https://cran.r-project.org/web/packages/BayesFactor/index.html), as516

it allows quantifying evidence in favor of the null hypothesis and therefore complements the517

frequentist analyses.518

For the exploratory and control analyses, we estimated the same GLMs519

as on the ROIs, using a mass-univariate, voxel-wise approach with Nistats520

(https://nistats.github.io/index.html). At the level of individual runs, we used a521

smoothing Gaussian kernel with a FWHM of 3.0 mm. At the participant level, we esti-522

mated the size of the baseline contrasts of the parameter estimates of EV, risk, RPE, and523

surprise. These participant-wise contrasts of parameter estimates (COPE) were then trans-524

formed to the MNI space and used in the third and final group-level analysis. Finally, we525

performed a Gaussian Random Field cluster analysis on the resulting four z-maps (EV, risk,526

RPE, and surprise), using FSL cluster tool. For these analyses, we set an input threshold527

of 2.3 and a cluster-wise threshold of p<.05.528
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Table 1
Anatomical segmentation results.

Mean SD Min Max

SN Right Dice score 0.85 0.04 0.73 0.91
Size (mm3) 520.77 76.75 311.49 637.65

Left Dice score 0.84 0.04 0.74 0.90
Size (mm3) 501.67 60.86 384.26 621.25

VTA Right Dice score 0.56 0.07 0.43 0.68
Size (mm3) 138.91 39.37 76.51 233.26

Left Dice score 0.56 0.06 0.38 0.68
Size (mm3) 137.46 38.30 80.82 224.34

Note. Dice scores and size of the individual conjunction masks of the regions of interest (ROI): left
and right substantia nigra (SN) and left and right ventral tegmental area (VTA). Conjunction masks
are the intersection of the two independent raters’ masks. Dice scores closer to 1 indicate higher
agreement between the two raters, while dice scores close to 0 indicate lower agreement between the
two raters.
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Table 2
ROI-wise GLM results.

ROI EV risk RPE surprise

SN-left t(26)=-0.31, p=0.76 t(26)=-2.44, p=0.02* t(26)=1.36, p=0.187 t(26)=0.33, p=0.74
BF10=0.21 BF10=2.44 BF10=0.46 BF10=0.21

SN-right t(26)=-1.17, p=0.25 t(26)=-0.42, p=0.68 t(26)=2.54, p=0.018* t(26)=2.32, p=0.03*
BF10=0.38 BF10=0.22 BF10=2.91 BF10=1.96

VTA-left t(26)=-1.41, p=0.17 t(26)=-2.34, p=0.03* t(26)=3.12, p=0.004* t(26)=0.21, p=0.83
BF10=0.50 BF10=2.03 BF10=9.42 BF10=0.21

VTA-right t(26)=-0.28, p=0.78 t(26)=-0.26, p=0.79 t(26)=2.76, p=0.011* t(26)=1.23, p=0.23
BF10=0.21 BF10=0.21 BF10=4.46 BF10=0.40

Note. Results of the independent two-sided t-tests for the mean of the predictors of main interest
of the GLM being equal to zero: expected value (EV) and expected risk (estimated when the trials’
first number is presented), and reward prediction error (RPE) and surprise (estimated when the
trial’s reward or punishment are presented). These tests were run separately by regions of interest:
left and right substantia nigra (SN), and left and right ventral tegmental area (VTA). Bayes factors
(BF) higher than 1 provide evidence for an effect, while BF lower than 1 provide evidence for the
absence of an effect.
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Table 3
Results of the voxel-wise GLM after cluster-wise thresholding.

Cluster Index Voxels p -log10(p) Max/Min Max/Min x (vox) Max/Min y (vox) Max/Min z (vox)
Predictor

EV (positive) 5 871 <0.001 8.57 3.56 12.0 -55.5 25.5
EV (positive) 4 868 <0.001 8.54 3.88 -6.0 42.0 -15.0
EV (positive) 3 283 0.002 2.60 3.56 -7.5 16.5 -6.0
EV (positive) 2 275 0.003 2.50 3.53 9.0 16.5 -6.0
EV (positive) 1 237 0.01 2.01 3.78 -31.5 51.0 -16.5
EV (negative) 3 1274 <0.001 11.80 -3.67 6.0 -27.0 -1.5
EV (negative) 2 226 0.014 1.86 -3.02 -15.0 -75.0 -10.5
EV (negative) 1 218 0.018 1.75 -3.01 -18.0 -76.5 3.0
risk (positive) 5 7344 <0.001 31.00 4.67 -19.5 -45.0 18.0
risk (positive) 4 1054 <0.001 6.62 3.82 49.5 -25.5 15.0
risk (positive) 3 591 <0.001 3.73 3.73 16.5 34.5 -3.0
risk (positive) 2 365 0.01 2.01 4.05 -19.5 33.0 -4.5
risk (positive) 1 305 0.031 1.50 4.23 52.5 -60.0 -1.5
risk (negative) 7 2664 <0.001 14.50 -4.67 30.0 24.0 -9.0
risk (negative) 6 1300 <0.001 8.05 -3.83 15.0 64.5 -4.5
risk (negative) 5 1209 <0.001 7.55 -4.08 6.0 -91.5 7.5
risk (negative) 4 950 <0.001 6.05 -3.75 -31.5 16.5 -18.0
risk (negative) 3 515 0.001 3.18 -4.31 -16.5 66.0 -3.0
risk (negative) 2 467 0.002 2.82 -3.93 67.5 -30.0 -6.0
risk (negative) 1 397 0.005 2.27 -3.31 -10.5 39.0 6.0
RPE (positive) 8 4234 <0.001 24.10 4.44 12.0 16.5 -4.5
RPE (positive) 7 2724 <0.001 17.30 4.38 -10.5 18.0 -12.0
RPE (positive) 6 526 <0.001 4.04 3.70 -27.0 -25.5 13.5
RPE (positive) 5 506 <0.001 3.87 3.59 40.5 55.5 -10.5
RPE (positive) 4 398 0.001 2.91 4.30 -42.0 48.0 -15.0
RPE (positive) 3 390 0.001 2.84 3.64 12.0 -25.5 -10.5
RPE (positive) 2 314 0.008 2.11 3.96 63.0 -25.5 25.5
RPE (positive) 1 273 0.02 1.69 3.81 16.5 -54.0 22.5

surprise (positive) 4 1026 <0.001 9.89 4.33 57.0 22.5 6.0
surprise (positive) 3 871 <0.001 8.58 4.41 51.0 -33.0 0.0
surprise (positive) 2 464 <0.001 4.70 3.73 -58.5 -25.5 -6.0
surprise (positive) 1 328 0.001 3.16 3.54 54.0 13.5 -21.0
surprise (negative) 3 1291 <0.001 12.00 -4.04 -22.5 -54.0 7.5
surprise (negative) 2 635 <0.001 6.45 -4.16 10.5 -51.0 13.5
surprise (negative) 1 250 0.007 2.18 -3.31 48.0 0.0 12.0

Note. Clusters surviving thresholding. We report the number of voxels, cluster probability, log
probability, activation and MNI coordinate of the activation peak voxel in a cluster.
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Figure 1 . Experimental design. A. Example of a single trial. Between each event and at
the beginning of each trial, a fixation cross is presented for a period of time between 4 and
10 seconds. A bet has to be placed within 1 second, and a rectangle is drawn around the
corresponding choice for 1 more second. The first number is then shown for 2 seconds:
In this example, the expected reward is 2.5 euros, and the risk is 4.3. Finally, the second
number is shown for 2 seconds: In this case, both the reward prediction error and the
surprise are 2.5. In test trials (approximately 8%) participants have to specify whether
they won or lost. B. Relationship between risk and expected reward when the first number
is shown, depending on the choice.
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Figure 2 . Detail of the midbrain area of one participant in the sagittal (first column),
coronal (second column), and axial (third column) planes. The first row is the QSM image,
used for SN segmentation. The second and third row are, respectively, the average between
the third and fourth echo of the T∗

2-weighted, and the T1-weighted images. To obtain the
image in fourth row, the images in the second and third row were normalized within the
midbrain area (the non-homogeneous grey area in the last row) and then summed. This
image was used for VTA segmentation, as it shows a contrast of both iron-rich nuclei and
of the CSF.
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Figure 3 . Conjunction between the population-defined substantia nigra (SN) and ventral
tegmental area (VTA) subdivisions and, respectively, individually defined VTA and SN
segmentation. The SN subdivisions were taken from either Zhang et al. (2017) or Pauli et
al. (2018) studies, while the VTA subdivisions were taken from Pauli et al. (2018) study.
Top row: percentage of the conjuction area over the subdivision area. Dots represent mean
across subjects, while error bars represent 95% confidence intervals. Bottom row: swarmplot
showing the number of voxels in the conjuction per subject. The medial parts of the SN
(mSNc, and SNc) overlap more with the VTA than the lateral and ventral parts of the SN
(lSNc, vSN, and SNr). Both the ventral (VTA) and lateral (PBP) parts of the VTA overlap
with the SN.
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Figure 4 . Average effect size across participants of the GLM on the time-series data
extracted from the regions of interest (ROI): left and right substantia nigra (SN) and left
and right ventral tegmental area (VTA). Different plots represent the predictors of main
interest: expected value (EV) and expected risk (estimated when the trials’ first number
is presented), and reward prediction error (RPE) and surprise (estimated when the trial’s
reward or punishment are presented). Error bars represent 95% confidence intervals.
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Figure 5 . Results of the voxel-wise GLM after cluster correction, and overlapped onto
the mean functional image across participants and volumes. Each row corresponds to the
predictors of main interest: expected value (EV) and expected risk (estimated when the
trials’ first number is presented), and reward prediction error (RPE) and surprise (estimated
when the trial’s reward or punishment are presented).

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732560doi: bioRxiv preprint 

https://doi.org/10.1101/732560
http://creativecommons.org/licenses/by/4.0/

