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Abstract

A major challenge in cancer genomics is to identify genes with functional roles in cancer and

uncover their mechanisms of action. Here, we introduce a unified analytical framework that

enables rapid integration of multiple sources of information in order to identify cancer-relevant

genes by pinpointing those whose interaction or other functional sites are enriched in somatic

mutations across tumors. Our accompanying method PertInInt combines knowledge about sites

participating in interactions with DNA, RNA, peptides, ions or small molecules with domain,

evolutionary conservation and gene-level mutation data. When applied to 10,037 tumor samples

across 33 cancer types, PertInInt uncovers both known and newly predicted cancer genes, while

simultaneously revealing whether interaction potential or other functionalities are disrupted.

PertInInt’s analysis demonstrates that somatic mutations are frequently enriched in binding

residues and domains in oncogenes and tumor suppressors, and implicates interaction

perturbation as a pervasive cancer driving event.

(Software at http://github.com/Singh-Lab/PertInInt.)
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Introduction1

Large-scale, concerted oncogenomic consortia have recently sequenced an unprecedented number2

of tumor genomes from thousands of patients across tens of cancer types [1, 2]. Analyses of these3

datasets promise the opportunity for improved diagnosis and additional insights into the genetic4

underpinnings of a staggeringly complex and heterogeneous disease [3]. More broadly, the5

comprehensive detection of cancer-driving mutational events, coupled with a mechanistic6

understanding of their functional impact, has the potential to expand our knowledge of altered7

cellular processes in tumors, to reveal actionable, genetic similarities between different cancer8

types, and to inform how evolving, heterogeneous populations of tumor cells may impact9

therapeutic efficacy [4–6].10

A crucial first step toward these goals—differentiating the small fraction of somatic mutations11

with functional roles in cancer (“drivers”) from the preponderance of neutral “passenger”12

mutations—still poses a substantial computational obstacle [7]. While initial attempts to uncover13

cancer drivers at the gene level based on frequency of mutation across tumor samples have been14

fruitful [8, 9], such gene-centric, recurrence-based approaches are inherently unable to detect15

infrequently mutated driver genes and also cannot distinguish amongst mutations within the same16

gene that may lead to distinct tumor phenotypes or clinical responses [10]. In order to address the17

critical need to detect and interpret rare mutational driver events at the subgene level [11], an18

emerging class of approaches has begun to combine somatic mutation information with additional19

knowledge regarding protein site functionality, derived from analyses of evolutionary20

conservation [12–14], three-dimensional structure [15–20], domains [21, 22], or post-translational21

modification [23, 24]. These methods, however, tend to consider whether somatic mutations alter22

just a single type of functionality, whereas somatic mutations within putative driver genes have23

been found to disrupt a broad range of protein functionalities. On the other hand, machine24

learning approaches to classify cancer drivers incorporate multiple types of information, but due to25

their “black box” nature, mechanistic interpretations of their predictions are not possible [25, 26].26

We and others have previously demonstrated that detecting proteins that harbor somatic27

mutations in their interaction interfaces is a particularly effective approach to pinpoint infrequent28

driver mutations as well as reason about their molecular impacts and therapeutic29

sensitivities [16, 17, 27–32]. Indeed, several cancer driver genes, including TP53 and IDH1, are well30

known to harbor mutations within their interaction sites [29]. While traditionally interaction sites31

have been identified directly for the small fraction of human genes with actual or modeled32

co-complex structures, we have recently developed a domain-based approach that accurately33
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detects residues that interact with DNA, RNA, peptides, ions or small molecules across 63% of34

human genes [33]. A robust computational framework that utilizes this vastly expanded35

knowledge-base about interaction sites and explicitly integrates it with additional lines of evidence36

regarding subgene functionality would provide a powerful new approach not only to detect but37

also to interpret a wide range of mutations driving protein dysfunction in cancer.38

Here, we introduce a fast, interpretable and easily extendable framework that enables us to39

uncover whether somatic mutations within genes are enriched in sites associated with high40

measures of “functionality” as determined by multiple, possibly correlated, lines of evidence. Our41

implementation PertInInt (pronounced “pertinent,” Perturbed In Interactions) incorporates42

interaction site information, along with evolutionary conservation and domain membership43

information, as each of these measures informs which sites are important for protein functioning.44

Importantly, we derive analytical calculations that obviate the need to perform time-prohibitive45

permutation-based significance tests, thereby making it feasible to integrate, in a principled46

manner, these distinct measures of subgene-level functionality. Further, we extend our framework47

to consider whole-gene mutation rates, as genes that are recurrently mutated across tumors are48

often found to be causally implicated in cancers [34]. While other approaches have combined the49

output of multiple programs post hoc (e.g., [6]), PertInInt is, to the best of our knowledge, the first50

approach that integrates multiple alternate sources of subgene resolution data with whole gene51

mutational frequency within a single unifying framework in order to detect, evaluate, and infer the52

molecular impact of patterns of somatic mutations within all human genes.53

We apply PertInInt to somatic missense mutation data arising from 10,037 tumor samples across54

33 cancer types to identify genes with the most enriched mutational patterns. We find that while55

each source of information—interaction, domain, evolutionary conservation and whole-gene56

mutation frequency—is individually predictive of cancer genes, PertInInt uncovers more57

comprehensive sets of cancer-relevant genes when considering all sources of information together.58

We demonstrate that PertInInt is able to identify even those cancer genes with relatively low59

overall mutation rates, and that PertInInt readily outperforms previous methods while60

additionally revealing whether and what type of interaction potential is perturbed. PertInInt finds61

that numerous known oncogenes and tumor suppressors have an enrichment of somatic mutations62

within their interaction interfaces and, in addition, newly predicts cancer-relevant genes along63

with their altered interaction functionalities. Altogether, PertInInt provides a new and highly64

effective integrative framework to analyze large-scale cancer somatic mutation data and further65

our understanding of the molecular mechanisms driving cancers.66
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Results67

Overview of the PertInInt framework68

PertInInt aggregates somatic mutational data observed across tumor samples and identifies for69

each gene whether certain types of its functional sites are enriched in somatic mutations and/or70

whether the gene exhibits a high mutation rate across its length. We briefly overview our approach71

next (Fig. 1); more details can be found in the Methods section.72

Each functional region within a protein is modeled as a “track,” and each position within a73

track has a corresponding 0 to 1 weight that reflects its importance with respect to the track74

(Fig. 1a). For each track, we compute the score of the somatic mutations with respect to the track as75

the sum of the weights of the positions that the mutations fall into (Fig. 1b). To determine whether76

the score for a track is more than expected by chance, we could shuffle the mutations across the77

positions of the track, and use the mean and standard deviation computed from these78

permutations to compute a Z-score; however, the mean and standard deviation for each track can79

be computed analytically (see Methods S3 for derivations). For each protein, we next combine the80

information from each of its tracks. Because tracks can overlap along the length of the protein81

sequence, and the somatic mutations that fall in each of them can also overlap, these tracks cannot82

be treated independently. Instead, for the background model we derive an approach to compute83

the covariance between tracks analytically and then use this covariance matrix to estimate a84

combined score (Fig. 1c, Methods S4). We find that even when considering just a single track, our85

analytical formulation leads to >7× speedup over each empirical permutation (see Methods S8 and86

Fig. S1). In practice, numerous shuffles are necessary to compute the mean and variance for a87

single track, and empirical calculations to estimate the covariance across all tracks is prohibitively88

slow, highlighting the power and necessity of our analytical formulation.89

Though any type of annotated functional region can be incorporated into our framework, here90

we consider three specific types of tracks. First, interaction tracks model various protein–ligand91

interaction interfaces, where higher positional weights indicate that those positions are more likely92

to participate in interactions with a ligand; each interaction track corresponds to the subset of93

protein positions where we have any knowledge about ligand binding potential (as determined94

by [30, 33]). Second, domain tracks span the length of the protein and simply identify portions of95

the protein sequence that correspond to the domain of interest; weights are 1 for amino acid96

positions within the domain and 0 elsewhere. Third, the conservation track is also the length of97

the protein sequence, and the weight of each position measures its conservation across vertebrate98

homologs; higher weights correspond to positions under more evolutionary constraint. Finally, to99
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Figure 1: PertInInt uncovers cancer driver genes by integrating subgene per-site interaction,
domain, and conservation information with whole-gene mutation frequency data. (a) Somatic
mutations (orange triangles) affecting a protein sequence (jagged line) with three domains (grey
regions) are evaluated with respect to different measures of functionality, each represented as a
“track”. In interaction tracks (red), positions that are more likely to participate in ligand interactions
have higher weights (vertical bars). Interaction tracks arise from domain-based binding potential
calculations [33] (top two red tracks, each covering the length of the respective domain) or
homology modeling [30] (bottom red track, covering the length of the modeled region). Domain
tracks (green) specify which residues within a protein are part of a specific domain by 0/1
positional weights; here we have a track for each domain within the sequence. The conservation
track (blue) weights each position by its evolutionary conservation across species. The natural
variation track (purple) models how much each gene varies across healthy populations; here the
height of the vertical bars indicates the background mutation probability rather than a per-gene
weight, which is 1 for the gene being considered and 0 otherwise. (b) For each trackW , we
compute the score SW of the observed somatic mutations as the sum of the track weights for the
positions where they appear (top). To determine whether this score is higher than expected, we
consider a model where somatic mutations are shuffled across the positions of the track, and the
expected score (E[SW ]) and the standard deviation of the scores (σSW ) are computed and used to
estimate per-track Z-scores (bottom); note that in our framework these values are computed
analytically instead of relying on the shuffles. (c) Z-scores for all tracks are combined after
analytically determining a background covariance model.
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determine whether a gene as a whole has more mutations than expected, we extend our100

framework to incorporate the natural variation track, which has a single entry per gene that101

reflects its background mutation rate, as estimated from the number of variants this gene has102

across healthy populations [35, 36]. Approximately 63% and 90% of human genes have per-site103

information about interactions or domains respectively, while all genes have per-site conservation104

values and background gene-level mutuation rates. A gene may have numerous interaction and105

domain tracks (e.g., for different modeled interaction regions and for each of its identified106

domains), but has only a single conservation and natural variation track.107

The final per-gene score output by PertInInt considers whether somatic mutations across108

samples are enriched in positions with high ligand-binding potential for an interaction track;109

within domain positions for a domain track; within conserved sites for the conservation track; and110

within the gene overall.111

PertInInt effectively identifies cancer driver genes via integrating multiple sources of112

information113

We run PertInInt on somatic point mutation data aggregated across 10,037 pan-cancer tumor114

samples and 33 tumor types from The Cancer Genome Atlas (TCGA) [2]. PertInInt’s analytical115

formulation enables the simultaneous consideration of multiple types of biological data regarding116

protein functionality. However, to first uncover to what extent each source of information—per-site117

interaction, domain, and conservation information as well overall gene mutational frequency—is118

independently useful for identifying cancer-relevant genes, we run PertInInt on the pan-cancer119

dataset when restricted to each of these track types in turn. To validate the method in the absence120

of a complete gold standard, as we consider an increasing number of output genes, we compute121

how enriched this set is in genes from the Cancer Gene Census (CGC), a curated list of genes122

implicated in cancer [37].123

We find that utilizing subsets of interaction, domain, conservation, or natural variation tracks124

can recapitulate known CGC genes to varying degrees, with interaction tracks identifying the125

largest number of known driver genes while maintaining perfect precision relative to other track126

subsets (Fig. 2a). Notably, our integrative framework that incorporates all track types outperforms127

every version of our algorithm that considers only subsets of information; indeed, considering any128

two sources of biological information outperforms versions of PertInInt that utilize only one129

source, and considering any three sources of data tends to improve performance even further130

(Fig. 2b). This demonstrates the ability of our approach to effectively leverage the distinct131

contributions of multiple, complementary data sources regarding protein position and whole gene132
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Figure 2: PertInInt is highly effective in uncovering cancer driver genes due to combining
multiple sources of information. (a) Enrichment of Cancer Gene Census (CGC) genes (y-axis)
within a given number of top scoring genes (x-axis) when run on the pan-cancer dataset using all
tracks together (black), only interaction tracks (red), only domain tracks (green), only the
conservation track (blue) and only the natural variation track (purple). Enrichment is computed as
the ratio between the fraction of CGC genes in the set of top scoring genes considered and the
fraction of CGC genes in the whole set of genes. While uncovering genes enriched for somatic
mutations within interaction sites, domain positions, conserved sites, or over their lengths each
yields cancer-relevant genes, performance is highest when PertInInt uses all sources of information
together. (b) Percent improvement in the area under the enrichment curve for the top 200 genes
when using all track types versus specific subsets of tracks. PertInInt is more effective in
uncovering CGC genes when using all sources of information together than when using any other
of the possible subsets of information. (c) Venn diagram showing the overlap of CGC genes
detected in the top 200 genes ranked when considering only interaction, only domain, only
conservation, or only natural variation tracks. The different sources of information yield distinct
yet overlapping sets of cancer genes.
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functionality in order to uncover cancer driver genes. We note that enrichment of cancer genes133

amongst PertInInt’s top predictions remains when considering different gold standards (Fig. S3).134

Strikingly, we find low overlap between the sets of CGC genes identified when utilizing distinct135

track types, indicating that mutations within cancer genes tend to target a diverse array of136

functional elements (Fig. 2c). Only a small minority of CGC genes (less than 10%) are identified by137

all four track types within the top 200 ranked genes. Mutations falling into known tumor138

suppressor PTEN, for instance, tend to hit evolutionarily conserved protein positions but do not139

alter known inferred interaction interfaces or domain regions more than expected by chance. In140

contrast, a small molecule binding pocket in the IDH2 oncogene is recurrently mutated across141

cancers, and thus it is readily detected using interaction tracks alone but is less significantly ranked142

when PertInInt is restricted to other functionality data.143

Lowly-mutated genes harbor mutations that preferentially alter functional sites144

We next show that PertInInt’s integrative approach can highlight genes with preferentially altered145

functional sites that may be lowly mutated overall; such “long tail” driver genes are easily missed146

by traditional frequency-based driver gene detection approaches. When run on the pan-cancer147

dataset utilizing all track types, PertInInt ranks highly several such infrequently-mutated genes148

(Fig. 3a). Of the top 35 genes ranked by PertInInt on the pan-cancer dataset, we find that 20 fall into149

the “long tail” of genes with a missense mutation rate less than one-twentieth of the maximum150

observed mutation rate (Fig. 3b). These high scoring long tail genes include novel genes with151

potential implications in cancer as well as known driver genes that cannot have been identified152

based solely on their relative mutation frequency (e.g., KMT2D and CIC, Fig. 3b). Many of these153

infrequently mutated genes harbor significantly perturbed interaction sites, enabling immediate154

molecular insights regarding their roles in cancer. For example, among long tail genes that are155

highly ranked by PertInInt but have not yet been identified as cancer-relevant, several have an156

enrichment of mutations in their DNA or small molecule interaction sites (e.g., MGA and GRIN2D,157

Fig. 3b), in line with previous observations that many cancer driver genes exhibit these types of158

protein interaction perturbations [38–40].159

Mutations are distributed across interaction interfaces160

For each protein with a significantly perturbed interaction interface, we next sought to determine161

whether mutations are found within a small number of interaction sites or across several162

interaction sites. We consider all sites within the protein with non-zero interaction track weights,163

and use the frequency with which somatic mutations occur within each of them to compute a164
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Figure 3: Perturbed interaction interfaces across oncogenes and tumor suppressors. (a) Shown
are the missense mutation rates (y-axis) of the top 200 genes ranked by PertInInt (x-axis). Top
ranked genes are both highly and infrequently mutated. Genes are colored as in (c). The shaded
gray box highlights the plot to 35 genes, which are featured in the part (b) inset. (b) Genes are
ordered by their missense mutation rate (x-axis), and their missense mutation rate is given (y-axis).
PertInInt’s top 35 ranked genes are plotted in color and exhibit a wide range of ranks with respect
to mutation rate. Of these, only genes with below-median overall mutation rates and a Z-score ≥ 1
in at least one interaction track are labeled. (c) For each of the top 200 genes ranked by PertInInt
(x-axis), for those with a Z-score ≥ 1 in at least one interaction track, we also analyze the
distribution of somatic mutations across interaction sites and compute their normalized Shannon
Entropy (y-axis). These genes contain recurrent (low variation) as well as more distributed (high
variation) mutations across their binding interfaces.
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normalized Shannon entropy [41]. Higher entropies correspond to proteins with mutations spread165

across many interaction sites whereas low entropies correspond to mutational patterns that can be166

uncovered by methods that look for mutation “hotspots” [42]. As expected, PertInInt highly ranks167

several oncogenes that have previously been detected by hotspot detection algorithms due to their168

recurrent mutations in critical interaction positions (e.g., IDH1, BRAF, NRAS) [42]. However, there169

are also many genes with significantly perturbed interaction interfaces where mutations are spread170

more widely across their interaction sites (Fig. 3c). Known cancer genes DICER1, SMARCA4,171

CREBBP and KMT2D, for instance, are among the top 35 genes ranked by PertInInt and contain172

significantly mutated interaction sites (combined score across interaction tracks > 6), each with173

several interaction sites that together harbor an enriched number of somatic mutations.174

Notably, this analysis reveals that the top ranked genes with significantly perturbed interaction175

interfaces include both oncogenes and tumor suppressor genes (TSGs), reflecting a dichotomy in176

the impact of binding interface mutations. Whereas some specific mutations within interaction177

sites have been linked to oncogenic activity [28], other binding site mutations are known to entirely178

disrupt critical interactions and overall protein function [43]. Although we model the interaction179

sites of similar numbers of oncogenes and TSGs (238 and 246 respectively), we find that among the180

50 genes with the highest enrichment of mutations within their interaction sites, the enrichment of181

oncogenes is 2.36-fold greater than the enrichment of TSGs. Nevertheless, PertInInt uncovers182

perturbed interaction interfaces in many genes that have been previously identified as drivers due183

to nonsense, frameshift, or other relatively disruptive mutations typically associated with TSGs184

(e.g., RUNX1 and FOXO1). Indeed, enriched yet less common interaction altering missense185

mutations uncovered by PertInInt may correspond to more subtle knockdown phenotypes or186

previously underappreciated oncogenic activities of genes traditionally characterized as TSGs.187

PertInInt outperforms previous methods in detecting cancer genes188

Having demonstrated that PertInInt can identify interaction interfaces enriched in mutations189

across tumor samples, and that this is highly predictive of cancer genes, we next turn to assessing190

PertInInt’s performance as compared to previously published methods for detecting cancer driver191

genes. These methods differ substantially in terms of their statistical models and overall goals, and192

the vast majority do not distinguish amongst the various types of interaction and other functional193

perturbations affecting the identified genes. Nevertheless, we compare PertInInt to other194

computational methods [15, 16, 21, 35, 42, 44–50] that aim to detect driver genes that either are195

significantly mutated at the whole gene level, that harbor linear clusters of mutations, that harbor196

three-dimensional (3D) clusters of mutations, that are enriched for mutations in externally-defined197
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Figure 4: Detection of known cancer genes from a pan-cancer dataset by PertInInt and
alternate methods. Each driver gene detection method was run on the pan-cancer set of missense
mutations. (a) Curves indicate the enrichment of Cancer Gene Census (CGC) genes (y-axis) as we
consider an increasing number of output genes (x-axis) for each driver gene detection method. All
methods scored at least 3,000 genes except for Hotspot (orange solid line), which only returned
1,530 genes and whose curve ends at that point. The gray shaded area highlights the plot to 200
genes, a closeup of which is shown in the inset. Vertical lines at 10, 50, 100, and 200 ranked genes in
the inset correspond to gene set sizes featured in part (b). (b) Jaccard Indices (JIs) are calculated
between the top 10, 50, 100, and 200 genes output by PertInInt and the corresponding top 10, 50,
100, and 200 genes output by each other method. Lighter colors indicate lower JIs and less overlap
between the gene sets.
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linear regions, or that are enriched for mutations in externally-defined 3D regions (as categorized198

in [11], see Methods S9).199

When applied to tumor samples from the pan-cancer dataset, our method has a greater200

enrichment for CGC genes than the other tested methods that we were able to run (Fig. 4a).201

PertInInt also outperforms these methods in terms of enrichment of CGC genes among top ranked202

genes even after we exclude tumor samples from the six most highly-mutated cancer types with203

100+missense mutations per patient on average, demonstrating that PertInInt’s superior204

pan-cancer performance is not driven by samples from cancer types that contribute large numbers205

of mutations (Fig. S4). Notably, the genes ranked highly by PertInInt differ substantially from206

those identified by other approaches (Fig. 4b). Specifically, the set of genes identified by PertInInt207

has a consistently low Jaccard Index (JI) with sets of genes ranked by alternate methods (JI < 0.5208

across all methods for top 25 genes, JI < 0.25 across all methods for top 150 genes). Importantly,209

due to our analytical formulation, PertInInt can process the pan-cancer mutational data while210

considering multiple sources of data about protein functionality in 10 minutes on a single core of211

standard desktop; alternate methods each consider a limited set of mutational patterns and range212

in runtime from minutes to days (Table S1).213

We also repeat our analysis on datasets restricted to samples from one cancer type, as many214

alternate methods that failed to run on the pan-cancer dataset are able to run on these substantially215

smaller subsets of tumor genomes. We find that in general across individual cancer datasets,216

PertInInt tends to achieve a higher area under the enrichment curve than other methods, including217

whole gene methods, and a version of PertInInt that includes only subgene resolution tracks also218

outperforms other subgene methods (Fig. S5). Overall, these results show that PertInInt is a219

powerful method for evaluating mutational patterns across tumors of the same cancer type as well220

as across a pan-cancer dataset covering over 10,000 tumor genomes.221

Distinct perturbed molecular mechanisms uncovered across genes222

Having shown that PertInInt is highly effective in identifying cancer genes, we next demonstrate223

that for each gene highly ranked by PertInInt, we can pinpoint which specific functional regions224

and mechanisms are perturbed by analyzing each track separately and determining which have225

positive Z-scores. Altogether, we find that that 665 CGC genes have at least one subgene226

functionality track with a Z-score ≥ 0.5, representing functional coverage of 93% of all CGC genes227

(Fig. 5). Specifically, we find that DNA, RNA, peptide, ion and small molecule interaction sites are228

enriched in mutations in 16%, 5%, 19%, 14% and 22% of CGC genes respectively; these numbers go229

up to 23%, 5%, 27% and 24% of CGC genes if including those that are more broadly enriched in230
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Figure 5: Perturbed mechanisms across oncogenes, tumor suppressor genes, and putative
cancer genes. Gene names are colored by driver status; genes that are not yet known to be cancer
drivers but have a Z-score ≥ 0.5 in one or more interaction tracks are in lavender. For each gene,
the circles indicate the Z-scores for enrichment of mutations in particular types of tracks, with
interaction tracks in red, domain tracks in green and the conservation track in blue. Z-scores for
mutational enrichments in domain tracks are shown only if the Z-scores for the corresponding
interaction tracks are < 0.5. Z-scores for the conservation track are shown only if Z-scores for all
other track types are < 0.5. (a) PertInInt’s top 50 ranked known cancer driver genes and (b) top 50
ranked putative cancer driver genes with a significantly mutated interaction track exhibit a wide
range of perturbed functionalities.
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mutations across, respectively, DNA-binding, RNA-binding, peptide-binding or231

metabolite-binding domains (as categorized in Pfam2Go [51]). Up to 77% of CGC genes are232

enriched in mutations across any domain or interaction site. We note that the perturbed nucleic233

acid- and small molecule-binding sites or domains found across 45% of cancer genes would not be234

readily identified by analyses that focus exclusively on protein–protein interaction alterations [16].235

We now highlight a few genes that, though not present in the CGC, were uncovered by236

PertInInt as having significantly mutated interaction interfaces. For instance, transcription factors237

MGA and KLF5 harbor mutations within their basic helix-loop-helix and C2H2-ZF domains,238

respectively, that alter their DNA base-binding positions (Fig. 6a), suggesting cancer-specific239

changes to normal DNA binding and downstream regulatory activity. Indeed, KLF5’s E419Q240

mutation has recently been experimentally shown to change wild-type binding preferences and241

increase the expression of tumor progression genes in vivo [52]. Similarly, MGA normally subdues242

the activity of well-known oncogene MYC; its frequent deletion, truncation, or mutated binding243

properties across cancers further indicates its role as a tumor suppressor [53]. We also find that two244

RNA-binding genes DIS3 and SF1 exhibit significant mutations in their putative RNA-binding245

sites, with recurrent mutations in DIS3 altering multiple distinct RNA-contacting positions246

(Fig. 6b). In support of our predictions, DIS3 is recurrently mutated in blood and skin cancers and247

has been identified as a candidate oncogene in colorectal cancer [54]. SF1 is recurrently mutated248

across cancers in a mutually exclusive fashion, indicating its analogous functionality, to RBM10, a249

gene found to drive aberrant splicing events in cancer [55].250

PertInInt also newly implicates a number of genes—present neither in the CGC nor on other251

lists of known cancer genes [4, 6, 44, 56]—with mutations that appear to alter critical small molecule252

binding positions (Fig. 6c). The highly conserved kinase GSK3A for instance harbors a significant253

enrichment of mutations altering its ATP-binding positions. Supporting our prediction,254

suppression of this gene is associated with impaired growth and induction of apoptosis and it has255

recently been proposed as a potential therapeutic target in acute myeloid leukemia [57, 58]. We also256

find that the S-type lectin LGALS4 has an enrichment of mutations altering the β-galactoside257

sugar-binding positions in its galectin domains; indeed, LGALS4 has been linked to the regulation258

of the cancer-relevant Wnt signaling pathway and has been experimentally implicated as a tumor259

suppressor in colorectal cancer cells in vitro [59].260
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Figure 6: Examples of genes ranked highly by PertInInt that are not known to be drivers.
Across the length of each gene (x-axis), the number of missense mutations at each protein position
is given (y-axis). Vertical bars corresponding to mutations affecting binding sites are colored red.
The band along the x-axis depicts the likelihoods with which residues at each protein position are
expected to interact with the specified ligand, with darker bars corresponding to higher (≥0.25)
binding likelihoods. Domain locations and names are shown below. (a) Putative cancer genes
MGA and KLF5 are enriched for mutations in DNA base-binding positions. (b) Putative cancer
genes DIS3 and SF1 are enriched for mutations in RNA-binding positions. (b) Putative cancer
genes GSK3A and LGALS4 are enriched for mutations in small molecule (ATP and β-galactoside
sugar, respectively) binding positions.
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Discussion261

In this work, we have introduced a fast, integrative framework to detect cancer driver genes by262

uncovering whether somatic mutations across tumors are enriched in sites of different types of263

functionalities. Our method utilizing this framework, PertInInt, integrates knowledge from the264

largest set of protein-ligand interaction sites to date [30, 33] with additional biological data265

regarding subgene functionality and whole gene mutability (Fig. 1). When applied to over 10,000266

tumor samples from 33 cancer types, PertInInt reveals a broad range of perturbed functionalities in267

several known driver genes as well as in relatively rarely mutated genes with predicted268

tumorigenic roles (Fig. 3a-b, Fig. 5). Notably, PertInInt finds that mutations within many known269

driver genes are enriched in protein interaction interfaces (Fig. 2a), and more broadly implicates270

interaction perturbation as a frequent phenomenon in cancer cells (Fig. 5).271

Analyses of predicted cancer-relevant coding mutations often involve—whenever272

possible—assessing their putative effect with respect to protein structure [6, 17,40, 42, 60]. Although273

using structure directly to identify relevant mutations is rarely scalable in terms of runtime and274

coverage [50], PertInInt’s use of structurally predefined regions mediating protein interactions275

makes large-scale analyses in the context of protein structure feasible. Moreover, since276

cancer-driving genetic aberrations do not always involve the targeted mutation of protein–ligand277

interaction interfaces, a critical additional feature of PertInInt—that extends its coverage to all278

human genes—is that it seamlessly incorporates additional lines of evidence regarding protein site279

functionality. While here we have demonstrated that PertInInt effectively utilizes per-site280

evolutionary conservation and domain knowledge, we anticipate that encoding more sources of281

functional information within our framework (e.g., known phosphorylation sites or intrinsically282

disordered regions) will unearth other driver mutations and alternate mechanisms of action.283

Genes that are frequently mutated across their lengths tend not to overlap genes that exhibit284

nonrandom patterns of mutations across individual protein positions, a pattern that has previously285

been leveraged to distinguish tumor suppressor genes from oncogenes [4, 61]. By incorporating286

whole gene mutability information into our existing framework, we are able to uncover and profile287

a much more comprehensive set of both oncogenes and tumor suppressor genes (Fig. 2b, Fig. 3c).288

Although previous methods have also considered the frequency and spatial patterning of289

mutations within genes together [8, 61, 62], we also simultaneously infer specific perturbed290

molecular mechanisms within uncovered genes. We note that while mutation deleteriousness291

predictors—developed both in the context of cancer [25, 26] and otherwise [14]—can evaluate the292

impact of somatic mutations, they tend to integrate multiple sources of protein site functionality293
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information via complex statistical or machine learning approaches, where the contribution of each294

data source and thus subsequent mechanistic interpretations are obscured. In contrast, by295

determining mutational enrichments in specific types of functional sites, PertInInt is able not only296

to identify cancer-relevant genes but also to begin to explicitly reason about the biomolecular297

impacts of mutations.298

Given the success of large-scale cancer genome sequencing consortia projects in expanding our299

knowledge of basic cancer biology [63–65], coupled with the decreased cost of genome sequencing,300

it is clear that sequencing tumor genomes will be routine practice in both basic science and clinical301

settings, thereby rapidly increasing the number of sequenced tumors available for analysis.302

Importantly, PertInInt’s analytical framework enables it to efficiently process increasing numbers of303

tumor genomes; further, this speed is accompanied by better identification of cancer-relevant genes304

when run on larger numbers of tumor samples (Fig. S6). Since PertInInt’s underlying analytical305

framework is general, we anticipate that it will also be effective in other settings. For example,306

because very few non-coding somatic mutations in cancer tend to be recurrent [66], it may be307

especially powerful for identifying regulatory regions with an enrichment of mutations within308

sites associated with different measures of functionality (e.g., binding sites for different proteins).309

In the future, one of the most tantalizing prospects of cancer genomics is its potential in310

transforming clinical practice. While identifying and linking cancer mutations to personalized311

treatments remains a daunting challenge, PertInInt dramatically accelerates the detection of rare312

mutational driver events from sequenced tumors while providing important information about313

their mechanisms of action, a key step in developing and customizing targeted therapeutic314

regimens.315

References

[1] International Cancer Genome Consortium, Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell,
C., Bernabé, R. R., Bhan, M. K., Calvo, F., Eerola, I., et al. (2010) International network of cancer genome
projects. Nature, 464(7291), 993–998.

[2] TCGA Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger,
B. A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J. M. (2013) The Cancer Genome Atlas
pan-cancer analysis project. Nat Genet, 45(10), 1113–1120.

[3] Chin, L. and Gray, J. W. (2008) Translating insights from the cancer genome into clinical practice. Nature,
452, 553–563.

[4] Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., J., and Kinzler, K. W. (2013)
Cancer genome landscapes. Science, 339(6127), 1546–1558.

[5] McGranahan, N. and Swanton, C. (2017) Clonal Heterogeneity and Tumor Evolution: Past, Present, and
the Future. Cell, 168(4), 613–628.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733485doi: bioRxiv preprint 

https://doi.org/10.1101/733485
http://creativecommons.org/licenses/by-nc-nd/4.0/


[6] Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., Colaprico, A.,
Wendl, M. C., Kim, J., Reardon, B., et al. (Apr, 2018) Comprehensive Characterization of Cancer Driver
Genes and Mutations. Cell, 173, 371–385.

[7] Garraway, L. A. and Lander, E. S. (2013) Lessons from the cancer genome. Cell, 153(1), 17–37.

[8] Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., Carter, S. L.,
Stewart, C., Mermel, C. H., Roberts, S. A., et al. (2013) Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature, 499(7457), 214–218.

[9] Dees, N. D., Zhang, Q., Kandoth, C., Wendl, M. C., Schierding, W., Koboldt, D. C., Mooney, T. B.,
Callaway, M. B., Dooling, D., Mardis, E. R., Wilson, R. K., and Ding, L. (2012) MuSiC: identifying
mutational significance in cancer genomes. Genome Res, 22(8), 1589–1598.

[10] Torkamani, A. and Schork, N. J. (Mar, 2008) Prediction of Cancer Driver Mutations in Protein Kinases.
Cancer Res, 68(6).

[11] Porta-Pardo, E., Kamburov, A., Tamborero, D., Pons, T., Grases, D., Valencia, A., Lopez-Bigas, N., Getz,
G., and Godzik, A. (2017) Comparison of algorithms for the detection of cancer drivers at subgene
resolution. Nat Meth, 14(8), 782–788.

[12] Reva, B., Antipin, Y., and Sander, C. (2011) Predicting the functional impact of protein mutations:
application to cancer genomics. Nucleic Acids Res, 39(17), e118.

[13] Ng, P. C. and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function.
Nucleic Acids Res, 31(13), 3812–3814.

[14] Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S.,
and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat Meth,
7(4), 248–249.

[15] Ryslik, G. A., Cheng, Y., Cheung, K.-H., Bjornson, R. D., Zelterman, D., Modis, Y., and Zhao, H. (2014) A
spatial simulation approach to account for protein structure when identifying non-random somatic
mutations. BMC Bioinformatics, 15(1), 231.

[16] Porta-Pardo, E., Garcia-Alonso, L., Hrabe, T., Dopazo, J., and Godzik, A. (2015) A pan-cancer catalogue
of cancer driver protein interaction interfaces. PLoS Comput Biol, 11(10), e1004518.

[17] Kamburov, A., Lawrence, M. S., Polak, P., Leshchiner, I., Lage, K., Golub, T. R., Lander, E. S., and Getz,
G. (2015) Comprehensive assessment of cancer missense mutation clustering in protein structures.
PNAS, 112(40), E5486–E5495.

[18] Tokheim, C., Bhattacharya, R., Niknafs, N., Gygax, D. M., Kim, R., Ryan, M., Masica, D., and Karchin, R.
(2016) Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure..
Cancer Res, 76(13), 3719–3731.

[19] Niu, B., Scott, A. D., Sengupta, S., Bailey, M. H., Batra, P., Ning, J., Wyczalkowski, M. A., Liang, W.-W.,
Zhang, Q., McLellan, M. D., Sun, S. Q., Tripathi, P., Lou, C., Ye, K., Mashl, R. J., Wallis, J., Wendl, M. C.,
Chen, F., and Ding, L. (2016) Protein-structure-guided discovery of functional mutations across 19
cancer types. Nat Genet, 48, 827–837.

[20] Gao, J., Chang, M. T., Johnsen, H. C., Gao, S. P., Sylvester, B. E., Sumer, S. O., Zhang, H., Solit, D. B.,
Taylor, B. S., Schultz, N., and Sander, C. (2017) 3D clusters of somatic mutations in cancer reveal
numerous rare mutations as functional targets. Genome Med, 9(4), 1–13.

[21] Porta-Pardo, E. and Godzik, A. (2014) e-Driver: a novel method to identify protein regions driving
cancer. Bioinformatics, 30(21), 3109–3114.

[22] Munro, D., Ghersi, D., and Singh, M. (2018) Two critical positions in zinc finger domains are heavily
mutated in three human cancer types. PLOS Computational Biology, 14(6), e1006290.

[23] Reimand, J. and Bader, G. D. (2013) Systematic analysis of somatic mutations in phosphorylation
signaling predicts novel cancer drivers. Mol Syst Biol, 9(1), 637.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733485doi: bioRxiv preprint 

https://doi.org/10.1101/733485
http://creativecommons.org/licenses/by-nc-nd/4.0/


[24] Zhao, J., Cheng, F., and Zhao, Z. (2017) Tissue-Specific Signaling Networks Rewired by Major Somatic
Mutations in Human Cancer Revealed by Proteome-Wide Discovery. Cancer Res, 77(11), 2810–2821.

[25] Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N., and Gaunt, T. R. (2013) Predicting the functional
consequences of cancer-associated amino acid substitutions. Bioinformatics, 29(12), 1504–1510.

[26] Carter, H., Chen, S., Isik, L., Tyekucheva, S., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., and Karchin,
R. (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction
of driver missense mutations. Cancer Res, 69(16), 6660–6667.

[27] Kar, G., Gursoy, A., and Keskin, O. (2009) Human cancer protein-protein interaction network: a
structural perspective. PLoS Comput Biol, 5(12), e1000601.

[28] Stehr, H., Jang, S. H., Duarte, J. M., Wierling, C., Lehrach, H., Lappe, M., and Lange, B. M. (2011) The
structural impact of cancer-associated missense mutations in oncogenes and tumor suppressors. Mol
Cancer, 10, 54.

[29] Nishi, H., Tyagi, M., Teng, S., Shoemaker, B. A., Hashimoto, K., Alexov, E., Wuchty, S., and Panchenko,
A. R. (2013) Cancer missense mutations alter binding properties of proteins and their interaction
networks. PLoS One, 8(6), e66273.

[30] Ghersi, D. and Singh, M. (2014) Interaction-based discovery of functionally important genes in cancers.
Nucleic Acids Res, 42(3), e18.

[31] Gress, A., Ramensky, V., Büch, J., Keller, A., and Kalinina, O. V. (2016) StructMAn: annotation of
single-nucleotide polymorphisms in the structural context. Nucleic Acids Res, 44(W1), W463–W468.

[32] Engin, H., Kreisberg, J., and Carter, H. (2016) Structure-based analysis reveals cancer missense
mutations target protein interaction interfaces. PLoS One, 11(4), e0152929.

[33] Kobren, S. N. and Singh, M. (2019) Systematic domain-based aggregation of protein structures
highlights DNA-, RNA-, and other ligand-binding positions. Nucleic Acids Res, 47(2), 582–593.

[34] Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., Jia, M., Shepherd, R., Leung, K.,
Menzies, A., et al. (2010) COSMIC: mining complete cancer genomes in the Catalogue of Somatic
Mutations in Cancer. Nucleic acids research, p. gkq929.

[35] Przytycki, P. F. and Singh, M. (2017) Differential analysis between somatic mutation and germline
variation profiles reveals cancer-related genes. Genome Med, 9, 79.

[36] Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H.,
Ware, J. S., Hill, A. J., Cummings, B. B., et al. (2016) Analysis of protein-coding genetic variation in
60,706 humans. Nature, 536(7616), 285–291.

[37] Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton,
M. R. (2004) A census of human cancer genes. Nat Rev Cancer, 4(3), 177–183.

[38] Jeggo, P. A., Pearl, L. H., and Carr, A. M. (2016) DNA repair, genome stability and cancer: a historical
perspective. Nat Rev Cancer, 16(1), 35–42.

[39] Delgado, M. D. and Leon, J. (2006) Gene expression regulation and cancer. Clin Transl Oncol, 8(11),
780–787.

[40] Raimondi, F., Singh, G., Betts, M. J., Apic, G., Vukotic, R., Andreone, P., Stein, L., and Russell, R. B.
(2017) Insights into cancer severity from biomolecular interaction mechanisms. Sci Rep, 6(34490), 1–9.

[41] Shannon, C. (1948) A mathematical theory of communication. Bell System Technical Journal, The, 27(3),
379–423.

[42] Chang, M. T., Asthana, S., Gao, S. P., Lee, B. H., Chapman, J. S., Kandoth, C., Gao, J., Socci, N. D., Solit,
D. B., Olshen, A. B., Schultz, N., and Taylor, B. S. (2016) Identifying recurrent mutations in cancer
reveals widespread lineage diversity and mutational specificity. Nat Biotechnol, 34(2), 155–163.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733485doi: bioRxiv preprint 

https://doi.org/10.1101/733485
http://creativecommons.org/licenses/by-nc-nd/4.0/


[43] Cho, Y., Gorina, S., Jeffrey, P., and Pavletich, N. (1994) Crystal structure of a p53 tumor suppressor-DNA
complex: understanding tumorigenic mutations. Science, 265(5170), 346–355.

[44] Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., Meyerson,
M., Gabriel, S. B., Lander, E. S., and Getz, G. (2014) Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature, 505(7484), 495–501.

[45] Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A., and López-Bigas, N. (2016)
OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver
mutations. Genome Biol, 17(1), 128.

[46] Tamborero, D., Gonzalez-Perez, A., and López-Bigas, N. (2013) OncodriveCLUST: exploiting the
positional clustering of somatic mutations to identify cancer genes. Bioinformatics, 29(18), 2238–2244.

[47] Ye, J., Pavlicek, A., Lunney, E. A., Rejto, P. A., and Teng, C.-H. (2010) Statistical method on nonrandom
clustering with application to somatic mutations in cancer. BMC Bioinformatics, 11, 11.

[48] Melloni, G. E. M., de Pretis, S., Riva, L., Pelizzola, M., Céol, A., Costanza, J., Müller, H., and Zammataro,
L. (2016) LowMACA: exploiting protein family analysis for the identification of rare driver mutations
in cancer. BMC Bioinformatics, 17(1), 80.

[49] Ryslik, G. A., Cheng, Y., Cheung, K.-H., Modis, Y., and Zhao, H. (2014) A graph theoretic approach to
utilizing protein structure to identify non-random somatic mutations. BMC Bioinformatics, 15(1), 86.

[50] Ryslik, G. A., Cheng, Y., Cheung, K.-H., Modis, Y., and Zhao, H. (2013) Utilizing protein structure to
identify non-random somatic mutations. BMC Bioinformatics, 14(1), 190.

[51] Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin,
C., Nuka, G., Pesseat, S., et al. (2015) The InterPro protein families database: the classification resource
after 15 years. Nucleic Acids Res, 43(Database issue), D213–221.

[52] Zhang, X., Choi, P. S., Francis, J. M., Gao, G. F., Campbell, J. D., Ramachandran, A., Mitsuishi, Y., Ha, G.,
Shih, J., Vazquez, F., et al. (2017) Somatic super-enhancer duplications and hotspot mutations lead to
oncogenic activation of the KLF5 transcription factor. Cancer Discov, 8, 108–125.

[53] Schaub, F. X., Dhankani, V., Berger, A. C., Trivedi, M., Richardson, A. B., Shaw, R., Zhao, W., Zhang, X.,
Ventura, A., Liu, Y., et al. (2018) Pan-cancer Alterations of the MYC Oncogene and Its Proximal
Network across the Cancer Genome Atlas. Cell Syst, 6(3), 282–300.

[54] de Groen, F. L., Krijgsman, O., Tijssen, M., Vriend, L. E., Ylstra, B., Hooijberg, E., Meijer, G. A.,
Steenbergen, R. D., and Carvalho, B. (2014) Gene-dosage dependent overexpression at the 13q
amplicon identifies DIS3 as candidate oncogene in colorectal cancer progression. Genes Chromosomes
Cancer, 53(4), 339–348.

[55] Seiler, M., Peng, S., Agrawal, A. A., Palacino, J., Teng, T., Zhu, P., Smith, P. G., Buonamici, S., Yu, L.,
Caesar-Johnson, S. J., et al. (2018) Somatic Mutational Landscape of Splicing Factor Genes and Their
Functional Consequences across 33 Cancer Types. Cell Rep, 23(1), 282–296.

[56] Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F.,
Wyczalkowski, M. A., et al. (2013) Mutational landscape and significance across 12 major cancer types.
Nature, 502(7471), 333–339.

[57] Banerji, V., Frumm, S. M., Ross, K. N., Li, L. S., Schinzel, A. C., Hahn, C. K., Kakoza, R. M., Chow, K. T.,
Ross, L., Alexe, G., et al. (2012) The intersection of genetic and chemical genomic screens identifies
GSK-3α as a target in human acute myeloid leukemia. J Clin Invest, 122(3), 935–947.

[58] McCubrey, J. A., Steelman, L. S., Bertrand, F. E., Davis, N. M., Sokolosky, M., Abrams, S. L., Montalto,
G., D’Assoro, A. B., Libra, M., Nicoletti, F., Maestro, R., Basecke, J., Rakus, D., Gizak, A., Demidenko, Z.,
Cocco, L., Martelli, A. M., and Cervello, M. (2014) GSK-3 as potential target for therapeutic intervention
in cancer. Oncotarget, 5(10), 2881–2911.

[59] Satelli, A., Rao, P. S., Thirumala, S., and Rao, U. S. (2011) Galectin-4 functions as a tumor suppressor of
human colorectal cancer. Int J Cancer, 129(4), 799–809.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733485doi: bioRxiv preprint 

https://doi.org/10.1101/733485
http://creativecommons.org/licenses/by-nc-nd/4.0/


[60] Niknafs, N., Kim, D., Kim, R. G., Diekhans, M., Ryan, M., Stenson, P. D., Cooper, D. N., and Karchin, R.
(2013) MuPIT Interactive: Webserver for mapping variant positions to annotated, interactive 3D
structures. Hum Genet, 132(11), 1235–1243.

[61] Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B., and Karchin, R. (Nov, 2016) Evaluating
the evaluation of cancer driver genes. PNAS, 113(50), 14330–14335.

[62] Korthauer, K. D. and Kendziorski, C. (2015) MADGiC: a model-based approach for identifying driver
genes in cancer. Bioinformatics, 31(10), 1526–1535.

[63] Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., Shen, R., Taylor, A. M., Cherniack,
A. D., Thorsson, V., et al. (2018) Cell-of-Origin patterns dominate the molecular classification of 10,000
tumors from 33 types of cancer. Cell, 173(2), 291–304.

[64] Ding, L., Bailey, M. H., Porta-Pardo, E., Thorsson, V., Colaprico, A., Bertrand, D., Gibbs, D. L.,
Weerasinghe, A., Huang, K.-l., Tokheim, C., et al. (2018) Perspective on Oncogenic Processes at the End
of the Beginning of Cancer Genomics. Cell, 173(2), 305–320.e10.

[65] Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L.,
Kantheti, H. S., Saghafinia, S., et al. (2018) Oncogenic signaling pathways in The Cancer Genome Atlas.
Cell, 173(2), 321–337.

[66] Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M., and Gerstein, M. (2016) Role of
non-coding sequence variants in cancer. Nature Review Genetics, 17(2), 93–108.

[67] Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington,
K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J., and Punta, M. (2014) Pfam: the protein families
database. Nucleic Acids Res, 42(D1), D222–D230.

[68] Eddy, S. R. (2011) Accelerated profile HMM searches. PLoS Comput Biol, 7(10), e1002195.

[69] Meyer, L. R., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Kuhn, R. M., Wong, M., Sloan, C. A.,
Rosenbloom, K. R., Roe, G., Rhead, B., et al. (2013) The UCSC Genome Browser database: Extensions
and updates 2013. Nucleic Acids Res, 41(D1), 64–69.

[70] Capra, J. A. and Singh, M. (2007) Predicting functionally important residues from sequence
conservation. Bioinformatics, 23(15), 1875–1882.

[71] McGranahan, N., Favero, F., de Bruin, E., Birkbak, N., Szallasi, Z., and Swanton, C. (2015) Clonal status
of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med,
7(283), 283ra54.

[72] The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092
human genomes. Nature, 491(7422), 56–65.

[73] Zaykin, D. V. (2011) Optimally weighted Z-test is a powerful method for combining probabilities in
meta-analysis. J Evol Biol, 24(8), 1836–1841.

[74] Fan, Y., Xi, L., Hughes, D. S. T., Zhang, J., Zhang, J., Futreal, P. A., Wheeler, D. A., and Wang, W. (2016)
MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity
and specificity in mutation calling from sequencing data. Genome Biol, 17(1), 178.

[75] Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., and Staudt, L. M.
(2016) Toward a Shared Vision for Cancer Genomic Data. N Engl J Med, 375(12), 1109–1112.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733485doi: bioRxiv preprint 

https://doi.org/10.1101/733485
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information for

An integrative approach uncovers genes with perturbed
interactions in cancers

Shilpa Nadimpalli Kobren1,2,3, Bernard Chazelle2 and Mona Singh2,3,∗

1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
2 Department of Computer Science, Princeton University, Princeton, NJ, USA
3 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA

*To whom correspondence should be addressed. Tel: +1 609-258-2087; Email:
mona@cs.princeton.edu

Supplementary Methods

Methods S1. Incorporating per-site information about protein interactions and
functionality Any pre-defined functional region of a protein can be encoded as a track in the
PertInInt framework. Currently, we consider three types of per-site functional annotations—
interaction, domain and conservation—each of which may yield multiple subgene resolution
tracks per protein. Each type of track is described in more detail below.

Interaction tracks. Interaction tracks correspond to portions of a protein that are inferred to
interact with ligands. These tracks arise in two ways.

First, we utilize the set of “confident” domain–ligand interactions from the InteracDome
database (v0.3) [33] to identify putative ligand-binding positions. We use the 9,142 domain–ligand
interactions across 1,850 domains with 5+ structural instances. Each position within a domain is
associated with a “binding frequency” between 0 and 1 that corresponds to the fraction of the time
residues in this position are found in contact with the ligand of interest when analyzing co-crystal
structures. For each human protein, we identify instances of InteracDome domains using HMMER
(v2.3.2 and v3.1b2), and require complete, high-scoring domain instances as previously
described [33, 67, 68]. Within a protein, there is a separate track for each domain–ligand instance
within it; this track consists of the residues comprising the match states of the domain, and the
weights of these residues are the binding frequencies for the ligand in the corresponding domain
positions.

Second, because not all protein interactions are mediated by domains, we leverage sequence
homology directly to transfer information from co-complex structures to human protein sequences
as previously described [30]. For proteins with one or more regions whose structure in complex
with a ligand could be homology-modeled, we introduce a track for each contiguous homology-
matched region. Per-position weights reflect the observed residue-to-ligand proximities, computed
as the fraction of atoms in the amino acid residue found within 4.0Å of the ligand.

Finally, we note that some domain interactions are mediated not by individual domain
instances but by repeating instances of the same domain family. To capture these interfaces, we
also consider additional tracks encoding multiple instances of the same domain family in a protein;
these tracks span noncontiguous intervals that correspond to the locations of individual domain
instances, with track positions weighted according to the binding frequencies at corresponding
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domain match states as described above. Interaction domain tracks corresponding to domain
families with 40+ instances in the same protein are replaced by their aggregate tracks.

Domain tracks. For each Pfam-A (v31.0) domain instance within a protein sequence, there is a
domain track that specifies which amino acids comprise the domain [67]. Domain tracks span the
length of the protein, and positions within and outside of the domain instance are respectively
assigned 1- and 0-weights. We again also encode aggregate domain tracks as before to model
functional regions mediated by repetitive domain families.

Conservation tracks. Each protein has a single conservation track. We obtain the 100-vertebrate
cross-species protein multiple sequence alignment from the UCSC Genome Browser [69], and
compute per-protein-position conservation-based functionality weights by multiplying the fraction
of non-gap residues in the column by the Jensen-Shannon divergence (JSD) between those non-gap
residues and a Blosum 62 background amino acid distribution [70].

Methods S2. Formulation of per-track somatic mutation functional scores Suppose
we have a protein sequence of length L spanning positions P = {p1, ...,pL}. This protein is
associated with multiple “tracks”W , each defined asW ⊆ P , where each position pi ∈W is
associated with a real-valued weight wi ∈ [0, 1] reflecting its functionality with respect to the track.
Suppose there are n cancer somatic missense mutations that fall in positions included in trackW .
For each mutation i, let zi ∈ {z1, ..., zn} be the weight in trackW of the position where that mutation
lies. We further consider the case where each mutation i is associated with a value fi ∈ (0, 1]; here,
each fi is set to the proportion of sequencing reads that contain the mutation (i.e., its subclonal
fraction), which has previously been shown to be associated with a mutation’s relevance in
cancer [71]. The score of the somatic mutations with respect to trackW is then defined as:

SW =
n∑
i=1

fizi . (1)

Intuitively, this score reflects the extent to which somatic mutations are falling into functionally
important positions within a track.

Methods S3. Per-track expectation, variance, and Z-score calculation For a given score
SW for a track, we next want to determine if this score is higher than we would expect by chance.
One approach would be to repeatedly randomize the mutations within the positions of the track
and use the distribution of resulting scores to compute an empirical p-value. Here we show that we
can determine the significance of these scores analytically, obviating the need for empirical
mutation shuffles and dramatically improving runtime (Fig. S1). Note that in the absence of any
selective pressure, the values z1, ..., zn are independent and identically-distributed (i.i.d.) random
variables. We leverage this observation to directly compute the significance of SW . First, we model
all mutation locations zi as being drawn from the same background mutation model λ1, ..., λL,
where λi is the probability that a mutation affects position i. If every position i within the protein is
equally likely to harbor a missense mutation, λi = 1/L. Here, we incorporate codon-specific
missense mutation probabilities as well as cancer-specific C/G-mutation biases into our
background mutation model (Methods S10). We linearly scale these values with respect to each
trackW such that

∑
j ∈W λWj = 1. The expected weight of the position in which mutation i lies (E[zi ])

and its variance (σ2
zi ) with respect to this null distribution are computed as
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E[zi ] =
∑
j ∈W

λWj w j σ2
zi = E[zi

2] − (E[zi ])2

=
∑
j ∈W

λWj w j
2 −

( ∑
j ∈W

λWj w j

)2
.

Because the total score of the set of mutations affecting trackW (i.e., SW ) is a sum of
independent random variables fizi (Eq. 1), the expectation and variance of SW can also be
calculated directly as

E[SW ] =
n∑
i=1

E[fizi ]

=

n∑
i=1

fi · E[zi ]

=

n∑
i=1

fi
( ∑
j ∈W

λWj w j

)
(2)

σ2
SW =

n∑
i=1

σ2
fizi

=

n∑
i=1

fi
2σ2

zi

=

n∑
i=1

fi
2

( ∑
j ∈W

λWj w j
2 −

( ∑
j ∈W

λWj w j

)2)
. (3)

Finally, to determine the significance of the actual score SW , which indicates the propensity of
somatic mutations to fall into highly weighted positions in a track, since the sum of independent
random variables tends towards a normal distribution, we compute the mutational enrichment
Z -score for each trackW as

ZW =
SW − E[SW ]

σSW
. (4)

We note that if we restricted each weight within a track to be 0/1 rather than real-valued,
restricted mutations to have equal fi values of 1, and restricted the λi to be uniform across the
track, we could determine per-track significance analytically using the binomial distribution. Note
that with these restrictions, however, we would not be able to incorporate real-valued functionality
weights from conservation or interaction tracks, subclonal mutation fractions, or mutational
signatures.

Methods S4. Between-track covariance calculation In our framework, a single protein
may be associated with multiple tracks, each representing a distinct aspect of protein functioning.
Since tracks can share positions, the track scores with respect to a set of somatic mutations are not
independent of each other, and thus we need to determine their covariance.

Suppose we consider two tracks V ⊆ P andW ⊆ P , where each position pi ∈ V is associated with
a weight vi and each position pi ∈W is associated with a weight wi . Suppose there are m mutations
(with associated values f ′1 , ..., f

′
m) that involve positions within track V , and n mutations (as before

with associated values f1, ..., fn) that involve positions within trackW . Let y1,y2, ...,ym be the
weights of the positions that them mutations in track V fall into, and let z1, z2, ..., zn be the weights
of the positions that the n mutations in trackW fall into. Scores are thus calculated as before for
tracks V andW as

SV =
m∑
i=1

f ′i yi and SW =
n∑
i=1

fizi .
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Let X =V ∩W . If the two tracks do not overlap (i.e., X = �), then the covariance between SV and
SW is 0. Otherwise, note that SV = S ′V + SXV , where S ′V =

∑
j<X f ′j yj and SXV =

∑
j ∈X f ′j yj . Similarly,

SW = S ′W + SXW . Therefore, we can write covariance as

cov[SV , SW ] = cov[(S ′V + SXV ), (S ′W + SXW )].

Because the covariance is bilinear, we can now expand this equation as

cov[(S ′V + SXV ), (S ′W + SXW )] = cov[S ′V , S ′W ] + cov[S ′V , SXW ] + cov[SXV , S ′W ] + cov[SXV , SXW ].

Finally, because mutations landing in track V outside of the overlap region X have no bearing on
SW and vice versa, the first three covariance terms in the equation above will be evaluated as 0,
leaving us with

cov[SV , SW ] = cov[SXV , SXW ].

In our framework, we compute covariance conditional on the q mutations observed to fall on
positions shared by tracks V andW . Let F = f 2i1 + · · · + f 2iq , with the fi associated with the q
mutations in X . With the number of mutations q fixed, we have

cov[SXV , SXW ] = cov

( q∑
j=1

fi jyi j ,

q∑
j=1

fi jzi j

)
=

q∑
j=1

q∑
k=1

cov(fi jyi j , fikzik ).

Note that the same mutations from tracks SXV and SXW land on the same position in the overlap region
and simultaneously impact the SV and SW scores, whereas any other pair of mutations j , k are
independent. Hence,

cov[SXV , SXW ] =
q∑
j=1

cov(fi jyi j , fi jzi j )

=

q∑
j=1

f 2i j · cov(yi j , zi j )

= F · cov(yi1 , zi1)
= F

( ∑
j ∈X

λXj vjw j −
( ∑
j ∈X

λXj vj
) ( ∑

j ∈X
λXj w j

) )
. (5)

Analytical formulation enables precomputation. Remarkably, the per-track expectation,
variance and covariance calculations (Eq. 2, 3 and 5) can each be rewritten as C ·∑i fi or C ·∑i f

2
i ,

where C is fixed per track. We therefore precompute the per-track expectations, variances, and
cross-track covariances assuming a single mutation of value 1, and scale these precomputed values
at runtime by the mutations observed to fall into each track; this allows PertInInt to achieve an
additional 16–18× speedup at runtime (Fig. S7).

Methods S5. Incorporating information about overall protein mutability Using the
same analytical formulation described above, we can also compute a Z -score per gene reflecting
whether the gene is more mutated overall than we might expect. We define a natural variation
track of length L = 19,4601 for each gene, where the entry corresponding to the gene of interest has

1PertInInt models 23,278 genes—of which 20,356 are on chromosomes 1–22, X or Y—but only 19,460 genes were profiled
in the 1000 Genomes Project, and thus only this many genes have associated natural variation tracks.
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a functionality weight of 1 and all other entries have weights of 0 (i.e., one-hot gene encodings). We
then compute a corresponding background mutability probability distribution λ1, ...λL based on
how much each gene varies naturally across healthy human populations. Specifically, for each of
2,504 individuals included in the 1000 Genomes Project [72], we first min-rank all protein-coding
genes by their variant count, linearly scale these ranks to fall between 0 and 1, then round each
normalized rank down to its nearest hundredth, which we refer to as its bin. We compute the
expected bin value (across individuals) for each gene, and finally to derive the values of λ1, . . . , λL
linearly scale these per-gene expected bin values such that they sum to 1 across all genes. For each
track, we use this background mutation model and the n mutations observed to fall across all
19,460 genes to analytically compute per-gene expectations, variances, and Z-scores as before. The
covariance between the natural variation track and all subgene tracks is set to 0.

Since the whole-gene trackW for gene G j is a one-hot encoding, we can simplify Eq. 1, Eq. 2 and
Eq. 3 as

SW =
∑
i ∈G j

fi E[SW ] = λWj
n∑
i=1

fi σ2
SW = λ

W
j (1 − λWj )

n∑
i=1

fi
2.

Because the number of mutations affecting all genes is often substantially larger than the
number of mutations to affect any single gene, the whole-gene Z-scores can be much larger than
for the other tracks. We thus effectively subsample the total number of mutations by a factor s—set
to 1√

n
in our implementation—to compute the whole-gene Z-scores using the values below before

combining them with other subgene Z-scores:

SW = s
∑
i ∈G j

fi E[SW ] = sλWj
n∑
i=1

fi σ2
SW = sλ

W
j (1 − sλWj )

n∑
i=1

f 2i .

Methods S6. Combining multiple per-track Z-scores per protein We evaluate the
significance of the scores for all tracks simultaneously using a multivariate normal distribution.
Recall that our per-track somatic mutation functional scores (SW , Eq. 1) and their analytically-
derived Z -scores (Eq. 4) computed for random assignments of mutations are normally distributed
when the number of mutations (n) is sufficiently large (i.e., by the Central Limit Theorem).

For each trackW , we empirically determine this minimum n by randomly assigning up to 500
mutations to the track 1,000 times in accordance with the corresponding background mutation
model (i.e., the λi ’s) and recomputing SW each time. At each mutation count, we ask whether we
can reject the null hypothesis that the mutation functional scores are normally distributed via the
Shapiro-Wilk test with p < 5e-5. We keep track of the minimum number of mutations per track
where we could no longer confidently reject the normality assumption. Only scores derived from
mutated tracks with the corresponding required minimum mutation count are modeled together in
our multivariate Gaussian. We pre-compute this minimum mutation count value for each track
(i.e., before evaluating any cancer somatic mutation data).

For each mutated protein, we compute a single combined score using a weighted Z -transform
test with correlation correction [73] as

Z =

∑k
i=1 ciZi√∑k

i=1 ci
2 + 2

∑
i<j cic jri j

(6)

where k is the number of tracks with their required minimum mutation count and positive
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Z -scores, Zi corresponds to the Z -score associated with track i, ci is a weight indicating the
“confidence” of track i, and ri j is the correlation between tracks i and j (i.e., ri j = cov(Si , S j )/σiσj ). In
order to consider each type of functionality data equally, we assign per-track confidences ci such
that the four functional track groups (i.e., interaction, domain, conservation, and natural variation,
Fig. 1a) each contribute a quarter of the overall confidence. Within the interaction and domain
track groups, where there may be 2+ tracks per group, confidence weights are assigned
proportionally to

√
m, wherem is the total number of mutations to fall into positively-weighted

positions in the track. Finally, we assign a single score per gene by taking the maximum combined
score achieved by any of its corresponding protein isoforms.

Methods S7. Cancer mutation data preparation We downloaded all open-access TCGA
somatic exome mutation data and RNA-seq expression data from NCI’s Genomic Data Commons
on July 15, 2017 [74, 75]. We convert gene expression values (FPKM) to transcripts per million
(TPM) and exclude mutations from genes that were expressed at <0.1 TPM in the corresponding
tumor sample. For the 765 samples with missing expression data, we exclude mutations from
genes that were expressed at <0.1 TPM on average across other tumor samples of the same tissue
type. These steps resulted in a filtered set of 1,141,609 missense, 442,070 silent, and 94,813 nonsense
mutations across 18,613 genes from 33 cancer types (Fig. S2); note that we consider the unfiltered
set of 1,473,729 missense, 578,407 silent and 118,921 nonsense mutations across 19,550 genes when
running alternate methods and when running PertInInt to compare to alternate methods. We
combine COAD and READ cancer types into the COADREAD group, and GBM and LGG cancer
types into the GBMLGG group for per-cancer performance testing (Fig. S5).

Methods S8. Runtime Analysis PertInInt, as well as all algorithm variants of PertInInt and
all alternate methods, are run as sole processes on single CPUs, each with a 2.4–2.7 Ghz processor
and 30GB of RAM. Methods are timed using Python’s time package, and the real (i.e., “wall clock”)
elapsed time is reported.

Methods S9. Selection and testing of related driver detection methods We classify
alternate cancer driver detection methods based on the mutational patterns they detect; these
include whole gene enrichment, de novo linear clustering, enrichment in linear externally defined
regions, de novo three-dimensional (3D) clustering, or enrichment in 3D externally defined regions
(as in [11]). We include methods from each of these five groups that require only mutational and/or
structural input from the user and have open-source implementations that run locally on a 64-bit
Linux machine using sample input. We test the whole gene methods DiffMut [35], MutSigCV [44],
and OncodriveFML [45]; the linear clustering methods Hotspot [42], OncodriveClust [46], and
NMC [47]; the linear externally defined regions methods ActiveDriver [23], eDriver [21], and
LowMACA [48]; the 3D clustering methods GraphPAC [49], iPAC [50], and SpacePAC [15]; and the
3D externally defined regions method eDriver3D [16]. We note that in addition to overall mutation
frequency, MutSigCV also considers linear clustering of mutations within genes and the functional
impact of mutations based on evolutionary conservation.

All methods including PertInInt are run on the same mutation datasets before our filtering step
of limiting to missense mutations from expressed genes. Additional data files required for
individual methods are obtained from their most recent online repositories or otherwise from their
original publications. For 3D clustering methods, we select a single structural template for each
human protein wherever possible as suggested (i.e., preferring native over bound form, longer
length, higher sequence identity, higher resolution, and smaller R-value). We note that because
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these 3D clustering methods only run on proteins with corresponding structural information, their
results may be biased toward known cancer genes (i.e., 55.3% of cancer genes have structural
templates whereas 28.1% of all genes have structural templates). Methods are run with default
parameters, except GraphPAC and SpacePAC, where the significance threshold (α) is set to 1.0 to
maximize the number of scored genes returned.

For each method, enrichment for CGC genes on increasingly larger sets of predictions is
computed; enrichment is computed at each gene rank on pan-cancer results and at every tenth
gene on per-cancer results to reduce the impact of minor reorderings of the relatively small number
of CGC genes detected across these datasets. Specifically, we calculate enrichment as the fraction of
CGC genes in the gene set divided by the fraction of CGC genes in the gene set with 1+missense
mutations; unmutated CGC genes with respect to each mutation dataset are excluded entirely.

Note that LowMACA, NMC, and all three 3D clustering methods did not finish running
without error within 30 days on the pan-cancer dataset. We were also unable to run and obtain
results from NMC on an additional four individual cancer types (UCEC, SKCM, COADREAD, and
LUSC), and thus exclude this method from our evaluation.

Methods S10. Background mutational model. We model the likelihoods of protein
positions p1, ...,pL to harbor a missense mutation as λ1, ..., λL such that

λj =
∑

d ∈1,2,3

(
Bjd ·

∑
u ∈{A,T ,C,G }

Mjdu

)
(7)

where

Bjd =


1 if the dth nucleotide in the codon at position pj is A or T
b otherwise, where b is the relative frequency of a C/G mutation

in the pan-cancer dataset as compared to a A/T mutation (i.e.,
3.063)

and

Mjdu =


1 if changing the dth nucleotide in the codon at position pj to u

results in a missense mutation
0 otherwise
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Supplementary Tables

Method Type Method Name Runtime on Pan-Cancer Dataset

PertInInt 10 minutes, 37 seconds

Whole Gene
DiffMut 46 minutes, 51 seconds
MutSigCV* 8 hours, 52 minutes, 26 seconds
OncodriveFML 32 minutes, 2 seconds

Linear Clustering
Hotspot 7 days, 2 hours, 36 minutes, 41 seconds
NMC --
OncodriveClust 2 minutes, 30 seconds

Enrichment in Externally
Defined Linear Motifs

ActiveDriver 7 hours, 38 minutes, 23 seconds
eDriver 2 minutes, 23 seconds
LowMACA --

3D Clustering
GraphPAC --
iPAC --
SpacePAC --

Enrichment in Externally De-
fined 3D Motifs eDriver3D 7 minutes, 25 seconds

Table S1: Runtimes for cancer driver gene detection methods on pan-cancer dataset. Columns
(left to right) are the method classification (as in [11]), method name, and the total time it took for
the method to run on the pan-cancer dataset as the sole process on a single node with a 2.4–2.7Ghz
processor and 20GB of memory. *MutSigCV failed without 100GB memory allotted. Methods that
failed to run without error within 30 days are marked with a ‘--’.
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Supplementary Figures

Fig. S1: PertInInt’s analytical approach results in >7× speedup over the baseline empirical
permutation approach. As a function of the percent (10–100%) of all tumor samples randomly
selected from the pan-cancer dataset (x-axis), PertInInt’s runtime is compared to a baseline version
that uses 1,000 empirical permutations of mutations to estimate Z -scores for each track. Shown on
the y-axis is the fold speedup in runtime for ten random selections of tumor samples of each size.
The speedup shown is per permutation (i.e., divided by 1,000—the total number of permutations
performed across each track). The solid blue line represents the local polynomial regression line,
with the gray shading showing standard error. Due to the relatively large runtime of the empirical
shuffling procedure, these runtime comparisons use only a single track per protein, conservation.
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Fig. S2: Summary of somatic mutation data. Somatic mutation data obtained from NCI’s
Genomic Data Commons Data Portal for 33 cancer types [74]. The number of tumor samples with
1+ expressed (TPM ≥ 0.1) genes with at least one missense mutation is shown in the left plot. The
number of genes that are expressed in 1+ tumor samples and have at least one missense mutation
is shown in the right plot.
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Fig. S3: Highly ranked genes are enriched in cancer genes. Gold standard driver gene sets
include: those listed in Kandoth et al., 2013 [56] (red), those listed in Lawrence et al., 2014 [44]
(blue), those listed in Bailey, Tokheim et al., 2018 [6] (green), all oncogenes and TSGs listed in
Vogelstein et al., 2013 [4] (orange), all genes in the CGC (black), and all genes in the CGC with
driver statuses due to missense mutations (purple). Ranked gene lists are obtained by applying
PertInInt to pan-cancer nonsynonymous mutations (shown as solid lines) and to pan-cancer
synonymous mutations (shown as dashed lines). All curves converge to an enrichment of 1 by the
end of the ranked list of genes (not shown). Enrichment curves are calculated as described in the
main text.
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Fig. S4: Detection of CGC genes from a pan-cancer dataset excluding highly mutated cancers
by PertInInt and alternate methods. Each driver gene detection method was run on the
pan-cancer set of missense mutations with tumor samples from highly-mutated BLCA, STAD,
SKCM, LUAD, LUSC, and ESCA cancers—where there are more than 100 mutations per tumor
sample on average—excluded. (a) Curves indicate the enrichment for genes in the Cancer Gene
Census (CGC) [37] as we consider an increasing number of output genes for each driver gene
detection method. All methods scored at least 3,000 genes except for Hotspot (orange solid line),
which only returned 1,397 genes and whose curve ends at that point. The gray shaded area
highlights the plot to 200 genes, a closeup of which is shown in the inset. Vertical lines at 10, 50,
100, and 200 ranked genes in the inset correspond to gene set sizes featured in part (b). (b) Jaccard
Indices (JIs) are calculated between the top 10, 50, 100, and 200 genes output by PertInInt and the
corresponding top 10, 50, 100, and 200 genes output by each other method. Lighter colors indicate
lower JIs and less overlap between the gene sets.
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Fig. S5: Relative detection of known cancer genes from individual cancer datasets. (a)
Log2-fold change between the area under the enrichment curves for the top 50 genes scored by
alternate methods and the top 50 genes scored by PertInInt across individual cancer types.
“PertInInt*SG” refers to a version of PertInInt where only subgene resolution tracks are included.
PertInInt tends to perform better than the alternate methods, as most of these values are below 0.
(b) For each cancer type, the areas under the enrichment curves computed for the top 10 (or 25, 50,
100, 200, or 1,000) genes ranked by each driver gene detection method are linearly scaled to fall
between 0 and 1. For example, when looking at the top 50 genes ranked by each method when run
on SARC mutations, Hotspot has the relatively smallest area under the enrichment curve and thus
gets a scaled value of 0, whereas PertInInt has the relatively largest area under the enrichment
curve and thus gets a scaled value of 1. Then for each computational method, a box plot of their
corresponding values across cancer types is shown. Jittered data points representing different
cancer types are overlaid on boxplots. Horizontal solid and dashed lines are drawn at the median
relative area under the enrichment curve for PertInInt and PertInInt*SG respectively in each plot.
Methods are labeled as in (a).
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Fig. S6: PertInInt’s power increases with more tumor samples. As a function of the percent
(10–100%) of all tumor samples randomly selected from the pan-cancer dataset (x-axis), we show
the area under the enrichment curve for the top 200 genes scored by PertInInt when run on each
tumor sample subset, normalized by the area under the enrichment curve for PertInInt’s top 200
predictions when using all tumor samples (y-axis). Ten random selections of samples are analyzed
at each sample size. The solid black line represents the local polynomial regression line of these
normalized areas under the enrichment curve with respect to the sample size. PertInInt’s ability to
recapitulate cancer genes increases with sample size.

Fig. S7: Precomputation enables >16× speedup over basic analytical approach. As a function of
the percent (10–100%) of all tumor samples randomly selected from the pan-cancer dataset (x-axis),
PertInInt’s runtime is compared to a baseline version that does not use precomputed expectation
and variance estimates to compute Z-scores for each track. Shown on the y-axis is the fold speedup
in runtime for ten random selections of samples of each size. The solid blue line represents the
local polynomial regression line, with the grey shading showing standard error. These runtime
comparisons use only a single track per protein, conservation, as in Fig. S1.
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