
 

1 
 

Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait 1 

Evolution in Common Bean 2 

Authors: Alice H. MacQueen*, Jeffrey W. White†, Rian Lee‡, Juan M. Osorno‡, Jeremy 3 

Schmutz§, Phillip N. Miklas**, Jim Myers††, Phillip E. McClean‡, Thomas E. Juenger* 4 

*The University of Texas at Austin, Austin, TX 78712 †USDA-ARS, US Arid-Land Agricultural 5 

Research Center, Maricopa, AZ 85239 ‡Genomics and Bioinformatics Program, North Dakota 6 

State University, Fargo, ND 58102 §Hudson-Alpha Institute for Biotechnology, Huntsville, AL 7 

35806 **USDA-ARS, Prosser, WA 99350 ††Department of Horticulture, Oregon State University, 8 

Corvallis, OR 97331 9 

 10 

Genotypic data is available on SRA under submission number SUB6162710. 11 

Code for SNP calling is available at https://github.com/Alice-MacQueen/SNP-calling-pipeline-12 

GBS-ApeKI. 13 

Aligned SNP data is available at https://doi.org/10.18738/T8/RTBTIR. 14 

Raw phenotypic data is available in the National Agricultural Library: 15 

https://www.nal.usda.gov/. 16 

Code used to generate data used in this analysis from the raw phenotypic data is available at 17 

Rpubs, found at: http://rpubs.com/alice_macqueen/CDBN_Phenotype_Standardization. 18 

Code and data necessary to replicate this analysis are available as part of the R package 19 

CDBNgenomics, found at: https://github.com/Alice-MacQueen/CDBNgenomics. 20 

Supplementary data for this manuscript is available at: https://doi.org/10.18738/T8/KZFZ6K. 21 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Running title: Breeding led to pleiotropy in the CDBN 22 

 23 

Key words: multi-environment trial, genome-wide association, common bean (Phaseolus 24 

vulgaris), crop improvement, genetics of diversification 25 

 26 

Author for correspondence: 27 

Alice MacQueen 28 

2415 Speedway, Stop C0900, PAT 626 29 

Austin, TX 78712-1208 30 

Tel: +1 (512) 672-9467 31 

Email: alice.macqueen@utexas.edu 32 

33 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Abstract 34 

Multi-environment trials (METs) are widely used to assess the performance of promising 35 

crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET datasets are 36 

often much larger than could be duplicated for genetic research and, given proper 37 

interpretation, may offer valuable insights into the genetics of adaptation across time and 38 

space.  The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus 39 

vulgaris) grown for over 70 years in the United States and Canada, consisting of 20 to 50 entries 40 

each year at 10 to 20 locations.  The CBDN provides a rich source of phenotypic data across 41 

entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects 42 

segregating in this MET, we conducted genome-wide association (GWAS) using best linear 43 

unbiased predictions (BLUPs) derived across years and locations for 21 CDBN phenotypes and 44 

genotypic data (1.2M SNPs) for 327 CDBN genotypes. The value of this approach was confirmed 45 

by the discovery of three candidate genes and genomic regions previously identified in 46 

balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to 47 

detect significant correlated effects, found significant effects for all phenotypes. The first use of 48 

mash on an agricultural dataset discovered two genomic regions with pleiotropic effects on 49 

multiple phenotypes, likely selected on in pursuit of a crop ideotype. Overall, our results 50 

demonstrate that by applying multiple statistical genomic approaches on data mined from MET 51 

phenotypic data sets, significant genetic effects that define genomic regions associated with 52 

crop improvement can be discovered. 53 

54 
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Introduction 55 

Almost every crop improvement program assesses the performance of promising 56 

germplasm and breeding material via multi-environment trials (METs). The phenotypic data 57 

produced by these trials are extremely important guides to growers, private seed companies, 58 

and public institutions involved in crop improvement, because combining trial data from 59 

multiple years and locations increases the probability of identifying genotypes that perform 60 

well or show especially desirable traits (BOWMAN 1998). Many cooperative testing networks 61 

conduct METs to enable cooperators and other interested parties to observe performance over 62 

a wider range of environments than if they were only tested locally (ANNICCHIARICO 2002). This 63 

supports the identification of advanced lines with stable, high performance in multiple 64 

production environments. Amongst many others, crop testing networks that conduct METs 65 

include the US cooperative regional performance testing program, the University Crop Testing 66 

Alliance, and the Cooperative Dry Bean Nursery (CDBN) (SINGH 2000).  67 

Longstanding METs such as the CDBN have often focused on breeding for crop 68 

ideotypes, in addition to breeding to eliminate defects and to select for yield. DONALD (1968) 69 

defined a crop ideotype as an idealized plant with trait combinations expected to produce a 70 

greater yield quantity or quality. In contrast, approaches that eliminate defects or select for 71 

yield do not consider desirable combinations of traits; thus, these approaches only produce 72 

desirable combinations by chance. Selection for an ideotype involves selection for correlated 73 

traits, and could lead to substantial pleiotropy, where a single gene affects multiple traits. METs 74 

like the CDBN that were used to select for specific crop ideotypes could provide insight into the 75 

genetics of trait correlations in crop genomes.   76 
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 Though METs are often used to measure genetic gain over time (GRAYBOSCH AND PETERSON 77 

2010; VANDEMARK et al. 2014), the vast majority of METs are designed to measure phenotypic 78 

responses to a broad set of targeted growing environments. The experimental designs of METs 79 

can pose substantial analytical challenges to additional, unplanned genetic analyses. METs 80 

typically produce sparse data matrices of phenotypes across germplasm entries, locations, and 81 

years (Fig. 1). The frequency of different germplasm entries may vary as part of the normal 82 

selection process. Thus, entries with good performance are often tested in more locations and 83 

years than those with poor performance. With the exception of few standard checks, the set of 84 

genotypes tested each year typically varies, with most genotypes tested in only one or two 85 

years. In addition, the total number of genotypes tested each year can vary substantially, and 86 

this number is typically too small for genome-wide association on any one year’s data alone. 87 

Over the years, MET cooperators can also join or leave the network and add or drop MET sites 88 

or phenotypes due to changes in research focus, personnel, or funding. All of these variations 89 

make METs into large unbalanced datasets that need to be handled properly for genetic work. 90 

Genetic analyses of MET germplasm can also be hampered by the difficulty of obtaining and 91 

genotyping previously evaluated entries, particularly entries with poor trial performance that 92 

were not tested further. This difficulty may bias or prevent studies that require genetic diversity 93 

to explain phenotypic variation, such as genome-wide association studies. In contrast, field 94 

experiments designed for genetic studies assess complete, balanced designs, and produce data 95 

matrices of phenotypes across genotypes and environments with few or no missing cells. 96 

Ideally, the number of genotypes is identical across all environments, and a minimum of a few 97 
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hundred genotypes are tested in each environment. Each genotype is also tested an equivalent 98 

number of times across sites and years.   99 

 Despite these analytical issues, METs often produce decades of phenotypic data, which 100 

gives them substantial appeal for use in genetic analyses of phenotypic variation. Genetic 101 

analyses of MET datasets have recently been implemented in several crop species (HAMBLIN et 102 

al. 2010; RIFE et al. 2018; SUKUMARAN et al. 2018). Its nutritional and agronomic importance, long 103 

history of multi-environment trials (METs), and emerging genomic tools makes common bean 104 

an outstanding species in which to assess METs that might support the genetic analysis of 105 

phenotypic variation. Common bean is the most consumed plant protein source worldwide and 106 

is a particularly important source of protein in the developing world (FAOSTAT 2015). In North 107 

America, common bean improvement efforts remain mostly in the public sector, and over the 108 

past 70 years, the CDBN has been a major testing platform for these improvement efforts. The 109 

CDBN is the largest MET for common bean in the United States and Canada (MYERS 1988; SINGH 110 

2000) and CDBN cooperators have collected phenotypic data on over 150 traits for hundreds of 111 

advanced breeding lines and released cultivars (hereafter entries) of common bean at over 70 112 

locations (Fig. 1), which produced up to 18,000 recorded data points per trait (Fig. 2a). The 113 

traits are of economic and/or agronomic importance to bean producers, and include seed yield, 114 

growth habit, seed size, phenology, and disease responses, among others (Fig. 2a, S1).  115 

More than 500 CDBN entries have been grown since the 1980’s (Fig. 1). These entries 116 

include released cultivars and unreleased advanced breeding lines representing most bean 117 

types grown in North America. These represent at least thirteen market classes of common 118 

bean that group into three major races from two independent domestication events (MAMIDI et 119 
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al. 2011) (Fig. 1). Therefore, the CDBN can be used as a representative sample of the genetic 120 

diversity being used by North American bean breeders in their programs throughout the last 70 121 

years. However, phenotypic data from the CDBN is sparse and unevenly distributed: the 122 

average CDBN entry was grown at only 19 of the 70 locations and in two of the 34 years, with 123 

substantial variation in these numbers. CDBN cooperators grew between 16 and 61 of the 500+ 124 

entries each year and used ten to 28 of the 70+ locations per year (Fig. 1). Individual CDBN 125 

locations grew between eight and 514 entries, with a median of 74 entries. Locations were used 126 

in the CDBN for as few as one to as many as 34 years, with a median of five years of 127 

participation. Though genotypes are present only intermittently over CDBN locations and years, 128 

the vast phenotyping effort on this interrelated set of bean germplasm, when combined with 129 

genomic data, offers an excellent opportunity to identify genomic regions affecting phenotypic 130 

variation in this species.  131 

Genome-wide association studies (GWAS) have elucidated candidate genes and 132 

genomic regions that affect trait variation in many other crop species (ATWELL et al. 2010; KIRBY 133 

et al. 2010; MACKAY et al. 2012; LIN et al. 2014; MCCOUCH et al. 2016; MACARTHUR et al. 2017; XIAO 134 

et al. 2017; TOGNINALLI et al. 2018) and have recently been implemented in common bean (CICHY 135 

et al. 2015; KAMFWA et al. 2015b; KAMFWA et al. 2015a; MOGHADDAM et al. 2016; SOLTANI et al. 136 

2017; TOCK et al. 2017; NASCIMENTO et al. 2018; SOLTANI et al. 2018; OLADZAD et al. 2019a; OLADZAD 137 

et al. 2019b; RAGGI et al. 2019). Combining sparse phenotypic data in agricultural datasets to 138 

look for pleiotropic effects across conditions has parallels in human biomedical GWAS. In these 139 

trials, individual clinics can assess only a subset of human genotypes, and patients are 140 

evaluated using institution-specific criteria (LOTTA et al. 2017; VISSCHER et al. 2017). Human 141 
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GWAS often look for common variants for common diseases and correct phenotypes for effects 142 

of age, sex, and location (SCHORK et al. 2009; MEFFORD AND WITTE 2012; ZAITLEN et al. 2012). 143 

Analogously, we seek common, genetically stable variants for important phenotypes evaluated 144 

in a MET, corrected for effects of location, year, kinship, and assessment criteria. In human 145 

biomedical GWAS, pleiotropic effects of SNPs on multiple diseases have frequently been 146 

observed (SIVAKUMARAN et al. 2011). Selection for a common bean crop ideotype, with a long 147 

hypocotyl, many nodes carrying long pods and without side branches, small leaves, and 148 

determinate growth (ADAMS 1982; KELLY 2001), is known to have led to pleiotropic effects on 149 

multiple traits, such as seed yield, biomass, lodging, and plant height (SOLTANI et al. 2016). To 150 

study the genetic effects of this aspect of the CDBN selection framework, we used multivariate 151 

adaptive shrinkage (mash) to find genomic associations with significant effects on one or more 152 

CDBN phenotype (URBUT et al. 2019). Mash is a flexible, data-driven method that shares 153 

information on patterns of effect size and sign in any dataset where effects can be estimated on 154 

a condition-by-condition basis for many conditions (here, phenotypes) across many units (here, 155 

SNPs). It first learns patterns of covariance between SNPs and phenotypes from SNPs without 156 

strong effects, then combines these data-driven covariances with the original condition-by-157 

condition results to produce improved effect estimates. In this way, mash shares information 158 

between conditions to increase the power to detect shared patterns of effects. Mash was 159 

originally used for analyses of human biomedical data (URBUT et al. 2019) and has yet to be used 160 

in an agricultural setting. This analysis method could be used with the rich phenotypic 161 

resources of crop METs to understand genetic effects across multiple phenotypes or across 162 

multiple locations and years.  163 
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Here, we demonstrate that the CDBN MET dataset can be used to make genetic 164 

discoveries, despite the sparse nature of the data, by using BLUPs for entries phenotyped in the 165 

CDBN. We explore whether this approach can find genomic regions significantly associated with 166 

phenotypic variation, and compare associations found with this approach to published GWAS 167 

results obtained from more balanced trials. We also explore patterns of genomic associations 168 

with significant effects on more than one CDBN phenotype using mash. Our results 169 

demonstrate the value of adding a genetic component to datasets such as the CDBN and 170 

provide a starting point for future work that explores the genetics of phenotypes evaluated in 171 

METs. 172 

Materials and Methods 173 

Background principles: processing, digitization and genetic analysis of phenotypic data 174 

MET datasets represent substantial phenotypic resources that can aid in the genetic 175 

study of important agronomic phenotypes. Several important steps in preparing the CDBN data 176 

for analysis fall under the remit of data science, and specifically involve the data processing 177 

steps outlined here. First, when available only from printed reports, the data was rendered 178 

machine-readable. Processing of the digitized data next involved cleaning the data to remove 179 

inconsistencies and spurious data, then filtering to retain only the relevant data. The data was 180 

stored in a consistent form where the semantics of the dataset matched the way it was stored. 181 

Then, various data scales for individual traits such as growth habit were standardized to create 182 

phenotypes that were more consistent across locations and years. The phenotypic data was 183 

next enriched with additional attributes that made subsequent analyses more meaningful, such 184 
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as germplasm, environment, and crop management information. Then, the data was 185 

aggregated to create summary data, by estimating BLUPs for each phenotype. We next used a 186 

GWAS modeling approach to determine the genomic regions associated with these data 187 

summaries. Finally, we used multivariate adaptive shrinkage (mash) to examine the patterns of 188 

overlap between genomic associations with significant effects on one or more phenotype 189 

(URBUT et al. 2019). 190 

Phenotypic data processing 191 

Phenotypic data for entries grown in the CDBN were available mainly as hard-copy 192 

reports providing plot averages at named locations. Some reports were available in the 193 

National Agricultural Library from the 1950s onwards; however, reports from 1981 onwards 194 

had substantial additional available genetic material and were the focus for this analysis (Table 195 

S1). Reports from 1981 to 2015 were scanned if not in digital format, digitized using optical 196 

image recognition as required, and then reformatted using custom SAS (SAS System, version 197 

9.4, SAS Institute Inc., Cary, NC) scripts that also standardized nomenclature and units of 198 

measurement.  199 

Much of the phenotypic data required additional processing to allow comparisons 200 

across locations and years. The long timespan and large number of testing locations led to the 201 

scoring of 152 traits. Many of these traits represented distinct methods for scoring similar 202 

phenotypes; for example, lodging was scored on a percent scale, a 1 to 5 scale, a 0 to 9 scale, 203 

and a 1 to 9 scale at different locations and in different years; for this analysis, these lodging 204 

traits were standardized to one lodging phenotype on a 1 to 5 scale. From 152 traits reported, 205 
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22 phenotypes were standardized for use in GWAS, including eight quantitative phenotypes 206 

and fourteen qualitative phenotypes created from visual scores and/or specific measurements 207 

(Fig. 2a). The output from the R script used to standardize the phenotypes across locations and 208 

years can be found online at 209 

http://rpubs.com/alice_macqueen/CDBN_Phenotype_Standardization.  210 

We generated phenotypes associated with location code, year, and genotype 211 

information. A total of 70 location codes were created as four-letter abbreviations with the U.S. 212 

state or Canadian province abbreviation as the first two letters, and the specific site 213 

abbreviation as the second two letters. Five location codes ending in “2” corresponded to a 214 

second trial grown at that location and year, usually with a treatment such as drought or 215 

disease applied. Location codes were associated with latitude, longitude, elevation, and other 216 

location-specific metadata (Table S2), while genotypes were associated with market class and 217 

race, as well as the availability of seed from the holdings of CDBN cooperators and single 218 

nucleotide polymorphism (SNP) data, where available (Table S2).   219 

In general, location by year (L*Y) combinations with outlier phenotypic values (values 220 

above the third quartile or below the first quartile by 1.5 times the interquartile range, or IQR) 221 

were removed for every entry in that L*Y combination. Removing outlier L*Y combinations 222 

prevented possible bias from linear models using a biased sample of datapoints for a L*Y, while 223 

still removing points that, by IQR measures and by knowledge of reasonable ranges for 224 

common bean quantitative phenotypes, were likely due to mismeasurement or data entry 225 

errors. The specifics of phenotype standardization for all 22 phenotypes are given in the 226 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

12 
 

Supplementary Note and the code is available on GitHub at https://github.com/Alice-227 

MacQueen/CDBNgenomics/tree/master/analysis-paper. 228 

Germplasm: CDBN Diversity Panel and Single Nucleotide Polymorphism Dataset 229 

Germplasm recovery and sequencing 230 

To detect genomic regions associated with phenotypic variation in a GWAS framework, 231 

it is particularly valuable to have a large amount of heritable phenotypic variation. Thus, it was 232 

equally important to include entries from the CDBN with poor seed yields or non-ideal 233 

phenotypic traits as high yielding, commercially released varieties. We thus went to 234 

considerable effort to obtain seed of unreleased, unarchived materials from the holdings of 235 

CDBN cooperators. Germplasm from the entries grown in the CDBN was obtained from multiple 236 

sources, including the International Center for Tropical Agriculture (CIAT), the National Plant 237 

Germplasm System (NPGS), and three common bean diversity panels, the Mesoamerican 238 

Diversity Panel (MDP) (MOGHADDAM et al. 2016), Durango Diversity Panel (DDP) (SOLTANI et al. 239 

2016), and Andean Diversity Panel (ADP) (CICHY et al. 2015). Seed was also obtained from 240 

holdings of CDBN cooperators, including Mark Brick (Colorado State University), Jim Kelly 241 

(Michigan State University), Phil McClean (North Dakota State University), Phil Miklas (USDA-242 

ARS), James Myers (Oregon State University), Juan Osorno (North Dakota State University), and 243 

Tom Smith (University of Guelph).  244 

The SNP dataset was created from this germplasm in two ways. First, raw sequence data 245 

was obtained from the ADP, DDP, and MDP (CICHY et al. 2015; MOGHADDAM et al. 2016) for CDBN 246 

entries and all parents of CDBN entries which had been sequenced as part of these panels. The 247 
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remainder of the CDBN was genotyped using identical methodology to these previous diversity 248 

panels, dual-enzyme genotyping-by-sequencing (SCHRÖDER et al. 2016). Unfortunately, 39 of the 249 

older, unreleased varieties would no longer germinate. For these varieties, we obtained DNA 250 

for sequencing by rehydrating sterilized seeds on wetted Whatman paper in petri plates for 2-3 251 

days, then dissecting the embryo from the seed and extracting DNA from the embryo. The DNA 252 

from the remaining entries was extracted from young trifoliates. The enzymes MseI and TaqI 253 

were used for digestion following the protocol from Schröder et al. (2016). SNPs were called 254 

from this raw sequence data using the pipeline found at https://github.com/Alice-255 

MacQueen/SNP-calling-pipeline-GBS-ApeKI. Briefly, cutadapt was used to trim adapters and 256 

barcodes (MARCEL 2011), sickle adaptive trimming was used to remove ends of reads with 257 

quality scores below 20 (JOSHI AND FASS 2011), bwa mem was used to align reads to V2.0 of the 258 

G19833 reference genome found at 259 

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris (LI AND DURBIN 2010; 260 

SCHMUTZ et al. 2014), and NGSEP was used to call SNPs for the entire set of CDBN entries and all 261 

parents in the CDBN pedigrees (DUITAMA et al. 2014). SNPs were imputed using FILLIN in TASSEL. 262 

This resulted in the creation of a diversity panel of 327 entries with MET data in the CDBN, 263 

(Table S2) with aligned SNP data available on the UT Libraries data repository at doi: <to be 264 

obtained before publication; authors can provide for analysis replication purposes during 265 

review> for use in the CDBNgenomics R package at https://github.com/Alice-266 

MacQueen/CDBNgenomics. 267 

Genome-wide association study 268 
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To explore consistent genetic effects that could be compared to balanced genetic trials, 269 

analyses were performed on genetic BLUPs for each phenotype. BLUPs were calculated in the 270 

rrBLUP package in R, using a kinship matrix and treating location and the interaction between 271 

location and year as fixed effects. The R code to generate the BLUPs is available on GitHub at 272 

https://github.com/Alice-MacQueen/CDBNgenomics/tree/master/analysis-paper. The BLUPs 273 

are available in Table S2. For GWAS phenotypes, BLUPs were retained only for CDBN entries 274 

phenotyped at least one time in the CDBN. The kinship matrix was calculated using default 275 

methods in GAPIT. A total of 1,221,540 SNPs with a minor allele frequency greater than 5% in 276 

the CDBN diversity panel were identified and used for the CDBN GWAS. GWAS analyses were 277 

performed using compressed mixed linear models (ZHANG et al. 2010) implemented in GAPIT 278 

with the optimum level of compression (LIPKA et al. 2012). These models used a kinship matrix 279 

calculated within GAPIT to control for individual relatedness, and some number of principle 280 

components (PCs) to control for population structure. The optimum number of principle 281 

components (PCs) to control for population structure was determined using model selection in 282 

GAPIT, and by selecting the number of PCs that maximized the Bayesian Information Criterion 283 

(BIC). Typically, zero to two PCs were used (Table S3). The final Manhattan plots were created 284 

using the ggman R package. Plots of intersecting sets were created using the UpSetR package 285 

(LEX et al. 2014). Candidate genes within a 20kb interval centered on the peak SNP with p-286 

values above a Benjamini-Hochberg false discovery rate (FDR) threshold of 0.1 were examined 287 

further.  288 

Comparison to published genome-wide associations in common bean 289 
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 Out of the 21 BLUPs estimated from CDBN phenotypes, a group of 13 also had published 290 

associations from GWAS on common bean. To compare the major associations in our study to 291 

those of published studies on balanced genetic trials, we collected the major associations 292 

reported in eleven published GWAS studies of common bean (CICHY et al. 2015; KAMFWA et al. 293 

2015b; KAMFWA et al. 2015a; MOGHADDAM et al. 2016; SOLTANI et al. 2017; TOCK et al. 2017; 294 

NASCIMENTO et al. 2018; SOLTANI et al. 2018; OLADZAD et al. 2019a; OLADZAD et al. 2019b; RAGGI et 295 

al. 2019). We compared these published associations to the associations for the top 10 SNPs for 296 

each of the 13 phenotypes in this study, thinned to one SNP per 20kb region. Unfortunately, 297 

these comparisons were likely very conservative, in that most of these publications used panels 298 

of common bean that were comprised of material from different genepools than the CDBN, 299 

with the exception of the MDP and DDP (MOGHADDAM et al. 2016; SOLTANI et al. 2016; OLADZAD et 300 

al. 2019a; OLADZAD et al. 2019b). Both Andean and Middle-American genepools have been 301 

observed to have different SNPs underlying domestication traits (SCHMUTZ et al. 2014). Eight of 302 

these publications used v1.0 of the Phaseolus vulgaris genome annotation, while our 303 

associations were mapped to v2.0. We used the genome browser located at 304 

https://legumeinfo.org/genomes/gbrowse/phavu.G19833.gnm2 to convert associations 305 

between these two versions of the genome annotation. We then determined the number of 306 

overlapping associations meeting two criteria: first, those within 200kb of one another, and 307 

second, within 20kb of one another and with the same candidate gene. We determined these 308 

overlaps for the 80 associations from the eleven published GWAS to find an expected rate of 309 

overlap, then compared this to the rate of overlap between this study and the eleven balanced 310 

GWAS. 311 
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Analysis of pleiotropy or linked effects on multiple phenotypes 312 

 To increase our power to detect associations above a FDR, and to find genomic 313 

associations with significant effects on one or more CDBN phenotype, we used a two-step 314 

empirical Bayes procedure, mash, to estimate effects of ~45000 SNPs on 20 BLUPs determined 315 

from CDBN phenotypes (URBUT et al. 2019). Mash has been used to increase power to detect 316 

effects in analyses of human data, and while the methods are extensible to any dataset with 317 

many SNPs/markers and many phenotypes/conditions, it has not yet been used in an 318 

agricultural setting. Briefly, mash is a flexible, data-driven method that shares information on 319 

patterns of effect size and sign in any dataset where effects can be estimated on a condition-320 

by-condition basis for many conditions (here, phenotypes) across many units (here, SNPs). It 321 

first learns patterns of covariance between SNPs and phenotypes from SNPs without strong 322 

effects, then combines these data-driven covariances with the original condition-by-condition 323 

results to produce improved effect estimates. In this way, mash shares information between 324 

conditions to increase the power to detect shared patterns of effects. Importantly, this method 325 

does not have restrictive assumptions about the patterns of effects between markers or 326 

conditions. In addition, estimates with little uncertainty are not adversely affected by the 327 

inclusion of estimates with high uncertainty. Thus, we included 20 phenotypes in the mash 328 

analysis, including twelve phenotypes with no signal above the Benjamini-Hochberg FDR 329 

threshold in individual GWAS. Two low-signal phenotypes related to bean common mosaic virus 330 

presence or absence were not included; inclusion of these phenotypes did not significantly alter 331 

the mash results (data not shown). The procedure we used to generate input matrices for mash 332 

is captured in the R package gapit2mashr, available at https://github.com/Alice-333 
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MacQueen/gapit2mashr. Briefly, the effect of the alternate allele relative to the reference allele 334 

was determined for each SNP using GAPIT. To allow mash to converge effectively on effect 335 

estimates, the effects for each phenotype were standardized to fall between -1 and 1, with a 336 

mean of 0. Because mash does not accept NA values, when GAPIT calculated standard errors 337 

for 95% or fewer of the SNPs in the GWAS, we instead calculated standard errors for that 338 

phenotype using Hedges’ G (HEDGES AND OLKIN 1985).  339 

Data-driven covariance matrices were estimated using 45,000 randomly selected SNPs 340 

from the entire set of 1,221,540 SNPs. These matrices were then used on the top 4,000 SNPs 341 

for each of the 20 traits, as determined by p-value in the individual GWAS, which produced a 342 

matrix of strong effects for 45,000 SNPs. We then explored the patterns of significant effects in 343 

the mash output. We first determined which SNPs had evidence of significant phenotypic 344 

effects by determining SNPs with the largest Bayes factors. In this analysis, the Bayes factor was 345 

the ratio of the likelihood of one or more significant phenotypic effects at a SNP to the 346 

likelihood that the SNP had only null effects. Here, following KASS AND RAFTERY (1995), a Bayes 347 

factor of > 102 is considered decisive evidence in favor of the hypothesis that a SNP has one or 348 

more significant phenotypic effect. We also compared the size of significant phenotypic effects, 349 

as determined by SNPs with a local false sign rate of 0.05 or less for one or more phenotype. 350 

The local false sign rate is analogous to a FDR, but is more conservative, in that it also reflects 351 

the uncertainty in the estimation of the sign of the effect (STEPHENS 2017). 352 

Data availability statement 353 
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Genotypic data is available on SRA under submission number SUB6162710. Code for 354 

SNP calling is available at https://github.com/Alice-MacQueen/SNP-calling-pipeline-GBS-ApeKI. 355 

Aligned SNP data is available at https://doi.org/10.18738/T8/RTBTIR. Raw phenotypic data is 356 

available in the National Agricultural Library: https://www.nal.usda.gov/. Code used to 357 

generate data used in this analysis from the raw phenotypic data is available at Rpubs, found at: 358 

http://rpubs.com/alice_macqueen/CDBN_Phenotype_Standardization. Code and data 359 

necessary to replicate this analysis are available as part of the R package CDBNgenomics, found 360 

at: https://github.com/Alice-MacQueen/CDBNgenomics. Supplementary data for this 361 

manuscript is available at: https://doi.org/10.18738/T8/KZFZ6K. 362 

Results 363 

Cooperative Dry Bean Nursery selection framework 364 

Selection and breeding strategies to generate new bean entries for the CDBN varied 365 

across years and among breeding programs. However, in general, new advanced lines were 366 

selected from either single, triple, or double crosses among advanced breeding material and 367 

released cultivars, which in most cases were already tested within the CDBN in previous years. 368 

These lines were bulked to increase seed supply, then field tested to ensure consistency of 369 

phenotypic responses in the advanced lines.  Entries with favorable characteristics were often 370 

entered into the CDBN to be phenotyped in multiple environments. Consequently, most CDBN 371 

entries are members of a complex pedigree which has had novel, favorable alleles recombined 372 

or introgressed into it over time.  373 
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It is clear that the CDBN is not a randomly mating, homogeneous population, and the 374 

breeding and selection strategy in the CDBN likely impacts GWAS on this material in a number 375 

of ways. Presumably, breeders have increased the frequency of alleles that favorably affect 376 

phenotypes over time, which should aid in the detection of these genomic regions via GWAS. 377 

The multiple generations of inbreeding should reduce allelic heterogeneity, which should also 378 

aid GWAS. Indeed, we find few heterozygous regions in our SNP dataset, and few examples of 379 

multiallelic loci. By the same token, the frequent inbreeding may also increase the size of 380 

linkage disequilibrium (LD) blocks or cause spurious patterns of LD, which may cause non-381 

syntenic associations and make candidate gene identification more difficult. In addition, the 382 

infrequent crosses between the gene pools from the two independent domestication events, 383 

and the assortative mating practiced as part of the breeding strategy, could lead to an inflated 384 

false positive rate and create correlations between previously uncorrelated traits (LI et al. 385 

2017).  386 

Phenotypic Correlations in the Cooperative Dry Bean Nursery 387 

The CDBN contains a wealth of data to study the genetics of phenotypes and phenotypic 388 

correlations (Fig. 1, Fig. 2a). We were able to obtain and genotype 327 germplasm entries from 389 

the 544+ entries present in the CDBN trials from 1981 to 2015, including 124 entries that were 390 

neither released commercially nor submitted to the National Plant Germplasm System (NPGS 391 

2017), and 39 entries whose seed would not germinate. Most of the remaining entries were 392 

grown in the CDBN before 1990 and had seed stocks that, for reasons of practicality, were no 393 

longer maintained by breeders (Fig. 1). GBS of the available genotypes generated 1.2M SNPs for 394 

analysis of stable effects in the CDBN. 395 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

20 
 

BLUPs of phenotypes from the CDBN, conditioned on location, location by year, and the 396 

kinship matrix, are analogous to breeding values for the CDBN entries. These genetic values can 397 

be used to determine the narrow-sense heritability, h2, potentially explainable by GWAS. h2 398 

varied between 6% and 73% in the 21 phenotypic BLUPs (Table 1). We then determined the 399 

correlations between the BLUPs of CDBN phenotypes, or the genetic correlations. Correlation 400 

coefficients between BLUPs of CDBN phenotypes varied between -0.75 and 0.81, and most 401 

phenotypes were significantly correlated (Figure S1). Two major groups of phenotypes were 402 

positively correlated: biomass, days to flowering, plant height, zinc deficiency score, days to 403 

maturity, blackroot presence/absence, and early vigor were in the first of these groups, and 404 

white mold damage score, growth habit, seed yield, harvest index, lodging, rust damage score, 405 

bean common mosaic virus damage score, and halo blight damage score were in the second of 406 

these groups. These two groups had negative phenotypic correlations with each other.  407 

Eight CDBN phenotypes have genetic associations above the false discovery rate 408 

We conducted GWAS on 21 phenotypes using best linear unbiased predictors (BLUPs) 409 

calculated using a kinship matrix, location, and an interaction between location and year as 410 

fixed effects. (for details, see the Genome-wide association study section in the Materials and 411 

Methods). To determine if any SNP frequencies had changed over the duration of the CDBN, we 412 

also conducted GWAS on the earliest year that each germplasm entry was present in the CDBN 413 

as a proxy for the age of the entry. This GWAS was analogous to an environmental GWAS that 414 

uses climatic variables associated with a genotype’s location of origin (HANCOCK et al. 2011; 415 

MORRIS et al. 2013), though this GWAS is fitted to a variable correlated with the age of the 416 

genotype rather than with its location of origin. 417 
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 Given the analytical issues surrounding the use of METs for unplanned genetic analyses, 418 

it was unclear whether GWAS on CDBN phenotypes would find significant associations, or if 419 

these associations would be reduced or eliminated by environmental noise or by experimental 420 

design biases. Thus, we determined if any GWAS on CDBN phenotypes had significant 421 

associations after a Benjamini-Hochberg FDR correction of 10%. With this criterion, significant 422 

associations were discovered for eight of the 21 phenotypes. More than 33 peaks had SNPs 423 

with p-values above the FDR, indicating the presence of 30 or more distinct, significant 424 

associations with these eight CDBN-derived phenotypes. Phenotypes with associations above 425 

the FDR generally had more datapoints in the CDBN (6500 vs 2400 datapoints, Wilcoxon rank 426 

sum test p = 0.018; Fig. 2a). Phenotypes with associations above the FDR also had significantly 427 

higher narrow-sense heritabilities estimated from the phenotypic data (h2 of 40.5% vs 25%, 428 

Wilcoxon rank sum test p = 0.038, Table 1). We briefly discuss the associations above the FDR 429 

for these eight phenotypes in the order of most to fewest datapoints in the CDBN. In cases 430 

where there were multiple associations for a single phenotype, we discuss only the top 431 

associations by p-value. 432 

Seed yield (kg ha-1) had one significant peak after FDR correction, on Pv01 at 42.2Mb 433 

(Fig. 2b, 2c, Table S4). This association was correlated with a difference in seed yield of 104 kg 434 

ha-1 (Fig. 2f, Supplementary Table 4). Median seed yield in the CDBN for the Durango, 435 

Mesoamerican, and Nueva Granada races was 2803, 2443, and 2038 kg ha-1, respectively; thus, 436 

this genomic region accounts for changes in seed yield of 3.7-5.1%, or three to four years of 437 

improvement effort at historical rates of bean improvement (VANDEMARK et al. 2014). This 438 

association was 3.7kb upstream of the gene Phvul.001G167200, a gene that is highly expressed 439 
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in the shoot and root tips of common bean at the 2nd trifoliate stage of development (O’ROURKE 440 

et al. 2014; DASH et al. 2016). The A. thaliana homolog of this gene, VERNALIZATION 441 

INDEPENDENCE 5 (VIP5), affects flowering time by activating Flower Locus C (FLC), which is a 442 

repressor of flowering (OH et al. 2004).  443 

Seed weight (mg) had associations on nine chromosomes that were significant after FDR 444 

(Fig. 2d, 2e); the strongest of these were on Pv02 (Fig. 2g), Pv03, Pv05, and Pv08, though each 445 

explained only 1-2% of the variation in seed weight (Table S4). Because seed weight correlates 446 

strongly with population structure in the three bean races and two bean gene pools, seven 447 

principal components were used to correct for population structure in this GWAS (Table S3). 448 

The association on Pv02 was 5kb upstream of gene model Phvul.002G150600, a Sel1 repeat 449 

protein. Sel1-like repeat proteins are frequently involved in signal transduction pathways and in 450 

the assembly of macromolecular complexes (MITTL AND SCHNEIDER-BRACHERT 2007). The 451 

association on Pv03 was 10kb upstream of gene model Phvul.003G039900, a jasmonic acid 452 

carboxyl methyltransferase. The association on Pv05 was not within 20kb of any gene. The 453 

association on Pv08 fell in the coding sequence of Phvul.008G290600, a choline-phosphate 454 

cytidylyltransferase highly expressed in many tissues, including roots and pods and seeds at the 455 

heart stage and stage 2, or seeds 3 – 4 and 8 – 10mm wide (O’ROURKE et al. 2014; DASH et al. 456 

2016).  457 

Days to flowering had one significant peak after FDR, on Pv01 between 13.4 and 17.1 458 

Mb (Figure S2a, Table S4). It was correlated with a difference in flowering time of 2 to 3 days, 459 

depending on the population (Figure S3a). A candidate gene model hypothesized to affect days 460 

to flowering, Phvul.001G087500, is located at 13.76 Mb in the V2.0 annotation for P. vulgaris. 461 
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Gene model Phvul.001G087500 is an ortholog of KNUCKLES (KNU), a protein which is part of the 462 

Polycomb repressive complex 2, a complex that affects both flowering time and floral meristem 463 

development (DE LUCAS et al. 2016). KNU is activated in the transition to determinate floral 464 

meristem development and functions in a feedback loop that promotes determinate 465 

development (PAYNE et al. 2004; SUN et al. 2014).  466 

Lodging score, where higher scores indicated more stem breakage near ground level, 467 

had associations on three chromosomes that were significant after FDR; one on Pv04 at 2.8 Mb, 468 

one on Pv05 at 0.4 Mb, and one on Pv07 at 34.5 Mb (Figure S2b, Table S4). In total, these three 469 

associations explained 8% of the variation in lodging (Supplementary Figure 4). The signal on 470 

Pv04 fell within gene model Phvul.004G025600; the A. thaliana homolog of this gene is involved 471 

in the biosynthesis of inositol pyrophosphate, a cellular signaling molecule involved in 472 

metabolism and energy sensing (DESAI et al. 2014). The signal on Pv05 fell within gene model 473 

Phvul.005G005400, a uridine diphosphate glycosyltransferase superfamily protein (DASH et al. 474 

2016). The strongest signal for lodging, explaining 3% of the variation, fell in the promoter 475 

region of gene model Phvul.007G221800, which is orthologous to SUPPRESSOR OF AUXIN 476 

RESISTANCE 1 (SAR1). In Arabidopsis thaliana, SAR1 increases plant height and internode 477 

distance and appears to affect stem thickness (CERNAC et al. 1997; PARRY et al. 2006).  478 

Harvest index, or the ratio of seed yield weight to total above ground biomass, had one 479 

significant association on Pv03 at 2.1 Mb (Figure S2c, Table S4). The alternate allele was 480 

associated with an increase in harvest index of 1.5 – 3.5%, and associated to bean race (Figure 481 

S3b). This allele was 20 kb from gene model Phvul.003G023000, a cellulose synthase-like 482 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

24 
 

protein highly expressed in green mature pods, whole roots, and leaf tissue at the 2nd trifoliate 483 

leaf stage of development (O’ROURKE et al. 2014; DASH et al. 2016).  484 

Growth habit encompasses both determinate and indeterminate types (I and II/III), as 485 

well as upright and prostrate indeterminate types (II and III).  Growth habit had significant 486 

associations on every chromosome after FDR; the strongest four associations were on Pv01 at 487 

6.2 and 42.2 Mb, on Pv09 at 30.9 Mb, and Pv10 at 42.7 Mb (Figure S2d, Table S4). There are 488 

known to be multiple determinacy loci segregating in different gene pools of common bean 489 

(KWAK et al. 2012), which could complicate associations between growth habit and genomic 490 

regions in the CDBN panel. These four associations were associated with variation in 491 

determinacy in this panel; however, these four associations were not sufficient to explain all 492 

variation in determinacy, in that 13 genotypes had all alleles that were associated with 493 

determinacy, but were indeterminate, and one genotype had all alleles that were associated 494 

with indeterminacy, but was determinate (Figure S3c). The association at 6 Mb on Pv01 fell in 495 

the coding sequence of the gene model Phvul.001G055600, a RING-CH type zinc finger protein 496 

expressed highly in roots and in stem internodes above the cotyledon at the 2nd trifoliate stage 497 

(O’ROURKE et al. 2014; DASH et al. 2016). The association at 42.2 Mb was 3.7 kb upstream of the 498 

gene VIP5; as noted above, this gene and genomic region were also candidate associations for 499 

seed yield (kg ha-1). The association on Pv09 was 5 kb upstream of model Phvul.009G204100 500 

that encodes a signal peptide peptidase A highly expressed in pods associated with stage 2 501 

seeds and in stem internodes above the cotyledon at the 2nd trifoliate stage (O’ROURKE et al. 502 

2014; DASH et al. 2016). The association on Pv10 was 1 kb upstream of model 503 

Phvul.010G146500, a gene from an uncharacterized protein family highly expressed in roots, 504 
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pods with seeds at the heart stage, and stem internodes above the cotyledon at the 2nd 505 

trifoliate stage (O’ROURKE et al. 2014; DASH et al. 2016). 506 

Bean rust (Uromyces appendiculatus) causes leaf and pod pustules and leads to losses in 507 

vigor and seed yield. Higher plant damage caused by rust was indicated by a higher rust score. 508 

Rust score had significant associations on ten chromosomes after FDR (Figure S2e, Table S4). 509 

However, the strongest association was located on Pv11 at 50.6 Mb and overlapped a major 510 

cluster of disease resistance genes containing the rust resistance genes Ur-3, Ur-6, Ur-7, and Ur-511 

11 (HURTADO-GONZALES et al. 2017). This signal fell just upstream of the gene model 512 

Phvul.011G193100, which maps in the interval suggested to contain the resistance gene Ur-3 513 

(HURTADO-GONZALES et al. 2017). The alternate allele was present in the early years of our CDBN 514 

data within Mesoamerican race, but was either absent or rare within the Durango race in the 515 

CDBN until 1988, when it appeared in the pinto Sierra and the great northern Starlight. The 516 

alternate allele was not widely distributed in the Durango race until the mid-1990’s (Figure 517 

S3d).  518 

Finally, the presence or absence of curly top virus, a virus characterized by plant 519 

stunting and deformation of leaves and fruit, had significant associations on seven 520 

chromosomes after FDR; however, the strongest associations were on Pv01, Pv05, Pv07, and 521 

Pv11 (Figure S2f, Table S4). The association on Pv01 was 0.5 kb upstream of gene model 522 

Phvul.001221100, recently identified as the photoperiod sensitivity locus Ppd, or 523 

PHYTOCHROME A3 (WELLER et al. 2019). The association on Pv05 was within 20kb of gene model 524 

Phvul.005G051400, a VQ motif-containing protein highly expressed in leaf tissue. VQ motif-525 

containing proteins are a class of plant-specific transcriptional regulators that regulate 526 
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photomorphogenesis and responses to biotic and abiotic stresses (JING AND LIN 2015). The 527 

association on Pv07 was 1kb upstream of gene model Phvul.007G035300, a pH-response 528 

regulator protein. The association on Pv11 was 20kb downstream of gene model 529 

Phvul.011G142800, a terpene synthase gene expressed in young trifoliates, flowers, and young 530 

pods (O’ROURKE et al. 2014; DASH et al. 2016). Terpenoids are a large class of secondary 531 

metabolite which have roles in plant defense against biotic and abiotic stresses (SINGH AND 532 

SHARMA 2015). 533 

Three CDBN genetic associations overlap genetic associations from balanced genetic field trials 534 

The presence of many associations above the FDR threshold supports using MET data 535 

for genetic analyses. However, the assortative mating employed purposefully by breeders of 536 

entries in the CDBN could potentially lead to a high rate of false positives (LI et al. 2017). 537 

Overall, it was unclear whether GWAS using phenotypes derived from sparse MET datasets 538 

would yield similar genetic associations as published, balanced field trials. Thus, we compared 539 

the top associations discovered here to associations from eleven published GWAS papers on 540 

common bean. This allowed us to compare association overlaps for 13 phenotypes, seven of 541 

which that had associations above the FDR, and gave 34 top associations from this study to 542 

compare to 80 published association regions. In addition to these GWAS associations, the bean 543 

rust resistance phenotype overlapped with a candidate rust resistance gene, Ur-3, one of the 544 

two genes pyramided early on in bean breeding to provide comprehensive rust resistance.  545 

Three major associations from this study were within 20kb of, and had the same 546 

candidate gene as, top associations from published, balanced GWAS: days to flowering, on Pv01 547 
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at 13.7 Mb; growth habit, on Pv01 at 42.2 Mb; and lodging, on Pv07 at 34.2 Mb (Table 2). 548 

Interestingly, when considering all 114 associations, each of these three regions had significant 549 

effects for three phenotypes: lodging, growth habit, and days to flowering on Pv01 at 13.7Mb; 550 

growth habit, seed yield, and biomass on Pv01 at 42.2Mb; and plant height, lodging, and 551 

growth habit on Pv07 at 34.2Mb (Table 2). In this study, the top 10 SNPs for harvest index and 552 

days to maturity also had the same candidate gene on Pv03 at 36.8 Mb, the gene model 553 

Phvul.003G153100. Phvul.003G153100 is an AP2-like ethylene-responsive transcription factor 554 

highly expressed in root tissue and nodules (O’ROURKE et al. 2014; DASH et al. 2016).  555 

In comparisons involving only the eleven balanced studies, nine of 80 associations fell 556 

into three 20kb regions, while 15 of the 80 associations fell into six 200kb regions. When this 557 

study was added, seven additional associations fell into four 20kb regions, while twelve 558 

additional associations fell into 14 overlapping 200kb regions (Table 2). This study did not 559 

identify many new overlaps at the 20kb level, though it did find associations in all three 20kb 560 

overlapping regions found by comparing the eleven balanced studies alone. It did, however, 561 

find many new overlaps with previously published studies at the 200kb level, twice as many as 562 

expected given the rate of overlap in the eleven balanced studies (chi-squared p = 0.025). 563 

However, as the balanced studies often did not conduct GWAS on similar phenotypes, our 564 

“expected” rate of overlap is likely to be biased. Thus, we consider the fact that this study 565 

found the same three 20kb regions that overlap in balanced GWAS comparisons to be stronger 566 

evidence than the large number of overlaps at the 200kb level that this panel can yield similar 567 

associations to balanced GWAS of common bean diversity panels. 568 

Extensive pleiotropy or linked effects within CDBN genetic associations 569 
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 We observed that numerous CDBN phenotypes had overlapping distributions of 570 

significantly associated SNPs. These overlaps could be due to pleiotropy – one genetic locus 571 

affecting multiple phenotypes – or due to multiple tightly linked genetic loci affecting multiple 572 

phenotypes. To formally compare these overlaps, we used mash on 19 sets of 4,000 SNPs with 573 

the smallest p-values for phenotypes from the CDBN as well as 4,000 SNPs for the earliest year 574 

an entry was grown in the CDBN (Figure 3). Mash shares information about effect sizes of SNPs 575 

across all phenotypes, while accounting for data-driven covariances in the patterns of effects 576 

(URBUT et al. 2019). In contrast to phenotype-by-phenotype analyses, where only eight 577 

phenotypes had associations above the FDR, in mash, all twenty phenotypes had SNPs with p-578 

values below the local false sign rate, an analog for the FDR. In addition, SNPs typically had local 579 

false sign rates below this threshold for 11-14 phenotypes; thus, there was either extensive 580 

pleiotropy or frequent linked effects on multiple phenotypes within entries in the CDBN. SNPs 581 

with Bayes factors above ~102, indicative of decisive evidence favoring that SNP having a 582 

significant effect on one or more phenotypes, were distributed very unevenly across the 583 

genome, with the vast majority of SNPs clustering within two large regions on Pv01 (Fig. 3b, 584 

Table S5). Interestingly, the two largest Bayes factors across all 20 phenotypes were within 585 

these two regions, on Pv01 at positions 15.4 Mb and 42.2 Mb. These associations were two that 586 

overlapped with top associations from published, balanced GWAS (Table 2). Outside of 587 

chromosome Pv01, the most significant Bayes factor was found for a SNP on Pv07 at 14.5 Mb. 588 

This SNP was not within 100 kb of any annotated gene.  589 

The alternate allele for the SNP on Pv01 at 15.4 Mb was associated with significant 590 

decreases in biomass, days to flowering, days to maturity, plant height, and seed appearance 591 
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score. It was also associated with increases in CBB damage score, harvest index, root rot 592 

damage score, rust damage score, seed fill duration, white mold damage score, and zinc 593 

deficiency damage score (Figure 3d). Here, higher damage scores indicate increased levels of 594 

damage. The alternate allele for the SNP on Pv01 at 42.2 Mb was associated with significant 595 

decreases in biomass, days to flowering, growth habit (as an increased tendency towards 596 

determinacy), harvest index, lodging score, plant height, and seed yield, and increases in root 597 

rot damage score (Figure 3e). The allele was also significantly associated with earlier ‘earliest 598 

year in the CDBN’, indicating that this allele has been declining in frequency in entries in the 599 

CDBN over time. The alternate allele for the SNP on Pv07 at 14.5 Mb was associated with 600 

significant decreases in biomass, days to flowering, plant height, and seed appearance score 601 

(Figure 3f). Overall, two groups of phenotypes had consistent patterns of effect sign and effect 602 

magnitude for most significant SNPs (Fig. 3c). Days to maturity, growth habit, seed yield, days to 603 

flowering, biomass, and plant height had a large fraction of SNPs with significant effects with 604 

similar effects on these phenotypes; in most pairwise comparisons of these six traits, 40 – 90% 605 

of SNPs had the same sign and similar magnitudes of effect (Fig. 3c). The same was true for 606 

seed fill duration, white mold damage score, zinc deficiency damage score, harvest index, CBB 607 

damage score, and rust damage score; in pairwise comparisons of these six traits, 25 – 80% of 608 

SNPs had the same sign and similar magnitudes of effect (Fig. 3c). The phenotypes in the first 609 

group corresponded to plant architecture and size, while several phenotypes in the second 610 

group were related to disease response. Few other SNPs (~<10%) affected these two clusters of 611 

phenotypes in a similar magnitude with the same sign. Interestingly, groups of highly positively 612 

correlated phenotypic BLUPs, or genetic values, did not consistently match groups with large 613 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/734087doi: bioRxiv preprint 

https://doi.org/10.1101/734087
http://creativecommons.org/licenses/by/4.0/


 

30 
 

fractions of SNP effects of the same sign and similar magnitude (Figure S4). 90% SNPs with 614 

Bayes factors above 102 affected 10 or more phenotypes (Table S5), and typically affected 615 

phenotypes in the two groups in similar ways; however, a few exceptions included Pv03 at 616 

10.64 Mb, which affected only plant height; Pv04 at 17.77 Mb, which affected seed weight and 617 

varied with earliest year in the CDBN; Pv07 at 13.94 Mb, which affected biomass; and Pv08 at 618 

33.18 Mb, which affected days to flowering, plant height, and seed appearance. 619 

Discussion 620 

The genes and genomic regions affecting phenotypic variation in common bean are now 621 

being narrowed down with the aid of a recently released high-quality reference genome 622 

(SCHMUTZ et al. 2014). Using previously generated phenotypic data for genetic analysis could 623 

circumvent the “phenotypic bottleneck” that has previously constrained our understanding of 624 

the genotype-phenotype map in this species. The CDBN offers a vast phenotypic data resource 625 

for common bean; however, it was unclear whether the sparse phenotypic data matrix from 626 

the CDBN, where only 20 to 30 entries were tested in each location and year, could be used for 627 

GWAS. Our results provide evidence supporting the use of METs such as the CDBN for genetic 628 

analysis. First, eight of the 22 phenotypes created using the CDBN data had associations that 629 

fell above the Bonferroni-Hochberg FDR threshold, and five of these phenotypes had multiple 630 

independent peaks that fell above this threshold. Given our FDR of 10%, there were at least 30 631 

distinct, significant associations with these CDBN-derived BLUPs for phenotypes, and these 632 

associations tended to be found in phenotypes with higher narrow-sense heritabilities. 633 

However, it is still surprising that only eight of the 22 phenotypes had significant associations by 634 

the FDR criterion.  635 
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We hypothesized that noise caused by environmental variation in phenotypes across 636 

years and locations reduced our ability to find significant associations in a condition-by-637 

condition analysis. Supporting this hypothesis, we found that phenotypes with more datapoints 638 

in the CDBN were more likely to have associations above the FDR. Thus, we used mash to 639 

increase our power to detect significant effects for 20 of these phenotypes, and used an 640 

analogue of the FDR, the local false sign rate, to determine whether an effect was significant. By 641 

combining information about phenotypic effects across correlated phenotypes, we found 642 

significant associations for all phenotypes included in the mash analysis. Thus, phenotypes 643 

derived from CDBN MET data are suitable for analysis using GWAS, and the additional 644 

phenotypic data available in this MET can be analyzed in mash to boost the power to detect 645 

significant genetic effects for traits with pleiotropic genetic architectures. 646 

Second, associations found in our GWAS coincided with results of previous GWAS using 647 

balanced phenotypic datasets. Three associations from this study overlapped top associations 648 

from published, balanced GWAS: Pv01 at 13.7 Mb, Pv01 at 42.2 Mb, and Pv07 at 34.2 Mb (Table 649 

2). The association at 13.7 Mb fell near the candidate gene KNU, a gene which is activated in, 650 

and later promotes, the transition to determinate floral meristem development. This peak falls 651 

within an association for days to flowering observed previously (MOGHADDAM et al. 2016). The 652 

association at 42.2 Mb fell near the candidate gene VIP5, an important regulator of flowering 653 

time in A. thaliana and other species (HUANG et al. 2012). Other mapping studies have also co-654 

located VIP5 with QTL for flowering time (ZHOU et al. 2014). The association at 34.2 Mb on Pv07 655 

also overlapped the strongest association for the earliest year each entry was grown in the 656 

CDBN, a proxy for the age of the CDBN entry. This association fell near the candidate gene 657 
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SAR1, which increases plant height and internode distance in A. thaliana (CERNAC et al. 1997; 658 

PARRY AND ESTELLE 2006). The alternate allele for the signal on Pv07 occurred in newer CDBN 659 

entries. 660 

Third, our results are consistent with the recent history of breeding efforts in common 661 

beans and provide a map of the genomic regions that have been associated with improvement 662 

in the species. We find two major genomic regions on Pv01 associated with many CDBN 663 

phenotypes (Figure 3b), which we suggest were major targets of selection by breeders for 664 

entries that match an ‘ideotype’ for common bean. The original ideotype had a long hypocotyl, 665 

many nodes carrying long pods and without side branches, small leaves, and determinate 666 

growth (ADAMS 1982; KELLY 2001). The primary plant architecture change introduced into 667 

genotypes tested in the CDBN over the past 30 years was the adoption of upright indeterminate 668 

architecture (Type II), which replaced upright determinate (Type I) architecture in the 669 

Mesoamerican race and was introduced into prostrate indeterminate (Type III) germplasm 670 

(KELLY 2001; SOLTANI et al. 2016). Generally, entries with Type II architecture yielded more than 671 

determinate (Type I) entries, due to the increased pod set associated with indeterminate 672 

growth (KELLY 2001), and could yield more than Type III entries under grower-preferred direct 673 

harvest (ECKERT et al. 2011). An association for growth habit on Pv01 at 42.2 Mb fell near the 674 

gene VIP5; this SNP and gene were also candidate associations for seed yield in this study and 675 

days to flowering in MOGHADDAM et al. (2016). The Pv01, Pv09, and Pv10 associations for growth 676 

habit, specifically, variation in determinacy, segregate in different genotypes, consistent with 677 

the known multiple origins of determinacy segregating in this species (Figure S3c). However, 678 

these associations were not sufficient to explain all variation in determinacy present in this 679 
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panel, perhaps due to the relative rarity of some variants controlling determinacy within the 680 

CDBN panel. 681 

Bean breeders in North American generally avoided modifying days to flowering over 682 

the years of the CDBN, to protect matching of phenology to specific production environments. 683 

However, when Type II architecture was introduced from Mesoamerica race into the 684 

Durango/Jalisco race, the first entries with this architecture showed delayed flowering 685 

(VANDEMARK et al. 2014). Our strongest association for days to flowering was near the candidate 686 

gene KNU. This gene is a candidate for the gene Higher response (Hr) (GU et al. 1998), which 687 

affects flowering time. A BLAST analysis of RAPD primers from previous work constrains the 688 

location of Hr between 1.4 and 21Mb on Pv01 (GU et al. 1998). Hr is thus a plausible candidate 689 

for the peak at 13Mb. Hr is known to be in LD with the common bean gene terminal flower 1 690 

(PvTFL1 or fin) on Pv01, a major determinacy gene in common bean, (REPINSKI et al. 2012). Thus, 691 

this gene could plausibly have been introduced during the introduction of Type II architecture.  692 

The primary disease resistance phenotype introduced into entries in the CDBN over the 693 

past 30 years was bean rust resistance. Bean rust (Uromyces appendiculatus) was a major 694 

disease in North America in the 20th century (ZAUMEYER 1947). Though the first rust resistant 695 

varieties were released in the 1940’s (ZAUMEYER 1947), rust was primarily controlled by 696 

chemicals prior to the concerted introduction of rust resistance genes in the mid-1980s (KELLY 697 

2001). Our strongest association for rust damage score fell just upstream of the gene model 698 

Phvul.011G193100, which maps in the interval suggested to contain the resistance gene Ur-3 
699 

(HURTADO-GONZALES et al. 2017). Initially described by BALLANTYNE (1978), Ur-3 was the first gene 700 

aggressively used by US breeders to address bean rust in the mid-1980s (HURTADO-GONZALES et 701 
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al. 2017). Combining Ur-3 and Ur-11 provides resistance against all known rust races (PASTOR-702 

CORRALES et al. 2003), and the two genes formed the basis of breeding efforts to pyramid major 703 

bean rust resistance genes that led to the release of pinto, great northern, and black bean 704 

germplasm currently used in breeding programs. The alternate allele was present in the early 705 

years of the CDBN data in the Mesoamerican race but was either absent or rare in the 706 

Durango/Jalisco race in the CDBN until 1988, when it appeared in the pinto Sierra and the great 707 

northern variety Starlight. The alternate allele was not widely distributed in the Durango/Jalisco 708 

race until the mid-1990’s (Figure S3d). These results agree with the known timing of breeding 709 

for rust resistance. 710 

Finally, this work allowed us to characterize the patterns of sharing of genetic effects on 711 

phenotypes in the CDBN. Selection for the common bean ideotype is known to have led to 712 

pleiotropic effects on, and associations with other traits, such as seed yield, biomass, and plant 713 

height (SOLTANI et al. 2016). Previous work indicated that genes responding to photoperiod have 714 

a major influence on many traits, including biomass, harvest index, days to maturity, and plant 715 

architecture traits such as the number of branches and nodes (WALLACE et al. 1993; GU et al. 716 

1994). Our associations also revealed substantial overlaps in the genomic regions affecting 717 

phenotypic variation, suggesting the presence of substantial pleiotropy or linked genes of major 718 

effect. The genomic region on Pv01 from 34 – 48 Mb has also been identified in previous QTL 719 

mapping studies as one that affects many traits, including seed yield, days to flowering, days to 720 

maturity, seed fill duration, seed weight, biomass, and pod wall ratio (TRAPP et al. 2015; TRAPP et 721 

al. 2016). Our mash analysis reveals two major groups of phenotypes with commonly shared 722 

SNP effects, one corresponding to plant architecture and size, and the other related disease 723 
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response. Very few SNPs had similar effects on both groups of traits (Figure 3c). This indicates 724 

pleiotropy or correlated effects within each group of phenotypes, and unlinked effects or 725 

antagonistic pleiotropy between these groups of phenotypes. In addition, the two groups of 726 

phenotypes that had similar genetic effects at the SNP level did not substantially overlap groups 727 

of phenotypes with highly correlated genetic values by BLUP estimation (Figure S4). Though 728 

many genomic regions affect multiple phenotypes in the CDBN, the large shared effects 729 

detected by mash do not always combine additively into the overall patterns of genetic 730 

correlation present in this dataset. However, two sets of phenotypes did have shared SNP 731 

effects and similar patterns of phenotypic correlations: lodging, seed yield, and growth, and 732 

biomass, plant height, days to flowering, and days to maturity. We suggest that these seven 733 

phenotypes were the most important when breeders selected for preferred common bean 734 

ideotypes. In contrast, many of the remaining phenotypes were related to disease damage; 735 

these phenotypes might be more affected by epistatic interactions between genomic regions, 736 

or by tradeoffs across environments.  737 

Overall, METs such as the CDBN offer a remarkable opportunity to identify candidate 738 

genes underlying phenotypic variation and phenotypic plasticity and to identify how artificial 739 

selection has affected crop phenotypes through time. We note that the genomic regions found 740 

with this approach are likely to have consistent, stable phenotypic effects across a large range 741 

of environments. These genomic regions are thus likely to be generally useful to bean breeding. 742 

Detailed mapping and cloning of the causative genes in these regions will provide insight into 743 

molecular mechanisms that control these critical phenotypes important for high productivity of 744 
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common bean. In the future, we also believe that it would be of great value to crop breeding 745 

and genetics to archive DNA from all material used in breeding programs and MET trials. 746 

Many crops, both in the U.S. and worldwide, have public trials that could be mined in a 747 

manner similar to our approach. This work will require collaborative efforts between crop 748 

breeders and bioinformaticians to digitize, clean, and analyze phenotypic data from METs and 749 

to obtain genetic material from successful and unsuccessful trial entries. Phenotypic and 750 

genetic data can be combined using genomic selection approaches, or by GWAS using models 751 

that adjust BLUPs for effects of kinship, trial location, and trial year (RIFE et al. 2018; SUKUMARAN 752 

et al. 2018). If effect estimates for genetic markers can be obtained, and some effects are 753 

strong, the patterns of significant effects across markers and phenotypes can be determined 754 

using a metanalysis approach such as mash (URBUT et al. 2019). A broader effort to collectively 755 

mine such extensive phenotypic data could identify conserved genetic factors important for 756 

improved productivity for many crops in major production regions. 757 
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Figures & Tables 772 

 773 

Figure 1. The Cooperative Dry Bean Nursery (CDBN) is an extensive multi-environment trial with 774 

hundreds of germplasm entries for common bean (Phaseolus vulgaris) grown at 75 locations 775 

over 35 years. The relationships between germplasm entries (first row and column), locations 776 

(second row and column), and years (third row and column) used in the CDBN are shown in the 777 

grid. Purple represents genotyped germplasm entries from the Durango race of the 778 

Mesoamerican gene pool, blue represents genotyped entries in the Mesoamerican race of the 779 

Mesoamerican gene pool, green represents genotyped entries in the Nueva Granada race of 780 

the Andean gene pool, and yellow represents entries that were not genotyped. Beans of the 781 

two most commonly genotyped market classes from each race are pictured to the right of the 782 

color key, and the number of entries of each race that were genotyped is displayed to the left 783 
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of the color key. On the maps of CDBN locations, pie chart size is scaled relative to the total 784 

number of entries grown at that location, and circle saturation represents locations with a 785 

greater number of years of data available.  786 

 787 

 788 

789 
Figure 2. Phenotypic data available in the Cooperative Dry Bean Nursery (CDBN), and genetic 790 

variation within the two of these phenotypes with the most data. A) Details of 22 phenotypes 791 

present in the CDBN; best linear unbiased predictors (BLUPs) from these phenotypes were used 792 

for genome-wide association. Black circles left of the y-axis indicate phenotypes with one or 793 

more genetic associations that had p-values above the Benjamini-Hochberg false discovery rate. 794 

B) Manhattan plot of BLUPs for seed yield (kg/ha) from the CDBN data. The dashed lines are the 795 

cutoff values for peak significance. Single-nucleotide polymorphisms above the Benjamini-796 

Hochberg false discovery rate are above the black line, and those in the 0.001 percentile are 797 

above the grey line. C) Quantile-quantile (Q-Q) plot of the goodness of fit of the model on seed 798 
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yield. D) Manhattan plot of BLUPs for seed weight (mg) from the CDBN data, as in B). E) Q-Q 799 

plot of the goodness of fit of the model on seed weight. Distribution of the BLUPs for F) seed 800 

yield and G) seed weight. Black represents the presence of the reference allele for the top SNP 801 

labeled in panel B) and D), respectively, and grey represents the presence of the alternate 802 

allele. 803 

 804 

 805 

Figure 3. Patterns of phenotypic effects of genetic associations for 22 phenotypes from the 806 

Cooperative Dry Bean Nursery (CDBN), determined using multivariate adaptive shrinkage 807 

(mash). A) Single-nucleotide polymorphisms (SNPs) with significant effects on one or more of 808 

the 22 phenotypes in the CDBN. B) Manhattan plot of the Bayes factor (log10) comparing the 809 
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model likelihood that the SNP has significant effects to the likelihood that it has no significant 810 

effects. Bayes factors of > 102 are considered decisive evidence in favor of the alternate model. 811 

Point color represents the number of phenotypes for which the SNP has a local false sign rate < 812 

0.05. Squares represent even chromosomes, while circles represent odd chromosomes. The top 813 

associations for three regions of the genome are highlighted. C) Correlation in the sign and 814 

magnitude of significant effects in all pairwise comparisons of the 22 CDBN phenotypes. Circle 815 

size and color indicate the fraction of all significant SNPs that have the same effect sign and 816 

similar effect magnitude. D-F) Effect estimates and standard errors for 22 phenotypes for the 817 

top associations from three regions of the genome, D) Phaseolus vulgaris chromosome 1 (Pv01) 818 

at 15.4 Mb, E) Pv01 at 42.2 Mb, F) Pv07 at 14.5 Mb. Genomic locations are based on the 819 

Phaseolus vulgaris v2.1 genome annotation. Point estimates with higher certainty are indicated 820 

by larger rectangles, while standard error bars are colored by the six groups present in C. 821 

822 
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Table 1. Best linear unbiased predictor statistics, with phenotypes ordered as in Figure 2.  823 

Phenotype Vg Ve h2 BLUP Range Units 

Seed yield (kg/ha) 53173 222409 0.193 1727 kg ha-1 

Seed weight (mg) 2340 1076 0.685 443 mg 

Days to maturity 12.3 18.3 0.402 17.0 days 

Days to flowering 4.68 6.11 0.434 11.7 days 

Seedfill duration (days) 5.584 17.812 0.239 12.7 days 

Lodging score 0.244 0.466 0.344 2.97 1-5 scale 

Harvest index (%) 13.5 31.5 0.299 20.1 % 

Plant height (cm) 13.8 42.5 0.245 18.1 cm 

Biomass 2.46E+05 6.72E+05 0.268 2990 kg 

Growth habit 0.160 0.154 0.509 2.19 1-3 scale 

Seed appearance score 0.017 0.241 0.067 0.346 1-3 scale 

CBB damage score 0.282 1.127 0.200 2.32 1-9 scale 

Rust damage score 3.201 1.957 0.621 7.35 1-9 scale 

Early vigor score 0.064 0.747 0.078 0.957 1-9 scale 

White mold damage score 0.143 0.631 0.185 2.60 1-5 scale 

CTV presence/absence 0.025 0.132 0.157 0.432 0-1 scale 

Halo blight damage score 0.176 0.708 0.199 1.12 1-5 scale 

BCMV blackroot response 0.049 0.086 0.363 0.843 0-1 scale 

BCMV presence/absence 0.016 0.097 0.145 0.428 0-1 scale 

Root rot damage score 0.455 3.193 0.125 2.25 1-9 scale 

Zinc deficiency damage 

score 3.831 1.395 0.733 8.96 1-9 scale 

Vg is the REML estimate of the genetic variance from rrBLUP. Ve is the REML estimate of the 824 

error variance. h2 is narrow sense heritability, defined as Vg / (Vg + Ve).  825 

 826 

Table 2. Major associations in genome-wide associations (GWAS) from phenotypes from the 827 

Cooperative Dry Bean Nursery (CDBN) and from previously published GWAS. FDR indicates 828 

associations from this paper which were above the Benjamini-Hochberg false discovery rate 829 

correction. Colors indicate associations in more than one published GWAS: blue indicates 830 
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associations within 20kb, with the same candidate gene, and grey indicates associations within 831 

200kb. 832 

 

Trait Study Chr Position in v2.0 Candidate gene 

 

Plant height 

(cm) 
MacQueen et al., XXXX 1 6.13 Phvul.001G054800 

FDR Growth habit MacQueen et al., XXXX 1 6.28 Phvul.001G055600 

 
Biomass (kg) MacQueen et al., XXXX 1 6.49 Phvul.001G057100 

 
Lodging score Resende et al., 2018 1 13.76 Phvul.001G087900 

 
Growth habit Resende et al., 2018 1 13.76 Phvul.001G087900 

 

Days to 

flowering 

Moghaddam et al., 

2016 
1 13.76 Phvul.001G087900 

FDR 
Days to 

flowering 
MacQueen et al., XXXX 1 13.45 - 15.36 Phvul.001G087900 

 

Root rot 

damage 
Oladzad et al., 2019b 1 23.92 

 

 

Days to 

flower 
Oladzad et al., 2019a 1 27.68 

 

 

Root rot 

damage 
Oladzad et al., 2019b 1 33.03 

 

 

Halo blight 

damage score  
MacQueen et al., XXXX 1 36.72 Phvul.001G132516 

 

Root rot 

damage 
Oladzad et al., 2019b 1 37.20 

 

 

Plant height 

(cm) 
MacQueen et al., XXXX 1 38.74 Phvul.001G143800 

 

Root rot 

damage 
Oladzad et al., 2019b 1 40.20 

 

FDR Growth habit MacQueen et al., XXXX 1 42.17 Phvul.001G167200 

FDR Seed yield MacQueen et al., XXXX 1 42.23 Phvul.001G167200 

 
Growth habit 

Moghaddam et al., 

2016 
1 42.23 Phvul.001G167200 

 
Biomass (kg) MacQueen et al., XXXX 1 42.27 Phvul.001G167200 

 
Growth habit Cichy et al., 2015  1 44.80 Phvul.001G189200 

 
Growth habit 

Moghaddam et al., 

2016 
1 44.80 Phvul.001G192200 

 
Days to Nascimento et al., 1 47.07 Phvul.001G214500 
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flowering 2018 

 

Days to 

flower 
Raggi et al., 2019 1 48.86 

 

 

Days to 

flower 
Raggi et al., 2019 1 49.65 

 

 

Halo blight 

damage score  
MacQueen et al., XXXX 2 16.17 Phvul.002G091900 

FDR Seed weight MacQueen et al., XXXX 2 30.38 Phvul.002G150600 

 

Days to 

flower 
Oladzad et al., 2019a 2 38.07 

 

 

Halo blight 

damage score  
Tock et al., 2017 2 49.08 Phvul.002G326200 

FDR 
Harvest index 

(%) 
MacQueen et al., XXXX 3 2.16 Phvul.003G023000 

FDR Seed weight MacQueen et al., XXXX 3 4.40 Phvul.003G039900 

 

days to 

maturity 
MacQueen et al., XXXX 3 15.75 

 

 

Days to 

maturity 
MacQueen et al., XXXX 3 32.04 Phvul.003G128400 

 

Harvest index 

(%) 
MacQueen et al., XXXX 3 36.82 Phvul.003G153100 

 

days to 

maturity 
MacQueen et al., XXXX 3 36.83 Phvul.003G153100 

 
Seed yield Kamfwa et al., 2015 3 37.60 Phvul.001G136600 

 

Days to 

flower 
Oladzad et al., 2019a 3 40.27 

 

 

Days to 

flower 
Oladzad et al., 2019a 3 41.09 

 

 

Harvest index 

(%) 
Kamfwa et al., 2015 3 46.70 Phvul.003G233400 

 

Harvest index 

(%) 
Kamfwa et al., 2015 3 47.17 Phvul.003G237900 

 

Days to 

flower 
Oladzad et al., 2019a 3 47.35   

 
Seed yield Resende et al., 2018 3 49.28 - 50.33 Phvul.003G253700 

 

days to flower 

& days to 

maturity 

Oladzad et al., 2019a 3 51.48 
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days to flower 

& days to 

maturity 

Oladzad et al., 2019a 3 52.32 
 

 

days to flower 

& days to 

maturity 

Oladzad et al., 2019a 3 52.6 
 

 

Halo blight 

damage score  
Tock et al., 2017 4 0.55 - 1.899 Phvul.004G007600 

 

Days to 

maturity 

Moghaddam et al., 

2016 
4 1.94 Phvul.004G011400 

FDR Lodging score MacQueen et al., XXXX 4 2.87 Phvul.004G025600 

 

Growth habit 

- 

indeterminate 

Moghaddam et al., 

2016 
4 3.20 Phvul.004G027800 

 

Halo blight 

damage score  
MacQueen et al., XXXX 4 6.79 Phvul.004G051500 

 

Days to 

flower 
Raggi et al., 2019 4 16.37 

 

 

Days to 

flower 
Raggi et al., 2019 4 36.88 

 

 

Halo blight 

damage score  
Tock et al., 2017 4 46.20 Phvul.004G158000 

 

days to flower 

& days to 

maturity 

Oladzad et al., 2019a 4 46.33   

 

days to flower 

& days to 

maturity 

Oladzad et al., 2019a 4 47.06 
 

 

Halo blight 

damage score  
MacQueen et al., XXXX 5 13.25 Phvul.005G074200 

 

Halo blight 

damage score  
Tock et al., 2017 5 39.00 Phvul.005G162500 

 

Root rot 

damage 
Oladzad et al., 2019b 6 0.57 

 

 

Root rot 

damage 
Oladzad et al., 2019b 6 5.75 

 

 

Root rot 

damage 
Oladzad et al., 2019b 6 6.89 
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Root rot 

damage 
Oladzad et al., 2019b 6 8.16 Phvul.006G017211 

 

Root rot 

damage 
Oladzad et al., 2019b 6 12.20 

 

 

Root rot 

damage 
Oladzad et al., 2019b 6 17.85 

 

 

Plant height 

(cm) 
MacQueen et al., XXXX 6 20.89 Phvul.006G098300 

 

Growth habit 

- 

indeterminate 

Moghaddam et al., 

2016 
6 29.92 Phvul.006G203400 

 

Days to 

flower 
Raggi et al., 2019 6 31.60 

 

 

Days to 

maturity 
MacQueen et al., XXXX 7 1.15 Phvul.007G017000 

 

Growth habit 

- 

indeterminate 

Moghaddam et al., 

2016 
7 34.12 Phvul.007G246700 

 
Lodging score 

Moghaddam et al., 

2016 
7 34.20 Phvul.007G218900 

FDR Lodging score MacQueen et al., XXXX 7 33.60 - 34.51 Phvul.007G218900 

 

Plant height 

(cm) 

Moghaddam et al., 

2016 
7 34.20 Phvul.007G218900 

 

Growth habit 

- 

indeterminate 

Moghaddam et al., 

2016 
7 34.20 Phvul.007G218900 

 
Biomass (kg) MacQueen et al., XXXX 7 35.74 Phvul.007G233700 

 
Seed weight 

Moghaddam et al., 

2016 
8 1.10 Phvul.008G013300 

 

root rot 

damage score 
MacQueen et al., XXXX 8 1.34   

 

Days to 

flower 
Raggi et al., 2019 8 4.93 

 

 
Biomass (kg) Soltani et al., 2017 8 6.86 Phvul.008G073000 

 
Biomass (kg) Soltani et al., 2017 8 7.60 Phvul.008G078200 

 

Root rot 

damage 
Oladzad et al., 2019b 8 15.26 

 

 
Root rot Oladzad et al., 2019b 8 17.72 
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damage 

 

days to flower 

& days to 

maturity 

Oladzad et al., 2019a 8 24.95 
 

 

Days to 

flower 
Raggi et al., 2019 8 26.40 

 

 

Halo blight 

damage score  
Tock et al., 2017 8 61.34 Phvul.008G268700 

 

root rot 

damage score 
MacQueen et al., XXXX 8 61.98 Phvul.008G277352 

 

Halo blight 

damage score  
MacQueen et al., XXXX 9 5.42 Phvul.009G022400 

 

days to 

maturity 
MacQueen et al., XXXX 9 5.85 

 

 
Seed yield Kamfwa et al., 2015 9 10.00 Phvul.009G051600 

 

Plant height 

(cm) 
MacQueen et al., XXXX 9 27.98 Phvul.009G185100 

FDR Growth habit MacQueen et al., XXXX 9 30.93 Phvul.009G204100 

 
Biomass (kg) Soltani et al., 2017 10 0.60 Phvul.010G003600 

 
Seed weight 

Moghaddam et al., 

2016 
10 2.60 Phvul.010G017600 

 

Root rot 

damage 
Oladzad et al., 2019b 10 16.40 

 

 

Root rot 

damage 
Oladzad et al., 2019b 10 19.51 

 

 

Root rot 

damage 
Oladzad et al., 2019b 10 25.44 

 

 

Root rot 

damage 
Oladzad et al., 2019b 10 29.88 

 

 
Biomass (kg) Soltani et al., 2017 10 36.45 Phvul.010G099100 

 

Halo blight 

damage score  
MacQueen et al., XXXX 10 41.52 Phvul.010G133101 

 

Days to 

flowering 

Nascimento et al., 

2018 
10 42.50 Phvul.010G142900 

FDR Growth habit MacQueen et al., XXXX 10 42.79 Phvul.010G146500 

 
Biomass (kg) Soltani et al., 2017 11 1.59 Phvul.011G020500 

 

Days to 

flower 
Oladzad et al., 2019a 11 4.02 
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Days to 

maturity 

Moghaddam et al., 

2016 
11 4.46 Phvul.011G050300 

 

Days to 

flower 
Oladzad et al., 2019a 11 10.66 

 

 

days to 

maturity 
MacQueen et al., XXXX 11 14.8 

 

 

Root rot 

damage 
Oladzad et al., 2019b 11 26.41 

 

 

Days to 

flower 
Oladzad et al., 2019a 11 27.27 

 

 

Days to 

flower 
Oladzad et al., 2019a 11 36.22 

 

 

Root rot 

damage 
Oladzad et al., 2019b 11 41.36 

 

 

Days to 

maturity 

Moghaddam et al., 

2016 
11 45.09 Phvul.011G158300 

 

Days to 

flower 
Oladzad et al., 2019a 11 45.29   

 

Growth habit 

- 

indeterminate 

Moghaddam et al., 

2016 
11 46.75 Phvul.011G164800 

 

Days to 

flower 
Oladzad et al., 2019a 11 47.3 

 

 

Root rot 

damage 
Oladzad et al., 2019b 11 50.59   

FDR Rust MacQueen et al., XXXX 11 50.67 Phvul.011G193100 

 
Rust Phil McClean 11 50.67 Phvul.011G193100 

 
Biomass (kg) Soltani et al., 2017 11 52.55 Phvul.011G207500 

 833 

834 
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