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ABSTRACT 

 Motor stereotypies are common in children with autism spectrum disorder (ASD), 

intellectual disability, or sensory deprivation, as well as in typically developing children 

(“primary” stereotypies, CMS). The precise pathophysiological mechanism for motor 

stereotypies is unknown, although genetic etiologies have been suggested. In this study, we 

perform whole-exome DNA sequencing in 129 parent-child trios with CMS and 853 control trios 

(118 cases and 750 controls after quality control). We report an increased rate of de novo 

predicted-damaging variants in CMS versus controls, identifying KDM5B as a high-confidence 

risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging 

variants in CMS probands show significant overlap with those in Tourette syndrome, ASD 

candidate genes, and those in ASD probands with high stereotypy scores. Furthermore, 

exploratory biological pathway and gene ontology analysis highlight histone demethylation, 

organism development, cell motility, glucocorticoid receptor pathway, and ion channel transport. 

Continued sequencing of CMS trios will identify more risk genes and allow greater insights into 

biological mechanisms of stereotypies across diagnostic boundaries.  
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INTRODUCTION 

Motor stereotypies are rhythmic, repetitive, prolonged, fixed, patterned, non-goal 

directed movements that are often bilateral and temporarily stop with distraction. Complex motor 

stereotypies (CMS) include hand flapping, finger wiggling, head nodding, and rocking; these are 

often accompanied by mouth opening, head posturing, jumping, pacing and occasional 

vocalizations (1). Movements occur for up to minutes in duration, multiple times per day, and 

tend to be exacerbated by excitement, fatigue, stress, boredom, or being engrossed in an 

activity. CMS are common in children with autism spectrum disorder (ASD), intellectual 

disability, or sensory deprivation, as well as in typically developing children. A favored 

classification subdivides by etiology into primary (otherwise typically developing) and secondary 

categories. In both groups, stereotypies often result in social stigmatization, classroom 

disruption, and interference with academic activities.  

In children with ASD, stereotypic behaviors (“secondary” stereotypies) occur in about 

44% of patients and are recognized as a core phenotype of the disorder (2). The severity and 

frequency of motor stereotypies is correlated with severity of illness, degree of intellectual 

disability, and impairments in adaptive functioning and symbolic play (3-9). They are often 

associated with self-injurious behaviors (10, 11). A wide range of medications have been tried 

for treatment of stereotypies in ASD, but efficacy is inconsistent and inadequate, with potential 

for long-term side effects (12).  

Motor stereotypies also occur in otherwise typically developing children (“primary” 

stereotypies) (13-22). Studies comparing primary and secondary stereotypies show that there is 

considerable similarity in their phenomenology (23-25). Primary CMS has a typical age of onset 

before 3 years, and greater than 90% of children continue to experience CMS into adolescence 

and adulthood (16, 26). The prevalence of primary CMS is estimated to be 3-4% of children in 

the U.S. (26, 27). Similar to secondary stereotypies, medications are generally regarded as 
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ineffective for primary CMS (13, 28), but there is evidence to support the benefits of cognitive 

behavioral therapy (29, 30). 

The precise pathophysiological mechanism for motor stereotypies remains obscure (31), 

though investigators have hypothesized abnormalities within cortico-striatal-thalamo-cortical 

pathways (32-38) and several neurotransmitter systems (33, 39-41). A genetic etiology for 

stereotypies has been suggested in primary and secondary categories, although the specific 

gene(s) contributing to this movement disorder remain unclear. With respect to secondary 

stereotypies in ASD, family studies have demonstrated that these repetitive behaviors are highly 

heritable, with a genetic etiology that is likely independent from other core diagnostic features 

(42). While there are no studies of recurrence risk or twin concordance reported for primary 

CMS, a positive family history is reported in 25-40%, while remaining cases appear to be 

sporadic (16, 28, 43).  

Considering these findings and with the recent success of risk gene discovery in other 

neurodevelopmental disorders via detection of de novo, or spontaneous, germline DNA 

mutations (44-46), we conducted the first pilot genetic study of CMS in 129 typically-developing 

children and their parents. We hypothesized that primary CMS may represent a more 

genetically homogenous group of individuals versus those with secondary stereotypies, thereby 

facilitating genetic discovery and insight into the biology of stereotypies more generally (49, 50). 

Using whole-exome DNA sequencing, we identified an enrichment of de novo predicted-

damaging mutations and identified one high-confidence risk gene, Lysine Demethylase 5B 

(KDM5B) in our cohort. By further analysis of de novo damaging mutations in primary CMS, we 

predict that there are approximately 184 CMS risk genes and that sequencing more CMS 

parent-child trios is a definite path toward discovering these genes. In this pilot study, we see an 

overlap between genes harboring de novo damaging mutations in CMS and those in Tourette 

syndrome. Furthermore, owing to the two de novo damaging KDM5B mutations in our CMS 
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cohort, there is significant overlap with ASD probands with highest stereotypy scores, but not 

those with low scores. Finally, exploratory systems analyses of genes harboring de novo 

damaging mutations in CMS show enrichment in histone demethylation, multicellular organism 

development, and cell motility. 

 

MATERIALS AND METHODS 

 Figure 1 provides an overview of the study methods. 

Subjects and Assessment Measures  

This protocol was approved by the Johns Hopkins Medicine Institutional Review Board. 

Children with primary complex motor stereotypies (CMS) were recruited from either the Johns 

Hopkins Pediatric Neurology Movement Disorder Outpatient Clinic (HSS, Director), or via email 

(singerlab@jhmi.edu). All participants verbally consented and signed parental consent was 

obtained. Using standardized forms via telephone, the study coordinator completed a brief 

screening general history, obtained baseline data about each child’s stereotypies, and 

completed an Autism Spectrum Screening Questionnaire (ASSQ). The presence of stereotypic 

movements was confirmed, either via direct observation in clinic or by video review (HSS). If the 

subject passed the screening assessment, additional data was collected on the child and both 

parents via RedCap, an electronic web-based application for data capture and online 

questionnaires. The latter included the Stereotypy Severity Scale (Motor and Impairment 

scores) and comorbidity measures (Multidimensional Anxiety Scale for Children—MASC; 

ADHD-Rating Scale IV; Conner’s Parent Rating Scale—CPRS; Repetitive Behavior Scale-

Revised—RBS-R; Children’s Yale-Brown Obsessive-Compulsive Scale—CYBOCS; and Social 

Responsiveness Scale—SRS) (see Supplementary Methods). 
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For this pilot study, we prioritized the study of “simplex” CMS (children without known 

family history of affected first or second-degree relatives) to increase the likelihood of detecting 

de novo sequence and structural variants. Eligibility required participants to have: (a) confirmed 

complex motor stereotypies; (b) onset before age 3 years; (c) temporary suspension of 

movements by an external stimulus or distraction. Exclusion criteria included: (a) a total score 

>13 on the ASSQ or a prior autism spectrum disorder diagnosis; (b) evidence of intellectual 

disability; (c) seizures or a known neurological disorder; and (d) the presence of motor/vocal 

tics. The presence of inattentiveness, hyperactivity, or impulsivity (i.e., ADHD symptoms) and/or 

obsessive-compulsive behaviors were not exclusionary.  

DNA whole-exome sequencing (WES) 

DNA was collected from all children meeting eligibility criteria and from their parents, 

using the Oragene OG-500 collection kit and standard extraction protocols (DNA Genotek, 

Ottowa, Ontario, Canada). Exome capture and sequencing were performed at the Yale Center 

for Genome Analysis (YCGA), using the NimbleGen SeqCap EZExomeV2 capture library 

(Roche NimbleGen, Madison, WI, USA) and the Illumina HiSeq 2500 platform (Illumina, San 

Diego, CA, USA). WES data from 853 unaffected parent-child trios (2,559 samples total) were 

obtained from the Simons Simplex Collection via the NIH Data Archive 

(https://ndar.nih.gov/edit_collection.html?id=2042). These children and their parents have no 

evidence of autism spectrum or other neurodevelopmental disorders (47). The same exome 

capture and sequencing platforms were used for these control samples.  

Sequence alignment, variant calling, and quality control 

Alignment and variant calling of the sequencing reads followed the latest Genome 

Analysis Toolkit (GATK) (48) Best Practices guidelines, as described previously (49). Variants 

were annotated using RefSeq hg19 gene definitions using ANNOVAR (50). Trios were omitted 
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from downstream analyses if (a) genetic markers were not consistent with expected family 

relationships; (b) an excessive number of de novo variants were observed, or (c) if they were 

outliers in principal components analysis (see Supplementary Methods). De novo variants were 

called as previously described (49) and as detailed in Supplementary Methods. 

Mutation rate and gene recurrence 

Within each cohort, we calculated the rate of de novo mutations per base pair, using 

methods previously described (49). We included only those de novo variants present with a 

frequency of <0.001 (0.1%) in the ExAC v0.3.1 database (51) and compared de novo mutation 

rates in cases versus controls using a one-tailed rate ratio test (Supplementary Methods). 

As described in our previous WES studies (45, 46, 52), we used the Transmitted And De 

novo Association (TADA-Denovo) test as a statistical method for risk gene discovery based on 

gene-level recurrence of de novo mutations within the classes of variants that we found 

enriched in CMS (53, 54). This test generates random mutational data based on each gene's 

specified mutation rate to determine null distributions, then calculates a p-value and a false 

discovery rate (FDR) q-value for each gene using a Bayesian "direct posterior approach." A low 

q-value represents strong evidence for CMS association. See Supplementary Methods for 

details. 

Estimating the number of CMS risk genes 

As described previously (45, 52), we used a maximum likelihood estimation (MLE) 

method (55) to estimate the number of genes contributing risk to CMS, based on the observed 

number of de novo damaging variants in our dataset. See Supplementary Methods for details of 

these calculations. 

Next, we used previously described methods (45, 52) to predict the likely number of risk 

genes that will be discovered as additional CMS parent-child trios are sequenced by WES. 
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These predictions utilize the estimated number of CMS risk genes along with CMS de novo 

mutation rates observed in our study to perform mutation simulations, followed by TADA-

Denovo testing (see Supplementary Methods).  

Gene set overlap 

We used DNENRICH (56) (https://psychgen.u.hpc.mssm.edu/dnenrich/) to test whether 

genes harboring de novo damaging mutations in our CMS subjects were significantly enriched 

among several gene lists from the literature related to neuropsychiatric disorders, including 

autism (ASD), schizophrenia (SCZ), Tourette’s disorder (TD), obsessive-compulsive disorder 

(OCD), attention-deficit/hyperactivity disorder (ADHD), and intellectual disability (ID). 

Additionally, we were interested in the question of whether our CMS cohort share genes 

harboring de novo damaging mutations with ASD probands having high stereotypy scores. To 

approach this question, we assembled lists of genes harboring damaging de novo mutations in 

ASD probands from the Simons Simplex Collection (SSC) for whom stereotyped behavior 

scores (Stereotyped Behavior Score from the RBS-R, Repetitive Behavior Scale-Revised) were 

available. We looked for overlap between our CMS cohort and those SSC ASD probands with 

stereotypy scores in the 90th percentile (high stereotypies) and those scoring in the 10th 

percentile (low stereotypies). These gene lists are compiled in Table S4. Further details about 

gene list curation and DNENRICH methods can be found in Supplementary Methods. 

Exploratory pathway, gene ontology, and spatiotemporal analyses 

To determine whether genes harboring de novo damaging variants in CMS may perform 

similar biological functions, we used the list of CMS genes harboring de novo damaging 

mutations to identify enriched pathways and gene ontologies using ConsensusPathDB (Release 

34, 15.01.2019). This tool integrates human protein and genetic interaction networks from 32 

databases and interactions curated from the literature (57). 
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Finally, using this same list of genes, we searched for possible enrichment of gene 

expression within certain brain regions across multiple developmental time periods, using data 

from the Brainspan Atlas of the Developing Human Brain (58, 59). See Supplementary 

Methods.   

 

RESULTS 

We performed WES on 129 CMS parent-child trios (387 samples total) meeting inclusion 

criteria. WES data from 853 unaffected control trios, already sequenced from the Simons 

Simplex Collection, were pooled with our CMS trios for joint variant calling. After quality control 

methods, our sample size for a burden analysis was 118 CMS and 750 unaffected trios (Table 

1, Figure 1, Table S1, Figure S1).  

Increased burden of de novo damaging variants in CMS 

Based on work in other neurodevelopmental disorders, we expected to find an 

enrichment of de novo LGD variants (stop codon, frameshift, or canonical splice-site variants) in 

CMS probands versus controls. We found a statistically significant increased rate of de novo 

LGD variants in CMS cases, confirming our hypothesis (rate ratio [RR] 1.95, 95% Confidence 

Interval [CI] 1.04-3.50, p=0.04). Furthermore, de novo variants predicted to be damaging (LGD 

plus missense variants with Polyphen2-HDIV score <0.957 and ≥0.453) were also over-

represented in CMS probands (RR 1.37, CI 1.05-1.76, p=0.03). We did not detect a difference 

in mutation rates for de novo synonymous variants, or when all de novo variants (coding +/- 

non-coding) were considered together. (Table 1, Figure 2, Table S2) 

KDM5B is a high-confidence candidate risk gene in CMS 
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Having established a higher rate of de novo damaging variants in CMS probands, we 

next asked whether these variants cluster within specific genes. We identified one gene with 

more than one predicted damaging de novo variant in unrelated probands: KDM5B (Lysine 

Demethylase 5B) harbored two different LGD (stopgain) de novo variants in CMS probands 

1029-03 and 1050-03. Using TADA-Denovo (53) and previously established false discovery rate 

(FDR) thresholds, we found that KDM5B meets statistical criteria for a high-confidence risk gene 

(q<0.1) in CMS (Table S3).  

Approximately 184 genes contribute to CMS risk 

Based on the number of observed de novo damaging mutations in CMS, the MLE 

method estimated the most likely number of CMS risk genes to be 184 (Figure S2). Next, we 

used this estimate along with de novo mutation rates observed in CMS trios to predict the likely 

number of risk genes that will be discovered in larger CMS cohorts. Based on these simulations, 

WES of 500 trios should find 16 probable and 7 high-confidence risk genes; 1000 trios should 

find 51 probable and 26 high-confidence risk genes (Figure S3). 

CMS gene enrichment in Tourette syndrome, “suggestive evidence” ASD genes, and in ASD 

with high stereotypy scores 

Using DNENRICH (56), we found significant overlap between genes harboring de novo 

damaging variants in CMS (52 genes after excluding two genes with de novo damaging variants 

in controls) and several gene sets curated from the literature (Table S4). In particular, our CMS 

cohort genes show significant gene overlap with autism probands with high stereotypy scores 

(5.8x enrichment, p=0.048), Tourette’s disorder (4.7x enrichment, p=0.011), and category 3 

(suggestive evidence) autism risk genes (3.7x enrichment, p=0.023). There was no significant 

overlap with OCD, ADHD, schizophrenia, intellectual disability, developmental disabilities, or 

other categories of autism gene lists (Table S4).  
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Exploratory pathway, gene ontology, and spatiotemporal analyses 

Using this same list of 52 genes harboring de novo damaging variants in CMS, we 

performed exploratory analyses to determine shared underlying canonical pathways and 

functional connectivity. Our input gene list is significantly enriched for biological process 

ontology-based sets including demethylation, organization of branching structures (e.g. neurons 

and vasculature), multicellular organism development, and cell motility. Enriched canonical 

pathways include the glucocorticoid receptor pathway, transient receptor potential (TRP) 

channel function, demethylation of histones by histone lysine demethylases, and ion channel 

transport (Table S5). 

Finally, mapping our CMS de novo damaging variant genes onto the Brainspan Atlas of 

the Developing Human Brain gene expression data, we see nominal enrichment in early mid-

fetal cortex and striatum, with a possible trends toward enrichment in early fetal hippocampus, 

late mid-fetal cerebellum, and young childhood cerebellum (Table S5). 

 

DISCUSSION 

Like prior studies of ASD, Tourette’s disorder, and OCD, the current study demonstrates 

that the identification of de novo variants will identify risk genes and provide a reliable entry-

point into understanding the biology of stereotypies. We are studying otherwise typically-

developing children with stereotypies (primary CMS), as this may represent a more genetically 

homogenous group of individuals versus those with secondary stereotypies, thereby facilitating 

genetic discovery and insight into the biology of stereotypies more generally (60, 61). Despite 

our small cohort size, we identified two de novo nonsense mutations in KDM5B in unrelated 

probands, and we show that finding two such mutations in our cohort is highly unlikely to be a 

chance occurrence.  
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KDM5B is a lysine-specific demethylase that removes methyl groups from tri-, di- and 

monomethylated lysine 4 on histone 3. KDM5B acts a transcriptional repressor and has 

primarily been implicated in the pathogenesis of cancer (62). More recently, this gene has also 

been implicated in congenital heart disease risk, embryonic stem cell renewal and 

differentiation, and DNA repair (63-65). KDM5B has been identified as high-confidence risk 

gene in WES studies of ASD (54), and expression is normally restricted to the brain and the 

testis (66). Within the brain, high expression levels are in the cerebellum (Figure S4), and 

expression across all brain regions is highest prenatally (Figure S5). The identification of this 

risk gene in CMS suggests that chromatin (dys)regulation of KDM5B target genes may be one 

contributing mechanism underlying stereotypies. As shown in our gene ontology and pathway 

results (Table S5), demethylation of histones is enriched, driven by the two KDM5B mutations 

and a de novo damaging mutation in KDM3B in a third proband. Certainly, further studies are 

warranted to determine the downstream effects of these mutations in the developing brain. 

These studies are underway in our laboratory.  

It is interesting that we find significant overlap between genes harboring de novo damaging 

mutations in CMS and those reported in a recent study of Tourette syndrome (Table S4; 4.7x 

enrichment, p=0.011). We find this overlap with Tourette despite excluding CMS subjects with 

comorbid motor or vocal tics (see Methods). Enriched expression of CMS genes in the cortex 

and striatum (Table S5) is also consistent with widely believed involvement of these regions in 

Tourette syndrome. While OCD and ADHD symptoms were not exclusionary in our CMS study, 

we saw no gene overlap with these disorders. Similarly, we found no overlap with SCZ, ID, or 

DD. We did, however, find significant overlap between CMS and Category 3 (suggestive 

evidence) ASD risk genes (3.7x enrichment, p=0.023). 

With regard to stereotypies in ASD, we curated lists of genes harboring de novo damaging 

mutations in SSC probands with the highest (90th percentile) and lowest (10th percentile) 
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stereotypies, measured by Stereotyped Behavior Scores (SBS) from the RBS-R. KDM5B 

mutations were found only in SSC probands with high stereotypy scores, yielding 5.8-fold 

enrichment over expectation (p=0.047) when compared against our CMS genes (Table S4). To 

further examine the relation between de novo KDM5B mutations stereotypies in SSC ASD 

probands, we compared SBS scores in four probands with KDM5B mutations versus 364 age-

matched patients without (Figure S6). Scores were higher in mutation carriers, but this did not 

reach statistical significance (p=0.076), likely due to the low number of mutation carriers in this 

cohort.  

 In summary, we report an increased burden of de novo damaging DNA coding variants 

in primary complex motor stereotypies. We identified one high-confidence risk gene for CMS in 

our pilot cohort and estimate that there are 184 genes conferring risk for this phenotype. Whole-

exome sequencing in parent-child CMS trios provides a reliable way to make progress in gene 

discovery. Our preliminary analyses of genes harboring de novo damaging mutations in CMS 

highlight several biological pathways, processes, brain regions, and developmental time periods 

that give insights into possible etiologies of stereotypies, which are a prerequisite to 

development of new treatments. Further sequencing and mechanistic studies are warranted to 

understand this phenotype, which has relevance across diagnostic boundaries.  
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FIGURE LEGENDS 

Figure 1 – Overview of variant discovery and data analysis. We performed whole exome 

sequencing on 129 CMS and 853 control parent-child trios. After quality control, 118 CMS and 

750 control trios remained for subsequent analyses. We performed a burden analysis, 

comparing the rates of de novo single nucleotide (SNVs) and insertion-deletion (indel) variants 

between cases and controls. Next, we assessed the significance of gene-level recurrence of de 

novo damaging variants in our CMS group, identifying one high-confidence risk gene. Using the 

MLE method, variant simulations, and TADA, we estimated the number of genes contributing to 

CMS risk and used this estimate to predict the number of risk genes that will be discovered as 

more CMS trios are sequenced. Finally, exploratory gene enrichment analyses were performed, 

assessing degree of overlap with gene sets from other disorders, canonical pathways, gene 

ontologies, and expression pattern clustering within certain brain regions across development. 

 

Figure 2 – Rates of de novo variants in CMS cases versus controls. Bar chart comparing 

the rates of de novo variant classes between CMS cases (red) and controls (blue). 

Comparisons are between per base pair (bp) mutation rates, using a one-tailed rate ratio test. 

Statistically significant comparisons (p<0.05) are marked with asterisks. Error bars show 95% 

confidence intervals.  
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Table 1 – Distribution of de novo variants in CMS cases and controls 

De novo variant 
typea 

Variant counts 
Mutation rate (x10-8) per bp 

(95% CI)j 
Estimated coding variants per 

individual (95% CI)k 
Rate ratio 
(95% CI) 

p-valuel 

CMS 
(N=118) 

Control 
(N=750) 

CMS 
(N=118) 

Control 
(N=750) 

CMS 
(N=118) 

Control 
(N=750)  

 

Allb 134 666 
1.91 

(1.60-2.27) 
1.68 

(1.56-1.82) 
1.29 

(1.08-1.54) 
1.14 

(1.05-1.23) 
1.14 

(0.97-1.33) 
0.10 

Codingc 128 628 
2.02 

(1.68-2.40) 
1.74 

(1.61-1.88) 
1.37 

(1.14-1.62) 
1.18 

(1.09-1.27) 
1.16 

(0.98-1.36) 
0.07 

Synonymous SNV 30 171 
0.47 

(0.32-0.68) 
0.47 

(0.41-0.55) 
0.32 

(0.22-0.46) 
0.32 

(0.28-0.37) 
1.00 

(0.70-1.40) 
0.50 

Nonsynonymousd 96 446 
1.51 

(1.23-1.85) 
1.24 

(1.12-1.36) 
1.02 

(0.83-1.25) 
0.84 

(0.76-0.92) 
1.23 

(1.01-1.48) 
0.04 

All Missense (Mis) 84 411 
1.32 

(1.06-1.64) 
1.14 

(1.03-1.25) 
0.89 

(0.72-1.11) 
0.77 

(0.70-0.85) 
1.16 

(0.95-1.42) 
0.12 

Mis-De 42 190 
0.66 

(0.48-0.90) 
0.53 

(0.45-0.61) 
0.45 

(0.32-0.61) 
0.36 

(0.30-0.41) 
1.26 

(0.93-1.68) 
0.11 

MIs-Pf 15 79 
0.24 

(0.13-0.39) 
0.22 

(0.17-0.27) 
0.16 

(0.088-0.26) 
0.15 

(0.12-0.18) 
1.08 

(0.64-1.75) 
0.43 

Mis-Bg 25 137 
0.39 

(0.26-0.58) 
0.38 

(0.32-0.45) 
0.26 

(0.18-0.39) 
0.26 

(0.22-0.30) 
1.04 

(0.70-1.50) 
0.46 

Likely Gene 
Disrupting (LGD)h 

12 35 
0.19 

(0.098-0.33) 
0.097 

(0.068-0.13) 
0.13 

(0.066-0.22) 
0.066 

(0.046-0.088) 
1.95 

(1.04-3.50) 
0.04 

Damaging  
(LGD + Mis-D) 

54 225 
0.85 

(0.64-1.11) 
0.62 

(0.54-0.71) 
0.58 

(0.43-0.75) 
0.42 

(0.37-0.48) 
1.37 

(1.05-1.76) 
0.03 

LGD SNV 10 19 
0.16 

(0.076-0.29) 
0.053 

(0.032-0.082) 
0.11 

(0.051-0.20) 
0.036 

(0.022-0.055) 
3.00 

(1.43-6.03) 
0.007 

LGD Stopgain 6 16 
0.095 

(0.035-0.21) 
0.044 

(0.025-0.072) 
0.064 

(0.024-0.14) 
0.030 

(0.030-0.049) 
2.13 

(0.82-5.02) 
0.10 

LGD Splice 4 3 
0.063 

(0.017-0.16) 
0.0083 

(0.0017-0.024) 
0.043 

(0.011-0.11) 
0.0056  

(0.0012-0.016) 
7.59 

(1.66-38.5) 
0.01 

LGD frameshift indel 2 16 
0.032 

(0.0038-0.11) 
0.044 

(0.025-0.072) 
0.022 

(0.0026-0.074) 
0.030 

(0.017-0.049) 
0.71 

(0.12-2.56) 
0.77 
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Nonframeshift indel 1 3 
0.016 

(0.0004-0.088) 
0.0083 

(0.0017-0.024) 
0.011 

(0.00027-0.060) 
0.0056 

(0.0012-0.016) 
1.90 

(0.07-17.2) 
0.47 

Unknowni 1 8 
0.016 

(0.0004-0.088) 
0.022 

(0.010-0.041) 
0.011 

(0.00027-0.060) 
0.015 

(0.0068-0.028) 
0.71 

(0.03-4.28) 
0.77 

 

aVariants were annotated with Annovar, using RefSeq hg19 gene definitions. b“All” includes coding and non-coding variants. c“Coding” variants 

include synonymous, nonsynonymous, nonframeshift, and those annotated as “unknown” by Annovar. d“Nonsynonymous” variants include all 

missense and LGD variants. e“Mis-D” are “probably damaging” missense variants with a Polyphen2 (HDIV) score ≥0.957. fMis-P are “possibly 

damaging” missense variants with a Polyphen2 (HDIV) score <0.957 and ≥0.453. gMis-B are “benign” missense variants with a Polyphen2 (HDIV) 

score <0.453. Two CMS missense variants and five control missense variants had no prediction by Polyphen2 but were included in the "All 

Missense (Mis)" variant type. hLGD variants are those altering a stop codon, canonical splice site, and frameshift indels. i“Unknown” variants are 

not included in the synonymous or nonsynonymous counts. jDe novo mutation rates were calculated as the number of variants divided by the 

number of haploid “callable” bases (see Methods). kThe estimated number of de novo mutations per individual was calculated by multiplying the 

mutation rate by the size of the RefSeq hg19 coding exome (33,828,798 bp). lRates were compared using a one-sided rate ratio test. Rate ratios, 

95% CI, and p-values that are statistically significant (p<0.05) are underlined and in bold. Also see Figure 2. Variants are listed in Table S2. 
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SUPPLEMENTARY METHODS 

 

Subjects and Assessment Measures 

The Stereotypy Severity Scale (SSS) is a 5-item caregiver questionnaire consisting of 

two components (Motor and Impairment) for the ranking of motor stereotypy severity (1). The 

SSS Motor score (range: 0-18) quantifies motor severity and rates movements along four 

discriminate dimensions: number (0-3), frequency (0-5), intensity (0-5), and interference (0-5). 

The SSS Impairment score (range 0-50) is an independent rating of difficulties in self-esteem, 

family, school, or social acceptance caused by the movements.  

The ASSQ is a 27-item caregiver questionnaire addressing symptoms of ASD (2).  

Other parent-completed measures included: the Multidimensional Anxiety Scale for 

Children (MASC), assessing symptoms of anxiety (3); the ADHD-Rating Scale-IV (4) and 

Conners Parent Rating Scale (CPRS), assessing symptoms of ADHD; the Child Yale Brown 

Obsessive-Compulsive Scale (CY-BOCS), assessing symptoms of OCD (5); the Repetitive 

Behavior Scale-Revised (RBS-R), assessing repetitive behaviors (6); and the Social 

Responsiveness Scale (SRS), assessing social communication skills (7). 

Whole-exome sequencing, alignment, variant calling, and quality control 

Exome capture and sequencing were performed at the Yale Center for Genome Analysis 

(YCGA), using the NimbleGen SeqCap EZExomeV2 capture library (Roche NimbleGen, 

Madison, WI, USA) and the Illumina HiSeq 2500 platform (74 bp paired-end reads; Illumina, San 

Diego, CA, USA). We multiplexed six samples during each capture reaction and sequencing 

lane, pooling parents and probands when possible. Alignment and variant calling of the 

sequencing reads followed the latest Genome Analysis Toolkit (GATK) (8) Best Practices 

guidelines, as described previously (9). Reads were aligned using BWA-mem (10) to the b37 
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human reference sequence with decoy sequences. Picard's MarkDuplicates tool was used to 

mark PCR duplicates (https://broadinstitute.github.io/picard/). GATK was used to realign indels, 

recalibrate quality scores, and generate GVCF files for each sample using the HaplotypeCaller 

tool. All samples were called jointly using GATK's GenotypeGVCFs tool, variant score 

recalibration was applied to the called variants, and all variant call data was written to a VCF 

file. This pipeline uses GATK's Best Practices parameters and the default parameters for BWA 

and Picard. Only passing variants were used in downstream analyses. Variants were annotated 

using the RefSeq hg19 gene definitions and multiple external databases of variant population 

frequency, conservation scores, variation intolerance, mutation severity, and predicted 

functional effects using ANNOVAR (11). 

Relatedness statistics were calculated based on the method of Manichaikul et al. (12), 

implemented in VCFtools v0.1.14.10 (13). Trios were omitted if expected family relationships 

were not confirmed or if there were unexpected relationships within or between families. Trios 

were omitted if > 5 de novo variants were observed. PLINK/SEQ (14) (i-stats; 

https://psychgen.u.hpc.mssm.edu/plinkseq/stats.shtml), PicardTools, and GATK 

DepthOfCoverage tools were used to generate quality metrics (Table S1). To identify outliers 

that might confound our case-control analysis, we performed principal components analysis 

(PCA) using this data. A scree plot determined the number of principal components accounting 

for the greatest proportion of variance, and we removed trios with family members falling more 

than three standard deviations from the mean in any of these principal components (Figure S1, 

Table S1). The R code PCA is provided below.  

We used stringent thresholds for identifying de novo mutations because DNA from 

control subjects in the Simons Simplex Collection was not available for confirmation by Sanger 

sequencing. As previously described (15), de novo variants were called using an in-house script 

that required: (a) child is heterozygous for a variant, with alternate allele frequency between 0.3 
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and 0.7 in the child and < 0.05 in the parents; (b) sequencing depth (DP) ≥ 20 in all family 

members at the variant position; (c) alternate allele depth (AD) ≥ 5; (d) observed allele 

frequency (AC) < 0.01 (1%) among all cases and controls; and (e) mapping quality (MQ) ≥ 30. 

False positive calls were removed by in silico visualization. Based on Sanger sequencing 

confirmations, our confirmation rate using this method and platform is 98.7% (16).  

Principal Component Analysis (PCA) 

PCA was performed on all sequencing quality metrics (Table S1) in R using the following 

code: 

library(xlsx) 

library("FactoMineR") 

library("factoextra") 

library("corrplot") 

 

## Load Data from Table S1, first tab 

data1 <- read.delim("Table_S1.xlsx") 

# select only certain columns 

data1.temp <- data1[c(2,14:45)] 

# make first column the row names 

data1.active <- data.frame(data1.temp[,-1], row.names=data1.temp[,1]) 

 

## Load additional data for later use (non-numeric labels/groups) 

# select only certain columns 

data2.temp <- data1[c(4,3,1)] 

# make first column the row names 

data2.active <- data.frame(data2.temp[,-1], row.names=data2.temp[,1]) 

 

## Principal component analysis 

pdf("PCA_factor_maps.pdf") 

res.pca <- PCA(data1.active, scale.unit = TRUE, ncp = 10, graph = TRUE, axes 

= c(1,2)) 

dev.off() 

 

print(res.pca) 

 

## Export PCA coordinates to determine outliers (Table S1) 

indcoord<-res.pca$ind$coord 

write.xlsx(indcoord, "Table_S1.xlsx") 

 

## Estimate the number of components in Principal Component Analysis 

(Factominer) 

sink("EstmateNumberPCs.txt") 

estim_ncp(data1.active, ncp.min=0, ncp.max=NULL, scale=TRUE, method="Smooth") 

sink() 

 

## Variances of the principal components 
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eigenvalues <- res.pca$eig 

 

## Make scree plot using base graphics : A scree plot is a graph of the 

eigenvalues/variances associated with components (Figure S1.A). 

pdf("ScreePlot.pdf") 

barplot(eigenvalues[, 2], names.arg=1:nrow(eigenvalues),  

       main = "Variances", 

       xlab = "Principal Components", 

       ylab = "Percentage of Variance", 

       col ="steelblue") 

lines(x = 1:nrow(eigenvalues), eigenvalues[, 2],  

      type="b", pch=19, col = "red") 

dev.off() 

 

## Make cumulative variance graph (Figure S1.B) 

pdf("ScreePlot_cumulative.pdf") 

barplot(eigenvalues[, 3], names.arg=1:nrow(eigenvalues),  

        main = "Variances", 

        xlab = "Principal Components", 

        ylab = "Cumulative Percentage of Variance", 

        col ="steelblue") 

lines(x = 1:nrow(eigenvalues), eigenvalues[, 3],  

      type="b", pch=19, col = "red") 

dev.off() 

       

## GRAPHS OF VARIABLES 

pdf("PCA_factor_maps_variables.pdf") 

fviz_pca_var(res.pca, col.var="contrib") + scale_color_gradient2(low="white", 

mid="blue", high="red", midpoint=55)+theme_bw() 

dev.off() 

 

## GRAPHS OF INDIVIDUALS (Figure S1.C) 

pca = prcomp(data1.active, scale = TRUE) 

pdf("PCA_prcomp_factor_map_indiv.pdf") 

plot(pca$x, pch = 20, col = c(rep("red", 366), rep("blue", 1200))) 

dev.off() 
 

Mutation rate calculations 

Within each cohort, we calculated the rate of de novo mutations per base pair. For 

accurate rate calculation, we first determined the number of “callable” base pairs per family 

using the GATK DepthOfCoverage tool. We considered only bases covered at ≥ 20x in all family 

members, with base quality ≥ 20, and map quality ≥ 30; these thresholds match those required 

for GATK and de novo variant calling. For each cohort, we summed the “callable” base pairs in 

every family and used this number as the denominator for de novo rate calculations. Details for 

calculating these callable base pairs is below. The resulting rate was divided by two to give 
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haploid rates. Confidence intervals were calculated using the pois.conf.int (pois.exact) function 

from the epitools v0.5-9 package in R. We compared de novo mutation rates in cases versus 

controls (burden analysis) using a one-tailed rate ratio test in R (https://cran.r-

project.org/package=rateratio.test), considering only those variants present with a frequency of 

<0.001 in the ExAC v0.3.1 database (17).  

Calculating “callable” base pairs 

The following command was used to calculate the callable base pairs in each trio:  

java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R human_g1k_v37.fasta -o 

FamilyID -I FamilyID.list -L target_intersection.bed --minMappingQuality 30 -

-minBaseQuality 20 --summaryCoverageThreshold 20 

 

FamilyID.list contains names and locations of the three trio bam files. The .bed file 

contains the genomic intervals over which to calculate the callable base pairs. To calculate the 

coding callable base pairs (used for coding mutation rates, e.g. synonymous, nonsynonymous, 

missense, etc., see Table 1, Table S2), we used a bed file with intervals spanning the 

intersection of both capture array target intervals and the RefSeq coding intervals (32,027,823 

bp total). To calculate all callable base pairs (used for the total coding + noncoding mutation 

rate, see “All” in Table 1), we used a bed file with intervals spanning the intersection of both 

capture array target intervals (33,973,867 bp total). The number of coding and total callable 

base pairs for every family passing is listed in Table S1. 

Calculating expected mutation rates for downstream analyses 

To perform subsequent maximum likelihood estimation (MLE) and TADA analyses, we 

used published per gene de novo mutation rates from unaffected parent-child trios (18). From 

the control samples in our dataset, we calculated the proportion of the overall coding mutation 

rate that comprised LGD and Mis-D mutations, and then used these proportions to calculate the 

expected LGD and Mis-D mutation rate per gene (Table S3). 
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The following R code was used to generate the expected mutation rates:  

library(denovolyzeR) 

library(plyr) 

 

####################### 

#### Mutation type fractions from controls in CMS project 

####################### 

 

# fractions of overall coding mutation rate for each variant type in SSC 

controls (see Table 1) 

fracLGD <- 0.055747126 

fracMisD <- 0.304597701 

fracDamaging <- 0.360344828 

 

####################### 

#### Get published de novo mutation rtaes 

####################### 

 

denovolyzer <- viewProbabilityTable() 

mutationProbs <- denovolyzer[ , c("geneName", "all")] 

mutationProbs <- rename(mutationProbs, c("geneName"="gene.name"))  #rename 

column 

mutationProbs <- rename(mutationProbs, c("all"="mut.rate"))  #rename column 

#save(mutationProbs, file = "denovolyzer_rates_all_unadjusted.RData") 

#write.table(mutationProbs, "denovolyzer_rates_all_unadjusted.txt", sep="\t") 

 

####################### 

#### Add LGD and Mis-D, and Damaging de novo mutation rates based on 

fractions seen in our study 

####################### 

 

mutationProbs$lgd <- mutationProbs$mut.rate * fracLGD 

mutationProbs$misD <- mutationProbs$mut.rate * fracMisD 

mutationProbs$damaging <- mutationProbs$mut.rate * fracDamaging 

 

save(mutationProbs, file = "de_novo_mutation_rates.RData") 

write.table(mutationProbs, "de_novo_mutation_rates.txt", sep="\t") 
 

TADA analysis 

As shown in prior WES studies in neuropsychiatric disorders, a small number of rare de 

novo mutations in the same gene among unrelated individuals can provide considerable 

statistical power to establish association. To test this hypothesis in CMS, we used the 

transmitted and de novo association (TADA-Denovo) test. TADA uses a Bayesian model that 

combines data from de novo mutations and population mutation rates to increase the power of 

gene discovery. While TADA has a version that can include inherited variants, we did not 
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include inherited data in this study, because their confirmation rate is not known and their 

contribution to the TADA score is minimal, given their lower relative risks (19, 20). The code and 

documentation for this tool can be found here 

(http://wpicr.wpic.pitt.edu/WPICCompGen/TADA/TADA_homepage.htm). 

We describe the parameters of this test in our prior WES studies of Tourette’s disorder and 

OCD (15, 21). The code and parameters used in the current study are given below. A low FDR-

corrected q-value represents strong evidence for association. Genes with FDR q<0.3 are 

considered probable risk genes, and those with FDR q<0.1 are high-confidence risk genes. 

source("TADA.v1.1.R") 

 

# set.seed(100) 

 

### read mutation rates and counts (see Table S3, second tab) 

tada.file="Table_S3.txt" 

tada.data=read.table(tada.file,header=T) 

 

### Number of mutations and TADA parameters 

 

numLgdMutations <- (0.13*118) 

lgdRate <- numLgdMutations/118 

numControlLgdMutations <- (0.066*750) 

controlLgdRate <- numControlLgdMutations/750 

lgdRiskFraction <- (lgdRate - controlLgdRate) / lgdRate 

 

numMis3Mutations <- (0.45*118) 

mis3Rate <- numMis3Mutations/118 

numControlMis3Mutations <- (0.36*750) 

controlMis3Rate <- numControlMis3Mutations/750 

mis3RiskFraction <- (mis3Rate - controlMis3Rate) / mis3Rate 

 

numGenes <- 184  # from MLE analysis below 

 

nPerms <- 1000 

 

pi <- numGenes / nrow(tada.data) 

pi0 <- 1-pi 

 

numSilentMutations <- (0.32*118) 

numControlSilentMutations <- (0.32*750) 

 

dn.lof.lambda <- (numLgdMutations) / (numControlLgdMutations * 

(numSilentMutations/numControlSilentMutations))  

dn.lof.relativeRisk <- 1 + ((dn.lof.lambda-1) / pi) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/730952doi: bioRxiv preprint 

https://doi.org/10.1101/730952
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

dn.mis3.lambda <- (numMis3Mutations) / (numControlMis3Mutations * 

(numSilentMutations/numControlSilentMutations)) # num Mis3 in ctrls, num 

silent in cases, num silent in ctrls 

dn.mis3.relativeRisk <- 1 + ((dn.mis3.lambda-1) / pi) 

 

n.family = 118 

n = data.frame(dn=n.family, ca=NA, cn=NA) 

sample.counts <- list(cls1=n, cls2=n) 

 

### create the mutational data used by TADA-Denovo 

cls1.counts=data.frame(dn=tada.data$dn.cls1, ca=NA, cn=NA) 

rownames(cls1.counts)=tada.data$gene.id 

cls2.counts=data.frame(dn=tada.data$dn.cls2, ca=NA, cn=NA) 

rownames(cls2.counts)=tada.data$gene.id 

tada.counts=list(cls1=cls1.counts,cls2=cls2.counts) 

 

### set up mutation rates 

mu=data.frame(cls1=tada.data$mut.cls1,cls2=tada.data$mut.cls2) 

 

### specify de novo only analyses 

denovo.only=data.frame(cls1=TRUE,cls2=TRUE) 

 

### set up parameters -  

cls1= 

data.frame(gamma.mean.dn.=dn.lof.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta

.CC=NA ,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 

cls2= 

data.frame(gamma.mean.dn=dn.mis3.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta

.CC=NA,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 

hyperpar=list(cls1=cls1,cls2=cls2) 

 

### running TADA-Denovo 

re.TADA <- do.call(cbind.data.frame, TADA(tada.counts=tada.counts, 

sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, 

denovo.only=denovo.only)) 

 

### Bayesian FDR control 

re.TADA$qval=Bayesian.FDR(re.TADA$BF.total, pi0 = pi0) 

 

### run permutation to get the null distributions to use for calculating p-

values for TADA 

re.TADA.null=do.call(cbind.data.frame, TADAnull(tada.counts=tada.counts, 

sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, 

denovo.only=denovo.only, nrep=nPerms)) 

re.TADA$pval=bayesFactor.pvalue(re.TADA$BF.total,re.TADA.null$BFnull.total) 

 

### display top 10 genes based on BF.total 

re.TADA[order(-re.TADA$BF.total)[1:10],] 

 

### write all table to file - See Table S3 

write.table(re.TADA, "TADA_denovo_Results.txt", sep="\t") 

save.image(file="TADA_denovo_Workspace.RData") 

 

Maximum Likelihood Estimation (MLE) method for estimating the number of CMS risk genes 
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We used a maximum likelihood estimation (MLE) method to estimate the number of 

genes contributing risk to CMS, based on vulnerability to de novo damaging variants (22). For 

every number of risk genes from 1 to 2,500, we simulated 54 variants (the number of damaging 

de novo variants observed in probands in our case-control burden analysis). Variant simulations 

were performed 50,000 times at each number of risk genes. Following each simulation, a 

percentage of variants was randomly assigned to the risk genes. The percentage of variants 

assigned to risk genes was determined by the fraction of de novo damaging variants estimated 

to carry CMS risk, and variant simulations were weighted by gene size and GC content (19). We 

then counted the number of risk and non-risk genes containing two variants and the number 

containing three or more variants. The frequency of concordance between our simulated and 

observed data was calculated. A curve was plotted to show the concordance frequency (y-axis) 

at each assumed number of risk genes (x-axis), and the peak was taken as the estimate of the 

most likely number of risk genes (22). See Figure S2. 

The following R code was used to perform these calculations: 

library(ggplot2) 

library(parallel) 

library(data.table) 

 

plotDir <- getwd() 
load("de_novo_mutation_rates.RData") # see Table S3, first tab 

mutationProbs <- as.data.table(mutationProbs) 

 

K <- 54  # total CMS de novo damaging mutations (Mis-D+LGD) 

R2 <- 1 # number of above mutations hitting same gene twice 

R3 <- 0 # number of above mutations hitting sane gene three times 

M1 <- 54/118  # observed rate of de novo damaging mutations in CMS 

M2 <- 225/750 # observed rate of de novo damaging mutations in controls 

E <- (M1-M2)/M1 # estimating fraction of de novo damaging variants carrying 

risk 

nPerms <- 50000 # number of permutations to perform at each assumed number of 

risk genes 

maxGenes <- 2500 # perform permutations from 1 to this number 

 

# get number of cores available 

numCores <- max(1, detectCores() - 1) 

 

############################################################################# 

# FUNCTIONS 
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############################################################################# 

getRecurrence <- function(G, mutationProbs, K, E, R2, R3, nPerms){ 

    permutationVector <- lapply(1:nPerms, function(x) {  

        riskGeneIndex <- sample(1:nrow(mutationProbs), G, replace = F) 

        riskGenes <- mutationProbs[riskGeneIndex,] 

        nonRiskGenes <- mutationProbs[-riskGeneIndex,] 

         

        C1 <- rbinom(1,K,E) 

        C2 <- K-C1 

         

        C1geneMutations <- sample(riskGenes$gene.name, C1, replace = T, prob 

= riskGenes$damaging) 

        C2geneMutations <- sample(nonRiskGenes$gene.name, C2, replace = T, 

prob = nonRiskGenes$damaging) 

         

        allGeneMutations <- c(C1geneMutations, C2geneMutations) 

        length(which(table(allGeneMutations)==2))==R2 & 

length(which(table(allGeneMutations)>=3))==R3 

    }) 

    proportionMatchingObserved <- 

length(which(unlist(permutationVector)))/nPerms 

     

} 

############################################################################# 

# RUN 

############################################################################# 

RNGkind("L'Ecuyer-CMRG") 

set.seed(1) 

mc.reset.stream() 

 

permutationTest <- mclapply(1:maxGenes,  

                   function(x) getRecurrence(x, mutationProbs, K, E, R2, R3, 

nPerms),  

                   mc.cores = numCores, mc.set.seed = T ) 

 

save(permutationTest, file = paste("UpTo", maxGenes, "genes", nPerms, 

"perms", "MaxLikelihoodPermutation.RData", sep="_")) 

 

toPlot <- data.frame(likelihood = unlist(permutationTest), nGenes = 

1:length(unlist(permutationTest))) 

 

save(toPlot, file = paste("UpTo", maxGenes, "genes", nPerms, "perms", 

"MaxLikelihoodPermutationToPlot.RData", sep="_")) 

 

p <- ggplot(toPlot, aes(x=nGenes, y=likelihood)) 

p <- p + geom_line() + geom_smooth()  

ggsave(file.path(plotDir, paste("UpTo", maxGenes, "genes", nPerms, "perms", 

"MaxLikelihood.pdf", sep="_") ), p) 

 

save.image(file = paste("Workspace", nPerms, "perms.RData", sep="_")) 

 

Predicting the number of CMS risk genes identified by cohort size 
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Future discovery of risk genes was predicted as previously described (16, 21). Fixing the 

number of CMS risk genes at 184 (from estimate above), we simulated de novo mutations, with 

the number of mutations matching the observed mutation rate in CMS probands, and with 

mutation simulations weighted by gene size and GC content. Simulations were performed at 

each cohort size, from 25 to 3000, in increments of 25. Simulated variants were randomly 

assigned to the risk genes, with the percentage of variants assigned to risk genes determined 

by the fraction of de novo damaging variants estimated to carry CMS risk. At each cohort size, 

10,000 simulations were performed. LGD and Mis-D variants were simulated separately. 

Simulated variants were then combined and given as input to the TADA-Denovo algorithm, 

using the same parameters described above for the observed data. The number of high 

confidence (q<0.1) and probable (q<0.3) risk genes were recorded and plotted using polynomial 

regression fitting; this regression model allows prediction of the number of genes identified at a 

specified cohort size. See Figure S3. 

The following R code was used to perform these calculations: 

 

library(ggplot2) 

library(parallel) 

library(reshape2) 

 

plotDir <- getwd() 

source(file = "TADA.v1.1.R") 

 

load("de_novo_mutation_rates.RData") # use rates in Table S3 

 

numLgdMutations <- (0.13*118) 

lgdRate <- numLgdMutations/118 

numControlLgdMutations <- (0.066*750) 

controlLgdRate <- numControlLgdMutations/750 

lgdRiskFraction <- (lgdRate - controlLgdRate) / lgdRate 

 

numMis3Mutations <- (0.45*118) 

mis3Rate <- numMis3Mutations/118 

numControlMis3Mutations <- (0.36*750) 

controlMis3Rate <- numControlMis3Mutations/750 

mis3RiskFraction <- (mis3Rate - controlMis3Rate) / mis3Rate 

 

numGenes <- 184 

nPerms <- 10000 
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# get number of cores available 

numCores <- max(1, detectCores() - 1) 

 

pi <- 0.00937914 

pi0 <- 1-pi 

 

numSilentMutations <- (0.32*118) 

numControlSilentMutations <- (0.32*750) 

 

dn.lof.lambda <- (numLgdMutations) / (numControlLgdMutations * 

(numSilentMutations/numControlSilentMutations))  

dn.lof.relativeRisk <- 1 + ((dn.lof.lambda-1) / pi) 

dn.mis3.lambda <- (numMis3Mutations) / (numControlMis3Mutations * 

(numSilentMutations/numControlSilentMutations)) # num Mis3 in ctrls, num 

silent in cases, num silent in ctrls 

dn.mis3.relativeRisk <- 1 + ((dn.mis3.lambda-1) / pi) 

 

 

############################################################################ 

# FUNCTIONS 

############################################################################ 

 

getGenes <- function(numGenes_f=numGenes, mutationProbs_f, cohortSize_f, 

mutationRate_f, riskFraction_f, probability_f=c("lgd", "mis3")[1]){ 

        numMutations <- ceiling(cohortSize_f * mutationRate_f) 

        riskGeneIndex <- sample(1:nrow(mutationProbs_f), numGenes_f, replace 

= F) 

        riskGenes <- mutationProbs_f[riskGeneIndex,] 

        nonRiskGenes <- mutationProbs_f[-riskGeneIndex,] 

         

        C1 <- rbinom(1, numMutations, riskFraction_f) 

        C2 <- numMutations - C1 

         

        C1geneMutations <- sample(riskGenes$gene.name, C1, replace = T, prob 

= riskGenes$probability) 

        C2geneMutations <- sample(nonRiskGenes$gene.name, C2, replace = T, 

prob = nonRiskGenes$probability) 

         

        allGeneMutations <- c(C1geneMutations, C2geneMutations) 

} 

 

runIteration <- function(numGenes_f=numGenes, mutationProbs_f, cohortSize_f, 

lgdMutationRate_f, mis3MutationRate_f, lgdRiskFraction_f, mis3RiskFraction_f, 

nTadaRep_f = 100){ 

    lgdMutations <- getGenes(numGenes, mutationProbs_f, cohortSize_f, 

lgdMutationRate_f, lgdRiskFraction_f, "lgd") 

    lgdMutations_df <- data.frame(gene=lgdMutations, lof=1, mis3=0, 

stringsAsFactors = F) 

    mis3Mutations <- getGenes(numGenes, mutationProbs_f, cohortSize_f, 

mis3MutationRate_f, mis3RiskFraction_f, "lgd") 

    mis3Mutations_df <- data.frame(gene=mis3Mutations, lof=0, mis3=1, 

stringsAsFactors = F) 

    combinedMutations <- rbind(lgdMutations_df, mis3Mutations_df) 

    combinedMutations <- aggregate(combinedMutations[,c("lof", "mis3")], 

by=list(combinedMutations$gene), sum) 

    colnames(combinedMutations) <- c("gene.id", "dn.lof", "dn.mis3") 
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    tadaResults <- runTada(cohortSize_f = cohortSize_f, mutationTable_f = 

combinedMutations, mutationProbs_f = mutationProbs_f, nTadaRep_f = 

nTadaRep_f) 

    return(tadaResults) 

} 

 

runTada <- function(cohortSize_f, mutationTable_f, mutationProbs_f, 

nTadaRep_f = 100){ 

    tada.data <- merge(mutationTable_f, mutationProbs_f[,c("gene.name", 

"lgd", "mis3")], by.x="gene.id", by.y="gene.name") 

    names(tada.data)[which(names(tada.data)=="lgd")] <- "mut.lof" 

    names(tada.data)[which(names(tada.data)=="mis3")] <- "mut.mis3" 

     

    n.family = cohortSize_f 

    n = data.frame(dn=n.family, ca=NA, cn=NA) 

    sample.counts <- list(cls1=n, cls2=n) 

     

    cls1.counts=data.frame(dn=tada.data$dn.lof, ca=NA, cn=NA) 

    rownames(cls1.counts)=tada.data$gene.id 

    cls2.counts=data.frame(dn=tada.data$dn.mis3, ca=NA, cn=NA) 

    rownames(cls2.counts)=tada.data$gene.id 

    tada.counts=list(cls1=cls1.counts,cls2=cls2.counts) 

     

    mu=data.frame(cls1=tada.data$mut.lof,cls2=tada.data$mut.mis3) 

     

    denovo.only=data.frame(cls1=TRUE,cls2=TRUE) 

     

    cls1= 

data.frame(gamma.mean.dn=dn.lof.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.

CC=NA ,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 

    cls2= data.frame(gamma.mean.dn= 

dn.mis3.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.CC=NA,rho1=NA,nu1=NA,rho

0=NA,nu0=NA) 

    hyperpar=list(cls1=cls1,cls2=cls2) 

     

     

    re.TADA <- do.call(cbind.data.frame, TADA(tada.counts=tada.counts, 

sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, 

denovo.only=denovo.only)) 

    re.TADA$qval=Bayesian.FDR(re.TADA$BF.total, pi0 = pi0) 

     

    tadaResults <- re.TADA[order(re.TADA$qval, decreasing = F), ] 

     

    probableGenes <- length(which(tadaResults$qval<0.3)) 

    highConfidenceGenes <- length(which(tadaResults$qval<0.1)) 

    return(data.frame(probable = probableGenes, highConfidence = 

highConfidenceGenes)) 

} 

 

############################################################################ 

# RUN 

############################################################################ 

 

RNGkind("L'Ecuyer-CMRG") 

set.seed(1) 

mc.reset.stream() 
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tadaSimulations <- mclapply(seq(from=25, to=3000, by=25), function(x)  

    lapply(1:nPerms, function(y) runIteration(numGenes_f = numGenes, 

mutationProbs_f = mutationProbs, cohortSize_f = x, lgdMutationRate_f = 

lgdRate, mis3MutationRate_f = mis3Rate, lgdRiskFraction_f = lgdRiskFraction, 

mis3RiskFraction_f = mis3RiskFraction)), 

    mc.cores = numCores, mc.set.seed = T) 

 

save(tadaSimulations, file = paste("tadaSimulations", nPerms, "perms", 

"forGeneDiscoveryEstimate_noPval.RData", sep="_")) 

 

resultsByCohortSize <- lapply(tadaSimulations, function(x) do.call(rbind, x)) 

 

averageGeneDiscoveryByCohortSize <- lapply(resultsByCohortSize, function(x) 

apply(x, 2, mean)) 

 

averageGeneDiscoveryByCohortSize_DF <- as.data.frame(do.call("rbind", 

averageGeneDiscoveryByCohortSize)) 

averageGeneDiscoveryByCohortSize_DF$cohortSize <- seq(from=25, to=3000, 

by=25) 

 

save(averageGeneDiscoveryByCohortSize_DF, file = 

paste("averageGeneDiscoveryByCohortSize", nPerms, "perms", ".RData", 

sep="_")) 

 

toPlot <- melt(averageGeneDiscoveryByCohortSize_DF, 

measure.vars=c("probable", "highConfidence"),  

               variable.name = "confidenceThreshold", value.name = 

"numGenes") 

 

save(toPlot, file = paste("averageGeneDiscoveryByCohortSizetoPlot", nPerms, 

"perms", ".RData", sep="_")) 

 

p <- ggplot(toPlot, aes(x=cohortSize, y=numGenes, col=confidenceThreshold)) 

p <- p + geom_line() 

 

ggsave(p, file=file.path(plotDir, paste("averageGeneDiscoveryByCohortSize", 

nPerms, "perms.pdf", sep="_"))) 

 

 

Gene set overlap 

We used DNENRICH (14) (https://psychgen.u.hpc.mssm.edu/dnenrich/) to test whether 

CMS genes found to have de novo damaging mutations in our study (52 genes after excluding 

two genes with de novo damaging variants in controls) were significantly enriched among 

previously reported genes in autism (ASD), schizophrenia (SCZ), developmental disorders 

(DD), Tourette’s disorder (TD), obsessive-compulsive disorder (OCD), attention-

deficit/hyperactivity disorder (ADHD), and intellectual disability (ID). Gene lists for SCZ and ID 

were obtained from a recent cross-disorder study (23) that included de novo single nucleotide 
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and indel variants from multiple exome sequencing studies (14, 24-31). DD (32), TD (33), OCD 

(15), and ADHD (34) genes were obtained from recently published WES studies. For the TD 

gene list, we removed variants reported in subjects with comorbid OCD, as this phenotype 

information was readily available. ASD gene lists were obtained from the SFARI Gene online 

database (https://gene.sfari.org/about-gene-scoring/criteria/), version 08-06-2019. ASD genes in 

this database have been stratified into six categories, based on manually curated strength of 

evidence from human genetics studies. As described in more detail on the above website, gene 

categories are as follows: Category 1: high confidence; Category 2: strong candidate; Category 

3: suggestive evidence; Category 4: minimal evidence; Category 5: hypothesized but untested; 

Category 6: evidence does not support a role. Finally, we curated lists of genes harboring 

damaging de novo mutations in ASD probands from the Simons Simplex Collection (SSC) for 

whom stereotyped behavior scores (Stereotyped Behavior Score from the RBS-R, Repetitive 

Behavior Scale-Revised) were available. De novo mutation data from SSC probands was 

obtained from denovo-db (http://denovo-db.gs.washington.edu/, version 1.6.1, accessed 

5/14/2019). RBS-R Stereotyped Behavior Score data was obtained from the Simons 

Foundation. Because we were particularly interested in the question of whether our CMS cohort 

share genes harboring de novo damaging mutations with SSC probands having high stereotypy 

scores, we assembled gene lists from SSC subjects with stereotypy scores in the 90th percentile 

(high stereotypies) and those in the 10th percentile (low stereotypies). Gene lists are provided in 

Table S4, first tab. 

DNENRICH simulates random mutations while accounting for gene size, trinucleotide 

context, and mutational effect. We performed 100,000 permutations, comparing the observed 

and expected overlap with each gene set. Empirical p-values were generated, based on a one-

sided enrichment analysis under a binomial model of greater than expected hits per gene set. 
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We tested for overlap between our CMS genes and those in each of the mentioned gene lists. 

Results are provided in Table S4, third tab. 

The following Linux commands were used to run the DNENRICH analysis:   

dnenrich . 100000 alias.txt refseq_gene_sizes.txt gene_lists.set 

mutations_ocd_damaging.mut > results; 

 

csh extractDnenrichResults.csh results > results.txt 
 

 

Exploratory pathway, gene ontology, and spatiotemporal analyses 

To explore whether genes harboring de novo damaging variants in our CMS probands 

(52 genes after excluding two genes with de novo damaging variants also found in SSC 

controls), we used ConsensusPathDB (35) (http://cpdb.molgen.mpg.de/, Release 34 

[15.01.2019], accessed 8/9/2019). This tool integrates human protein and genetic interaction 

networks from 32 databases and interactions curated from the literature. The following default 

settings were used for ConsensusPathDB: gene set analysis → over-representation analysis; 

gene identifier type: gene symbol (HGNC symbol); Pathway-based sets: pathways as defined 

by pathway databases, select all resources, minimum overlap with input list = 2, p-value cutoff = 

0.05; Gene ontology categories: gene ontology level 2 categories, select all (biological 

processes, molecular function, cellular component), p-value cutoff = 0.05. Results are in Table 

S5, first tab. 

For spatiotemporal enrichment analysis, we used our same list of 52 genes and asked 

whether these genes have known expression patterns that cluster within certain anatomical 

brain regions or within certain developmental time periods. To perform this analysis, we used 

data from the Brainspan Atlas of the Developing Human Brain (36) as implemented in the 

Specific Enrichment Analysis (SEA) tool (http://genetics.wustl.edu/jdlab/csea-tool-2/, version 

1.1, accessed 8/10/2019). For this analysis, we used a specificity index threshold (pSI) of 0.05 
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(37). Results are in Table S5, second tab. Fisher’s Exact p-values are uncorrected for multiple 

comparisons.  
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SUPPLEMENTARY FIGURES 

 

Figure S1 – PCA scree and individual plots. 

 

 

Scree plots following Principal Components Analysis (PCA), showing (A) the percentage of variance captured 

by each of the first 32 principal components, and (B) the cumulative percentage of variance captured by these 

same components in the exome metrics data from cases and controls.  The “elbow” of the scree plot is 

visualized to be around the 5th principal component. This was confirmed by the Factominer R code function 

“estim_ncp()”. The first 5 PCs capture over 80% of the variance, and this number of PCs was used to 

determine PCA outliers during quality control (see Table S1 and Supplementary Methods). (C) Individual plots 
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for the first two principal components, based on PCA of exome sequencing quality metrics. CMS cases are 

plotted in red, and controls in blue. The first two PCs together capture 56.3% of the variance. R code to 

generate this data and figure are in Supplementary Methods, and individual PC factor values are in Table S1. 

This figure includes PCA outliers (>3 standard deviations from the mean in PCs 1-5), which were removed 

during quality control, prior to further analysis of case-control data.  
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Figure S2 – Maximum Likelihood Estimate (MLE) of number of CMS risk genes. 

 

 

 

For each number of possible risk genes between 1-2,500, we conducted 50,000 simulations to determine the 

number of risk genes that yielded the closest agreement between our observed and simulated data. This MLE 

method yields an estimate of 184 CMS risk genes (red vertical line). See Supplementary Methods. 
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Figure S3 – Gene discovery by number of trios sequenced 

 

 

 

Using our estimate of 184 risk genes (based on the MLE method – see Main Text and Supplementary 

Methods), we estimated the number of probable (FDR q<0.3) and high-confidence (FDR q<0.1) risk genes that 

will be discovered as more CMS trios are sequenced. We performed 10,000 simulations at each cohort size 

from 25-3,000 trios, randomly generating variants and assigning to risk genes in agreement with the 

proportions seen in our data, then applying the TADA-Denovo algorithm. Based on these simulations, WES of 

500 trios should find 16 probable and 7 high-confidence risk genes; 1000 trios should find 51 probable and 26 

high-confidence risk genes. 
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Figure S4 – KDM5B brain expression levels 

 

 

 

 

Brain expression by region for KDM5B. Data is from GTEx Analysis Release V7 (dbGaP Accession phs000424.v7.p2) 

(https://gtexportal.org/home/gene/KDM5B). Expression values are shown in Transcripts Per Million (TPM), calculated from a gene model with 

isoforms collapsed to a single gene. No other normalization steps have been applied. Box plots are shown as median, 25th, and 75th percentiles. 

Points are displayed as outliers if they are above or below 1.5 times the interquartile range. Further details about expression quantification and 

samples can be found at https://gtexportal.org/home/documentationPage#AboutData. 
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Figure S5 – KDM5B spatiotemporal brain expression 

 

 

 

Brain expression trajectories of KDM5B in the developing human brain. Expression data is from the Brainspan 

Consortium (brainspan.org, hbatlas.org), generated using the Affymetrix GeneChip Human Exon 1.0 ST Array 

platform. Vertical axis is the log2-transformed array signal intensity, which is proportional to transcript 

expression. A stringent threshold of ≥6 was required to meet criteria for brain expression. Horizontal axis 

represents periods of human development and adulthood as previously defined by Kang et al (2011). Birth 

begins period 8 and adolescence begins period 12. Brain regions are by color: neocortex (NCX), hippocampus 

(HIP), amygdala (AMY), striatum (STR), mediodorsal nucleus of the thalamus (MD), cerebellar cortex (CBC). 
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Figure S6 – Stereotypy scores in Simons Simplex Collection ASD probands 

 

 

 

 

 

Tukey box and whisker plot of Stereotyped Behavior Score (SBS) from the RBS-R (Repetitive Behavior Scale-

Revised) in aged-matched Simons Simplex Collection ASD probands with (+, n=4) and without (-, n=364) de 

novo damaging mutations in KDM5B. Two-tailed Mann-Whitney test of ages (months) between groups: 

p=0.86. One-tailed Mann-Whitney test of SBS between groups: p=0.076.  
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SUPPLEMENTARY TABLES 

Table S1 – Phenotype, exome sequencing metrics, and principal components analysis. 

(see “TableS1.xlsx”) 

First tab contains individual-level sample information (columns A-I), including family ID, 

individual ID, phenotype, cohort, collection site, gender, capture platform, size of “callable 

exome”, and paternal age (years) at birth, where available. Column J lists reasons for any 

sample exclusions by quality control methods; “0” indicates that the sample was not excluded, 

and was included in subsequent analyses. Columns K-AF list individual sample sequencing 

metrics generated using PicardTools, and GATK DepthOfCoverage tools. Columns AG-AQ list 

individual sample sequencing metrics generated using PLINK/SEQ (i-stats; 

https://psychgen.u.hpc.mssm.edu/plinkseq/stats.shtml). Columns B, K-AQ were included in 

Principal Components Analysis (PCA). Third tab contains cohort-level metrics calculated using 

samples passing quality control. ±95% confidence intervals are given, when applicable. Fourth 

tab contains coordinates generated for each sample for the top 10 principal components 

following PCA. The code used to generate this data is included in Supplementary Methods. 

Using these coordinates, we removed trios with family members falling more than three 

standard deviations from the mean in any of the first five principal components; this information 

is contained in the fifth tab. 

 

Table S2 – Annotated de novo variants in CMS and controls.  

(see “TableS2.xlsx”) 

Detailed information on all high confidence de novo variants in cases and controls. These 

variants were annotated using ANNOVAR, based on RefSeq hg19 gene definitions. Column 
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descriptions are provided in a separate tab of this file.  A third tab provides the number of each 

de novo variant type per sample. 

 

Table S3 – Gene-level de novo mutation rates, variant counts, and TADA-Denovo results. 

(see “TableS3.xlsx”) 

First tab contains de novo mutation rates used to perform subsequent maximum likelihood 

estimation (MLE) and TADA-Denovo analyses. The following mutation rates are listed for each 

gene: overall (mut.rate), likely gene disrupting (lgd), predicted damaging missense (mis3), and 

all damaging (lgd + misD). These overall mutation rates were previously published (Ware et al., 

2015) from unaffected parent-child trios. The code used to generate the mutation rate table is 

provided in Supplementary Methods. Second tab contains the input file for the TADA-Denovo 

algorithm. Gene-level expected mutation rates for LGD (“mut.cls1” column) and Mis-D variants 

(“mut.cls2” column) are listed, along with their respective observed mutation counts in our CMS 

data (“dn.cls1” and “dn.cls2”, respectively). Code for running TADA-Denovo is given in 

Supplementary Methods. Third tab contains the final output results from TADA-Denovo code 

provided in Supplementary Methods. One gene harboring more than one damaging de novo 

(LGD or Mis-D) variant in unrelated CMS families is highlighted in yellow (KDM5B). This gene 

exceeded the threshold for being considered a high confidence (qval < 0.1) risk gene.  

 

Table S4 – DNENRICH gene lists and results. 

(see “TableS4.xlsx”) 

See Supplementary Methods for details of DNENRICH analysis and gene lists used. First tab 

contains input gene lists and information about their curation. Second tab contains the input 
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mutation list for DNENRICH; each row represents a de novo damaging mutation in a CMS 

proband. Third tab contains results output from DNENRICH. Significantly enriched gene sets 

are highlighted. 

 

Table S5 – Exploratory pathway, gene ontology, and spatiotemporal analyses results. 

(see “TableS5.xlsx”) 

Pathway and gene ontology results from ConsensusPathDB are in the first tab; p-values < 0.05 

and corresponding q-values are shown. Specific Enrichment Analysis (SEA) exploring whether 

genes cluster within certain brain regions across development using Brainspan atlas data is in 

the second tab; p-values < 0.05 are highlighted in yellow. See Supplementary Methods for 

details of these analyses.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/730952doi: bioRxiv preprint 

https://doi.org/10.1101/730952
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	CMS Exome Sequencing - all sections
	Main Figure Legends
	Main Figures
	Main Table 1
	Supplementary Methods
	Supplementary Figures

	Supplementary Tables



