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Abstract15

Genetic variants in functional regions of the genome are enriched for complex trait heritabil-16

ity. Here, we introduce a new method for polygenic prediction, LDpred-funct, that leverages17

trait-specific functional enrichments to increase prediction accuracy. We fit priors using the18

recently developed baseline-LD model, which includes coding, conserved, regulatory and LD-19

related annotations. We analytically estimate posterior mean causal e↵ect sizes and then use20

cross-validation to regularize these estimates, improving prediction accuracy for sparse architec-21

tures. LDpred-funct attained higher prediction accuracy than other polygenic prediction methods22

in simulations using real genotypes. We applied LDpred-funct to predict 21 highly heritable traits23

in the UK Biobank. We used association statistics from British-ancestry samples as training data24

(avg N=365K) and samples of other European ancestries as validation data (avg N=22K), to25

minimize confounding. LDpred-funct attained a +9% relative improvement in average predic-26

tion accuracy (avg prediction R2=0.145; highest R2=0.413 for height) compared to LDpred (the27

best method that does not incorporate functional information), consistent with simulations. For28

height, meta-analyzing training data from UK Biobank and 23andMe cohorts (total N=1107K;29
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higher heritability in UK Biobank cohort) increased prediction R2 to 0.429. Our results show30

that modeling functional enrichment improves polygenic prediction accuracy, consistent with the31

functional architecture of complex traits.32
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Introduction33

Genetic variants in functional regions of the genome are enriched for complex trait heritability1–6.34

In this study, we aim to leverage functional enrichment to improve polygenic prediction7,8. Sev-35

eral studies have shown that incorporating prior distributions on causal e↵ect sizes can improve36

prediction accuracy9–12, compared to standard Best Linear Unbiased Prediction (BLUP) or Prun-37

ing+Thresholding methods13–15. Recent e↵orts to incorporate functional information have produced38

promising results16,17, but may be limited by dichotomizing between functional and non-functional39

variants16 or restricting their analyses to genotyped variants17.40

Here, we introduce a new method, LDpred-funct, for leveraging trait-specific functional enrich-41

ments to increase polygenic prediction accuracy. We fit functional priors using our recently devel-42

oped baseline-LD model18, which includes coding, conserved, regulatory and LD-related annotations.43

LDpred-funct first analytically estimates posterior mean causal e↵ect sizes, accounting for functional44

priors and LD between variants. LDpred-funct then uses cross-validation within validation samples45

to regularize causal e↵ect size estimates in bins of di↵erent magnitude, improving prediction accuracy46

for sparse architectures. We show that LDpred-funct attains higher polygenic prediction accuracy47

than other methods in simulations with real genotypes, analyses of 21 highly heritable UK Biobank48

traits, and meta-analyses of height using training data from UK Biobank and 23andMe cohorts.49

Methods50

Polygenic prediction methods51

We compared 5 main prediction methods: Pruning+Thresholding14,15 (P+T), LDpred12, P+T with52

functionally informed LASSO shrinkage16 (P+T-funct-LASSO), our new LDpred-funct-inf method,53

and our new LDpred-funct method; we also included LDpred-inf12, which is known to attain lower54

prediction accuracy than LDpred12, in some of our secondary analyses. P+T, LDpred-inf and LD-55

pred are polygenic prediction methods that do not use functional annotations. P+T-funct-LASSO56

is a modification of P+T that corrects marginal e↵ect sizes for winner’s curse, accounting for func-57

tional annotations. LDpred-funct-inf is an improvement of LDpred-inf that incorporates functionally58

informed priors on causal e↵ect sizes. LDpred-funct is an improvement of LDpred-funct-inf that uses59

cross-validation to regularize posterior mean causal e↵ect size estimates, improving prediction accu-60

racy for sparse architectures. Each method is described in greater detail below. In both simulations61

and analyses of real traits, we used squared correlation (R2) between predicted phenotype and true62

phenotype in a held-out set of samples as our primary measure of prediction accuracy.63

64
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P+T. The P+T method builds a polygenic risk score (PRS) using a subset of independent SNPs65

obtained via informed LD-pruning15 (also known as LD-clumping) followed by P-value thresholding14.66

Specifically, the method has two parameters, R2
LD and PT , and proceeds as follows. First, the method67

prunes SNPs based on a pairwise threshold R2
LD, removing the less significant SNP in each pair.68

Second, the method restricts to SNPs with an association P-value below the significance threshold69

PT . Letting M be the number of SNPs remaining after LD-clumping, polygenic risk scores (PRS)70

are computed as71

PRS(PT ) =
MX

i=1

1{Pi<PT }�̃igi, (1)

where �̃i are normalized marginal e↵ect size estimates and gi is a vector of normalized genotypes for72

SNP i. The parameters R2
LD and PT are commonly tuned using validation data to optimize predic-73

tion accuracy14,15. While in theory this procedure is susceptible to overfitting, in practice, validation74

sample sizes are typically large, and R2
LD and PT are selected from a small discrete set of parameter75

choices, so that overfitting is considered to have a negligible e↵ect7,14,15,19. Accordingly, in this work,76

we consider R2
LD 2 {0.1, 0.2, 0.5, 0.8} and PT 2 {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3 ⇤ 10�4, 10�4, 3 ⇤77

10�5, 10�5, 10�6, 10�7, 10�8}, and we always report results corresponding to the best choices of these78

parameters. The P+T method is implemented in the PLINK software (see Web Resources).79

80

LDpred-inf. The LDpred-inf method estimates posterior mean causal e↵ect sizes under an81

infinitesimal model, accounting for LD12. The infinitesimal model assumes that normalized causal82

e↵ect sizes have prior distribution �i ⇠ N(0,�2), where �2 = h2
g/M, h2

g is the SNP-heritability, and83

M is the number of SNPs. The posterior mean causal e↵ect sizes are84

E(�|�̃,D) = (
N

1� h2
l

⇤D+
1

�2
I)�1N ⇤ �̃, (2)

where D is the LD matrix between markers, I is the identity matrix, N is the training sample size,85

�̃ is the vector of marginal association statistics, and h2
l ⇡ kh2/M is the heritability of the k SNPs86

in the region of LD; following ref. 12 we use the approximation 1 � h2
l ⇡ 1, which is appropriate87

when M >> k. D is typically estimated using validation data, restricting to non-overlapping LD88

windows. We used the default LD window size, which is M/3000. h2
g can be estimated from raw89

genotype/phenotype data20,21 (the approach that we use here; see below), or can be estimated from90

summary statistics using the aggregate estimator as described in ref. 12. To approximate the nor-91

malized marginal e↵ect size ref. 12 uses the p-values to obtain absolute Z scores and then multiplies92

absolute Z scores by the sign of the estimated e↵ect size. When sample sizes are very large, p-93

values may be rounded to zero, in which case we approximate normalized marginal e↵ect sizes b�i by94
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bbi
p

2⇤pi⇤(1�pi)p
�2
Y

, where bbi is the per-allele marginal e↵ect size estimate, pi is the minor allele frequency95

of SNP i, and �2
Y is the phenotypic variance in the training data. This applies to all the methods96

that use normalized e↵ect sizes. Although the published version of LDpred requires a matrix inver-97

sion (Equation 2), we have implemented a computational speedup that computes the posterior mean98

causal e↵ect sizes by e�ciently solving22 the system of linear equations ( 1
�2 I+N⇤D)E(�|�̃,D) = N �̃.99

100

LDpred. The LDpred method is an extension of LDpred-inf that uses a point-normal prior to es-101

timate posterior mean e↵ect sizes via Markov Chain Monte Carlo (MCMC)12. It assumes a Gaussian102

mixture prior: �i ⇠ N(0, h2
g/M ⇤p) with probability p, and �i ⇠ 0 with probability 1�p, where p is the103

proportion of causal SNPs. The method is optimized by considering di↵erent values of p (1E-4, 3E-4,104

1E-3, 3E-3, 0.01,0.03,0.1,0.3,1). We excluded SNPs from long-range LD regions (reported in ref. 23),105

as our secondary analyses showed that including these regions was suboptimal, consistent with ref. 24.106

107

P+T-funct-LASSO. Ref. 16 proposed an extension of P+T that corrects the marginal e↵ect108

sizes of SNPs for winner’s curse and incorporates external functional annotation data (P+T-funct-109

LASSO). The winner’s curse correction is performed by applying a LASSO shrinkage to the marginal110

association statistics of the PRS:111

PRSLASSO(PT ) =
MX

i=1

sign(�̃i)||�̃i|� �(PT )|1{Pi<PT }gi, (3)

where �(PT ) = ��1(1� PT
2 )sd(�̃i), where ��1 is the inverse standard normal CDF. Functional anno-112

tations are incorporated via two disjoint SNPs sets, representing ”high-prior” SNPs (HP) and ”low-113

prior” SNPs (LP), respectively. We define the HP SNP set for P+T-funct-LASSO as the set of SNPs114

in the top 10% of expected per-SNP heritability under the baseline-LD model18, which includes cod-115

ing, conserved, regulatory and LD-related annotations, whose enrichments are jointly estimated using116

stratified LD score regression5,18 (see Baseline-LD model annotations section). We also performed117

secondary analyses using the top 5% (P+T-funct-LASSO-top5%). We define PRSLASSO,HP (PHP )118

to be the PRS restricted to the HP SNP set, and PRSLASSO,LP (PLP ) to be the PRS restricted to119

the LP SNP set, where PHP and PLP are the optimal significance thresholds for the HP and LP SNP120

sets, respectively. We define PRSLASSO(PHP , PLP ) = PRSLASSO,HP (PHP )+PRSLASSO,LP (PLP ).121

We also performed secondary analyses were we allow an additional regularization to the two PRS:122

PRSLASSO(PHP , PLP ) = ↵1PRSLASSO,HP (PHP )+↵2PRSLASSO,LP (PLP ); we refer to this method123

as P+T-funct-LASSO-weighted.124

125

LDpred-funct-inf. We modify LDpred-inf to incorporate functionally informed priors on causal126
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e↵ect sizes using the baseline-LD model18, which includes coding, conserved, regulatory and LD-127

related annotations, whose enrichments are jointly estimated using stratified LD score regression5,18.128

Specifically, we assume that normalized causal e↵ect sizes have prior distribution �i ⇠ N(0, c ⇤ �2
i ),129

where �2
i is the expected per-SNP heritability under the baseline-LD model (fit using training data130

only) and c is a normalizing constant such that
PM

i=1 1{�2
i>0}c�

2
i = h2

g; SNPs with �2
i  0 are131

removed, which is equivalent to setting �2
i = 0. The posterior mean causal e↵ect sizes are132

E[�|�̃,D,�2
1 , . . . ,�

2
M+

] = W�1N ⇤ �̃ =

2

66664
N ⇤D+

1

c

0

BBBB@

1
�2
1

. . . 0
...

. . .
...

0 . . . 1
�2
M+

1

CCCCA

3

77775

�1

N ⇤ �̃, (4)

where M+ is the number of SNPs with �2
i > 0. The posterior mean causal e↵ect sizes are computed by133

solving the system of linear equations WE[�|�̃,D,�2
1 , . . . ,�

2
M ] = N ⇤ �̃. h2

g is estimated as described134

above (see LDpred-inf). D is estimated using validation data, restricting to windows of size 0.15%M+.135

136

LDpred-funct. We modify LDpred-funct-inf to regularize posterior mean causal e↵ect sizes using137

cross-validation. We rank the SNPs by their (absolute) posterior mean causal e↵ect sizes, partition138

the SNPs into K bins (analogous to ref. 25) where each bin has roughly the same sum of squared139

posterior mean e↵ect sizes, and determine the relative weights of each bin based on predictive value140

in the validation data. Intuitively if a bin is dominated by non-causal SNPs, the inferred relative141

weight will be lower than for a bin with a high proportion of causal SNPs. This non-parametric142

shrinkage approach can optimize prediction accuracy regardless of the genetic architecture. In detail,143

let S =
P

i E[�i|�̃i]2. To define each bin, we first rank the posterior mean e↵ect sizes based on their144

squared values E[�i|�̃i]2. We define bin b1 as the smallest set of top SNPs with
P

i2b1
E[�i|�̃i]2 � S

K ,145

and iteratively define bin bk as the smallest set of additional top SNPs with
P

i2b1,...,bk
E[�i|�̃i]2 � kS

K .146

Let PRS(k) =
P

i2bk
E[�i|�̃i]gi. We define147

PRSLDpred�funct =
KX

k=1

↵kPRS(k), (5)

where the bin-specific weights ↵k are optimized using validation data via 10-fold cross-validation. For148

each held-out fold in turn, we split the data so we estimate the weights ↵k using the samples from the149

other nine folds (90% of the validation) and compute PRS on the held-out fold using these weights150

(10% of the validation). We then compute the average prediction R2 across the 10 held-out folds. To151

avoid overfitting when K is very close to N , we set the number of bins (K) to be between 1 and 100,152

such that it is proportional to h2
g and the number of samples used to estimate the K weights in each153

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


fold is at least 100 times larger than K:154

K = min(100, d
0.9N ⇤ h2

g

100
e), (6)

where N is the number of validation samples. For highly heritable traits (h2
g ⇠ 0.5), LDpred-155

funct reduces to the LDpred-funct-inf method if there are ⇠200 validation samples or fewer; for less156

heritable traits (h2
g ⇠ 0.1), LDpred-funct reduces to the LDpred-funct-inf method if there are ⇠1,000157

validation samples or fewer. In simulations, we set K to 40 (based on 7,585 validation samples; see158

below), approximately concordant with Equation 6. The value of 100 in the denominator of Equation159

6 was coarsely optimized in simulations, but was not optimized using real trait data.160

Standard errors. Standard errors for the prediction R2 of each method and the di↵erence in161

prediction R2 between two methods were computed via block-jackknife using 200 genomic jackknife162

blocks5; this is more conservative than computing standard errors based on the number of validation163

samples, which does not account for variation across a finite number of SNPs. For each method,164

we first optimized any relevant tuning parameters using the entire genome and then analyzed each165

jackknife block using those tuning parameters.166

Simulations167

We simulated quantitative phenotypes using real genotypes from the UK Biobank interim release168

(see below). We used up to 50,000 unrelated British-ancestry samples as training samples, and 7,585169

samples of other European ancestries as validation samples (see below). We made these choices to170

minimize confounding due to shared population stratification or cryptic relatedness between training171

and validation samples (which, if present, could overstate the prediction accuracy that could be ob-172

tained in independent samples26), while preserving a large number of training samples. We restricted173

our simulations to 459,284 imputed SNPs on chromosome 1 (see below), fixed the number of causal174

SNPs at 2,000 or 5,000 (we also performed secondary simulations with 1,000 or 10,000 causal vari-175

ants), and fixed the SNP-heritability h2
g at 0.5. We sampled normalized causal e↵ect sizes �i for causal176

SNPs from a normal distribution with variance equal to �2
i
p , where p is the proportion of causal SNPs177

and �2
i is the expected causal per-SNP heritability under the baseline-LD model18, fit using strati-178

fied LD score regression (S-LDSC)5,18 applied to height summary statistics computed from unrelated179

British-ancestry samples from the UK Biobank interim release (N=113,660). We computed per-allele180

e↵ect sizes bi as bi =
�ip

2pi(1�pi)
, where pi is the minor allele frequency for SNP i estimated using the181

validation genotypes. We simulated phenotypes as Yj =
PM

i bigij + ✏j , where ✏j ⇠ N(0, 1� h2
g). We182

set the training sample size to either 10,000, 20,000 or 50,000. The motivation to perform simulations183

using one chromosome is to be able to extrapolate performance at larger sample sizes12 according to184

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


the ratio N/M , where N is the training sample size. We compared each of the five methods described185

above. For LDpred-funct-inf and LDpred-funct, for each simulated trait we used S-LDSC (applied to186

training data only) to estimate baseline-LD model parameters. For LDpred-funct, we report R2 as187

the average prediction R2 across the 10 held-out folds.188

Full UK Biobank data set189

The full UK Biobank data set includes 459,327 European-ancestry samples and ⇠20 million imputed190

SNPs23 (after filtering as in ref. 20, excluding indels and structural variants). We selected 21 UK191

Biobank traits (14 quantitative traits and 7 binary traits) with phenotyping rate > 80% (> 80% of192

females for age at menarche, > 80% of males for balding), SNP-heritability h2
g > 0.2 for quantitative193

traits, observed-scale SNP-heritability h2
g > 0.1 for binary traits, and low correlation between traits194

(as described in ref. 20). We restricted training samples to 409,728 British-ancestry samples23,195

including related individuals (avgN=365K phenotyped training samples; see Table S1 for quantitative196

traits and Table S2 for binary traits). We computed association statistics from training samples using197

BOLT-LMM v2.320. We have made these association statistics publicly available (see Web Resources).198

We restricted validation samples to 25,112 samples of non-British European ancestry, after removing199

validation samples that were related (> 0.05) to training samples and/or other validation samples (avg200

N=22K phenotyped validation samples; see Table S1 and S2). As in our simulations, we made these201

choices to minimize confounding due to shared population stratification or cryptic relatedness between202

training and validation samples (which, if present, could overstate the prediction accuracy that could203

be obtained in independent samples26), while preserving a large number of training samples. We204

analyzed 6,334,603 genome-wide imputed SNPs, after removing SNPs with minor allele frequency205

< 1%, removing SNPs with imputation accuracy < 0.9, and removing A/T and C/G SNPs to206

eliminate potential strand ambiguity. We used h2
g estimates from BOLT-LMM v2.320 as input to207

LDpred, LDpred-funct-inf and LDpred-funct.208

UK Biobank interim release209

The UK Biobank interim release includes 145,416 European-ancestry samples27. We used the UK210

Biobank interim release both in simulations using real genotypes, and in a subset of analyses of height211

phenotypes (to investigate how prediction accuracy varies with training sample size).212

In our analyses of height phenotypes, we restricted training samples to 113,660 unrelated ( 0.05)213

British-ancestry samples for which height phenotypes were available. We computed association statis-214

tics by adjusting for 10 PCs28, estimated using FastPCA29 (see Web Resources). For consistency,215

we used the same set of 25,030 validation samples of non-British European ancestry with height216

phenotypes as defined above. We analyzed 5,957,957 genome-wide SNPs, after removing SNPs with217
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minor allele frequency < 1%, removing SNPs with imputation accuracy < 0.9, removing SNPs that218

were not present in the 23andMe height data set (see below), and removing A/T and C/G SNPs to219

eliminate potential strand ambiguity. .220

In our simulations, we restricted training samples to up to 50,000 of the 113,660 unrelated British-221

ancestry samples, and restricted validation samples to 8,441 samples of non-British European ancestry,222

after removing validation samples that were related (> 0.05) to training samples and/or other valida-223

tion samples. We restricted the 5,957,957 genome-wide SNPs (see above) to chromosome 1, yielding224

459,284 SNPs after QC.225

23andMe height summary statistics226

The 23andMe data set consists of summary statistics computed from 698,430 European-ancestry227

samples (23andMe customers who consented to participate in research) at 9,898,287 imputed SNPs,228

after removing SNPs with minor allele frequency < 1% and that passed QC filters (which include229

filters on imputation quality, avg.rsq< 0.5 or min.rsq< 0.3 in any imputation batch, and imputation230

batch e↵ects). Analyses were restricted to the set of individuals with > 97% European ancestry,231

as determined via an analysis of local ancestry30. Summary association statistics were computed232

using linear regression adjusting for age, gender, genotyping platform, and the top five principal233

components to account for residual population structure. The summary association statistics will be234

made available to qualified researchers (see Web Resources).235

We analyzed 5,957,935 genome-wide SNPs, after removing SNPs with minor allele frequency < 1%,236

removing SNPs with imputation accuracy < 0.9, removing SNPs that were not present in the full237

UK Biobank data set (see above), and removing A/T and C/G SNPs to eliminate potential strand238

ambiguity.239

Meta-analysis of full UK Biobank and 23andMe height data sets240

We meta-analyzed height summary statistics from the full UK Biobank and 23andMe data sets. We241

define242

PRSmeta = �1PRS1 + �2PRS2, (7)

where PRSi is the PRS obtained using training data from cohort i. The PRS can be obtained using243

P+T, P+T-funct-LASSO, LDpred-inf or LDpred-funct. The meta-analysis weights �i can either be244

specified via fixed-e↵ect meta-analysis (e.g. �i = NiP
Ni

) or optimized using validation data19. We245

use the latter approach, which can improve prediction accuracy (e.g. if the cohorts di↵er in their246

heritability as well as their sample size). In our primary analyses, we fit the weights �i in-sample247

and report prediction accuracy using adjusted R2 to account for in-sample fitting19. We also report248
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results using 10-fold cross-validation: for each held-out fold in turn, we estimate the weights �i using249

the other nine folds and compute PRS on the held-out fold using these weights. We then compute250

the average prediction R2 across the 10 held-out folds.251

When using LDpred-funct as the prediction method, we perform the meta-analysis as follows.252

First, we use LDpred-funct-inf to fit meta-analysis weights �i. Then, we use �i to compute (meta-253

analysis) weighted posterior mean causal e↵ect sizes (PMCES) via PMCES = �1PMCES1 +254

�2PMCES2, which are binned into k bins. Then, we estimate bin-specific weights ↵k (used to com-255

pute (meta-analysis + bin-specific) weighted posterior mean causal e↵ect sizes
PK

k=1 ↵kPMCES(k))256

using validation data via 10-fold cross validation.257

Baseline-LD model annotations258

The baseline-LD model (v1.1) contains a broad set of 75 functional annotations (including coding,259

conserved, regulatory and LD-related annotations), whose enrichments are jointly estimated using260

stratified LD score regression5,18. For each trait, we used the ⌧c values estimated for that trait to261

compute �2
i , the expected per-SNP heritability of SNP i under the baseline-LD model, as262

�2
i =

X

c

ac(i)⌧c, (8)

where ac(i) is the value of annotation c at SNP i.263

Joint e↵ect sizes ⌧c for each annotation c are estimated via264

E[�2
i ] = N

X

c

⌧cl(i, c) + 1, (9)

where l(i, c) is the LD score of SNP i with respect to annotation ac and �2
i is the chi-square statistic265

for SNP i. We note that ⌧c quantifies e↵ects that are unique to annotation c. In all analyses of real266

phenotypes, ⌧c and �2
i were estimated using training samples only.267

In our primary analyses, we used 489 unrelated European samples from phase 3 of the 1000268

Genomes Project31 as the reference data set to compute LD scores, as in ref. 18.269

To verify that our 1000 Genomes reference data set produces reliable LD estimates, we repeated270

our LDpred-funct analyses using S-LDSC with 3,567 unrelated individuals from UK10K32 as the271

reference data set (as in ref. 33), ensuring a closer ancestry match with British-ancestry UK Biobank272

samples. We also repeated our LDpred-funct analyses using S-LDSC with the baseline-LD+LDAK273

model (instead of the baseline-LD model), with UK10K as the reference data set. The baseline-274

LD+LDAK model (introduced in ref. 33) consists of the baseline-LD model plus one additional275

continuous annotation constructed using LDAK weights34, which has values (pj(1� pj))
1+↵ wj ,276
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where ↵ = �0.25, pj is the allele frequency of SNP j, and wj is the LDAK weight of SNP j computed277

using UK10K data.278

Results279

Simulations280

We performed simulations using real genotypes from the UK Biobank interim release and simulated281

phenotypes (see Methods). We simulated quantitative phenotypes with SNP-heritability h2
g = 0.5,282

using 476,613 imputed SNPs from chromosome 1. We selected either 2,000 or 5,000 variants to283

be causal; we refer to these as ”sparse” and ”polygenic” architectures, respectively. We sampled284

normalized causal e↵ect sizes from normal distributions with variances based on expected causal285

per-SNP heritabilities under the baseline-LD model18, fit using stratified LD score regression (S-286

LDSC)5,18 applied to height summary statistics from British-ancestry samples from the UK Biobank287

interim release. We randomly selected 10,000, 20,000 or 50,000 unrelated British-ancestry samples as288

training samples, and we used 7,585 unrelated samples of non-British European ancestry as validation289

samples. By restricting simulations to chromosome 1 (⇡ 1/10 of SNPs), we can extrapolate results290

to larger sample sizes (⇡ 10x larger; see Application to 21 UK Biobank traits), analogous to previous291

work12.292

We compared prediction accuracies (R2) for five main methods: P+T14,15, LDpred12, P+T-293

funct-LASSO16, LDpred-funct-inf and LDpred-funct (see Methods). Results are reported in Figure 1294

(main simulations) and Figure S1 (additional values of number of causal variants); numerical results295

are reported in Table S3 and Table S4. Among methods that do not use functional information, the296

prediction accuracy of LDpred was higher than P+T (particularly for the polygenic architecture),297

consistent with previous work8,12 (see Table S5 and Table S6 for optimal tuning parameters).298

299

Incorporating functional information via LDpred-funct-inf (a method that does not model spar-300

sity) produced improvements that varied with sample size (+4.7% relative improvement for sparse301

architecture and +4.8% relative improvement for polygenic architecture at N=50K training samples,302

compared to LDpred; smaller improvements at smaller sample sizes). These results are consistent303

with the fact that LDpred is known to be sensitive to model assumptions at large sample sizes12.304

Accounting for sparsity using LDpred-funct further improved prediction accuracy, particularly for305

the sparse architecture (+7.3% relative improvement for sparse architecture and +5.4% relative im-306

provement for polygenic architecture at N=50K training samples, compared to LDpred; smaller307

improvements at smaller sample sizes). LDpred-funct attained substantially higher prediction accu-308

racy than P+T-funct-LASSO in most settings (+11% relative improvement for sparse architecture309
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and +18% relative improvement for polygenic architecture at N=50K training samples; smaller im-310

provements at smaller sample sizes). The di↵erence in prediction accuracy between LDpred and each311

other method, as well as the di↵erence in prediction accuracy between LDpred-funct and each other312

method, was statistically significant in most cases (see Table S4). Simulations with 1,000 or 10,000313

causal variants generally recapitulated these findings, although P+T-funct-LASSO performed better314

than LDpred-funct for the extremely sparse architecture (Table S3).315

We performed three secondary analyses. First, we assessed the calibration of each method by316

checking whether a regression of true vs. predicted phenotype yielded a slope of 1. We determined317

that LDpred-funct was well-calibrated (regression slope 0.98-0.99), LDpred was fairly well-calibrated318

(regression slope 0.85-1.00), and other methods were not well-calibrated (Table S7). Second, we319

assessed the sensitivity of LDpred-funct to the choice of K=40 posterior mean causal e↵ect size bins320

to regularize e↵ect sizes in our main simulations. We determined that results were not sensitive to321

this parameter (Table S8); slightly higher values of K performed slightly better, but we did not finely322

optimize this parameter. Third, we evaluated a ”cheating” version of LDpred-funct that utilized the323

true baseline-LD model parameters used to simulate the data, instead of estimating these parameters324

from the data (LDpred-funct-cheat). LDpred-funct-cheat performed only slightly better than LDpred-325

funct, indicating that LDpred-funct is not sensitive to imperfect estimation of functional enrichment326

parameters (see Table S9).327

Application to 21 UK Biobank traits328

We applied P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to 21 UK Biobank329

traits (14 quantitative traits and 7 binary traits; Table S1 and Table S2). We analyzed training330

samples of British ancestry (avg N=365K) and validation samples of non-British European ancestry331

(avg N=22K). We included 6,334,603 imputed SNPs in our analyses (see Methods). We computed332

summary statistics and h2
g estimates from training samples using BOLT-LMM v2.320 (see Table S10).333

We estimated trait-specific functional enrichment parameters for the baseline-LD model18 by running334

S-LDSC5,18 on these summary statistics. Results for quantitative traits are reported in Figure 2 and335

Table S11, and results for binary traits are reported in Figure 3 and Table S12. Di↵erences between336

each main prediction method and LDpred (and block-jackknife standard errors on these di↵erences)337

are reported in Table S13, and averages across all 21 traits for main and secondary prediction methods338

are reported in Table S14.339

Among methods that do not use functional information, LDpred outperformed P+T (+18% rel-340

ative improvement in avg prediction R2), consistent with simulations under a polygenic architecture341

(see Table S15 and Table S16 for optimal tuning parameters) and with previous work8,12. LDpred also342

outperformed LDpred-inf, a method that does not model sparsity (see Table S14). The exclusion of343
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long-range LD regions (see Methods) was critical to LDpred performance, as running LDpred without344

excluding long-range LD regions (as implemented in a previous version of this paper35) performed345

much worse (see Table S14).346

Incorporating functional information via LDpred-funct-inf (a method that does not model spar-347

sity) performed only slightly better than LDpred (+0.9% relative improvement in avg prediction R2).348

Accounting for sparsity using LDpred-funct substantially improved prediction accuracy (+8.7% rel-349

ative improvement in avg prediction R2 vs. LDpred, P = 0.006 for di↵erence using one-sided z-test350

based on block-jackknife standard error in Table S13; avg prediction R2=0.145; highest R2=0.413 for351

height), consistent with simulations. The relative improvement in avg prediction R2 for LDpred-funct352

vs. LDpred was larger for quantitative traits (+9.2%; higher prediction R2 for 14/14 traits) than for353

binary traits (+6.6%; higher prediction R2 for 2/7 traits), consistent with the higher average h2
g for354

quantitative traits (0.33) than for binary traits (0.19; observed scale), which corresponds to higher355

e↵ective sample size (see simulation results in Figure 1) and higher absolute prediction R2 (Figure356

2 vs. Figure 3). Accordingly, the improvement of LDpred-funct vs. LDpred across all 21 traits was357

smaller when averaging relative improvements in prediction R2 for each trait individually (+6.3%), a358

computation that more heavily weights traits with low prediction R2. LDpred-funct also performed359

substantially better than P+T-funct-LASSO (+19% relative improvement in avg prediction R2),360

consistent with simulations under a polygenic architecture.361

We performed several secondary analyses. First, we assessed the calibration of each method362

by checking whether a regression of true vs. predicted phenotype yielded a slope of 1. As in our363

simulations, we determined that LDpred-funct was well-calibrated (average regression slope: 0.98),364

LDpred was fairly well-calibrated (average regression slope: 0.89), and other methods were not well-365

calibrated (Table S17). Second, we assessed the sensitivity of LDpred-funct to the average value of366

K = 58 posterior mean causal e↵ect size bins to regularize e↵ect sizes in these analyses (see Equation367

6 and Table S10). We determined that results were not sensitive to the number of bins (Table S18).368

Third, we assessed the sensitivity of LDpred-funct to validation sample size; we note that our main369

analyses involved very large validation sample sizes (up to 25,032; Table S1 and Table S2), which370

aids the regularization step of LDpred-funct. We determined that results were little changed when371

restricting to smaller validation sample sizes (as low as 1,000; see Table S19). Fourth, we determined372

that functional enrichment information is far less useful when restricting to genotyped variants (e.g.373

�6.9% relative change in avg prediction R2 for LDpred-funct vs. LDpred when both methods are374

restricted to typed variants; Table S14), likely because tagging variants may not belong to enriched375

functional annotations. Fifth, we evaluated a modification of P+T-funct-LASSO in which di↵erent376

weights were allowed for the two predictors (P+T-funct-LASSO-weighted; see Methods), but results377

were little changed (+1.1% relative improvement in avg prediction R2 vs. P+T-funct-LASSO; Table378
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S14). Sixth, we obtained similar results for P+T-funct-LASSO when defining the ”high-prior” (HP)379

SNP set using the top 5% of SNPs with the highest per-SNP heritability, instead of the top 10% (see380

Table S14). Seventh, we determined that incorporating baseline-LD model functional enrichments381

that were meta-analyzed across traits (31 traits from ref. 18), instead of the trait-specific functional382

enrichments used in our primary analyses, slightly reduced the prediction accuracy of LDpred-funct-383

inf (Table S14). Eighth, we determined that using our previous baseline model5, instead of the384

baseline-LD model18, slightly reduced the prediction accuracy of LDpred-funct-inf and LDpred-funct385

(Table S14). Ninth, we determined that inferring functional enrichments using only the SNPs that386

passed QC filters and were used for prediction had no impact on the prediction accuracy of LDpred-387

funct-inf (Table S14). Tenth, we determined that using UK10K (instead of 1000 Genomes) as the LD388

reference panel had virtually no impact on prediction accuracy (Table S14).389

Application to height in meta-analysis of UK Biobank and 23andMe cohorts390

We applied P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to predict391

height in a meta-analysis of UK Biobank and 23andMe cohorts (see Methods). Training sample sizes392

were equal to 408,092 for UK Biobank and 698,430 for 23andMe, for a total of 1,106,522 training393

samples. For comparison purposes, we also computed predictions using the UK Biobank and 23andMe394

training data sets individually, as well as a training data set consisting of 113,660 British-ancestry395

samples from the UK Biobank interim release. (The analysis using the 408,092 UK Biobank training396

samples was nearly identical to the analysis of Figure 2, except that we used a di↵erent set of 5,957,935397

SNPs, for consistency throughout this set of comparisons; see Methods.) We used 25,030 UK Biobank398

samples of non-British European ancestry as validation samples in all analyses.399

Results are reported in Figure 4 and Table S20. The relative improvements attained by LDpred-400

funct-inf and LDpred-funct were broadly similar across all four training data sets (also see Figure401

2), implying that these improvements are not specific to the UK Biobank data set. Interestingly,402

compared to the full UK Biobank training data set (R2=0.413 for LDpred-funct), prediction accuracies403

were only slightly higher for the meta-analysis training data set (R2=0.429 for LDpred-funct), and404

were lower for the 23andMe training data set (R2=0.328 for LDpred-funct), consistent with the ⇡ 30%405

higher heritability in UK Biobank as compared to 23andMe and other large cohorts18,20,21; the higher406

heritability in UK Biobank could potentially be explained by lower environmental heterogeneity. We407

note that in the meta-analysis, we optimized the meta-analysis weights using validation data (similar408

to ref. 19), instead of performing a fixed-e↵ect meta-analysis. This approach accounts for di↵erences409

in heritability as well as sample size, and attained a +5.9% relative improvement in prediction R2
410

compared to fixed-e↵ects meta-analysis (see Table S20).411
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Discussion412

We have shown that leveraging trait-specific functional enrichments inferred by S-LDSC with the413

baseline-LD model18 substantially improves polygenic prediction accuracy. Across 21 UK Biobank414

traits, we attained a +9% relative improvement in average prediction R2 using a method that leverages415

functional enrichment and performs an additional regularization step to account for sparsity (LDpred-416

funct), compared to the most accurate method that does not model functional enrichment (LDpred).417

We note that our main analyses used baseline-LD model v1.1, but using the updated baseline-LD418

model v2.1 yields slightly higher prediction R2 for LDpred-funct-inf and LDpred-funct (Table S14).419

Previous work has highlighted the potential advantages of leveraging functional enrichment to420

improve prediction accuracy16,17. We included one such method16 (which we call P+T-funct-LASSO)421

in our analyses, determining that LDpred-funct attains a +19% average relative improvement vs.422

P+T-funct-LASSO across 21 UK Biobank traits. More recently, ref. 17 introduced AnnoPred, which423

uses a Bayesian framework to incorporate functional annotations. However, ref. 17 considered only424

genotyped variants and binary annotations. As noted above, functional enrichment information is425

far less useful when restricting to genotyped variants (Table S14), likely because tagging variants426

may not belong to enriched functional annotations; thus, the utility of AnnoPred in more general427

settings is currently unknown. To assess this, we applied AnnoPred to the 21 UK Biobank traits (see428

Table S14 and Table S21. We determined that AnnoPred performed slightly but non-significantly429

worse than LDpred-funct (�2.3% relative change in avg prediction R2 for AnnoPred vs. LDpred-430

funct, P = 0.17 for di↵erence using one-sided z-test based on block-jackknife standard error in431

Table S21). We emphasize that our study is, to our knowledge, the first study that combines binary432

and continuous-valued functional annotations to improve polygenic risk prediction using imputed433

variants.434

Our work has several limitations. First, LDpred-funct analyzes summary statistic training data435

(which are publicly available for a broad set of diseases and traits36), but methods that use raw436

genotypes/phenotypes as training data have the potential to attain higher accuracy20; incorporating437

functional enrichment information into prediction methods that use raw genotypes/phenotypes as438

training data remains a direction for future research. Second, the regularization step employed by439

LDpred-funct to account for sparsity relies on heuristic cross-validation instead of inferring posterior440

mean causal e↵ect sizes under a prior sparse functional model; we made this choice because the441

appropriate choice of sparse functional model is unclear, and because inference of posterior means via442

MCMC may be subject to convergence issues. As a consequence, the improvement of LDpred-funct443

over LDpred-funct-inf may be contingent on the number of validation samples available for cross-444

validation; in particular, for very small validation samples, the number of cross-validation bins is445

equal to 1 (Equation 6) and LDpred-funct is identical to LDpred-funct-inf. However, we determined446
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that results of LDpred-funct were little changed when restricting to smaller validation sample sizes447

(as low as 1,000; see Table S19). Third, we have considered only single-trait analyses, but leveraging448

genetic correlations among traits has considerable potential to improve prediction accuracy37,38.449

Fourth, we have not considered how to leverage functional enrichment for polygenic prediction in450

related individuals39. Fifth, we have not investigated the application of our methods to polygenic451

prediction in diverse populations19,40,41, for which very similar functional enrichments have been452

reported42,43. Finally, the improvements in prediction accuracy that we reported are a function of the453

baseline-LD model18, but there are many possible ways to improve this model, e.g. by incorporating454

tissue-specific enrichments1–6,44–47, modeling MAF-dependent architectures48–50, and/or employing455

alternative approaches to modeling LD-dependent e↵ects34; we anticipate that future improvements456

to the baseline-LD model will yield even larger improvements in prediction accuracy. As an initial457

step to explore alternative approaches to modeling LD-dependent e↵ects, we repeated our analyses458

using the baseline-LD+LDAK model (introduced in ref. 33), which consists of the baseline-LD model459

plus one additional continuous annotation constructed using LDAK weights34. (Recent work has460

shown that incorporating LDAK weights increases polygenic prediction accuracy in analyses that461

do not include the baseline-LD model51.) We determined that results were virtually unchanged (avg462

prediction R2=0.1350 for baseline-LD+LDAK vs. 0.1354 for baseline-LD using LDpred-funct-inf with463

UK10K SNPs; see Table S14 and Table S22). Despite these limitations and open directions for future464

research, our work demonstrates that leveraging functional enrichment using the baseline-LD model465

substantially improves polygenic prediction accuracy.466
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son, Kenneth S. Kendler, Jordan W. Smoller, Naomi R. Wray, and S. Hong Lee. Joint analysis626

of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder,627

and major depressive disorder. Am. J. Hum. Genet., 96(2):283–294, February 2015.628

[38] Robert M. Maier, Zhihong Zhu, Sang Hong Lee, Maciej Trzaskowski, Douglas M. Ruderfer,629

Eli A. Stahl, Stephan Ripke, Naomi R. Wray, Jian Yang, Peter M. Visscher, and Matthew R.630

Robinson. Improving genetic prediction by leveraging genetic correlations among human diseases631

and traits. Nature Communications, 9(1):989, 2018.632

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


[39] George Tucker, Po-Ru Loh, Iona M. MacLeod, Ben J. Hayes, Michael E. Goddard, Bonnie633

Berger, and Alkes L. Price. Two-Variance-Component Model Improves Genetic Prediction in634

Family Datasets. Am. J. Hum. Genet., 97(5):677–690, November 2015.635

[40] Alicia R. Martin, Masahiro Kanai, Yoichiro Kamatani, Yukinori Okada, Benjamin M. Neale, and636

Mark J. Daly. Clinical use of current polygenic risk scores may exacerbate health disparities.637

Nature Genetics, 51(4):584–591, 2019.638

[41] Deepti Gurdasani, Inês Barroso, Eleftheria Zeggini, and Manjinder S. Sandhu. Genomics of639

disease risk in globally diverse populations. Nature Reviews Genetics, 2019.640

[42] Gleb Kichaev and Bogdan Pasaniuc. Leveraging Functional-Annotation Data in Trans-ethnic641

Fine-Mapping Studies. The American Journal of Human Genetics, 97(2):260–271, August 2015.642

[43] Masahiro Kanai, Masato Akiyama, Atsushi Takahashi, Nana Matoba, Yukihide Momozawa,643

Masashi Ikeda, Nakao Iwata, Shiro Ikegawa, Makoto Hirata, Koichi Matsuda, Michiaki Kubo,644

Yukinori Okada, and Yoichiro Kamatani. Genetic analysis of quantitative traits in the Japanese645

population links cell types to complex human diseases. Nature Genetics, 50(3):390–400, March646

2018.647

[44] Diego Calderon, Anand Bhaskar, David A. Knowles, David Golan, Towfique Raj, Audrey Q.648

Fu, and Jonathan K. Pritchard. Inferring Relevant Cell Types for Complex Traits by Using649

Single-Cell Gene Expression. Am. J. Hum. Genet., 101(5):686–699, November 2017.650

[45] Halit Ongen, Andrew A. Brown, Olivier Delaneau, Nikolaos I. Panousis, Alexandra C. Nica,651

GTEx Consortium, and Emmanouil T. Dermitzakis. Estimating the causal tissues for complex652

traits and diseases. Nat. Genet., 49(12):1676–1683, December 2017.653

[46] Hilary K. Finucane, Yakir A. Reshef, Verneri Anttila, Kamil Slowikowski, Alexander Gusev,654

Andrea Byrnes, Steven Gazal, Po-Ru Loh, Caleb Lareau, Noam Shoresh, Giulio Genovese, Arpiar655

Saunders, Evan Macosko, Samuela Pollack, Brainstorm Consortium, John R. B. Perry, Jason D.656

Buenrostro, Bradley E. Bernstein, Soumya Raychaudhuri, Steven McCarroll, Benjamin M. Neale,657

and Alkes L. Price. Heritability enrichment of specifically expressed genes identifies disease-658

relevant tissues and cell types. Nat. Genet., 50(4):621–629, April 2018.659

[47] Daniel Backenroth, Zihuai He, Krzysztof Kiryluk, Valentina Boeva, Lynn Pethukova, Ekta Khu-660

rana, Angela Christiano, Joseph D. Buxbaum, and Iuliana Ionita-Laza. FUN-LDA: A Latent661

Dirichlet Allocation Model for Predicting Tissue-Specific Functional E↵ects of Noncoding Vari-662

ation: Methods and Applications. Am. J. Hum. Genet., 102(5):920–942, May 2018.663

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


[48] Jian Zeng, Ronald de Vlaming, Yang Wu, Matthew R. Robinson, Luke R. Lloyd-Jones, Loic664

Yengo, Chloe X. Yap, Angli Xue, Julia Sidorenko, Allan F. McRae, Joseph E. Powell, Grant W.665

Montgomery, Andres Metspalu, Tonu Esko, Greg Gibson, Naomi R. Wray, Peter M. Visscher,666

and Jian Yang. Signatures of negative selection in the genetic architecture of human complex667

traits. Nature Genetics, 50(5):746–753, 2018.668

[49] Steven Gazal, Po-Ru Loh, Hilary K. Finucane, Andrea Ganna, Armin Schoech, Shamil Sunyaev,669

and Alkes L. Price. Functional architecture of low-frequency variants highlights strength of670

negative selection across coding and non-coding annotations. Nature Genetics, 50(11):1600–671

1607, 2018.672

[50] Armin P. Schoech, Daniel M. Jordan, Po-Ru Loh, Steven Gazal, Luke J. O’Connor, Daniel J.673

Balick, Pier F. Palamara, Hilary K. Finucane, Shamil R. Sunyaev, and Alkes L. Price. Quan-674

tification of frequency-dependent genetic architectures in 25 uk biobank traits reveals action of675

negative selection. Nature Communications, 10(1):790, 2019.676

[51] Doug Speed and David J. Balding. Sumher better estimates the snp heritability of complex traits677

from summary statistics. Nature Genetics, 51(2):277–284, 2019.678

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


Figures679

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●●
●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ●

● ●

●
● ●

●

● ● ●

2,000 causal variants (sparse) 5,000 causal variants (polygenic)

10k 20k 50k 10k 20k 50k

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Sample size

R
2

R2
Difference vs. LDpred

●

●

●

●

●

LDpred−funct
LDpred−funct−inf
P+T−funct−LASSO
LDpred
P+T

Figure 1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank geno-
types. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in
chromosome 1 simulations with 2,000 causal variants (sparse architecture) and 5,000 causal variants (poly-
genic architecture). Results are averaged across 100 simulations. Top dashed line denotes simulated SNP-
heritability of 0.5. Bottom dashed lines denote di↵erences vs. LDpred; error bars represent 95% confidence
intervals. Results for other values of the number of causal variants are reported in Figure S1, and numerical
results are reported in Table S3 and Table S4.
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Figure 2: Accuracy of 5 polygenic prediction methods across 14 UK Biobank quantitative traits.
We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Dashed lines
denote estimates of SNP-heritability. Numerical results are reported in Table S11. ⇤ denotes methods that
significantly outperform LDpred (P < 0.05 for di↵erence using one-sided z-test based on block-jackknife
standard error in Table S13).
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Figure 3: Accuracy of 5 polygenic prediction methods across 7 UK Biobank binary traits.
We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Dashed lines
denote estimates of SNP-heritability. Numerical results are reported in Table S12. ⇤ denotes methods that
significantly outperform LDpred (P < 0.05 for di↵erence using one-sided z-test based on block-jackknife
standard error in Table S13).
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Figure 4: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-
funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK Biobank
(408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank and
23andMe (1,107,430 training samples). Nested training data sets are connected by solid lines (e.g. UK
Biobank (408k) and 23andMe are both connected to Meta-Analysis, but not to each other). Dashed line
denotes estimate of SNP-heritability in UK Biobank. Numerical results are reported in Table S20.
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Figure S1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across
100 simulations. Top dashed line denotes simulated SNP-heritability of 0.5. Bottom dashed lines denote
di↵erences vs. LDpred-inf; error bars represent 95% confidence intervals. Numerical results are reported in
Table S3 and Table S4.
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Supplementary Tables681

Trait h2
g Training Validation

N N (ancestry distribution)
1 Height 0.57 408092 25030 (43.5% Irish,56.5% Other)
2 Hair color 0.45 403024 24773 (43.5% Irish,56.5% Other)
3 Platelet count 0.40 395747 24277 (43.5% Irish,56.5% Other)
4 Bone mineral density 0.40 397274 24167 (43.6% Irish,56.4% Other)
5 Red blood cell count 0.32 396464 24305 (43.5% Irish,56.5% Other)
6 Age at menarche 0.31 214860 13999 (39.7% Irish,60.3% Other)
7 FEV1 FVC ratio 0.31 331786 19929 (42.5% Irish,57.5% Other)
8 Body mass index 0.31 407667 25000 (43.5% Irish,56.5% Other)
9 RBC distribution width 0.29 394258 24175 (43.5% Irish,56.5% Other)
10 Forced vital capacity 0.27 331786 19929 (42.5% Irish,57.5% Other)
11 Eosinophil count 0.27 391787 24030 (43.4% Irish,56.6% Other)
12 White blood cell count 0.27 395835 24293 (43.5% Irish,56.5% Other)
13 Systolic Blood pressure 0.27 376437 23127 (43.2% Irish,56.8% Other)
14 Waist hip ratio 0.21 408196 25032 (43.5% Irish,56.5% Other)

Table S1: List of 14 UK Biobank quantitative traits. We list the training sample size and validation
sample size for each trait. h2

g estimates are obtained using BOLT-LMM v2.3 using the training data set.
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Trait h2
g Training Validation

N Prevalence N (ancestry distribution) Prevalence
1 Balding Type I 0.32 186506 0.32 10578 (48.9% Irish,51.1% Other) 0.34
2 Tanning 0.23 400721 0.61 24608 (43.5% Irish,56.5% Other) 0.60
3 College Education 0.20 405140 0.31 24749 (43.5% Irish,56.5% Other) 0.49
4 Hyperthension 0.18 408323 0.27 25041 (43.5% Irish,56.5% Other) 0.25
5 Cardiovascular Diseases 0.16 408963 0.32 25111 (43.5% Irish,56.5% Other) 0.29
6 Morning Person 0.14 365245 0.63 22768 (43.4% Irish,56.6% Other) 0.58
7 Eczema 0.12 408454 0.23 25052 (43.5% Irish,56.5% Other) 0.23

Table S2: List of 7 UK Biobank binary traits. We list the training sample size, validation sample size
and prevalence for each trait. h2

g estimates are obtained using BOLT-LMM v2.3 using the training data set.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

P+T 0.2061 ( 0.0022) 0.2536 ( 0.0021) 0.2900 ( 0.0019)
LDpred 0.2218 ( 0.0024) 0.2616 ( 0.0021) 0.2889 ( 0.0018)
P+T-funct-LASSO 0.2292 ( 0.0024) 0.2723 ( 0.0024) 0.3044 ( 0.002)
LDpred-funct-inf 0.1896 ( 0.0018) 0.2419 ( 0.0019) 0.3015 ( 0.0019)
LDpred-funct 0.2131 ( 0.002) 0.2644 ( 0.0021) 0.3157 ( 0.002)

2,000

P+T 0.1658 ( 0.0022) 0.2215 ( 0.0026) 0.2683 ( 0.0029)
LDpred 0.2004 ( 0.0028) 0.2498 ( 0.0023) 0.2921 ( 0.0015)
P+T-funct-LASSO 0.1869 ( 0.0026) 0.2383 ( 0.0028) 0.2817 ( 0.0031)
LDpred-funct-inf 0.1900 ( 0.0015) 0.2458 ( 0.0015) 0.3057 ( 0.0016)
LDpred-funct 0.2023 ( 0.0016) 0.2576 ( 0.0016) 0.3134 ( 0.0017)

5,000

P+T 0.1352 ( 0.0016) 0.1909 ( 0.002) 0.2472 ( 0.0024)
LDpred 0.1826 ( 0.0017) 0.2388 ( 0.0013) 0.2924 ( 0.0013)
P+T-funct-LASSO 0.1550 ( 0.0018) 0.2098 ( 0.0021) 0.261 ( 0.0026)
LDpred-funct-inf 0.1872 ( 0.0012) 0.243 ( 0.0013) 0.3063 ( 0.0014)
LDpred-funct 0.1895 ( 0.0012) 0.2458 ( 0.0013) 0.3081 ( 0.0014)

10,000

P+T 0.1273 ( 0.0015) 0.1806 ( 0.002) 0.2379 ( 0.0024)
LDpred 0.1764 ( 0.0016) 0.233 ( 0.0012) 0.2916 ( 0.0012)
P+T-funct-LASSO 0.1419 ( 0.0017) 0.1954 ( 0.0022) 0.2477 ( 0.0026)
LDpred-funct-inf 0.1873 ( 0.0012) 0.2419 ( 0.0012) 0.3059 ( 0.0013)
LDpred-funct 0.1870 ( 0.0013) 0.2418 ( 0.0012) 0.3053 ( 0.0012)

Table S3: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank geno-
types, for 4 values of the number of causal variants. We report results for P+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across 100
simulations. We report standard errors in parentheses.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


(a)
Training sample size

# Causal 10,000 20,000 50,000
variants Model Di↵. R2(s.e.) Di↵. R2(s.e.) Di↵. R2(s.e.)

1,000

P+T 0.0069 (0.0018) 0.0106 (0.0016) 0.0254 (0.0015)
P+T-funct-LASSO -0.0162 (0.002) -0.0081 (0.0018) 0.011 (0.0016)
LDpred -0.0087 (0.0017) 0.0028 (0.0013) 0.0267 (8e-04)
LDpred-funct-inf 0.0235 (8e-04) 0.0225 (6e-04) 0.0142 (6e-04)
LDpred-funct 0 0 0

2,000

P+T 0.0365 (0.0019) 0.0361 (0.0022) 0.0451 (0.0026)
P+T-funct-LASSO 0.0153 (0.0023) 0.0194 (0.0024) 0.0317 (0.0027)
LDpred 0.0019 (0.0026) 0.0078 (0.0019) 0.0213 (7e-04)
LDpred-funct-inf 0.0123 (5e-04) 0.0118 (5e-04) 0.0077 (4e-04)
LDpred-funct 0 0 0

5,000

P+T 0.0544 (0.0016) 0.055 (0.0018) 0.0609 (0.0021)
P+T-funct-LASSO 0.0345 (0.0017) 0.036 (0.0019) 0.0471 (0.0023)
LDpred 0.0067 (0.0013) 0.007 (7e-04) 0.0157 (5e-04)
LDpred-funct-inf 0.0023 (3e-04) 0.0029 (3e-04) 0.0018 (2e-04)
LDpred-funct 0 0 0

10,000

P+T 0.0597 (0.0016) 0.0612 (0.002) 0.0674 (0.0024)
P+T-funct-LASSO 0.0451 (0.0017) 0.0464 (0.0022) 0.0576 (0.0026)
LDpred 0.0107 (0.0013) 0.0089 (5e-04) 0.0136 (5e-04)
LDpred-funct-inf -4e-04 (2e-04) -1e-04 (2e-04) -7e-04 (2e-04)
LDpred-funct 0 0 0

(b)
Training sample size

# Causal 10,000 20,000 50,000
variants Model Di↵. R2(s.e.) Di↵. R2(s.e.) Di↵. R2(s.e.)

1,000

P+T -0.0165 (0.0035) -0.0094 (0.0034) -2e-04 (0.0033)
LDpred 0 0 0
P+T-funct-LASSO 0.0067 (0.0037) 0.0088 (0.0037) 0.0141 (0.0035)
LDpred-funct-inf -0.0321 (0.0017) -0.0198 (0.0012) 0.0125 (6e-04)
LDpred-funct -0.0087 (0.0017) 0.0028 (0.0013) 0.0267 (8e-04)

2,000

P+T -0.0352 (0.0036) -0.0294 (0.0035) -0.0254 (0.0036)
LDpred 0 0 0
P+T-funct-LASSO -0.0146 (0.0039) -0.0129 (0.0036) -0.0121 (0.0037)
LDpred-funct-inf -0.0104 (0.0025) -0.004 (0.0019) 0.0137 (5e-04)
LDpred-funct 0.0019 (0.0026) 0.0078 (0.0019) 0.0213 (7e-04)

5,000

P+T -0.048 (0.0024) -0.0488 (0.0026) -0.0466 (0.0031)
LDpred 0 0 0
P+T-funct-LASSO -0.0283 (0.0026) -0.03 (0.0028) -0.0329 (0.0033)
LDpred-funct-inf 0.0044 (0.0013) 0.0041 (7e-04) 0.0139 (4e-04)
LDpred-funct 0.0067 (0.0013) 0.007 (7e-04) 0.0157 (5e-04)

10,000

P+T -0.0493 (0.0022) -0.0532 (0.0024) -0.0551 (0.0031)
LDpred 0 0 0
P+T-funct-LASSO -0.0348 (0.0024) -0.0386 (0.0026) -0.0454 (0.0033)
LDpred-funct-inf 0.0111 (0.0012) 0.009 (4e-04) 0.0143 (5e-04)
LDpred-funct 0.0107 (0.0013) 0.0089 (5e-04) 0.0136 (5e-04)

Table S4: Di↵erences between polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P+T, LDpred, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across 100
simulations. We report standard errors in parentheses. (a) Di↵erence between R2 for LDpred-funct vs. R2

for each method. (b) Di↵erence between R2 for each method vs. R2 for LDpred.
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Training sample size
# Causal 10,000 20,000 50,000

1,000 0.03 0.1 1
2,000 0.03 0.1 1
5,000 0.03 0.1 1

10,000 0.1 0.3 1

Table S5: Model parameter values for LDpred in simulations. We report the optimal value of p
which is the fraction of non-zero e↵ects in the prior, and LD-radious assumed was 2000 SNPs. The analyses
from LDpred exclude long-range LD regions reported in ref. 23.
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Training sample size
# Causal 10,000 20,000 50,000

1,000
P+T 0.0001 0.0001 0.0001
P+T-funct-LASSO HP SNP Set 0.1000 0.1000 0.3000
P+T-funct-LASSO LP SNP Set 0.0100 0.0100 0.0100

2,000
P+T 0.0010 0.0010 0.0010
P+T-funct-LASSO HP SNP Set 0.1000 0.1000 0.3000
P+T-funct-LASSO LP SNP Set 0.0100 0.0100 0.0100

5,000
P+T 0.0100 0.0100 0.0100
P+T-funct-LASSO HP SNP Set 0.3000 0.3000 0.3000
P+T-funct-LASSO LP SNP Set 0.1000 0.1000 0.1000

10,000
P+T 0.1000 0.1000 0.0100
P+T-funct-LASSO HP SNP Set 0.3000 0.3000 1.0000
P+T-funct-LASSO LP SNP Set 0.1000 0.1000 0.1000

Table S6: Model parameter values for P+T and P+T-funct-LASSO in simulated traits. We
report the optimal p-value threshold for Pruning + Thresholding (P+T), optimal p-value threshold for P+T-
funct-LASSO high prior SNP (HP) set and optimal p-value threshold for P+T-funct-LASSO low prior SNP
(LP) set. Optimal R2

LD values was 0.1.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

P+T 0.9371 ( 0.0282) 0.9806 ( 0.0294) 0.8189 ( 0.0486)
LDpred 0.992 ( 0.0146) 0.947 ( 0.0083) 0.8521 ( 0.004)
P+T-funct-LASSO 1.5051 ( 0.0589) 1.3703 ( 0.0386) 1.0151 ( 0.075)
LDpred-funct-inf 0.4708 ( 0.0025) 0.454 ( 0.002) 0.4345 ( 0.0024)
LDpred-funct 0.9803 ( 6e-04) 0.9847 ( 4e-04) 0.9877 ( 4e-04)

2,000

P+T 0.7644 ( 0.0309) 0.791 ( 0.0257) 0.7976 ( 0.0209)
LDpred 0.9688 ( 0.037) 0.9346 ( 0.0257) 0.8483 ( 0.0044)
P+T-funct-LASSO 1.3572 ( 0.0382) 1.2138 ( 0.0544) 1.0448 ( 0.0284)
LDpred-funct-inf 0.4656 ( 0.004) 0.457 ( 0.0028) 0.4396 ( 0.0021)
LDpred-funct 0.9787 ( 0.001) 0.9837 ( 7e-04) 0.9882 ( 4e-04)

5,000

P+T 0.4546 ( 0.0207) 0.5954 ( 0.0172) 0.6728 ( 0.0158)
LDpred 0.9984 ( 0.0067) 0.9671 ( 0.0071) 0.8538 ( 0.0044)
P+T-funct-LASSO 0.8085 ( 0.0267) 0.8994 ( 0.012) 0.909 ( 0.0213)
LDpred-funct-inf 0.47 ( 0.0035) 0.4584 ( 0.0023) 0.4424 ( 0.0015)
LDpred-funct 0.9776 ( 9e-04) 0.9839 ( 5e-04) 0.9881 ( 4e-04)

10,000

P+T 0.3196 ( 0.0136) 0.4655 ( 0.016) 0.586 ( 0.0116)
LDpred 0.9903 ( 0.0156) 0.9449 ( 0.0059) 0.847 ( 0.0041)
P+T-funct-LASSO 0.6824 ( 0.0182) 0.8142 ( 0.0182) 0.8178 ( 0.017)
LDpred-funct-inf 0.4654 ( 0.0028) 0.4528 ( 0.0025) 0.4365 ( 0.0024)
LDpred-funct 0.9761 ( 7e-04) 0.9824 ( 6e-04) 0.9874 ( 4e-04)

Table S7: Calibration of 5 polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report calibration slopes for P+T, LD-
pred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal
variants (extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants
(polygenic architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged
across 100 simulations.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

LDpred-funct-inf 0.1896 ( 0.0018) 0.2419 ( 0.0019) 0.3015 ( 0.0019)
LDpred-funct-inf-5 0.208 ( 0.002) 0.2585 ( 0.002) 0.3104 ( 0.0019)
LDpred-funct-inf-10 0.2101 ( 0.002) 0.261 ( 0.002) 0.3124 ( 0.002)
LDpred-funct-inf-20 0.2116 ( 0.002) 0.263 ( 0.002) 0.314 ( 0.002)
LDpred-funct-inf-30 0.2126 ( 0.002) 0.2638 ( 0.002) 0.315 ( 0.002)
LDpred-funct-inf-40 0.2131 ( 0.002) 0.2644 ( 0.0021) 0.3157 ( 0.002)
LDpred-funct-inf-50 0.2141 ( 0.002) 0.2652 ( 0.0021) 0.3161 ( 0.002)
LDpred-funct-inf-60 0.2145 ( 0.0021) 0.2655 ( 0.0021) 0.3172 ( 0.002)
LDpred-funct-inf-70 0.2157 ( 0.0021) 0.266 ( 0.0021) 0.317 ( 0.0021)
LDpred-funct-inf-80 0.216 ( 0.002) 0.2665 ( 0.0021) 0.3173 ( 0.0021)
LDpred-funct-inf-90 0.2164 ( 0.0021) 0.2667 ( 0.0021) 0.3176 ( 0.0021)
LDpred-funct-inf-100 0.2165 ( 0.0021) 0.267 ( 0.0021) 0.3174 ( 0.0021)

2,000

LDpred-funct-inf 0.1900 ( 0.0015) 0.2458 ( 0.0015) 0.3057 ( 0.0016)
LDpred-funct-inf-5 0.1994 ( 0.0016) 0.254 ( 0.0016) 0.3101 ( 0.0016)
LDpred-funct-inf-10 0.2005 ( 0.0016) 0.2554 ( 0.0016) 0.3113 ( 0.0017)
LDpred-funct-inf-20 0.2016 ( 0.0016) 0.2566 ( 0.0016) 0.3124 ( 0.0017)
LDpred-funct-inf-30 0.2018 ( 0.0016) 0.2572 ( 0.0016) 0.3129 ( 0.0017)
LDpred-funct-inf-40 0.2023 ( 0.0016) 0.2576 ( 0.0016) 0.3134 ( 0.0017)
LDpred-funct-inf-50 0.2023 ( 0.0016) 0.2575 ( 0.0016) 0.3136 ( 0.0017)
LDpred-funct-inf-60 0.2025 ( 0.0016) 0.258 ( 0.0017) 0.3137 ( 0.0017)
LDpred-funct-inf-70 0.2027 ( 0.0016) 0.2579 ( 0.0017) 0.3135 ( 0.0017)
LDpred-funct-inf-80 0.2031 ( 0.0016) 0.2583 ( 0.0017) 0.3133 ( 0.0017)
LDpred-funct-inf-90 0.2028 ( 0.0016) 0.2579 ( 0.0017) 0.3134 ( 0.0018)
LDpred-funct-inf-100 0.2031 ( 0.0016) 0.2582 ( 0.0017) 0.313 ( 0.0018)

5,000

LDpred-funct-inf 0.1872 ( 0.0012) 0.243 ( 0.0013) 0.3063 ( 0.0014)
LDpred-funct-inf-5 0.1895 ( 0.0012) 0.2451 ( 0.0013) 0.3075 ( 0.0014)
LDpred-funct-inf-10 0.1898 ( 0.0012) 0.2456 ( 0.0013) 0.3079 ( 0.0014)
LDpred-funct-inf-20 0.1897 ( 0.0012) 0.2461 ( 0.0013) 0.3083 ( 0.0014)
LDpred-funct-inf-30 0.1898 ( 0.0012) 0.2461 ( 0.0013) 0.3084 ( 0.0014)
LDpred-funct-inf-40 0.1895 ( 0.0012) 0.2458 ( 0.0013) 0.3081 ( 0.0014)
LDpred-funct-inf-50 0.1894 ( 0.0012) 0.2457 ( 0.0013) 0.3081 ( 0.0014)
LDpred-funct-inf-60 0.1893 ( 0.0012) 0.2454 ( 0.0013) 0.3077 ( 0.0014)
LDpred-funct-inf-70 0.1891 ( 0.0012) 0.245 ( 0.0013) 0.3073 ( 0.0014)
LDpred-funct-inf-80 0.1888 ( 0.0012) 0.2447 ( 0.0013) 0.3071 ( 0.0014)
LDpred-funct-inf-90 0.1885 ( 0.0012) 0.2444 ( 0.0013) 0.3066 ( 0.0014)
LDpred-funct-inf-100 0.188 ( 0.0012) 0.244 ( 0.0013) 0.3062 ( 0.0014)

10,000

LDpred-funct-inf 0.1873 ( 0.0012) 0.2419 ( 0.0012) 0.3059 ( 0.0013)
LDpred-funct-inf-5 0.1883 ( 0.0012) 0.2428 ( 0.0012) 0.3064 ( 0.0013)
LDpred-funct-inf-10 0.1882 ( 0.0012) 0.2428 ( 0.0012) 0.3064 ( 0.0012)
LDpred-funct-inf-20 0.1878 ( 0.0012) 0.2427 ( 0.0012) 0.3061 ( 0.0012)
LDpred-funct-inf-30 0.1873 ( 0.0013) 0.2422 ( 0.0012) 0.3056 ( 0.0013)
LDpred-funct-inf-40 0.187 ( 0.0013) 0.2418 ( 0.0012) 0.3053 ( 0.0012)
LDpred-funct-inf-50 0.1865 ( 0.0012) 0.2414 ( 0.0012) 0.3049 ( 0.0013)
LDpred-funct-inf-60 0.186 ( 0.0013) 0.2409 ( 0.0012) 0.3043 ( 0.0013)
LDpred-funct-inf-70 0.1855 ( 0.0013) 0.2406 ( 0.0012) 0.3039 ( 0.0013)
LDpred-funct-inf-80 0.1851 ( 0.0012) 0.2399 ( 0.0012) 0.3036 ( 0.0012)
LDpred-funct-inf-90 0.1846 ( 0.0013) 0.2393 ( 0.0012) 0.3027 ( 0.0013)
LDpred-funct-inf-100 0.1841 ( 0.0013) 0.2387 ( 0.0012) 0.3027 ( 0.0013)

Table S8: Sensitivity of LDpred-funct results to number of bins used for regularization in
simulations using UK Biobank genotypes. We report results with the number of posterior mean causal
e↵ect size bins used for regularization (K) set to 10, 20, 50 or 100. LDpred-funct-K denotes each respective
value of K. We also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1.
Results are averaged across 100 simulations. We report standard errors in parentheses.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

LDpred-funct-inf 0.1896 ( 0.0018) 0.2419 ( 0.0019) 0.3015 ( 0.0019)
LDpred-funct 0.2131 ( 0.002) 0.2644 ( 0.0021) 0.3157 ( 0.002)
LDpred-funct-inf-cheat 0.1926 ( 0.0018) 0.2456 ( 0.0019) 0.3074 ( 0.002)
LDpred-funct-cheat 0.2221 ( 0.0021) 0.2714 ( 0.0022) 0.3228 ( 0.0021)

2,000

LDpred-funct-inf 0.1900 ( 0.0015) 0.2458 ( 0.0015) 0.3057 ( 0.0016)
LDpred-funct 0.2023 ( 0.0016) 0.2576 ( 0.0016) 0.3134 ( 0.0017)
LDpred-funct-inf-cheat 0.1943 ( 0.0015) 0.2498 ( 0.0016) 0.3108 ( 0.0016)
LDpred-funct-cheat 0.2109 ( 0.0016) 0.2646 ( 0.0017) 0.3193 ( 0.0017)

5,000

LDpred-funct-inf 0.1872 ( 0.0012) 0.243 ( 0.0013) 0.3063 ( 0.0014)
LDpred-funct 0.1895 ( 0.0012) 0.2458 ( 0.0013) 0.3081 ( 0.0014)
LDpred-funct-inf-cheat 0.1928 ( 0.0013) 0.2479 ( 0.0013) 0.3102 ( 0.0014)
LDpred-funct-cheat 0.1972 ( 0.0014) 0.252 ( 0.0013) 0.3121 ( 0.0014)

10,000

LDpred-funct-inf 0.1873 ( 0.0012) 0.2419 ( 0.0012) 0.3059 ( 0.0013)
LDpred-funct 0.1870 ( 0.0013) 0.2418 ( 0.0012) 0.3053 ( 0.0012)
LDpred-funct-inf-cheat 0.1937 ( 0.0012) 0.2474 ( 0.0012) 0.3097 ( 0.0012)
LDpred-funct-cheat 0.194 ( 0.0013) 0.2482 ( 0.0013) 0.3096 ( 0.0013)

Table S9: Accuracy of LDpred-funct method in simulations using UK Biobank genotypes under
di↵erent BaselineLD estimates, for 4 values of the number of causal variants. LDpred-funct-cheat
refers to a ”cheating” version of LDpred-funct that utilized the true baseline-LD model parameters used to
simulate the data. Results are averaged across 100 simulations.
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Trait Training N h2
g c bins

1 Height 408092 0.57 0.45 100
2 Hair color 403024 0.45 0.22 100
3 Platelet count 395747 0.40 0.29 88
4 Bone mineral density 397274 0.40 0.26 87
5 Red blood cell count 396464 0.32 0.21 70
6 Age at menarche 214860 0.31 0.20 40
7 FEV1 FVC ratio 331786 0.31 0.24 56
8 Body mass index 407667 0.31 0.27 70
9 RBC distribution width 394258 0.29 0.20 63
10 Eosinophil count 391787 0.27 0.18 60
11 Forced vital capacity 331786 0.27 0.22 50
12 White blood cell count 395835 0.27 0.21 60
13 Systolic Blood pressure 376437 0.27 0.21 56
14 Waist hip ratio 408196 0.21 0.15 48
1 Balding type I 186506 0.32 0.11 31
2 Tanning ability 400721 0.23 0.09 53
3 College Education 405140 0.20 0.15 45
4 Hyperthension 408323 0.18 0.14 41
5 Cardiovascular Diseases 408963 0.16 0.12 37
6 Morning Person 365245 0.14 0.11 29
7 Eczema 408454 0.12 0.09 27

Table S10: Parameter values for 21 UK Biobank traits. The 14 quantitative traits are listed first,
followed by the 7 binary traits. For each trait, we list the training sample size, h2

g estimate (from BOLT-LMM
v2.3; used by LDpred, LDpred-funct-inf and LDpred-funct), the c parameter (used by LDpred-funct-inf and
LDpred-funct) and number of bins for LDpred-funct.
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Table S11: Accuracy of 5 polygenic prediction methods across 14 UK Biobank quantitative
traits. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Op-
timal parameters for each method are reported in Table S16, Table S15 and Table S10. We report block
jackknife standard error over 200 equally sized blocks of adjacent SNPs.
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Table S12: Accuracy of 5 polygenic prediction methods across 7 UK Biobank binary traits. We
report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Optimal parame-
ters for each method are reported in Table S16, Table S15 and Table S10. We report block jackknife standard
error over 200 equally sized blocks of adjacent SNPs.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337


T
ra
it

h
2 g

P
+
T

P
+
T
-f
u
n
ct
-L
A
S
S
O

L
D
p
re
d

L
D
p
re
d
-f
u
n
ct
-i
n
f

L
D
p
re
d
-f
u
n
ct

1
H
ei
gh

t
0.
57

5
-0
.0
29

(0
.0
07

5)
-0
.0
07

7
(0
.0
07

3)
0

0.
02

38
(0
.0
06

6)
0.
03

6
(0
.0
06

9)
2

H
ai
r
co
lo
r

0.
44

6
-0
.0
10

7
(0
.0
25

2)
-0
.0
09

9
(0
.0
29

8)
0

0.
01

03
(0
.0
12

7)
0.
07

56
(0
.0
37

8)
3

P
la
te
le
t
co
u
nt

0.
40

1
-0
.0
38

1
(0
.0
07

)
-0
.0
20

4
(0
.0
07

1)
0

-0
.0
07

7
(0
.0
06

2)
0.
00

58
(0
.0
05

9)
4

B
on

e
m
in
er
al

d
en

si
ty

0.
39

8
-0
.0
29

4
(0
.0
10

6)
-0
.0
16

3
(0
.0
08

5)
0

-0
.0
05

(0
.0
07

7)
0.
00

66
(0
.0
07

)
5

B
al
d
in
g
ty
p
e
I

0.
32

3
-0
.0
24

5
(0
.0
56

1)
-0
.0
10

1
(0
.0
57

5)
0

-0
.0
29

6
(0
.0
57

4)
-0
.0
15

1
(0
.0
56

8)
6

R
ed

b
lo
od

ce
ll
co
u
nt

0.
31

9
-0
.0
29

4
(0
.0
10

5)
-0
.0
21

6
(0
.0
06

6)
0

0.
00

45
(0
.0
04

7)
0.
01

35
(0
.0
04

3)
7

A
ge

at
m
en

ar
ch
e

0.
31

3
-0
.0
39

6
(0
.0
04

7)
-0
.0
23

3
(0
.0
03

8)
0

-0
.0
02

5
(0
.0
03

5)
7e
-0
4
(0
.0
03

5)
8

F
E
V
1
F
V
C

ra
ti
o

0.
30

9
-0
.0
25

4
(0
.0
08

9)
-0
.0
12

5
(0
.0
03

7)
0

0.
00

61
(0
.0
03

6)
0.
00

82
(0
.0
04

)
9

B
od

y
m
as
s
in
d
ex

0.
30

7
-0
.0
37

5
(0
.0
03

4)
-0
.0
25

9
(0
.0
03

)
0

0.
00

62
(0
.0
02

3)
0.
00

5
(0
.0
02

5)
10

R
B
C

d
is
tr
ib
u
ti
on

w
id
th

0.
28

6
-0
.0
14

4
(0
.0
07

)
-0
.0
02

4
(0
.0
05

)
0

0.
00

98
(0
.0
07

6)
0.
02

09
(0
.0
07

5)
11

F
or
ce
d
vi
ta
l
ca
p
ac
it
y

0.
27

4
-0
.0
30

8
(0
.0
04

4)
-0
.0
17

8
(0
.0
03

3)
0

0.
00

73
(0
.0
02

7)
0.
00

61
(0
.0
02

7)
12

E
os
in
op

h
il
co
u
nt

0.
27

4
-0
.0
26

(0
.0
17

4)
-0
.0
18

8
(0
.0
17

9)
0

-0
.0
02

3
(0
.0
18

4)
0.
00

53
(0
.0
18

1)
13

W
h
it
e
b
lo
od

ce
ll
co
u
nt

0.
27

3
-0
.0
18

4
(0
.0
04

4)
-0
.0
05

8
(0
.0
03

2)
0

0.
00

95
(0
.0
03

4)
0.
01

26
(0
.0
04

3)
14

S
ys
to
li
c
B
lo
od

p
re
ss
u
re

0.
26

7
-0
.0
23

(0
.0
03

8)
-0
.0
08

2
(0
.0
02

7)
0

0.
00

64
(0
.0
02

1)
0.
00

57
(0
.0
02

1)
15

T
an

n
in
g
ab

il
it
y

0.
23

5
-0
.0
02

6
(0
.0
19

4)
-9
e-
04

(0
.0
28

3)
0

-0
.0
07

8
(0
.0
14

)
0.
05

34
(0
.0
29

7)
16

W
ai
st

h
ip

ra
ti
o

0.
21

-0
.0
19

7
(0
.0
04

9)
-0
.0
11

5
(0
.0
04

5)
0

0.
00

32
(0
.0
04

2)
0.
00

44
(0
.0
04

3)
17

C
ol
le
ge

E
d
u
ca
ti
on

0.
19

8
-0
.0
08

6
(0
.0
06

3)
-0
.0
06

(0
.0
06

2)
0

0.
00

19
(0
.0
05

9)
0.
00

31
(0
.0
06

1)
18

H
yp

er
th
en

si
on

0.
17

9
-0
.0
14

8
(0
.0
02

6)
-0
.0
08

2
(0
.0
02

1)
0

-0
.0
02

7
(0
.0
02

1)
-0
.0
01

6
(0
.0
02

2)
19

C
ar
d
io
va
sc
u
la
r
D
is
ea
se
s

0.
16

-0
.0
18

1
(0
.0
06

6)
-0
.0
12

1
(0
.0
06

1)
0

-0
.0
03

4
(0
.0
06

3)
-0
.0
02

9
(0
.0
06

2)
20

M
or
n
in
g
P
er
so
n

0.
13

7
-0
.0
12

3
(0
.0
03

2)
-0
.0
07

7
(0
.0
02

8)
0

-0
.0
01

3
(0
.0
02

7)
-0
.0
02

(0
.0
02

8)
21

E
cz
em

a
0.
11

8
-0
.0
12

4
(0
.0
11

2)
-0
.0
06

1
(0
.0
10

9)
0

-0
.0
01

5
(0
.0
11

1)
-0
.0
01

(0
.0
11

)
22

A
ve
ra
ge

ac
ro
ss

tr
ai
ts

0.
28

6
-0
.0
22

1
(0
.0
04

2)
-0
.0
12

1
(0
.0
04

5)
0

0.
00

12
(0
.0
03

7)
0.
01

14
(0
.0
04

5)

Table S13: Absolute di↵erences between polygenic prediction methods across 21 UK Biobank
traits. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. We
report the di↵erence between prediction R2 for each method vs. prediction R2 for LDpred. Block-jackknife
standard errors are reported in parentheses.
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Method Average R2

1 P+T 0.1126
2 LDpred 0.1331
3 P+T-funct-LASSO 0.1218
4 LDpred-funct-inf 0.1343
5 LDpred-funct 0.1447
6 LDpred-inf 0.1133
7 LDpred (without excluding long-range LD regions) 0.0839
8 LDpred (typed SNPs only) 0.1299
9 LDpred-funct-inf (typed SNPs only) 0.1135
10 LDpred-funct (typed SNPs only) 0.1209
11 P+T-funct-LASSO-weighted 0.1231
12 P+T-funct-LASSO (5%) 0.1219
13 LDpred-funct-inf (meta31) 0.1303
14 LDpred-funct-inf (baseline) 0.1313
15 LDpred-funct (baseline) 0.1411
16 LDpred-funct-inf(QCfilters) 0.1339
17 LDpred-funct-inf(UK10K) 0.1354
18 LDpred-funct-inf(UK10K, baseline-LD+LDAK) 0.1350
19 AnnoPred 0.1413
20 LDpred-funct-inf (Baseline-LD v2.1) 0.1360
21 LDpred-funct (Baseline-LD v2.1) 0.1469

Table S14: Accuracy of secondary polygenic prediction methods across 21 UK Biobank traits.
For each method, we report the average prediction R2 across 21 UK Biobank traits. Rows 1-5 correspond to
the ”Average across traits” panel of Figure 2. Row 6 correspond to the average prediction R2 from LDpred-
inf. Row 7 correspond to the average prediction R2 from LDpred that includes SNPs from long-range LD
regions. Rows 8-10 are methods that analyze only genotyped SNPs (601,728 genotyped SNPs after QC).
Rows 11-12 are slightly modified versions of P+T-funct-LASSO. Row 13 uses baseline-LD model functional
enrichments that were meta-analyzed across 31 traits. Row 14-15 uses the baseline model, instead of the
baseline-LD model. Row 16 restricts the baseline-LD model to the 6,334,603 SNPs that passed QC filters
and were used for prediction. Row 17 infers baseline-LD model parameters using UK10K SNPs, instead of
1000 Genomes SNPs. Row 18 uses UK10K SNPs and uses the baseline-LD+LDAK model, instead of the
baseline-LD model. Row 19 corresponds to the average prediction R2 from AnnoPred. Row 20 corresponds to
the average prediction R2 for LDpred-funct-inf using baseline-LD model v2.1 (instead of baseline-LD model
v1.1, which is used in our main analyses). Row 21 corresponds to the average prediction R2 for LDpred-funct
using baseline-LD model v2.1 (instead of baseline-LD model v1.1, which is used in our main analyses).
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Trait h2
g p

1 Height 0.57 0.3000
2 Hair color 0.45 0.3000
3 Platelet count 0.40 0.1000
4 Bone mineral density 0.40 0.1000
5 Balding type I 0.32 0.0100
6 Red blood cell count 0.32 0.1000
7 Age at menarche 0.31 0.0300
8 FEV1 FVC ratio 0.31 0.1000
9 Body mass index 0.31 0.1000
10 RBC distribution width 0.29 0.1000
11 Forced vital capacity 0.27 0.0300
12 Eosinophil count 0.27 0.0300
13 White blood cell count 0.27 0.1000
14 Systolic Blood pressure 0.27 0.1000
15 Tanning ability 0.23 0.1000
16 Waist hip ratio 0.21 0.0300
17 College Education 0.20 0.0300
18 Hyperthension 0.18 0.0300
19 Cardiovascular Diseases 0.16 0.0100
20 Morning Person 0.14 0.0100
21 Eczema 0.12 0.0030

Table S15: Model parameter values for LDpred applied to 21 UK Biobank traits. h2
g estimate

(from BOLT-LMM v2.3), p is the fraction of non-zero e↵ects in the prior, and LD-radious assumed was 2000
SNPs. The main analyses from LDpred exclude long-range LD regions reported in ref. 23, given that including
these regions proved to be sub-optimal (see Table S14).
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P-values threshold for
Phenotype h2

g P+T P+T-funct-LASSO P+T-funct-LASSO
HP SNP set LP SNP set

1 Height 0.57 0.0100 0.30 0.10
2 Hair color 0.45 0.0010 0.10 0.01
3 Platelet count 0.40 0.0100 0.10 0.10
4 Bone mineral density 0.40 0.0010 0.10 0.10
5 Balding type I 0.32 0.0001 0.10 0.01
6 Red blood cell count 0.32 0.0010 0.10 0.10
7 Age at menarche 0.31 0.0100 0.10 0.10
8 FEV1 FVC ratio 0.31 0.0010 0.10 0.10
9 Body mass index 0.31 0.1000 0.30 0.10
10 RBC distribution width 0.29 0.0010 0.10 0.01
11 Forced vital capacity 0.27 0.0100 0.10 0.10
12 Eosinophil count 0.27 0.0010 0.10 0.10
13 White blood cell count 0.27 0.0100 0.10 0.10
14 Systolic Blood pressure 0.27 0.0100 0.10 0.10
15 Tanning ability 0.23 0.0010 0.10 0.01
16 Waist hip ratio 0.21 0.0100 0.10 0.10
17 College Education 0.20 1.0000 0.30 0.30
18 Hyperthension 0.18 0.0100 0.10 0.10
19 Cardiovascular Diseases 0.16 0.1000 0.10 0.10
20 Morning Person 0.14 0.0100 0.10 0.10
21 Eczema 0.12 0.0100 0.10 0.01

Table S16: Model parameter values for P+T and P+T-funct-LASSO in 21 UK Biobank traits.
We report the optimal p-value threshold for Pruning + Thresholding (P+T), optimal p-value threshold for
P+T-funct-LASSO high prior SNP (HP) set and optimal p-value threshold for P+T-funct-LASSO low prior
SNP (LP) set. Optimal R2

LD values was 0.1.
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Phenotype h2
g P+T P+T-funct-LASSO LDpred LDpred-funct-inf LDpred-funct

1 Height 0.575 0.2228 0.3034 0.7595 0.7367 0.9938
2 Hair color 0.446 0.2505 0.3058 0.7254 0.7182 0.9920
3 Platelet count 0.401 0.2429 0.3423 0.8451 0.8115 0.9895
4 Bone mineral density 0.398 0.2871 0.3477 0.8192 0.8246 0.9865
5 Balding type I 0.323 0.3693 0.5050 0.8994 0.8781 0.9776
6 Red blood cell count 0.319 0.2898 0.3458 0.8583 0.8202 0.9822
7 Age at menarche 0.313 0.1990 0.3430 1.0227 0.8706 0.9782
8 FEV1 FVC ratio 0.309 0.3021 0.3593 0.8843 0.8527 0.9740
9 Body mass index 0.307 0.1687 0.3541 0.9138 0.8599 0.9813

10 RBC distribution width 0.286 0.2839 0.4189 0.8399 0.8123 0.9833
11 Forced vital capacity 0.274 0.2237 0.3783 0.9085 0.8665 0.9770
12 Eosinophil count 0.274 0.2781 0.3298 0.9082 0.8518 0.9830
13 White blood cell count 0.273 0.2352 0.3707 0.9033 0.8538 0.9793
14 Systolic Blood pressure 0.267 0.2200 0.3637 0.9050 0.8453 0.9808
15 Tanning ability 0.235 0.2437 0.2873 0.8312 0.8292 0.9905
16 Waist hip ratio 0.210 0.2057 0.3344 0.8453 0.8500 0.9758
17 College Education 0.198 0.1345 0.2610 1.0159 0.8520 0.9728
18 Hyperthension 0.179 0.2140 0.3557 0.9817 0.8077 0.9710
19 Cardiovascular Diseases 0.160 0.1213 0.3296 0.9376 0.7953 0.9643
20 Morning Person 0.137 0.2158 0.3720 1.0803 0.8751 0.9651
21 Eczema 0.118 0.1752 0.4971 0.7496 0.7611 0.9634
22 Average across traits 0.286 0.2325 0.3574 0.8873 0.8273 0.9791

Table S17: Calibration comparison for the 5 methods applied to 21 UK Biobank traits. We
report calibration slopes for each method, where a value close to 1 respresents a well calibrated prediction.
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Table S18: Sensitivity of LDpred-funct results to number of bins used for regularization across
21 UK Biobank traits. We report results with the number of posterior mean causal e↵ect size bins used
for regularization (K) set to 10, 20, 50, 75 or 100. LDpred-funct-K denotes each respective value of K. We
also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1.
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Table S19: Sensitivity of LDpred-funct results to number of validation samples across 21 UK
Biobank traits. We report results with the number of validation samples set to 1,000, 2,000, 5,000, 10,000
(the number of regularization bins is proportional to the number of validation samples; see Equation 6. Results
are averaged across 100 random subsets of each size. ALL denotes results of LDpred-funct using the total
number of validation samples (reported in Table S1). We also report results for LDpred-funct-inf, which is
equivalent to LDpred-funct in the limit of a very small number of validation samples.
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Data Set Training N P+T LDpred P+T-funct LDpred-funct-inf LDpred-funct
-LASSO

UK Biobank in-
terim release

113,660 0.2223 0.2276 0.2524 0.2777 0.2926

UK Biobank 408,092 0.3448 0.3860 0.3644 0.3995 0.4132
23andMe 698,430 0.2903 0.2919 0.2985 0.3148 0.3279
Meta-analysis
of UK Biobank
and 23andMe

1,107,430 0.3710 0.4004 0.3778 0.4193 0.4292

Fixed-e↵ect
meta-analysis

1,107,430 0.3687 0.3675 0.3663 0.3965 0.4051

Table S20: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred, P+T-funct-LASSO, LDpred-funct-inf and
LDpred-funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK
Biobank (408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank
and 23andMe (1,107,430 training samples). We also report results for a fixed-e↵ect meta-analysis of UK
Biobank and 23andMe.
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Phenotype h2
g LDpred-funct AnnoPred Di↵erence

1 Height 0.57 0.4128 (0.0261) 0.4078 (0.0268) -0.0046 (0.0186)
2 Hair color 0.45 0.3290 (0.1358) 0.2591 (0.1124) -0.0683 (0.0284)
3 Platelet count 0.40 0.2460 (0.0269) 0.2351 (0.0221) -0.0099 (0.0095)
4 Bone mineral density 0.40 0.2256 (0.025) 0.2316 (0.0211) 0.0062 (0.0042)
5 Balding type I 0.32 0.1221 (0.0235) 0.1452 (0.0207) 0.0230 (0.0131)
6 Red blood cell count 0.32 0.1659 (0.0202) 0.1680 (0.0155) 0.0018 (0.0034)
7 Age at menarche 0.31 0.1122 (0.0183) 0.1144 (0.0102) 0.003 (0.0028)
8 FEV1 FVC ratio 0.31 0.1330 (0.017) 0.1445 (0.0102) 0.0112 (0.0034)
9 Body mass index 0.31 0.1499 (0.0151) 0.1539 (0.0079) 0.0042 (0.0029)
10 RBC distribution width 0.29 0.1533 (0.0202) 0.1487 (0.0149) -0.0046 (0.007)
11 Forced vital capacity 0.27 0.1134 (0.0148) 0.1190 (0.0071) 0.0056 (0.0021)
12 Eosinophil count 0.27 0.1409 (0.0191) 0.1386 (0.014) -0.0025 (0.0108)
13 White blood cell count 0.27 0.1270 (0.0161) 0.1320 (0.0096) 0.0049 (0.0067)
14 Systolic Blood pressure 0.27 0.1112 (0.0133) 0.1173 (0.0069) 0.0067 (0.0019)
15 Tanning ability 0.23 0.1842 (0.0784) 0.1226 (0.0645) -0.0616 (0.028)
16 Waist hip ratio 0.21 0.0806 (0.0116) 0.0853 (0.0071) 0.0047 (0.0039)
17 College Education 0.20 0.0728 (0.0109) 0.0707 (0.0066) -0.0022 (0.0027)
18 Hyperthension 0.18 0.0534 (0.0094) 0.0575 (0.0048) 0.0041 (0.0019)
19 Cardiovascular Diseases 0.16 0.0427 (0.0084) 0.0468 (0.004) 0.0040 (0.0012)
20 Morning Person 0.14 0.0365 (0.008) 0.0390 (0.0032) 0.0025 (0.0013)
21 Eczema 0.12 0.0272 (0.0064) 0.0306 (0.0034) 0.0044 (0.0014)

Average across traits 0.29 0.1439 (0.0112) 0.1407 (0.0098) -0.0032 (0.0034)

Table S21: Accuracy of LDpred-funct and AnnoPred across 21 UK Biobank traits. We re-
port prediction R2 for LDpred-funct and AnnoPred, and di↵erence in prediction R2 between AnnoPred and
LDpred-funct. Block-jackknife standard errors are reported in parentheses. When running AnnoPred, we
excluded SNPs from long-range LD regions (analogous to LDpred). We note that AnnoPred employs either
(i) a prior in which the probability of being causal is the same for each SNP and the causal e↵ect size variance
varies across SNPs, or (ii) a prior in which the probability of being causal varies across SNPs and the causal
e↵ect size variance is the same for each SNPs. We considered only the first prior, as the second prior constructs
categories of SNPs that share the same annotation values; in the case of continuous-valued annotations this
would lead to an infinite number of categories.
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LDpred-funct-inf under di↵erent priors:
Trait h2

g baselineLD
(1000G)

baselineLD
(UK10K)

baselineLD +
LDAK (UK10K)

1 Eosinophil
count

0.274 0.1335 0.1335 0.1342

2 Platelet count 0.401 0.2315 0.2327 0.2298
3 RBC distribu-

tion width
0.286 0.1421 0.1432 0.1451

4 Red blood cell
count

0.319 0.1571 0.1566 0.1544

5 White blood cell
count

0.273 0.1239 0.1246 0.1251

6 Bone mineral
density

0.398 0.2137 0.2122 0.2117

7 Balding type I 0.323 0.1075 0.1040 0.1070
8 Body mass in-

dex
0.307 0.1508 0.1503 0.1502

9 Height 0.575 0.4003 0.4031 0.4033
10 Waist hip ratio 0.210 0.0793 0.0793 0.0785
11 Systolic Blood

pressure
0.267 0.1114 0.1113 0.1136

12 College Educa-
tion

0.198 0.0716 0.0788 0.0790

13 Eczema 0.118 0.0274 0.0283 0.0277
14 Cardiovascular

Diseases
0.160 0.0423 0.0446 0.0449

15 Hyperthension 0.179 0.0523 0.0548 0.0555
16 FEV1 FVC ra-

tio
0.309 0.1311 0.1309 0.1323

17 Forced vital ca-
pacity

0.274 0.1145 0.1147 0.1140

18 Morning Person 0.137 0.0372 0.0404 0.0404
19 Hair color 0.446 0.2624 0.2749 0.2723
20 Tanning ability 0.235 0.1229 0.1254 0.1232
21 Age at menar-

che
0.313 0.1079 0.0995 0.0930

Table S22: Accuracy of LDpred-funct-inf(1000G), LDpred-funct-inf(UK10K) and LDpred-
funct-inf(UK10K, baseline-LD+LDAK) across 21 UK Biobank traits. We report results for each
trait. Results for Average across traits are reported in Table S14.
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