
































 

In conclusion, we shows here that H. pylori T4SS and flagellin are essential for IL-1 

production in neutrophils. TLR2 and NLRP3 inflammasome are central host factors to 

regulate neutrophil production of IL-1 in response to H. pylori. Since IL-1 plays an 

important role in the development of gastric malignancies, these bacterial and host factors can 

be preventive and therapeutic targets for IL-1-mediated gastric abnormalities.  
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MATERIALS AND METHODS 

 

Mice. We purchased wild type (WT), TLR2-, TLR4-, and NOD2- deficient mice on C57BL/6 

background from the Jackson Laboratory (Bar Harbor, ME, USA). NLRP3-, Capase-1/11-, 

ASC-, and NLRC4- deficient mice were kindly provided by Prof. Gabriel Núñez (University 

of Michigan, USA). TLR5-deficient mice were gifts from Prof. Joon Haeng Rhee (Chonnam 

National University, Hwasun, Korea). We conducted all animal studies using protocols 

approved by the Institutional Animal Care and Use Committee of Chonnam National 

University (Approval No. CNU IACUC-YB-2018-85).  

 

Bacterial strains and culture conditions. H. pylori P1WT and its isogenic mutants 

P1∆CagL, P1∆FlaA, P1∆UreA, and P1∆VacA have been described previously (36). Another 

mutant with FlaA deficiency was generated by allelic exchange in H. pylori 26695 strain, and 

details are provided in the Supplemental Material. The following clinical isolates from child 

patients were provided from Pyeongyang National University Hospital (GNUH), as the 

Branch of National Culture Collection for Pathogens (NCCP, Jinju, Korea): three motile 

strains, H. pylori 5356AC, H. pylori 4930AC, H. pylori 5049AC; two non-motile strains, H. 

pylori 4940A, H. pylori 4980AC. H. pylori 52WT (non-motile) and its mouse-adapted strain 

H. pylori 52P6 (six time-passaged) were also provided from Pyeongyang National University 

Hospital. We cultured all H. pylori strains on Brucella broth containing 10% fetal bovine 

serum (FBS; Corning costar, Corning NY, USA), 1 μg/ml nystatin (Sigma-Aldrich, St. Louis, 

MO, USA), 5 μg/ml trimethoprim (Sigma-Aldrich), and 10 μg/ml vancomycin (Sigma-

Aldrich) at 37˚C under microaerobic conditions. 
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Reagent and inhibitor assay. We purchased LPS from Escherichia coli O111:B4 from 

InvivoGen (San Diego, CA, USA). Adenosine 5′-triphosphate disodium salt hydrate (ATP) 

was purchased from Sigma-Aldrich. For inhibitor assay, we used glyburide (Sigma-Aldrich) 

as inhibition of NLRP3 and Ac-YVAD-CMK (Calbiochem, La. Jolla, CA, USA) as inhibition 

of Caspase-1.  

 

Cell culture. We isolated thioglycollate-induced peritoneal neutrophils as previously 

described (37). Briefly, mouse peritoneal neutrophils were harvested 4 h after intraperitoneal 

injection of 2 ml of 4% thioglycollate broth (Sigma-Aldrich). The collected peritoneal 

neutrophils were cultured in RPMI 1640 (Welgene, Gyeongsan, Gyeongsangbuk-do, Korea) 

containing 10% FBS in a 5% CO2 incubator at 37°C. To obtain of neutrophils derived from 

bone marrow, we isolated cells from femurs and tibias using density gradient cell separation 

protocol. Total bone marrow cells were overlaid on a two-layer gradient of HISTOPAQUE-

1119 (density: 1.119 g/ml; Sigma-Aldrich) and HISTOPAQUE-1077 (density: 1.077 g/ml; 

Sigma-Aldrich) and centrifuged (2000 rpm, 30 min) without braking. The collected cells in 

the interface were used. Bone-marrow-derived neutrophils (BMDNs) were resuspended in 

RPMI 1640 (Welgene) containing 10% FBS in a 5% CO2 incubator at 37°C. Human 

leukemia cell line HL-60 was cultured in RPMI 1640 medium (Welgene) containing 10% 

FBS, 1% Penicillin/Streptomycin (P/S; Gibco, Grand Island, NY, USA), 2 mM L-glutamine 

(Gibco), and 25 mM HEPES (Gibco). To differentiate into neutrophil-like cells, we 

stimulated cells with 1.25% DMSO for seven days in a 5% CO2 incubator at 37°C. Bone 

marrow-derived dendritic cells (BMDCs) were isolated and differentiated as described 

previously (38). Briefly, BMDCs were cultured in RPMI 1640 (Welgene) containing 10% 

FBS, 1% P/S, 2 mM L-glutamine, 50 μM 2-mercaptoethanol (Sigma-Aldrich), and 20 ng/ml 

GM-CSF (Peprotech, Rocky Hill, NJ, USA) in a 5% CO2 incubator at 37°C for 9 days. Fresh 
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medium was added both three and six days later. We seeded the cells in 6-well or 48-well 

plates at a density of 2×10
6
 cells or 2×10

5
 cells and incubated them in a 5% CO2 incubator at 

37°C, and then infected them with H. pylori. 

 

Measurement of cytokines. We measured the concentrations of IL-1β and tumor necrosis 

factor alpha (TNF-α) in culture supernatants by using a commercial ELISA kit (R&D 

Systems, Minneapolis, MN, USA). 

 

Immunoblotting. Culture supernatants and remaining cells were lysed by 1% Triton-X 100 

(Sigma-Aldrich) and a complete protease inhibitor cocktail (Roche, Mannheim, Germany). 

After centrifugation at 3000 rpm for 5 min, we mixed the supernatant with SDS-PAGE 

sample loading buffer (5×). To detect target proteins, samples were separated by 15% SDS-

PAGE and transferred to nitrocellulose (NC) membranes. We probed membranes with 

primary antibodies against caspase-1 (Enzo Life Science, Farmingdale, NY, USA), IL-1β 

(R&D Systems), and β-actin (Santa Cruz Biotechnology, Dallas, TX, USA). After 

immunoblotting with secondary antibodies (Thermo Fisher Scientific, MA, USA), we 

detected proteins using Clarity Western ECL Substrate (Bio-Rad, Hercules, CA, USA). 

 

Real-time quantitative PCR (qPCR). RNA was extracted using easy-BLUE
TM

 Total RNA 

Extraction Kit (Intron Biotechnology, Seongnam, Korea) and cDNA synthesis was done 

using ReverTra Ace
®

 qPCR RT Master Mix (TOYOBO Bio-Technology, Osaka, Japan) 

according to the manufacturer's instructions. qPCR was performed by the CFX Connect
TM

 

Real-time PCR Detection System (Bio-Rad, Hercules, CA, USA) using 2x PCRBIO SyGreen 

Blue Mix Lo-ROS according to the manufacturer's instructions (Bio-D Co., Ltd,, Hull, UK). 

GAPDH was used for normalization. The primers used for qPCR were as follows:  
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mNLRP3 forward: 5'-ATGGTATGCCAGGAGGACAG-3';  

mNLRP3 reverse: 5'-ATGCTCCTTGACCAGTTGGA-3';  

mIL-1β forward: 5'-GATCCACACTCTCCAGCTGCA-3';  

mIL-1β reverse: 5'-CAACCAACAAGTGATATTCTCCATG-3';  

mGAPDH forward: 5'- CGACTTCAACAGCAACTCCCACTCTTCC-3';  

mGAPDH reverse: 5'- TGGGTGGTCCAGGGTTTCTTACTCCTT-3'. 

 

Statistical analysis. Statistical significance of differences among groups was found by using 

two-tailed Student’s t-test or the one- or two-way analysis of variance (ANOVA) followed by 

Bonferroni post-tests. We calculated all statistics using GraphPad Prism version 5.01 

(GraphPad Software, San Diego, CA, USA). Values of p < 0.05 were considered statistically 

significant.  
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FIGURE LEGENDS 

 

Figure 1. H. pylori mediates production of IL-1β in NLRP3 in an inflammasome-

dependent manner in neutrophils. WT, and NLRP3-, Caspase1/11-, and ASC-deficient 

mouse peritoneal neutrophils were infected with H. pylori P1WT (MOI 100) for 24 h (A and 

B). The concentration of TNF-α and IL-1β in supernatant was measured by ELISA. HL-60 

cells were pretreated without or with glyburide (C) or Ac-YVAD-CMK (D) at the indicated 

concentrations for 2 h and subsequently infected with H. pylori P1WT (MOI 100) for 24 h. 

The concentration of IL-1β in supernatant was measured by ELISA. We infected peritoneal 

neutrophils from WT and NLRP3-, ASC-, and Caspase1/11-deficient mice with H. pylori 

P1WT (MOI 100) for 6 h (E). We used culture supernatants and cell lysates to detect 

immature and cleaved forms of caspase-1 and IL-1β by Immunoblotting. Antibody against β-

actin was used as a loading control. Results are presented as mean  SD. ###, p < 0.001 vs. 

control cells. **, p < 0.01; ***, p < 0.001 vs. HP P1WT infected with cells. 

 

Figure 2. TLR2, but not NOD2 and TLR4, is involved in H. pylori recognition in mouse 

neutrophils. WT and TLR2-, NOD2-, and TLR4-deficient peritoneal neutrophils (A and B) 

and BMDNs (C and D) from WT and TLR2-deficient mice were infected with P1WT (MOI 

100) for 24 h. The concentration of IL-1β (A and C) and TNF-α (B and D) in the supernatant 

was measured by ELISA. We infected WT and TLR2-deficient peritoneal neutrophils or 

BMDNs with H. pylori P1WT (MOI 100) at indicated times (E-H). Gene expressions of 

NLRP3 (E and F) and IL-1β (G and H) were evaluated by real-time PCR. Results are 

presented as mean  SD. **, p < 0.01; ***, p < 0.001. 
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Figure 3. H. pylori T4SS induces production of IL-1β in neutrophils. Peritoneal 

neutrophils (A and D), BMDNs (B and E), and HL-60 cells (C and F) were infected with H. 

pylori P1WT and isogenic mutant deficient in cagL (MOI 10 and 100) for 24 h. The 

concentration of IL-1β (A-C) and TNF-α (D-F) in supernatant was measured by ELISA. 

Results are presented as mean  SD. **, p < 0.01; ***, p < 0.001. Peritoneal neutrophils (G) 

and BMDNs (H) were infected with P1WT and ∆cagL (MOI 100) for 6 h. We used culture 

supernatants and cell lysates to detect immature and cleaved forms of caspase-1 and IL-1β by 

Immunoblotting (G and H). Antibody against β-actin was used as a loading control.  

 

Figure 4. H. pylori flagellin is important for IL-1β production in mouse neutrophils, but 

not BMDCs. Peritoneal neutrophils (A, B, E, and F), BMDNs (C and D), and BMDCs (G) 

were infected with indicated bacteria (MOI 100) for 24 h. We measured the concentration of 

IL-1β (A, C, E, and G) and TNF-α (B, D, and F) in the supernatant by ELISA. Results are 

presented as mean  SD. ***, p < 0.001 

 

Figure 5. H. pylori flagellin induces activation of caspase-1 and IL-1β in response to H. 

pylori in mouse neutrophils. BMDNs were infectedwith H. pylori P1WT and ∆flaA (A and 

C) or 26695WT and ∆flaA (B and D) (MOI 100) for 6 h. We used culture supernatants and 

cell lysates to detect immature and cleaved forms of caspase-1 and IL-1β by Immunoblotting 

(A-D). Antibody against β-actin was used as a loading control. Peritoneal neutrophils (E and 

F) and BMDNs (G and H) were infected with H. pylori P1WT (MOI 100) at indicated time. 

We evaluated gene expression of NLRP3 (E and G) and IL-1β (F and H) by real-time PCR. 

Results are presented as mean  SD. **, p < 0.01; ***, p < 0.001. 

 

Figure 6. The production of IL-1β is regulated by H. pylori motility of flagellin, but not 
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NLRC4 and TLR5 in mouse neutrophils. WT and NLRC4-, and TLR5-deficient peritoneal 

neutrophils were infected with H. pylori P1WT (MOI 100) for 24 h (A and B). To promote 

the contact between cells and H. pylori, we used mild centrifuging (1000 rpm, 10 min). 

Clinical isolates of H. pylori with or without motility were infected in peritoneal neutrophils 

(D and E). H. pylori 52 and mouse-adapted bacteria (passage 6) were infected in peritoneal 

neutrophils (F and G). The concentration of IL-1β (A, C, D, and F) and TNF-α (B, E, and G) 

in supernatant was measured by ELISA. Results are presented as mean  SD. **, p < 0.01, 

two-tailed Student’s t-test. 
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