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15 Abstract

16 Genetic variants in functional regions of the genome are enriched for complex trait heritabil-
17 ity. Here, we introduce a new method for polygenic prediction, LDpred-funct, that leverages
18 trait-specific functional enrichments to increase prediction accuracy. We fit priors using the
19 recently developed baseline-LD model, which includes coding, conserved, regulatory and LD-
20 related annotations. We analytically estimate posterior mean causal effect sizes and then use
21 cross-validation to regularize these estimates, improving prediction accuracy for sparse architec-
2 tures. LDpred-funct attained higher prediction accuracy than other polygenic prediction methods
23 in simulations using real genotypes. We applied LDpred-funct to predict 21 highly heritable traits
2% in the UK Biobank. We used association statistics from British-ancestry samples as training data
2 (avg N=365K) and samples of other European ancestries as validation data (avg N=22K), to
2 minimize confounding. LDpred-funct attained a +9% relative improvement in average predic-
27 tion accuracy (avg prediction R?=0.145; highest R?=0.413 for height) compared to LDpred (the
28 best method that does not incorporate functional information), consistent with simulations. For
29 height, meta-analyzing training data from UK Biobank and 23andMe cohorts (total N=1107K;
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30 higher heritability in UK Biobank cohort) increased prediction R? to 0.429. Our results show
31 that modeling functional enrichment improves polygenic prediction accuracy, consistent with the
32 functional architecture of complex traits.
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» Introduction

s Genetic variants in functional regions of the genome are enriched for complex trait heritability ' 6.

55 In this study, we aim to leverage functional enrichment to improve polygenic prediction”®.

Sev-
35 eral studies have shown that incorporating prior distributions on causal effect sizes can improve
» prediction accuracy® !, compared to standard Best Linear Unbiased Prediction (BLUP) or Prun-
s ing+Thresholding methods'3 15, Recent efforts to incorporate functional information have produced
s promising results!®!7, but may be limited by dichotomizing between functional and non-functional
w0 variants'® or restricting their analyses to genotyped variants'”.

0 Here, we introduce a new method, LDpred-funct, for leveraging trait-specific functional enrich-
«2 ments to increase polygenic prediction accuracy. We fit functional priors using our recently devel-

s oped baseline-LD model '8

, which includes coding, conserved, regulatory and LD-related annotations.
w  LDpred-funct first analytically estimates posterior mean causal effect sizes, accounting for functional
s priors and LD between variants. LDpred-funct then uses cross-validation within validation samples
s to regularize causal effect size estimates in bins of different magnitude, improving prediction accuracy
«r for sparse architectures. We show that LDpred-funct attains higher polygenic prediction accuracy

s than other methods in simulations with real genotypes, analyses of 21 highly heritable UK Biobank

w0 traits, and meta-analyses of height using training data from UK Biobank and 23andMe cohorts.

» Methods

s Polygenic prediction methods

»» We compared 5 main prediction methods: Pruning+Thresholding'41® (P+T), LDpred'?, P+T with
53 functionally informed LASSO shrinkage!® (P+T-funct-LASSO), our new LDpred-funct-inf method,
s« and our new LDpred-funct method; we also included LDpred-inf'?, which is known to attain lower
s prediction accuracy than LDpred!?, in some of our secondary analyses. P+T, LDpred-inf and LD-
ss  pred are polygenic prediction methods that do not use functional annotations. P+T-funct-LASSO
sz is a modification of P4+T that corrects marginal effect sizes for winner’s curse, accounting for func-
ss  tional annotations. LDpred-funct-inf is an improvement of LDpred-inf that incorporates functionally
s informed priors on causal effect sizes. LDpred-funct is an improvement of LDpred-funct-inf that uses
e cross-validation to regularize posterior mean causal effect size estimates, improving prediction accu-
&1 racy for sparse architectures. Each method is described in greater detail below. In both simulations
» and analyses of real traits, we used squared correlation (R2) between predicted phenotype and true
63 phenotype in a held-out set of samples as our primary measure of prediction accuracy.

64
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65 P+T. The P+T method builds a polygenic risk score (PRS) using a subset of independent SNPs
e obtained via informed LD-pruning!® (also known as LD-clumping) followed by P-value thresholding 4.
& Specifically, the method has two parameters, R? ;, and Pr, and proceeds as follows. First, the method
e prunes SNPs based on a pairwise threshold R% p, removing the less significant SNP in each pair.
s Second, the method restricts to SNPs with an association P-value below the significance threshold
w0  Pp. Letting M be the number of SNPs remaining after LD-clumping, polygenic risk scores (PRS)

n are computed as

M
PRS(Pr) = ZH{PKPT}/D?Q% (1)

i=1
7 where ,61 are normalized marginal effect size estimates and g; is a vector of normalized genotypes for
7 SNP 4. The parameters R2 ;, and Pr are commonly tuned using validation data to optimize predic-
71 tion accuracy !415. While in theory this procedure is susceptible to overfitting, in practice, validation
75 sample sizes are typically large, and R2 ;, and Pr are selected from a small discrete set of parameter
7 choices, so that overfitting is considered to have a negligible effect 7141519 Accordingly, in this work,
7 we consider R? ;, € {0.1,0.2,0.5,0.8} and Pr € {1,0.3,0.1,0.03,0.01,0.003,0.001,3 x 10~%,107%, 3 *
7 107°,107°,107%,1077,108}, and we always report results corresponding to the best choices of these
79 parameters. The P+T method is implemented in the PLINK software (see Web Resources).

80

81 LDpred-inf. The LDpred-inf method estimates posterior mean causal effect sizes under an
2 infinitesimal model, accounting for LD '2. The infinitesimal model assumes that normalized causal
e effect sizes have prior distribution 8; ~ N(0,c?), where 02 = hg /M, h?] is the SNP-heritability, and
s M is the number of SNPs. The posterior mean causal effect sizes are

E(BIB.D) = (127 +D+ 51N 2)

s where D is the LD matrix between markers, I is the identity matrix, N is the training sample size,
86 B is the vector of marginal association statistics, and h,? ~ kh%/M is the heritability of the k& SNPs
& in the region of LD; following ref. 12 we use the approximation 1 — h? ~ 1, which is appropriate
s when M >> k. D is typically estimated using validation data, restricting to non-overlapping LD
s windows. We used the default LD window size, which is M/3000. hf} can be estimated from raw

20,21 (the approach that we use here; see below), or can be estimated from

o genotype/phenotype data
o1 summary statistics using the aggregate estimator as described in ref. 12. To approximate the nor-
o malized marginal effect size ref. 12 uses the p-values to obtain absolute Z scores and then multiplies

o3 absolute Z scores by the sign of the estimated effect size. When sample sizes are very large, p-

o values may be rounded to zero, in which case we approximate normalized marginal effect sizes 3; by
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, where l;; is the per-allele marginal effect size estimate, p; is the minor allele frequency

E V/2xpix(1—p;)
95 Y
K3 /o_?/

o of SNP i, and o2 is the phenotypic variance in the training data. This applies to all the methods
o7 that use normalized effect sizes. Although the published version of LDpred requires a matrix inver-
e sion (Equation 2), we have implemented a computational speedup that computes the posterior mean
o causal effect sizes by efficiently solving 2 the system of linear equations (0—121+N «D)E(3|3,D) = N3.
100

101 LDpred. The LDpred method is an extension of LDpred-inf that uses a point-normal prior to es-
12 timate posterior mean effect sizes via Markov Chain Monte Carlo (MCMC) 2. Tt assumes a Gaussian
03 mixture prior: 3; ~ N (0, hg /M xp) with probability p, and 5; ~ 0 with probability 1—p, where p is the
s proportion of causal SNPs. The method is optimized by considering different values of p (1E-4, 3E-4,
s 1E-3, 3E-3, 0.01,0.03,0.1,0.3,1). We excluded SNPs from long-range LD regions (reported in ref. 23),
106 as our secondary analyses showed that including these regions was suboptimal, consistent with ref. 24.
107

108 P+4+T-funct-LASSO. Ref. 16 proposed an extension of P+T that corrects the marginal effect
o sizes of SNPs for winner’s curse and incorporates external functional annotation data (P-+T-funct-
o  LASSO). The winner’s curse correction is performed by applying a LASSO shrinkage to the marginal

1 association statistics of the PRS:

M

PRSpasso(Pr) = sign(B:)||8:l = N(Pr)|Lip,<pr19i; (3)

i=1
w2 where \(Pr) = ® (1 — £Z)sd(f;), where ®~ is the inverse standard normal CDF. Functional anno-
us  tations are incorporated via two disjoint SNPs sets, representing ”high-prior” SNPs (HP) and ”low-
us  prior” SNPs (LP), respectively. We define the HP SNP set for P+T-funct-LASSO as the set of SNPs
s in the top 10% of expected per-SNP heritability under the baseline-LD model'®, which includes cod-
ue ing, conserved, regulatory and LD-related annotations, whose enrichments are jointly estimated using

518 (see Baseline-LD model annotations section). We also performed

ur  stratified LD score regression
us secondary analyses using the top 5% (P+T-funct-LASSO-top5%). We define PRSyas550,1pr(Pup)
us  to be the PRS restricted to the HP SNP set, and PRSas50,.p(Prp) to be the PRS restricted to
120 the LP SNP set, where Py p and Py p are the optimal significance thresholds for the HP and LP SNP
11 sets, respectively. We define PRS1, ass0(Pup, Prp) = PRSLasso.up(Pup)+ PRSpasso,.Lp(PLp).
122 We also performed secondary analyses were we allow an additional regularization to the two PRS:
ws PRSpasso(Pup,Prp) = ac1PRSpasso,ap(Pup)+aaPRSpasso,np(PrLp); we refer to this method
¢ as P+T-funct-LASSO-weighted.

125

126 LDpred-funct-inf. We modify LDpred-inf to incorporate functionally informed priors on causal
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127 effect sizes using the baseline-LD model'®, which includes coding, conserved, regulatory and LD-
s related annotations, whose enrichments are jointly estimated using stratified LD score regression 8.
1o Specifically, we assume that normalized causal effect sizes have prior distribution 8; ~ N(0, ¢ * o2),
10 where o2 is the expected per-SNP heritability under the baseline-LD model (fit using training data

wm  only) and ¢ is a normalizing constant such that Zﬁl IL{Ug>0}caf = hg; SNPs with ¢ < 0 are

12 removed, which is equivalent to setting 01-2 = 0. The posterior mean causal effect sizes are

-1

1
> 0
- ~ 1 .. . ~
E[8B8,D,07,...,05, ] =W 'NxB= |N+D+ - R : N x 83, (4)
C
0 ... =2
1\4+

13 where M is the number of SNPs with 02 > 0. The posterior mean causal effect sizes are computed by
1w solving the system of linear equations WE[B|8,D, 0%,...,03,] = N % 3. h2 is estimated as described
s above (see LDpred-inf). D is estimated using validation data, restricting to windows of size 0.15% M.
136

137 LDpred-funct. We modify LDpred-funct-inf to regularize posterior mean causal effect sizes using
s cross-validation. We rank the SNPs by their (absolute) posterior mean causal effect sizes, partition
1 the SNPs into K bins (analogous to ref. 25) where each bin has roughly the same sum of squared
uo posterior mean effect sizes, and determine the relative weights of each bin based on predictive value
w1 in the validation data. Intuitively if a bin is dominated by non-causal SNPs, the inferred relative
12 weight will be lower than for a bin with a high proportion of causal SNPs. This non-parametric
13 shrinkage approach can optimize prediction accuracy regardless of the genetic architecture. In detail,
we let S =, E[Bi|B:]?. To define each bin, we first rank the posterior mean effect sizes based on their

s squared values E[3;]5;]2. We define bin by as the smallest set of top SNPs with D ich, E[Bi|B:)? > £,
2

5‘01 x|

s and iteratively define bin by as the smallest set of additional top SNPs with 37, ., E[Bi|Bi)? > &
w  Let PRS(k) = Y.c,, ElBilBi]gi- We define

K

PRSLDpred—funct = Z OékPRS(k’), (5)
k=1

us  where the bin-specific weights ay, are optimized using validation data via 10-fold cross-validation. For
1o each held-out fold in turn, we split the data so we estimate the weights «aj using the samples from the
150 other nine folds (90% of the validation) and compute PRS on the held-out fold using these weights
51 (10% of the validation). We then compute the average prediction R? across the 10 held-out folds. To
152 avoid overfitting when K is very close to N, we set the number of bins (K') to be between 1 and 100,

153 such that it is proportional to hg and the number of samples used to estimate the K weights in each
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12 fold is at least 100 times larger than K:

0.9N hg

K = min(100, [ 100

D, (6)

155, where N is the number of validation samples. For highly heritable traits (h?] ~ 0.5), LDpred-
16 funct reduces to the LDpred-funct-inf method if there are ~200 validation samples or fewer; for less
157 heritable traits (h? ~ 0.1), LDpred-funct reduces to the LDpred-funct-inf method if there are ~1,000
15s validation samples or fewer. In simulations, we set K to 40 (based on 7,585 validation samples; see
150 below), approximately concordant with Equation 6. The value of 100 in the denominator of Equation
10 6 was coarsely optimized in simulations, but was not optimized using real trait data.

161 Standard errors. Standard errors for the prediction R? of each method and the difference in
12 prediction R? between two methods were computed via block-jackknife using 200 genomic jackknife
15 blocks®; this is more conservative than computing standard errors based on the number of validation
e samples, which does not account for variation across a finite number of SNPs. For each method,

15 we first optimized any relevant tuning parameters using the entire genome and then analyzed each

166 jackknife block using those tuning parameters.

w  Simulations

s We simulated quantitative phenotypes using real genotypes from the UK Biobank interim release
o (see below). We used up to 50,000 unrelated British-ancestry samples as training samples, and 7,585
o samples of other European ancestries as validation samples (see below). We made these choices to
1 minimize confounding due to shared population stratification or cryptic relatedness between training
w2 and validation samples (which, if present, could overstate the prediction accuracy that could be ob-
173 tained in independent samples?®), while preserving a large number of training samples. We restricted
s our simulations to 459,284 imputed SNPs on chromosome 1 (see below), fixed the number of causal
ws  SNPs at 2,000 or 5,000 (we also performed secondary simulations with 1,000 or 10,000 causal vari-
s ants), and fixed the SNP-heritability hg at 0.5. We sampled normalized causal effect sizes §; for causal
17 SNPs from a normal distribution with variance equal to %2, where p is the proportion of causal SNPs
s and o2 is the expected causal per-SNP heritability under the baseline-LD model '8, fit using strati-
1o fied LD score regression (S-LDSC) %18 applied to height summary statistics computed from unrelated

1w British-ancestry samples from the UK Biobank interim release (N=113,660). We computed per-allele
Bi

v/ 2pi(1=p:)

1,2 validation genotypes. We simulated phenotypes as Y; = wa bigi; + €, where ¢; ~ N (0,1 — hg) We

w1 effect sizes b; as b; = , where p; is the minor allele frequency for SNP i estimated using the

183 set the training sample size to either 10,000, 20,000 or 50,000. The motivation to perform simulations

12

18s using one chromosome is to be able to extrapolate performance at larger sample sizes*“ according to
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s the ratio N/M, where N is the training sample size. We compared each of the five methods described
s above. For LDpred-funct-inf and LDpred-funct, for each simulated trait we used S-LDSC (applied to
1w training data only) to estimate baseline-LD model parameters. For LDpred-funct, we report R? as

s the average prediction R? across the 10 held-out folds.

w Full UK Biobank data set

1o The full UK Biobank data set includes 459,327 European-ancestry samples and ~20 million imputed
w1 SNPs?? (after filtering as in ref. 20, excluding indels and structural variants). We selected 21 UK
12 Biobank traits (14 quantitative traits and 7 binary traits) with phenotyping rate > 80% (> 80% of
3 females for age at menarche, > 80% of males for balding), SNP-heritability h§ > (.2 for quantitative
104 traits, observed-scale SNP-heritability hg > 0.1 for binary traits, and low correlation between traits
s (as described in ref. 20). We restricted training samples to 409,728 British-ancestry samples??,
s including related individuals (avg N=365K phenotyped training samples; see Table S1 for quantitative
7 traits and Table S2 for binary traits). We computed association statistics from training samples using
s BOLT-LMM v2.3%20. We have made these association statistics publicly available (see Web Resources).
19 We restricted validation samples to 25,112 samples of non-British European ancestry, after removing
20 validation samples that were related (> 0.05) to training samples and /or other validation samples (avg
201 N=22K phenotyped validation samples; see Table S1 and S2). As in our simulations, we made these
22 choices to minimize confounding due to shared population stratification or cryptic relatedness between
203 training and validation samples (which, if present, could overstate the prediction accuracy that could
2« be obtained in independent samples2%), while preserving a large number of training samples. We
2s analyzed 6,334,603 genome-wide imputed SNPs, after removing SNPs with minor allele frequency
w5 < 1%, removing SNPs with imputation accuracy < 0.9, and removing A/T and C/G SNPs to
27 eliminate potential strand ambiguity. We used hg estimates from BOLT-LMM v2.3%° as input to
28  LDpred, LDpred-funct-inf and LDpred-funct.

20 UK Biobank interim release

20 The UK Biobank interim release includes 145,416 European-ancestry samples?”. We used the UK
an Biobank interim release both in simulations using real genotypes, and in a subset of analyses of height
22 phenotypes (to investigate how prediction accuracy varies with training sample size).

213 In our analyses of height phenotypes, we restricted training samples to 113,660 unrelated (< 0.05)
214 British-ancestry samples for which height phenotypes were available. We computed association statis-
x5 tics by adjusting for 10 PCs2®, estimated using FastPCA 2% (see Web Resources). For consistency,
26 we used the same set of 25,030 validation samples of non-British European ancestry with height
27 phenotypes as defined above. We analyzed 5,957,957 genome-wide SNPs, after removing SNPs with

8
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28 minor allele frequency < 1%, removing SNPs with imputation accuracy < 0.9, removing SNPs that
20 were not present in the 23andMe height data set (see below), and removing A/T and C/G SNPs to
20 eliminate potential strand ambiguity. .

21 In our simulations, we restricted training samples to up to 50,000 of the 113,660 unrelated British-
22 ancestry samples, and restricted validation samples to 8,441 samples of non-British European ancestry,
23 after removing validation samples that were related (> 0.05) to training samples and/or other valida-
24 tion samples. We restricted the 5,957,957 genome-wide SNPs (see above) to chromosome 1, yielding

s 459,284 SNPs after QC.

» 23andMe height summary statistics

27 The 23andMe data set consists of summary statistics computed from 698,430 European-ancestry
»s  samples (23andMe customers who consented to participate in research) at 9,898,287 imputed SNPs,
2o after removing SNPs with minor allele frequency < 1% and that passed QC filters (which include
20 filters on imputation quality, avg.rsq< 0.5 or min.rsq< 0.3 in any imputation batch, and imputation
a1 batch effects). Analyses were restricted to the set of individuals with > 97% European ancestry,
22 as determined via an analysis of local ancestry®’. Summary association statistics were computed
213 using linear regression adjusting for age, gender, genotyping platform, and the top five principal
24 components to account for residual population structure. The summary association statistics will be
x5 made available to qualified researchers (see Web Resources).

236 We analyzed 5,957,935 genome-wide SNPs, after removing SNPs with minor allele frequency < 1%,
7 removing SNPs with imputation accuracy < 0.9, removing SNPs that were not present in the full
23 UK Biobank data set (see above), and removing A/T and C/G SNPs to eliminate potential strand

230 ambiguity.

0 Meta-analysis of full UK Biobank and 23andMe height data sets

21 We meta-analyzed height summary statistics from the full UK Biobank and 23andMe data sets. We
u#2  define

PRSmeta = ’YIPRSI +72PR’5'27 (7)

23 where PRS; is the PRS obtained using training data from cohort 7. The PRS can be obtained using
e P+T, P+T-funct-LASSO, LDpred-inf or LDpred-funct. The meta-analysis weights +; can either be
2s  specified via fixed-effect meta-analysis (e.g. v; = %) or optimized using validation data'®. We
26 use the latter approach, which can improve prediction accuracy (e.g. if the cohorts differ in their
27 heritability as well as their sample size). In our primary analyses, we fit the weights 7; in-sample

us and report prediction accuracy using adjusted R? to account for in-sample fitting'®. We also report
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29 results using 10-fold cross-validation: for each held-out fold in turn, we estimate the weights 7; using
0 the other nine folds and compute PRS on the held-out fold using these weights. We then compute
21 the average prediction R? across the 10 held-out folds.

252 When using LDpred-funct as the prediction method, we perform the meta-analysis as follows.
3 First, we use LDpred-funct-inf to fit meta-analysis weights ;. Then, we use 7; to compute (meta-
25 analysis) weighted posterior mean causal effect sizes (PMCES) via PMCES = vwPMCES; +
55 7o PMCES5, which are binned into k bins. Then, we estimate bin-specific weights ay, (used to com-
6 pute (meta-analysis 4+ bin-specific) weighted posterior mean causal effect sizes Zi{:l arPMCES(k))

»7  using validation data via 10-fold cross validation.

»s  Baseline-LD model annotations

20 The baseline-LD model (v1.1) contains a broad set of 75 functional annotations (including coding,
0 conserved, regulatory and LD-related annotations), whose enrichments are jointly estimated using

5,18

s stratified LD score regression®°. For each trait, we used the 7, values estimated for that trait to

% compute o2, the expected per-SNP heritability of SNP i under the baseline-LD model, as

o? = Zac(i)TC, (8)

263 where a.(i) is the value of annotation ¢ at SNP i.

264 Joint effect sizes 7. for each annotation c are estimated via
ENX}]=N> 7li,c)+1, (9)
C

x5 where [(i,¢) is the LD score of SNP 4 with respect to annotation a. and x? is the chi-square statistic
x6  for SNP 7. We note that 7. quantifies effects that are unique to annotation c. In all analyses of real
%7 phenotypes, 7. and o were estimated using training samples only.

268 In our primary analyses, we used 489 unrelated European samples from phase 3 of the 1000
20 Genomes Project3! as the reference data set to compute LD scores, as in ref. 18.

270 To verify that our 1000 Genomes reference data set produces reliable LD estimates, we repeated
on  our LDpred-funct analyses using S-LDSC with 3,567 unrelated individuals from UK10K3? as the
oz reference data set (as in ref. 33), ensuring a closer ancestry match with British-ancestry UK Biobank
o3 samples. We also repeated our LDpred-funct analyses using S-LDSC with the baseline-LD+LDAK
z model (instead of the baseline-LD model), with UK10K as the reference data set. The baseline-
zs  LD+LDAK model (introduced in ref. 33) consists of the baseline-LD model plus one additional

2 continuous annotation constructed using LDAK weights®*, which has values (p;(1 — pj))1+a wj

10
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ar - where o = —0.25, p; is the allele frequency of SNP j, and w; is the LDAK weight of SNP j computed

2 using UK10K data.

» Results

w0 Simulations

2 We performed simulations using real genotypes from the UK Biobank interim release and simulated
222 phenotypes (see Methods). We simulated quantitative phenotypes with SNP-heritability hg = 0.5,
283 using 476,613 imputed SNPs from chromosome 1. We selected either 2,000 or 5,000 variants to
24 be causal; we refer to these as ”sparse” and ”polygenic” architectures, respectively. We sampled
25 normalized causal effect sizes from normal distributions with variances based on expected causal
s per-SNP heritabilities under the baseline-LD model!8, fit using stratified LD score regression (S-
x  LDSC)%18 applied to height summary statistics from British-ancestry samples from the UK Biobank
28 interim release. We randomly selected 10,000, 20,000 or 50,000 unrelated British-ancestry samples as
29 training samples, and we used 7,585 unrelated samples of non-British European ancestry as validation
20 samples. By restricting simulations to chromosome 1 (=~ 1/10 of SNPs), we can extrapolate results
21 to larger sample sizes (& 10x larger; see Application to 21 UK Biobank traits), analogous to previous
22 work!2,

203 We compared prediction accuracies (R?) for five main methods: P+T14!5 LDpred!?, P+T-
2s  funct-LASSO !, LDpred-funct-inf and LDpred-funct (see Methods). Results are reported in Figure 1
s (main simulations) and Figure S1 (additional values of number of causal variants); numerical results
26 are reported in Table S3 and Table S4. Among methods that do not use functional information, the
207 prediction accuracy of LDpred was higher than P+T (particularly for the polygenic architecture),
xs  consistent with previous work®'2? (see Table S5 and Table S6 for optimal tuning parameters).

299

300 Incorporating functional information via LDpred-funct-inf (a method that does not model spar-
sn  sity) produced improvements that varied with sample size (+4.7% relative improvement for sparse
52 architecture and +4.8% relative improvement for polygenic architecture at N=50K training samples,
53 compared to LDpred; smaller improvements at smaller sample sizes). These results are consistent
s0 with the fact that LDpred is known to be sensitive to model assumptions at large sample sizes'2.
35 Accounting for sparsity using LDpred-funct further improved prediction accuracy, particularly for
w5  the sparse architecture (+7.3% relative improvement for sparse architecture and +5.4% relative im-
sr  provement for polygenic architecture at N=50K training samples, compared to LDpred; smaller
w8 improvements at smaller sample sizes). LDpred-funct attained substantially higher prediction accu-

30 racy than P4+T-funct-LASSO in most settings (+11% relative improvement for sparse architecture
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s0 and +18% relative improvement for polygenic architecture at N=50K training samples; smaller im-
su  provements at smaller sample sizes). The difference in prediction accuracy between LDpred and each
sz other method, as well as the difference in prediction accuracy between LDpred-funct and each other
sz method, was statistically significant in most cases (see Table S4). Simulations with 1,000 or 10,000
s causal variants generally recapitulated these findings, although P+T-funct-LASSO performed better
as  than LDpred-funct for the extremely sparse architecture (Table S3).

316 We performed three secondary analyses. First, we assessed the calibration of each method by
siz checking whether a regression of true vs. predicted phenotype yielded a slope of 1. We determined
as that LDpred-funct was well-calibrated (regression slope 0.98-0.99), LDpred was fairly well-calibrated
a0 (regression slope 0.85-1.00), and other methods were not well-calibrated (Table S7). Second, we
a0 assessed the sensitivity of LDpred-funct to the choice of K=40 posterior mean causal effect size bins
a1 to regularize effect sizes in our main simulations. We determined that results were not sensitive to
2 this parameter (Table S8); slightly higher values of K performed slightly better, but we did not finely
123 optimize this parameter. Third, we evaluated a ”cheating” version of LDpred-funct that utilized the
24 true baseline-LD model parameters used to simulate the data, instead of estimating these parameters
»s  from the data (LDpred-funct-cheat). LDpred-funct-cheat performed only slightly better than LDpred-
w6 funct, indicating that LDpred-funct is not sensitive to imperfect estimation of functional enrichment

27 parameters (see Table S9).

» Application to 21 UK Biobank traits

29 We applied P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to 21 UK Biobank
a0  traits (14 quantitative traits and 7 binary traits; Table S1 and Table S2). We analyzed training
s samples of British ancestry (avg N=365K) and validation samples of non-British European ancestry
s (avg N=22K). We included 6,334,603 imputed SNPs in our analyses (see Methods). We computed
3 summary statistics and i estimates from training samples using BOLT-LMM v2.3%° (see Table S10).
s We estimated trait-specific functional enrichment parameters for the baseline-LD model '® by running
1 S-LDSC%18 on these summary statistics. Results for quantitative traits are reported in Figure 2 and
a6 Table S11, and results for binary traits are reported in Figure 3 and Table S12. Differences between
s each main prediction method and LDpred (and block-jackknife standard errors on these differences)
a8 are reported in Table S13, and averages across all 21 traits for main and secondary prediction methods
;30 are reported in Table S14.

340 Among methods that do not use functional information, LDpred outperformed P+T (4+18% rel-
s ative improvement in avg prediction R?), consistent with simulations under a polygenic architecture
s (see Table S15 and Table S16 for optimal tuning parameters) and with previous work®12. LDpred also

a3 outperformed LDpred-inf, a method that does not model sparsity (see Table S14). The exclusion of
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s long-range LD regions (see Methods) was critical to LDpred performance, as running LDpred without
us  excluding long-range LD regions (as implemented in a previous version of this paper3®) performed
16 much worse (see Table S14).

a7 Incorporating functional information via LDpred-funct-inf (a method that does not model spar-
us  sity) performed only slightly better than LDpred (+0.9% relative improvement in avg prediction R?).
s0  Accounting for sparsity using LDpred-funct substantially improved prediction accuracy (+8.7% rel-
s ative improvement in avg prediction R? vs. LDpred, P = 0.006 for difference using one-sided z-test
351 based on block-jackknife standard error in Table S13; avg prediction R?=0.145; highest R2=0.413 for
s height), consistent with simulations. The relative improvement in avg prediction R? for LDpred-funct
33 vs. LDpred was larger for quantitative traits (+9.2%; higher prediction R? for 14/14 traits) than for
s binary traits (4+6.6%; higher prediction R? for 2/7 traits), consistent with the higher average hg for
35 quantitative traits (0.33) than for binary traits (0.19; observed scale), which corresponds to higher
s effective sample size (see simulation results in Figure 1) and higher absolute prediction R? (Figure
s 2 vs. Figure 3). Accordingly, the improvement of LDpred-funct vs. LDpred across all 21 traits was
s smaller when averaging relative improvements in prediction R? for each trait individually (+6.3%), a
3 computation that more heavily weights traits with low prediction R?. LDpred-funct also performed
w0 substantially better than P+T-funct-LASSO (4+19% relative improvement in avg prediction R2),
s consistent with simulations under a polygenic architecture.

362 We performed several secondary analyses. First, we assessed the calibration of each method
3 by checking whether a regression of true vs. predicted phenotype yielded a slope of 1. As in our
¢ simulations, we determined that LDpred-funct was well-calibrated (average regression slope: 0.98),
s LDpred was fairly well-calibrated (average regression slope: 0.89), and other methods were not well-
sss  calibrated (Table S17). Second, we assessed the sensitivity of LDpred-funct to the average value of
s7 I = 58 posterior mean causal effect size bins to regularize effect sizes in these analyses (see Equation
e 6 and Table S10). We determined that results were not sensitive to the number of bins (Table S18).
0 Third, we assessed the sensitivity of LDpred-funct to validation sample size; we note that our main
w0 analyses involved very large validation sample sizes (up to 25,032; Table S1 and Table S2), which
sn  aids the regularization step of LDpred-funct. We determined that results were little changed when
s restricting to smaller validation sample sizes (as low as 1,000; see Table S19). Fourth, we determined
w3 that functional enrichment information is far less useful when restricting to genotyped variants (e.g.
s —6.9% relative change in avg prediction R? for LDpred-funct vs. LDpred when both methods are
ws  restricted to typed variants; Table S14), likely because tagging variants may not belong to enriched
s functional annotations. Fifth, we evaluated a modification of P+T-funct-LASSO in which different
s weights were allowed for the two predictors (P+T-funct-LASSO-weighted; see Methods), but results

s were little changed (+1.1% relative improvement in avg prediction R? vs. P+T-funct-LASSO; Table
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w S14). Sixth, we obtained similar results for P+T-funct-LASSO when defining the ”high-prior” (HP)
s SNP set using the top 5% of SNPs with the highest per-SNP heritability, instead of the top 10% (see
s Table S14). Seventh, we determined that incorporating baseline-LD model functional enrichments
w2 that were meta-analyzed across traits (31 traits from ref. 18), instead of the trait-specific functional
;3 enrichments used in our primary analyses, slightly reduced the prediction accuracy of LDpred-funct-
s inf (Table S14). Eighth, we determined that using our previous baseline model®, instead of the
s baseline-LD model '8, slightly reduced the prediction accuracy of LDpred-funct-inf and LDpred-funct
s (Table S14). Ninth, we determined that inferring functional enrichments using only the SNPs that
sr passed QC filters and were used for prediction had no impact on the prediction accuracy of LDpred-
s funct-inf (Table S14). Tenth, we determined that using UK10K (instead of 1000 Genomes) as the LD

;0 reference panel had virtually no impact on prediction accuracy (Table S14).

w Application to height in meta-analysis of UK Biobank and 23andMe cohorts

s We applied P+T, LDpred-inf, P4+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to predict
32 height in a meta-analysis of UK Biobank and 23andMe cohorts (see Methods). Training sample sizes
33 were equal to 408,092 for UK Biobank and 698,430 for 23andMe, for a total of 1,106,522 training
s samples. For comparison purposes, we also computed predictions using the UK Biobank and 23andMe
s training data sets individually, as well as a training data set consisting of 113,660 British-ancestry
ws samples from the UK Biobank interim release. (The analysis using the 408,092 UK Biobank training
;7 samples was nearly identical to the analysis of Figure 2, except that we used a different set of 5,957,935
28 SNPs, for consistency throughout this set of comparisons; see Methods.) We used 25,030 UK Biobank
39 samples of non-British European ancestry as validation samples in all analyses.

400 Results are reported in Figure 4 and Table S20. The relative improvements attained by LDpred-
s funct-inf and LDpred-funct were broadly similar across all four training data sets (also see Figure
w2 2), implying that these improvements are not specific to the UK Biobank data set. Interestingly,
w3 compared to the full UK Biobank training data set (R?=0.413 for LDpred-funct), prediction accuracies
ws  were only slightly higher for the meta-analysis training data set (R2=0.429 for LDpred-funct), and
w5 were lower for the 23andMe training data set (R2=0.328 for LDpred-funct), consistent with the ~ 30%
w6 higher heritability in UK Biobank as compared to 23andMe and other large cohorts '820:2L: the higher
w07 heritability in UK Biobank could potentially be explained by lower environmental heterogeneity. We
w8 note that in the meta-analysis, we optimized the meta-analysis weights using validation data (similar
wo  to ref. 19), instead of performing a fixed-effect meta-analysis. This approach accounts for differences
a0 in heritability as well as sample size, and attained a +5.9% relative improvement in prediction R?

s compared to fixed-effects meta-analysis (see Table S20).
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«~ Discussion

sz We have shown that leveraging trait-specific functional enrichments inferred by S-LDSC with the

1'® substantially improves polygenic prediction accuracy. Across 21 UK Biobank

s baseline-LD mode
as  traits, we attained a +9% relative improvement in average prediction R? using a method that leverages
a6 functional enrichment and performs an additional regularization step to account for sparsity (LDpred-
a7 funct), compared to the most accurate method that does not model functional enrichment (LDpred).
2z We note that our main analyses used baseline-LD model v1.1, but using the updated baseline-LD
ao model v2.1 yields slightly higher prediction R? for LDpred-funct-inf and LDpred-funct (Table S14).
20 Previous work has highlighted the potential advantages of leveraging functional enrichment to
w1 improve prediction accuracy 1617, We included one such method '% (which we call P+T-funct-LASSO)
w22 In our analyses, determining that LDpred-funct attains a +19% average relative improvement vs.
o3 P+4+T-funct-LASSO across 21 UK Biobank traits. More recently, ref. 17 introduced AnnoPred, which
a0 uses a Bayesian framework to incorporate functional annotations. However, ref. 17 considered only
w»s  genotyped variants and binary annotations. As noted above, functional enrichment information is
ws  far less useful when restricting to genotyped variants (Table S14), likely because tagging variants
27 may not belong to enriched functional annotations; thus, the utility of AnnoPred in more general
w28 settings is currently unknown. To assess this, we applied AnnoPred to the 21 UK Biobank traits (see
w29 Table S14 and Table S21. We determined that AnnoPred performed slightly but non-significantly
s worse than LDpred-funct (—2.3% relative change in avg prediction R? for AnnoPred vs. LDpred-
a1 funct, P = 0.17 for difference using one-sided z-test based on block-jackknife standard error in
.2 Table S21). We emphasize that our study is, to our knowledge, the first study that combines binary
a3 and continuous-valued functional annotations to improve polygenic risk prediction using imputed
4 variants.

435 Our work has several limitations. First, LDpred-funct analyzes summary statistic training data
s (which are publicly available for a broad set of diseases and traits3%), but methods that use raw
w7 genotypes/phenotypes as training data have the potential to attain higher accuracy??; incorporating
18 functional enrichment information into prediction methods that use raw genotypes/phenotypes as
40 training data remains a direction for future research. Second, the regularization step employed by
w0 LDpred-funct to account for sparsity relies on heuristic cross-validation instead of inferring posterior
a1 mean causal effect sizes under a prior sparse functional model; we made this choice because the
w2 appropriate choice of sparse functional model is unclear, and because inference of posterior means via
43 MCMC may be subject to convergence issues. As a consequence, the improvement of LDpred-funct
wus over LDpred-funct-inf may be contingent on the number of validation samples available for cross-
ws  validation; in particular, for very small validation samples, the number of cross-validation bins is

us equal to 1 (Equation 6) and LDpred-funct is identical to LDpred-funct-inf. However, we determined
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a7 that results of LDpred-funct were little changed when restricting to smaller validation sample sizes
ws  (as low as 1,000; see Table S19). Third, we have considered only single-trait analyses, but leveraging
ws genetic correlations among traits has considerable potential to improve prediction accuracy?>"38.
0  Fourth, we have not considered how to leverage functional enrichment for polygenic prediction in
w1 related individuals®?. Fifth, we have not investigated the application of our methods to polygenic

19,4041 * for which very similar functional enrichments have been

42 prediction in diverse populations
i3 reported 4243, Finally, the improvements in prediction accuracy that we reported are a function of the

s baseline-LD model '8, but there are many possible ways to improve this model, e.g. by incorporating

1-6,44-47 48-50

a5 tissue-specific enrichments , modeling MAF-dependent architectures , and/or employing
6 alternative approaches to modeling LD-dependent effects®*; we anticipate that future improvements
7 to the baseline-LD model will yield even larger improvements in prediction accuracy. As an initial
s step to explore alternative approaches to modeling LD-dependent effects, we repeated our analyses
19 using the baseline-LD+LDAK model (introduced in ref. 33), which consists of the baseline-LD model
w0 plus one additional continuous annotation constructed using LDAK weights®*. (Recent work has
w1 shown that incorporating LDAK weights increases polygenic prediction accuracy in analyses that
s do not include the baseline-LD model®!.) We determined that results were virtually unchanged (avg
w3 prediction R?=0.1350 for baseline-LD-+LDAK vs. 0.1354 for baseline-LD using LDpred-funct-inf with
e UK10K SNPs; see Table S14 and Table S22). Despite these limitations and open directions for future

w5 research, our work demonstrates that leveraging functional enrichment using the baseline-LD model

w6 substantially improves polygenic prediction accuracy.
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«» Web Resources

w3 Software implementing the LDpred-funct-inf and LDpred-funct: https://www.hsph.harvard.edu/
s alkes-price/software

a5 LDscore regression software: https://github.com/bulik/ldsc

s UK Biobank Resource: http://www.ukbiobank.ac.uk/

w7 BOLT-LMM v2.3 software http://data.broadinstitute.org/alkesgroup/BOLT-LMM/

ws BOLT-LMM v2.3 association statistics: https://data.broadinstitute.org/alkesgroup/UKBB/
a0 UKBB_409K/

wo  23andMe height association statistics: The full summary statistics for the 23andMe height GWAS
w1 will be made available through 23andMe to qualified researchers under an agreement with 23andMe
w2 that protects the privacy of the 23andMe participants. Please visit https://research.23andme.

w3 com/collaborate/#publication for more information and to apply to access the data.
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Figure 1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank geno-
types. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in

chromosome 1 simulations with 2,000 causal variants (sparse architecture) and 5,000 causal variants (poly-
genic architecture). Results are averaged across 100 simulations. Top dashed line denotes simulated SNP-
heritability of 0.5. Bottom dashed lines denote differences vs. LDpred; error bars represent 95% confidence
intervals. Results for other values of the number of causal variants are reported in Figure S1, and numerical

results are reported in Table S3 and Table S4.
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Figure 2: Accuracy of 5 polygenic prediction methods across 14 UK Biobank quantitative traits.
We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Dashed lines
denote estimates of SNP-heritability. Numerical results are reported in Table S11. * denotes methods that
significantly outperform LDpred (P < 0.05 for difference using one-sided z-test based on block-jackknife
standard error in Table S13).
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Figure 3: Accuracy of 5 polygenic prediction methods across 7 UK Biobank binary traits.
We report results for P4+T, LDpred, P4+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Dashed lines
denote estimates of SNP-heritability. Numerical results are reported in Table S12. * denotes methods that
significantly outperform LDpred (P < 0.05 for difference using one-sided z-test based on block-jackknife
standard error in Table S13).
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Figure 4: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-
funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK Biobank
(408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank and
23andMe (1,107,430 training samples). Nested training data sets are connected by solid lines (e.g. UK
Biobank (408k) and 23andMe are both connected to Meta-Analysis, but not to each other). Dashed line
denotes estimate of SNP-heritability in UK Biobank. Numerical results are reported in Table S20.
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Figure S1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across
100 simulations. Top dashed line denotes simulated SNP-heritability of 0.5. Bottom dashed lines denote
differences vs. LDpred-inf; error bars represent 95% confidence intervals. Numerical results are reported in
Table S3 and Table S4.
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« Supplementary Tables

Trait h Training Validation
N N (ancestry distribution)
1 Height 0.57 | 408092 | 25030 (43.5% Irish,56.5% Other)
2 Hair color 0.45 | 403024 | 24773 (43.5% Irish,56.5% Other)
3 Platelet count 0.40 | 395747 | 24277 (43.5% Irish,56.5% Other)
4  Bone mineral density 0.40 | 397274 | 24167 (43.6% Irish,56.4% Other)
5 Red blood cell count 0.32 | 396464 | 24305 (43.5% Irish,56.5% Other)
6 Age at menarche 0.31 | 214860 | 13999 (39.7% Irish,60.3% Other)
7 FEV1 FVC ratio 0.31 | 331786 | 19929 (42.5% Irish,57.5% Other)
8 Body mass index 0.31 | 407667 | 25000 (43.5% Irish,56.5% Other)
9 RBC distribution width 0.29 | 394258 | 24175 (43.5% Irish,56.5% Other)
10 Forced vital capacity 0.27 | 331786 | 19929 (42.5% Irish,57.5% Other)
11 Eosinophil count 0.27 | 391787 | 24030 (43.4% Irish,56.6% Other)
12 White blood cell count — 0.27 | 395835 | 24293 (43.5% Irish,56.5% Other)
13 Systolic Blood pressure  0.27 | 376437 | 23127 (43.2% Irish,56.8% Other)
14  Waist hip ratio 0.21 | 408196 | 25032 (43.5% Irish,56.5% Other)

Table S1: List of 14 UK Biobank quantitative traits. We list the training sample size and validation
sample size for each trait. hﬁ estimates are obtained using BOLT-LMM v2.3 using the training data set.
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Trait h; Training Validation

N Prevalence N (ancestry distribution) Prevalence
1 Balding Type I 0.32 186506 0.32 10578 (48.9% Irish,51.1% Other) 0.34
2 Tanning 0.23 400721 0.61 24608 (43.5% Irish,56.5% Other) 0.60
3 College Education 0.20 405140 0.31 24749 (43.5% Irish,56.5% Other) 0.49
4  Hyperthension 0.18 408323 0.27 25041 (43.5% Irish,56.5% Other) 0.25
5 Cardiovascular Diseases 0.16 408963 0.32 25111 (43.5% Irish,56.5% Other) 0.29
6 Morning Person 0.14 365245 0.63 22768 (43.4% Irish,56.6% Other) 0.58
7 Eczema 0.12 408454 0.23 25052 (43.5% Irish,56.5% Other) 0.23

Table S2: List of 7 UK Biobank binary traits. We list the training sample size, validation sample size
and prevalence for each trait. h; estimates are obtained using BOLT-LMM v2.3 using the training data set.
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Training sample size

# Causal 10,000 20,000 50,000

variants ~ Model Average R?(s.e.) Average R’(s.e.) Average R*(s.e.)
P+T 0.2061 ( 0.0022)  0.2536 ( 0.0021) _ 0.2900 ( 0.0019)
LDpred 0.2218 ( 0.0024)  0.2616 ( 0.0021)  0.2889 ( 0.0018)

1,000 P+T-funct-LASSO  0.2202 ( 0.0024)  0.2723 ( 0.0024)  0.3044 ( 0.002)
LDpred-funct-inf ~ 0.1896 ( 0.0018)  0.2419 ( 0.0019)  0.3015 ( 0.0019)
LDpred-funct 0.2131 (0.002)  0.2644 ( 0.0021)  0.3157 ( 0.002)
P+T 0.1658 ( 0.0022)  0.2215 ( 0.0026)  0.2683 ( 0.0029)
LDpred 0.2004 ( 0.0028)  0.2498 ( 0.0023)  0.2921 ( 0.0015)

2,000 P+T-funct-LASSO  0.1869 ( 0.0026)  0.2383 ( 0.0028)  0.2817 ( 0.0031)
LDpred-funct-inf ~ 0.1900 ( 0.0015)  0.2458 ( 0.0015)  0.3057 ( 0.0016)
LDpred-funct 0.2023 ( 0.0016)  0.2576 ( 0.0016)  0.3134 ( 0.0017)
P+T 0.1352 (0.0016)  0.1909 ( 0.002) _ 0.2472 ( 0.0024)
LDpred 0.1826 ( 0.0017)  0.2388 ( 0.0013)  0.2924 ( 0.0013)

5,000 P+T-funct-LASSO  0.1550 ( 0.0018)  0.2098 ( 0.0021)  0.261 ( 0.0026)
LDpred-funct-inf ~ 0.1872 ( 0.0012)  0.243 ( 0.0013)  0.3063 ( 0.0014)
LDpred-funct 0.1895 ( 0.0012)  0.2458 ( 0.0013)  0.3081 ( 0.0014)
PiT 0.1273 (0.0015)  0.1806 ( 0.002) _ 0.2379 ( 0.0024)
LDpred 0.1764 (0.0016)  0.233 (0.0012)  0.2916 ( 0.0012)

10,000 P+T-funct-LASSO  0.1419 ( 0.0017)  0.1954 ( 0.0022)  0.2477 ( 0.0026)
LDpred-funct-inf ~ 0.1873 ( 0.0012)  0.2419 ( 0.0012)  0.3059 ( 0.0013)
LDpred-funct 0.1870 ( 0.0013)  0.2418 ( 0.0012)  0.3053 ( 0.0012)

Table S3: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank geno-
types, for 4 values of the number of causal variants. = We report results for P+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across 100
simulations. We report standard errors in parentheses.
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(a)
Training sample size
# Causal 10,000 20,000 50,000
variants ~ Model Diff. R?(s.e.) Diff. R?(s.e.) Diff. R?(s.e.)
P+T 0.0069 (0.0018) _ 0.0106 (0.0016) _ 0.0254 (0.0015)
1.000 P+T-funct-LASSO  -0.0162 (0.002) -0.0081 (0.0018) 0.011 (0.0016)
’ LDpred -0.0087 (0.0017)  0.0028 (0.0013)  0.0267 (Se-04)
LDpred-funct-inf 0.0235 (8e-04) 0.0225 (6e-04) 0.0142 (6e-04)
LDpred-funct 0 0 0
P+T 0.0365 (0.0019)  0.0361 (0.0022)  0.0451 (0.0026)
2.000 P+T-funct-LASSO  0.0153 (0.0023)  0.0194 (0.0024)  0.0317 (0.0027)
’ LDpred 0.0019 (0.0026)  0.0078 (0.0019)  0.0213 (7e-04)
LDpred-funct-inf 0.0123 (5e-04) 0.0118 (5e-04) 0.0077 (4e-04)
LDpred-funct 0 0 0
P+T 0.0544 (0.0016)  0.055 (0.0018) 0.0609 (0.0021)
5.000 P+T-funct-LASSO  0.0345 (0.0017)  0.036 (0.0019) 0.0471 (0.0023)
’ LDpred 0.0067 (0.0013)  0.007 (7e-04) 0.0157 (5e-04)
LDpred-funct-inf 0.0023 (3e-04) 0.0029 (3e-04) 0.0018 (2e-04)
LDpred-funct 0 0 0
P+T 0.0597 (0.0016)  0.0612 (0.002) 0.0674 (0.0024)
lo00p  PFT-Rnct-LASSO  0.0451 (0.0017)  0.0464 (0.0022)  0.0576 (0.0026)
’ LDpred 0.0107 (0.0013)  0.0089 (5e-04) 0.0136 (5e-04)
LDpred-funct-inf -4e-04 (2e-04) -le-04 (2e-04) -Te-04 (2e-04)
LDpred-funct 0 0 0
(b)
Training sample size
# Causal 10,000 20,000 50,000
variants ~ Model Diff. R?(s.e.) Diff. R?(s.e.) Diff. R?(s.e.)
P+T ~0.0165 (0.0035) -0.0094 (0.0034) -2e-04 (0.0033)
1.000 LDpred 0 0 0
’ P+ T-funct-LASSO  0.0067 (0.0037)  0.0088 (0.0037)  0.0141 (0.0035)
LDpred-funct-inf ~ -0.0321 (0.0017) -0.0198 (0.0012) 0.0125 (6e-04)
LDpred-funct -0.0087 (0.0017)  0.0028 (0.0013)  0.0267 (8e-04)
P+T 20.0352 (0.0036) -0.0294 (0.0035) -0.0254 (0.0036)
2.000 LDpred 0 0 0
’ P+T-funct-LASSO  -0.0146 (0.0039) -0.0129 (0.0036) -0.0121 (0.0037)
LDpred-funct-inf ~ -0.0104 (0.0025) -0.004 (0.0019)  0.0137 (5¢-04)
LDpred-funct 0.0019 (0.0026)  0.0078 (0.0019)  0.0213 (7e-04)
P+T Z0.048 (0.0024)  -0.0488 (0.0026) -0.0466 (0.0031)
5.000 LDpred 0 0 0
’ P+ T-funct-LASSO  -0.0283 (0.0026) -0.03 (0.0028)  -0.0329 (0.0033)
LDpred-funct-inf ~ 0.0044 (0.0013)  0.0041 (7e-04)  0.0139 (4e-04)
LDpred-funct 0.0067 (0.0013)  0.007 (7e-04)  0.0157 (5e-04)
P+T 20.0493 (0.0022) -0.0532 (0.0024) -0.0551 (0.0031)
10,000 LDpred 0 0 0

P+T-funct-LASSO
LDpred-funct-inf
LDpred-funct

-0.0348 (0.0024)
0.0111 (0.0012)
0.0107 (0.0013)

-0.0386 (0.0026)
0.009 (4e-04)
0.0089 (5e-04)

-0.0454 (0.0033)
0.0143 (5e-04)
0.0136 (5e-04)

Table S4: Differences between polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P4+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across 100
simulations. We report standard errors in parentheses. (a) Difference between R? for LDpred-funct vs. R?
for each method. (b) Difference between R? for each method vs. R? for LDpred.
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Training sample size

# Causal 10,000 20,000 50,000
1,000 0.03 0.1 1
2,000 0.03 0.1 1
5000 0.03 0.1 1

10,000 0.1 0.3 1

Table S5: Model parameter values for LDpred in simulations. We report the optimal value of p
which is the fraction of non-zero effects in the prior, and LD-radious assumed was 2000 SNPs. The analyses
from LDpred exclude long-range LD regions reported in ref. 23.
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Training sample size
# Causal 10,000 20,000 50,000
P+T 0.0001  0.0001 0.0001
1,000 P+T-funct-LASSO HP SNP Set 0.1000 0.1000 0.3000
P+T-funct-LASSO LP SNP Set 0.0100 0.0100 0.0100
P+T 0.0010 0.0010 0.0010
2,000 P+T-funct-LASSO HP SNP Set 0.1000 0.1000 0.3000
P+T-funct-LASSO LP SNP Set  0.0100 0.0100 0.0100
P+T 0.0100 0.0100 0.0100
5,000 P+T-funct-LASSO HP SNP Set 0.3000 0.3000 0.3000
P+T-funct-LASSO LP SNP Set  0.1000 0.1000 0.1000
P+T 0.1000 0.1000 0.0100
10,000 P~+T-funct-LASSO HP SNP Set 0.3000 0.3000 1.0000
P+T-funct-LASSO LP SNP Set  0.1000 0.1000 0.1000

Table S6: Model parameter values for P4+T and P+T-funct-LASSO in simulated traits. We
report the optimal p-value threshold for Pruning + Thresholding (P+T), optimal p-value threshold for P+T-
funct-LASSO high prior SNP (HP) set and optimal p-value threshold for P4+T-funct-LASSO low prior SNP
(LP) set. Optimal R? ;, values was 0.1.
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Training sample size

# Causal 10,000 20,000 50,000
variants  Model Average R?(s.e.) Average R’(s.e.) Average R*(s.e.)
P+T 0.9371 (0.0282)  0.9806 ( 0.0204)  0.8189 ( 0.0486)
LDpred 0.992 (0.0146)  0.947 (0.0083)  0.8521 ( 0.004)
1,000 P+T-funct-LASSO  1.5051 ( 0.0589)  1.3703 ( 0.0386)  1.0151 ( 0.075)
LDpred-funct-inf ~ 0.4708 ( 0.0025)  0.454 (0.002)  0.4345 ( 0.0024)
LDpred-funct 0.9803 ( 6e-04)  0.9847 ( 4e-04)  0.9877 ( 4e-04)
P+T 07644 ( 0.0300)  0.791 ( 0.0257) _ 0.7976 ( 0.0209)
LDpred 0.9688 ( 0.037) 0.9346 ( 0.0257)  0.8483 ( 0.0044)
2,000 P+T-funct-LASSO  1.3572 (0.0382)  1.2138 ( 0.0544)  1.0448 ( 0.0284)
LDpred-funct-inf ~ 0.4656 ( 0.004)  0.457 (0.0028)  0.4396 ( 0.0021)
LDpred-funct 0.9787 (0.001)  0.9837 ( 7e-04)  0.9882 ( 4e-04)
P+T 0.4546 ( 0.0207)  0.5054 ( 0.0172) _ 0.6728 ( 0.0158)
LDpred 0.9984 ( 0.0067)  0.9671 ( 0.0071)  0.8538 ( 0.0044)
5,000 P+T-funct-LASSO  0.8085 ( 0.0267)  0.8994 ( 0.012) 0.909 ( 0.0213)
LDpred-funct-inf 0.47 ( 0.0035) 0.4584 ( 0.0023)  0.4424 ( 0.0015)
LDpred-funct 0.9776 ( 9e-04) 0.9839 ( 5e-04) 0.9881 ( 4e-04)
PiT 0.3196 (0.0136)  0.4655 ( 0.016) _ 0.536 ( 0.0116)
LDpred 0.9903 (0.0156)  0.9449 ( 0.0059)  0.847 ( 0.0041)
10,000 P+T-funct-LASSO 0.6824 ( 0.0182)  0.8142 ( 0.0182)  0.8178 ( 0.017)
LDpred-funct-inf ~ 0.4654 ( 0.0028)  0.4528 ( 0.0025)  0.4365 ( 0.0024)
LDpred-funct 0.9761 ( 7e-04) 0.9824 ( 6e-04) 0.9874 ( 4e-04)

Table S7: Calibration of 5 polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report calibration slopes for P4-T, LD-
pred, P4+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal
variants (extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants
(polygenic architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged
across 100 simulations.
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Training sample size

# Causal 10,000 20,000 50,000
variants ~ Model Average R?(s.e.) Average R?(s.e.) Average R*(s.e.)
LDpred-funct-inf 0.1896 ( 0.0018) _ 0.2419 ( 0.0019)  0.3015 ( 0.0019)
LDpred-funct-inf-5 0.208 ( 0.002) 0.2585 ( 0.002) 0.3104 ( 0.0019)
LDpred-funct-inf-10 ~ 0.2101 ( 0.002) 0.261 ( 0.002) 0.3124 ( 0.002)
LDpred-funct-inf-20  0.2116 ( 0.002) 0.263 ( 0.002) 0.314 ( 0.002)
LDpred-funct-inf-30  0.2126 ( 0.002)  0.2638 ( 0.002)  0.315 ( 0.002)
000 LDpred-funct-inf-40  0.2131 ( 0.002)  0.2644 ( 0.0021)  0.3157 ( 0.002)
’ LDpred-funct-inf-50  0.2141 ( 0.002)  0.2652 ( 0.0021)  0.3161 ( 0.002)
LDpred-funct-inf-60  0.2145 ( 0.0021)  0.2655 ( 0.0021)  0.3172 ( 0.002)
LDpred-funct-inf-70  0.2157 ( 0.0021)  0.266 ( 0.0021)  0.317 ( 0.0021)
LDpred-funct-inf-80  0.216 ( 0.002) 0.2665 ( 0.0021)  0.3173 ( 0.0021)
LDpred-funct-inf-90  0.2164 ( 0.0021)  0.2667 ( 0.0021)  0.3176 ( 0.0021)
LDpred-funct-inf-100  0.2165 ( 0.0021)  0.267 ( 0.0021)  0.3174 ( 0.0021)
LDpred-funct-inf 0.1900 ( 0.0015) _ 0.2458 ( 0.0015) _ 0.3057 ( 0.0016)
LDpred-funct-inf-5 0.1994 ( 0.0016)  0.254 ( 0.0016) 0.3101 ( 0.0016)
LDpred-funct-inf-10  0.2005 ( 0.0016)  0.2554 ( 0.0016)  0.3113 ( 0.0017)
LDpred-funct-inf-20 0.2016 ( 0.0016)  0.2566 ( 0.0016)  0.3124 ( 0.0017)
LDpred-funct-inf-30 0.2018 ( 0.0016)  0.2572 ( 0.0016)  0.3129 ( 0.0017)
2.000 LDpred-funct-inf-40 0.2023 ( 0.0016)  0.2576 ( 0.0016)  0.3134 ( 0.0017)
’ LDpred-funct-inf-50 0.2023 ( 0.0016)  0.2575 ( 0.0016)  0.3136 ( 0.0017)
LDpred-funct-inf-60 0.2025 ( 0.0016)  0.258 ( 0.0017) 0.3137 ( 0.0017)
LDpred-funct-inf-70  0.2027 ( 0.0016)  0.2579 ( 0.0017)  0.3135 ( 0.0017)
LDpred-funct-inf-80  0.2031 ( 0.0016)  0.2583 ( 0.0017)  0.3133 ( 0.0017)
LDpred-funct-inf-90  0.2028 ( 0.0016)  0.2579 ( 0.0017)  0.3134 ( 0.0018)
LDpred-funct-inf-100  0.2031 ( 0.0016)  0.2582 ( 0.0017)  0.313 ( 0.0018)
LDpred-funct-inf 0.1872 (0.0012) _ 0.243 ( 0.0013) __ 0.3063 ( 0.0014)
LDpred-funct-inf-5  0.1895 ( 0.0012)  0.2451 ( 0.0013)  0.3075 ( 0.0014)
LDpred-funct-inf-10  0.1898 ( 0.0012)  0.2456 ( 0.0013)  0.3079 ( 0.0014)
LDpred-funct-inf-20  0.1897 ( 0.0012)  0.2461 ( 0.0013)  0.3083 ( 0.0014)
LDpred-funct-inf-30  0.1898 ( 0.0012)  0.2461 ( 0.0013)  0.3084 ( 0.0014)
- 000 LDpred-funct-inf-40  0.1895 ( 0.0012)  0.2458 ( 0.0013)  0.3081 ( 0.0014)
’ LDpred-funct-inf-50  0.1894 ( 0.0012)  0.2457 ( 0.0013)  0.3081 ( 0.0014)
LDpred-funct-inf-60  0.1893 ( 0.0012)  0.2454 ( 0.0013)  0.3077 ( 0.0014)
LDpred-funct-inf-70 ~ 0.1891 ( 0.0012)  0.245 ( 0.0013) 0.3073 ( 0.0014)
LDpred-funct-inf-80  0.1888 ( 0.0012)  0.2447 ( 0.0013)  0.3071 ( 0.0014)
LDpred-funct-inf-90  0.1885 ( 0.0012)  0.2444 ( 0.0013)  0.3066 ( 0.0014)
LDpred-funct-inf-100  0.188 ( 0.0012)  0.244 ( 0.0013)  0.3062 ( 0.0014)
LDpred-funct-inf 0.1873 (1 0.0012)  0.2419 ( 0.0012)  0.3059 ( 0.0013)
LDpred-funct-inf-5  0.1883 ( 0.0012)  0.2428 ( 0.0012)  0.3064 ( 0.0013)
LDpred-funct-inf-10  0.1882 ( 0.0012)  0.2428 ( 0.0012)  0.3064 ( 0.0012)
LDpred-funct-inf-20 ~ 0.1878 ( 0.0012)  0.2427 ( 0.0012)  0.3061 ( 0.0012)
LDpred-funct-inf-30 0.1873 ( 0.0013)  0.2422 ( 0.0012)  0.3056 ( 0.0013)
10.000 LDpred-funct-inf-40 0.187 ( 0.0013) 0.2418 ( 0.0012)  0.3053 ( 0.0012)
’ LDpred-funct-inf-50  0.1865 ( 0.0012)  0.2414 ( 0.0012)  0.3049 ( 0.0013)
LDpred-funct-inf-60  0.186 ( 0.0013) 0.2409 ( 0.0012)  0.3043 ( 0.0013)
LDpred-funct-inf-70  0.1855 ( 0.0013)  0.2406 ( 0.0012)  0.3039 ( 0.0013)
LDpred-funct-inf-80  0.1851 ( 0.0012)  0.2399 ( 0.0012)  0.3036 ( 0.0012)
LDpred-funct-inf-90 0.1846 ( 0.0013)  0.2393 ( 0.0012)  0.3027 ( 0.0013)
LDpred-funct-inf-100  0.1841 ( 0.0013)  0.2387 ( 0.0012)  0.3027 ( 0.0013)

Table S8: Sensitivity of LDpred-funct results to number of bins used for regularization in
simulations using UK Biobank genotypes. We report results with the number of posterior mean causal
effect size bins used for regularization (K) set to 10, 20, 50 or 100. LDpred-funct-K denotes each respective
value of K. We also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1.
Results are averaged across 100 simulations. We report standard errors in parentheses.
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Training sample size

# Causal 10,000 20,000 50,000

variants ~ Model Average R?(s.e.) Average R*(s.e.) Average R*(s.e.)
LDpred-funct-inf 0.1896 ( 0.0018)  0.2419 ( 0.0019) _ 0.3015 ( 0.0019)
LDpred-funct 0.2131 (0.002)  0.2644 ( 0.0021)  0.3157 ( 0.002)

1,000 LDpred-funct-inf-cheat  0.1926 ( 0.0018)  0.2456 ( 0.0019)  0.3074 ( 0.002)
LDpred-funct-cheat  0.2221 ( 0.0021)  0.2714 ( 0.0022)  0.3228 ( 0.0021)
LDpred-funct-inf 0.1900 ( 0.0015)  0.2458 (0.0015) _ 0.3057 ( 0.0016)
LDpred-funct 0.2023 ( 0.0016)  0.2576 ( 0.0016)  0.3134 ( 0.0017)

2,000 LDpred-funct-inf-cheat  0.1943 ( 0.0015)  0.2498 ( 0.0016)  0.3108 ( 0.0016)
LDpred-funct-cheat  0.2109 ( 0.0016)  0.2646 ( 0.0017)  0.3193 ( 0.0017)
LDpred-funct-inf 0.1872 (0.0012)  0.243 (0.0013) _ 0.3063 ( 0.0014)
LDpred-funct 0.1895 ( 0.0012)  0.2458 ( 0.0013)  0.3081 ( 0.0014)

5,000 LDpred-funct-inf-cheat  0.1928 ( 0.0013)  0.2479 ( 0.0013)  0.3102 ( 0.0014)
LDpred-funct-cheat 0.1972 ( 0.0014)  0.252 ( 0.0013) 0.3121 ( 0.0014)
LDpred-funct-inf 0.1873 (0.0012)  0.2419 ( 0.0012) _ 0.3059 ( 0.0013)
LDpred-funct 0.1870 ( 0.0013)  0.2418 ( 0.0012)  0.3053 ( 0.0012)

10,000  LDpred-funct-inf-cheat 0.1937 ( 0.0012)  0.2474 ( 0.0012)  0.3097 ( 0.0012)
LDpred-funct-cheat  0.194 ( 0.0013)  0.2482 ( 0.0013)  0.3096 ( 0.0013)

Table S9: Accuracy of LDpred-funct method in simulations using UK Biobank genotypes under
different BaselineLLD estimates, for 4 values of the number of causal variants. LDpred-funct-cheat
refers to a ”cheating” version of LDpred-funct that utilized the true baseline-LD model parameters used to
simulate the data. Results are averaged across 100 simulations.
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Trait Training N hg ¢ bins

1 Height 408092 0.57 0.45 100

2 Hair color 403024 0.45 0.22 100
3 Platelet count 395747 0.40 0.29 88
4  Bone mineral density 397274 0.40 0.26 87
5 Red blood cell count 396464 0.32 0.21 70
6 Age at menarche 214860 0.31 0.20 40
7 FEV1 FVC ratio 331786 0.31 0.24 56
8 Body mass index 407667 0.31 0.27 70
9 RBC distribution width 394258 0.29 0.20 63
10  Eosinophil count 391787 0.27 0.18 60
11 Forced vital capacity 331786 0.27 0.22 50
12 White blood cell count 395835 0.27 0.21 60
13 Systolic Blood pressure 376437 0.27 0.21 56
14 Waist hip ratio 408196 0.21 0.15 48
1 Balding type I 186506 0.32 0.11 31
2 Tanning ability 400721 0.23 0.09 53
3 College Education 405140 0.20 0.15 45
4  Hyperthension 408323 0.18 0.14 41
5 Cardiovascular Diseases 408963 0.16 0.12 37
6 Morning Person 365245 0.14 0.11 29
7 Eczema 408454 0.12 0.09 27

Table S10: Parameter values for 21 UK Biobank traits. The 14 quantitative traits are listed first,
followed by the 7 binary traits. For each trait, we list the training sample size, h; estimate (from BOLT-LMM
v2.3; used by LDpred, LDpred-funct-inf and LDpred-funct), the ¢ parameter (used by LDpred-funct-inf and
LDpred-funct) and number of bins for LDpred-funct.
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Table S12: Accuracy of 5 polygenic prediction methods across 7 UK Biobank binary traits. We
report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Optimal parame-
ters for each method are reported in Table S16, Table S15 and Table S10. We report block jackknife standard
error over 200 equally sized blocks of adjacent SNPs.
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Absolute differences between polygenic predicti

Table S13

We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. We

report the difference between prediction R? for each method vs. prediction R? for LDpred. Block-jackknife

standard errors are reported in parentheses.

traits.
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Method Average R?

1 P+T 0.1126
9 LDpred 0.1331
3  P+T-funct-LASSO 0.1218
4 LDpred-funct-inf 0.1343
5 LDpred-funct 0.1447
6 LDpred-inf 0.1133
7 LDpred (without excluding long-range LD regions) 0.0839
8 LDpred (typed SNPs only) 0.1299
9  LDpred-funct-inf (typed SNPs only) 0.1135
10 LDpred-funct (typed SNPs only) 0.1209
11 P+T-funct-LASSO-weighted 0.1231
12 P+T-funct-LASSO (5%) 0.1219
13 LDpred-funct-inf (meta31) 0.1303
14 LDpred-funct-inf (baseline) 0.1313
15 LDpred-funct (baseline) 0.1411
16 LDpred-funct-inf(QCfilters) 0.1339
17 LDpred-funct-inf(UK10K) 0.1354
18 LDpred-funct-inf(UK10K, baseline-LD+LDAK) 0.1350
19  AnnoPred 0.1413
20 LDpred-funct-inf (Baseline-LD v2.1) 0.1360
21 LDpred-funct (Baseline-LD v2.1) 0.1469

Table S14: Accuracy of secondary polygenic prediction methods across 21 UK Biobank traits.
For each method, we report the average prediction R? across 21 UK Biobank traits. Rows 1-5 correspond to
the ” Average across traits” panel of Figure 2. Row 6 correspond to the average prediction R? from LDpred-
inf. Row 7 correspond to the average prediction R? from LDpred that includes SNPs from long-range LD
regions. Rows 8-10 are methods that analyze only genotyped SNPs (601,728 genotyped SNPs after QC).
Rows 11-12 are slightly modified versions of P+T-funct-LASSO. Row 13 uses baseline-LD model functional
enrichments that were meta-analyzed across 31 traits. Row 14-15 uses the baseline model, instead of the
baseline-LD model. Row 16 restricts the baseline-LLD model to the 6,334,603 SNPs that passed QC filters
and were used for prediction. Row 17 infers baseline-LD model parameters using UK10K SNPs, instead of
1000 Genomes SNPs. Row 18 uses UK10K SNPs and uses the baseline-LD+LDAK model, instead of the
baseline-LD model. Row 19 corresponds to the average prediction R? from AnnoPred. Row 20 corresponds to
the average prediction R? for LDpred-funct-inf using baseline-LD model v2.1 (instead of baseline-LD model
v1.1, which is used in our main analyses). Row 21 corresponds to the average prediction R? for LDpred-funct
using baseline-LD model v2.1 (instead of baseline-LD model v1.1, which is used in our main analyses).
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Trait hﬁ p
1 Height 0.57  0.3000
2 Hair color 0.45 0.3000
3 Platelet count 0.40 0.1000
4 Bone mineral density 0.40 0.1000
5 Balding type I 0.32 0.0100
6 Red blood cell count 0.32 0.1000
7 Age at menarche 0.31  0.0300
8 FEV1 FVC ratio 0.31 0.1000
9 Body mass index 0.31 0.1000

10 RBC distribution width  0.29  0.1000
11  Forced vital capacity 0.27 0.0300
12 Eosinophil count 0.27  0.0300
13 White blood cell count ~ 0.27  0.1000
14 Systolic Blood pressure  0.27 0.1000

15 Tanning ability 0.23  0.1000
16  Waist hip ratio 0.21  0.0300
17 College Education 0.20  0.0300
18 Hyperthension 0.18 0.0300
19 Cardiovascular Diseases 0.16 0.0100
20  Morning Person 0.14 0.0100
21 Eczema 0.12  0.0030

Table S15: Model parameter values for LDpred applied to 21 UK Biobank traits. hg estimate
(from BOLT-LMM v2.3), p is the fraction of non-zero effects in the prior, and LD-radious assumed was 2000
SNPs. The main analyses from LDpred exclude long-range LD regions reported in ref. 23, given that including
these regions proved to be sub-optimal (see Table S14).
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P-values threshold for

Phenotype h; P+T P+T-funct-LASSO P+T-funct-LASSO

HP SNP set LP SNP set

1 Height 0.57 0.0100 0.30 0.10
2 Hair color 0.45 0.0010 0.10 0.01
3 Platelet count 0.40 0.0100 0.10 0.10
4  Bone mineral density 0.40 0.0010 0.10 0.10
5 Balding type I 0.32  0.0001 0.10 0.01
6 Red blood cell count 0.32 0.0010 0.10 0.10
7 Age at menarche 0.31 0.0100 0.10 0.10
8 FEV1 FVC ratio 0.31 0.0010 0.10 0.10
9 Body mass index 0.31 0.1000 0.30 0.10
10 RBC distribution width 0.29 0.0010 0.10 0.01
11 Forced vital capacity 0.27 0.0100 0.10 0.10
12 Eosinophil count 0.27  0.0010 0.10 0.10
13 White blood cell count  0.27 0.0100 0.10 0.10
14  Systolic Blood pressure  0.27 0.0100 0.10 0.10
15 Tanning ability 0.23 0.0010 0.10 0.01
16 Waist hip ratio 0.21  0.0100 0.10 0.10
17 College Education 0.20  1.0000 0.30 0.30
18  Hyperthension 0.18 0.0100 0.10 0.10
19 Cardiovascular Diseases 0.16 0.1000 0.10 0.10
20 Morning Person 0.14 0.0100 0.10 0.10
21 Eczema 0.12  0.0100 0.10 0.01

Table S16: Model parameter values for P+ T and P+T-funct-LASSO in 21 UK Biobank traits.
We report the optimal p-value threshold for Pruning + Thresholding (P+T), optimal p-value threshold for
P+T-funct-LASSO high prior SNP (HP) set and optimal p-value threshold for P+T-funct-LASSO low prior
SNP (LP) set. Optimal R? ;, values was 0.1.
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Phenotype h; P+T P+T-funct-LASSO LDpred LDpred-funct-inf LDpred-funct

1 Height 0.575 0.2228 0.3034  0.7595 0.7367 0.9938
2 Hair color 0.446  0.2505 0.3058  0.7254 0.7182 0.9920
3 Platelet count 0.401 0.2429 0.3423  0.8451 0.8115 0.9895
4 Bone mineral density 0.398 0.2871 0.3477  0.8192 0.8246 0.9865
5 Balding type I 0.323 0.3693 0.5050  0.8994 0.8781 0.9776
6 Red blood cell count 0.319 0.2898 0.3458  0.8583 0.8202 0.9822
7 Age at menarche 0.313  0.1990 0.3430  1.0227 0.8706 0.9782
8 FEV1 FVC ratio 0.309 0.3021 0.3593  0.8843 0.8527 0.9740
9 Body mass index 0.307 0.1687 0.3541  0.9138 0.8599 0.9813
10 RBC distribution width 0.286 0.2839 0.4189  0.8399 0.8123 0.9833
11  Forced vital capacity 0.274 0.2237 0.3783  0.9085 0.8665 0.9770
12 Eosinophil count 0.274 0.2781 0.3298  0.9082 0.8518 0.9830
13 White blood cell count  0.273  0.2352 0.3707  0.9033 0.8538 0.9793
14 Systolic Blood pressure  0.267 0.2200 0.3637  0.9050 0.8453 0.9808
15  Tanning ability 0.235 0.2437 0.2873  0.8312 0.8292 0.9905
16 ~ Waist hip ratio 0.210  0.2057 0.3344  0.8453 0.8500 0.9758
17 College Education 0.198 0.1345 0.2610 1.0159 0.8520 0.9728
18  Hyperthension 0.179 0.2140 0.3557  0.9817 0.8077 0.9710
19 Cardiovascular Diseases 0.160 0.1213 0.3296 0.9376 0.7953 0.9643
20 Morning Person 0.137 0.2158 0.3720 1.0803 0.8751 0.9651
21  Eczema 0.118 0.1752 0.4971  0.7496 0.7611 0.9634
22 Average across traits 0.286 0.2325 0.3574 0.8873 0.8273 0.9791

Table S17: Calibration comparison for the 5 methods applied to 21 UK Biobank traits. We
report calibration slopes for each method, where a value close to 1 respresents a well calibrated prediction.
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Table S18

21 UK Biobank traits. We report results with the number of posterior mean causal effect size bins used

for regularization (K) set to 10, 20, 50, 75 or 100. LDpred-funct-K denotes each respective value of K. We

also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1.
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Table S19

Biobank traits. We report results with the number of validation samples set to 1,000, 2,000, 5,000, 10,000

(the number of regularization bins is proportional to the number of validation samples; see Equation 6. Results
are averaged across 100 random subsets of each size. ALL denotes results of LDpred-funct using the total

number of validation samples (reported in Table S1). We also report results for LDpred-funct-inf, which is

equivalent to LDpred-funct in the limit of a very small number of validation samples.
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Data Set Training N P+T LDpred P+T-funct LDpred-funct-inf LDpred-funct
-LASSO

UK Biobank in- 113,660 0.2223 0.2276  0.2524 0.2777 0.2926

terim release

UK Biobank 408,092 0.3448 0.3860  0.3644 0.3995 0.4132

23andMe 698,430 0.2903 0.2919  0.2985 0.3148 0.3279

Meta-analysis 1,107,430 0.3710 0.4004  0.3778 0.4193 0.4292

of UK Biobank

and 23andMe

Fixed-effect 1,107,430 0.3687 0.3675  0.3663 0.3965 0.4051
meta-analysis

Table S20: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and
LDpred-funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK
Biobank (408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank
and 23andMe (1,107,430 training samples). We also report results for a fixed-effect meta-analysis of UK
Biobank and 23andMe.
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Phenotype h; LDpred-funct AnnoPred Difference

1 Height 0.57 0.4128 (0.0261) 0.4078 (0.0268) -0.0046 (0.0186)
2 Hair color 0.45 0.3290 (0.1358) 0.2591 (0.1124) -0.0683 (0.0284)
3 Platelet count 0.40  0.2460 (0.0269) 0.2351 (0.0221) -0.0099 (0.0095)
4 Bone mineral density 0.40  0.2256 (0.025) 0.2316 (0.0211)  0.0062 (0.0042)
5 Balding type I 0.32  0.1221 (0.0235) 0.1452 (0.0207)  0.0230 (0.0131)
6 Red blood cell count 0.32  0.1659 (0.0202) 0.1680 (0.0155)  0.0018 (0.0034)
7 Age at menarche 0.31 0.1122 (0.0183) 0.1144 (0.0102) 0.003 (0.0028)
8 FEV1 FVC ratio 0.31  0.1330 (0.017) 0.1445 (0.0102)  0.0112 (0.0034)
9 Body mass index 0.31 0.1499 (0.0151) 0.1539 (0.0079)  0.0042 (0.0029)
10 RBC distribution width  0.29  0.1533 (0.0202) 0.1487 (0.0149)  -0.0046 (0.007)
11  Forced vital capacity 0.27 0.1134 (0.0148) 0.1190 (0.0071)  0.0056 (0.0021)
12 Eosinophil count 0.27 0.1409 (0.0191)  0.1386 (0.014) -0.0025 (0.0108)
13 White blood cell count  0.27 0.1270 (0.0161) 0.1320 (0.0096)  0.0049 (0.0067)
14  Systolic Blood pressure  0.27 0.1112 (0.0133) 0.1173 (0.0069)  0.0067 (0.0019)
15 Tanning ability 0.23 0.1842 (0.0784) 0.1226 (0.0645)  -0.0616 (0.028)
16 Waist hip ratio 0.21 0.0806 (0.0116) 0.0853 (0.0071)  0.0047 (0.0039)
17 College Education 0.20 0.0728 (0.0109) 0.0707 (0.0066) -0.0022 (0.0027)
18 Hyperthension 0.18 0.0534 (0.0094) 0.0575 (0.0048)  0.0041 (0.0019)
19 Cardiovascular Diseases 0.16 0.0427 (0.0084)  0.0468 (0.004)  0.0040 (0.0012)
20 Morning Person 0.14  0.0365 (0.008) 0.0390 (0.0032)  0.0025 (0.0013)
21 Eczema 0.12 0.0272 (0.0064) 0.0306 (0.0034)  0.0044 (0.0014)
Average across traits 0.29 0.1439 (0.0112) 0.1407 (0.0098) -0.0032 (0.0034)

Table S21: Accuracy of LDpred-funct and AnnoPred across 21 UK Biobank traits.

We re-

port prediction R? for LDpred-funct and AnnoPred, and difference in prediction R? between AnnoPred and

LDpred-funct.

Block-jackknife standard errors are reported in parentheses.

When running AnnoPred, we

excluded SNPs from long-range LD regions (analogous to LDpred). We note that AnnoPred employs either
(i) a prior in which the probability of being causal is the same for each SNP and the causal effect size variance
varies across SNPs, or (ii) a prior in which the probability of being causal varies across SNPs and the causal
effect size variance is the same for each SNPs. We considered only the first prior, as the second prior constructs
categories of SNPs that share the same annotation values; in the case of continuous-valued annotations this

would lead to an infinite number of categories.
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LDpred-funct-inf under different priors:

Trait hg baselineLD baselineLLD baselineLD +
(1000G) (UK10K) LDAK (UK10K)
1 FEosinophil 0.274 0.1335 0.1335 0.1342
count
2 Platelet count 0.401 0.2315 0.2327 0.2298
3 RBC distribu- 0.286 0.1421 0.1432 0.1451
tion width
4 Red blood cell 0.319 0.1571 0.1566 0.1544
count
5 White blood cell 0.273 0.1239 0.1246 0.1251
count
6 Bone mineral 0.398 0.2137 0.2122 0.2117
density
7 Balding type I 0.323 0.1075 0.1040 0.1070
8 Body mass in- 0.307 0.1508 0.1503 0.1502
dex
9 Height 0.575 0.4003 0.4031 0.4033
10  Waist hip ratio  0.210 0.0793 0.0793 0.0785
11  Systolic Blood 0.267 0.1114 0.1113 0.1136
pressure
12 College Educa- 0.198 0.0716 0.0788 0.0790
tion
13  Eczema 0.118 0.0274 0.0283 0.0277
14  Cardiovascular 0.160 0.0423 0.0446 0.0449
Diseases
15  Hyperthension 0.179 0.0523 0.0548 0.0555
16 FEV1 FVC ra- 0.309 0.1311 0.1309 0.1323
tio
17 Forced vital ca- 0.274 0.1145 0.1147 0.1140
pacity
18 Morning Person 0.137 0.0372 0.0404 0.0404
19 Hair color 0.446 0.2624 0.2749 0.2723
20 Tanning ability  0.235 0.1229 0.1254 0.1232
21 Age at menar- 0.313 0.1079 0.0995 0.0930
che

Table S22: Accuracy of LDpred-funct-inf(1000G), LDpred-funct-inf(UK10K) and LDpred-
funct-inf(UK10K, baseline-LD+LDAK) across 21 UK Biobank traits. We report results for each
trait. Results for Average across traits are reported in Table S14.

23


https://doi.org/10.1101/375337

