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Abstract  

Background: Genome-wide association studies have identified over 170 common breast cancer 

susceptibility variants, many of them with differential associations by estrogen receptor (ER). 

How these variants are related to other tumor features is unclear.  

Methods: Analyses included 106,571 invasive breast cancer cases and 95,762 controls of 

European ancestry with data on 178 genotyped or imputed single nucleotide polymorphisms 

(SNPs). We used two-stage polytomous logistic regression models to evaluate SNPs in relation 

to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor 

receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes.  

Results: Nearly half of the SNPs (85 of 178) were associated with at least one tumor feature 

(false discovery rate <5%). Case-case comparisons identified ER and grade as the most common 

heterogeneity sources, followed by PR and HER2. Case-control comparisons among these 85 

SNPs with intrinsic-like subtypes identified 65 SNPs strongly or exclusively associated at P<0.05 

with luminal-like subtypes, 5 SNPs associated with all subtypes at differing strengths, and 15 

SNPs primarily associated with non-luminal tumors, especially triple-negative (TN) disease. The 

I157T CHEK2 variant (rs17879961) was associated in opposite directions with luminal A-like 

(odds ratio (OR; 95% confidence interval (CI))=1.44 (1.31 to 1.59); P=9.26x10-14) and TN (OR 

(95% CI)=0.61 (0.47 to 0.80); P=2.55x10-4). 

Conclusion: About half of the breast cancer susceptibility loci discovered in overall and ER-

specific risk analyses have differential associations with clinical tumor features. These findings 

provide insights into the genetic predisposition of breast cancer subtypes and can inform 

subtype-specific risk prediction.   
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Introduction 

Breast cancer represents a heterogenous group of diseases with different molecular and 

clinical features [1]. Clinical assessment of estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor 2 (HER2) and histological grade are routinely 

determined to inform treatment strategies and prognostication [2]. Combined, these tumor 

features define five intrinsic-like subtypes (i.e. luminal A-like, luminal B/HER2-negative-like, 

luminal B-like, HER2-enriched-like, and basal-like/triple negative) that are correlated with 

intrinsic subtypes defined by gene expression panels [2]. Most known breast cancer risk or 

protective factors are related to luminal or hormone receptor (ER or PR; HR) positive tumors, 

whereas less is known about the etiology of triple-negative (TN) tumors, an aggressive subtype 

[3, 4]. 

Breast cancer genome-wide association studies (GWAS) have identified over 170 

susceptibility single nucleotide polymorphisms (SNPs), of which many are differentially 

associated with ER-positive than ER-negative disease [5]. These include 20 SNPs that primarily 

predispose to ER-negative or TN disease [6, 7]. However, few studies have evaluated SNP 

associations with other tumor features, or simultaneously studied multiple, correlated tumor 

markers to identify source(s) of etiologic heterogeneity [6, 8-12]. We recently developed a two-

stage polytomous logistic regression method that efficiently characterizes etiologic 

heterogeneity while accounting for tumor marker correlations and missing tumor data [13]. 

This method can help describe complex relationships between susceptibility variants and 

multiple tumor features, helping to clarify breast cancer subtype etiologies and increasing the 

power to generate more accurate risk estimates between susceptibility variants and less 
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common subtypes.  

In this report, we applied this novel methodology to a large study population from the 

Breast Cancer Association Consortium (BCAC) to characterize risk associations of 178 known 

breast cancer susceptibility SNPs with tumor subtypes defined by ER, PR, HER2 and tumor 

grade.  

Methods 

Study Population and Genotyping 

The study population and genotyping are described in previous publications [5, 6] and 

in the Supplemental Methods. We included invasive cases and controls from 81 BCAC studies 

with genotyping data from two Illumina genome-wide custom arrays, the iCOGS and 

OncoArray (106,571 cases (OncoArray: 71,788; iCOGS: 34,783) and 95,762 controls 

(OncoArray: 58,134; iCOGS: 37,628); Supplemental Table 1). We evaluated 178 susceptibility 

SNPs that were identified in or replicated by prior BCAC analyses [5, 6]. Genotypes for the 

SNPs marking the 178 susceptibility loci were determined by genotyping with the iCOGS and 

the OncoArray arrays and imputation to the 1000 Genomes Project (Phase 3) reference panel. 

 

Statistical Analysis 

The statistical methods, including a detailed discussion of the two-stage polytomous 

logistic regression, are provided in the Supplemental Methods and elsewhere [13]. Briefly, we 

identified SNPs showing evidence for heterogeneity by using a mixed-effects two-stage 

polytomous model to evaluate a global heterogeneity test that assesses whether a SNP’s case-
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control risk-estimates vary by at least one of the underlying tumor characteristics. We 

accounted for multiple testing of the global heterogeneity test using a false discovery rate (FDR) 

<0.05 under the Benjamini-Hochberg procedure [14]. Among SNPs with evidence for 

heterogeneity, we used a fixed-effects two-stage model to evaluate a case-case marker-specific 

tumor heterogeneity test, which identifies the specific tumor marker(s) contributing to the 

observed heterogeneity, adjusting for the other tumor markers in the model. Marker-specific 

P<0.05 was considered statistically significant. Our primary analyses evaluated heterogeneity by 

ER, PR, HER2 and grade. As a secondary analysis, we fit an extended model with an additional 

term for TN status to test for differences between TN vs non-TN subtypes. The two-stage model 

implements an efficient expectation-maximization algorithm [15] to essentially perform 

iterative “imputation” of missing tumor characteristics [13]. We fit an additional two-stage 

model to estimate case-control ORs and 95% confidence intervals (CI) between the SNPs and 

five intrinsic-like subtypes defined by combinations of ER, PR, HER2 and grade (see 

Supplemental Methods): (1) luminal A-like, (2) luminal B/HER2-negative-like, (3) luminal B-like, 

(4) HER2-enriched-like and (5) TN. For all analyses we analyzed OncoArray and iCOGS array data 

separately, adjusting for the first 10 principal components for ancestry-informative SNPs, and 

then meta-analyzed the results. We used Euclidean distance in cluster analyses to help describe 

results and identify common heterogeneity patterns.  

Results 

The mean (SD) ages at diagnosis (cases) and enrollment (controls) were 56.6 (12.2) and 

56.4 (12.2) years, respectively. Eighty-one percent of tumors were ER-positive, 68% PR-

positive, 83% HER2-negative and 69% grade 1 or 2 (Table 1; Supplemental Table 1). The most 
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common intrinsic-like subtype was luminal A-like (59%), followed by TN (13%), luminal 

B/HER2-negative-like (12%), Luminal B-like (12%) and HER2-enriched-like (5%; Table 1).  

The two-stage models including terms for ER, PR, HER2 and grade, simultaneously 

adjusting for each other, identified 85 of 178 SNPs (47.7%) with evidence for heterogeneity by 

at least one tumor feature (FDR<5%). ER and grade most often contributed to the observed 

heterogeneity (45 and 34 SNPs respectively had case-case marker-specific P<0.05), and 30 SNPs 

were significantly associated with more than one tumor characteristic (Figure 1; 

Supplementary Figure 1). Seventeen of these 85 SNPs showed no associations with any 

individual tumor marker at P<0.05 in their corresponding fixed-effect two-stage models 

(Supplementary Figure 1). Twelve SNPs (Supplemental Figure 1) were significantly associated 

exclusively with grade (1p22.3-rs17426269 (Pgrade=1.52x10-02), 1q21.2-rs12048493 

(Pgrade=3.09x10-03), 1q22-rs4971059 ( Pgrade=1.84x10-02), 3p.24.1-rs12493607 (Pgrade=7.78x10-10), 

3q26.31-rs58058861 (Pgrade=1.54x10-03), 5p13.3-rs2012709 (Pgrade=6.25x10-03), 10q22.3-

rs704010 (Pgrade=2.87x10-04), 11q24.3-rs11820646 (Pgrade=3.18x10-02), 13q13.1-rs11571833 

(Pgrade=1.78x10-03), 17q22-rs2787486 (Pgrade=1.70x10-04), 19p13.11-rs4808801 (Pgrade=5.10x10-

04), 22q13.1-rs738321 (Pgrade=2.80x10-02)), four SNPs were associated exclusively with PR 

(5q11.1-rs72749841 (PPR=5.46x10-03), 9q31.2-rs10816625 (PPR=3.70x10-02), 9q31.2-rs10759243 

(PPR=2.18x10-05), 10q26.12-rs11199914 (PPR=4.39x10-02)) and one SNP was associated 

exclusively with HER2 (10q21.2-rs10995201 (PHER2= 2.60x10-02)). 

Case-control comparisons for the 85 SNPs with evidence for global heterogeneity 

identified four main clusters of SNPs according to the p-values for risk associations with each 

subtype (Figure 2 and Supplemental Figure 2). Sixty-five SNPs in cluster 1 (n=3 SNPs) and 
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cluster 4 (n=62 SNPs) showed the strongest evidence for associations with risk for luminal-like 

subtypes, cluster 2 (n=5 SNPs) was associated with risk for all subtypes at varying strengths and 

cluster 3 (n=15 SNPs) with stronger evidence for TN or non-luminal subtype associations. 

Supplemental Table 2 shows the associations between all 178 SNPs and the intrinsic-like 

subtypes.  

Cluster 1 included two correlated (r2=0.73) SNPs at 10q26.13, rs2981578 and 

rs35054928, that were strongly associated with risk of all the luminal-like subtypes (e.g. OR 

(95%CI)=1.29 (1.27 to 1.31), P=2.01x10-231 and OR (95%CI)=1.35 (1.33 to 1.37), P=5.00x10-300 for 

luminal A-like, respectively), weakly associated with risk of HER2-enriched-like subtype (OR 

(95%CI)=1.11 (1.05 to1.16), P=6.32x10-05 and OR (95% CI)=1.10 (1.04 to 1.15), P=3.07x10-4, 

respectively), but not significantly associated (P>0.05) with TN tumors (Figures 2-3 and 

Supplemental Figure 2). Case-case comparisons showed the strongest evidence for associations 

with ER (PER=1.27x10-30 for rs2981578 and PER=9.98x10-38 for rs35054928 (Supplemental Figure 

1). In the extended two-stage model that additionally included a term for TN status 

(Supplemental Figure 3), both SNPs were associated with TN status (PTN=3.79x10-06 for 

rs2981578 and PTN=1.27x10-06 for rs35054928). A third SNP in 10q26.13, rs45631563, showed 

similar association patterns, but fell into cluster 4 since, unlike rs2981578 and rs2981578, it was 

not significantly associated with risk of the HER2-enriched-like subtype (Figure 2 and 

Supplemental Figures 2, 4). Case-case comparisons for rs45631563 showed associations with 

ER (PER=9.09x10-7) and grade (Pgrade=2.56x10-3). A third SNP in cluster 1, 16q12.1-rs4784227, 

was most strongly associated with luminal-like subtypes (e.g. OR (95%CI)=1.28 (1.26 to 1.30), 

P=6.68x10-176 for luminal A-like), and the HER2-enriched-like tumors (OR (95%CI)=1.26 (1.19 to 
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1.33), P=3.04x10-16), and weaker so with TN tumors (OR (95%CI)=1.11 (1.08 to 1.15), P=6.05x10-

10; Figures 2-3 and, Supplemental Figure 2). In case-case analyses, rs4784227 was significantly 

associated with all tumor markers, particularly PR (PPR=2.16x10-4; Supplemental Figure 1). 

Five SNPs in cluster 2 were associated, to different extents, with all five intrinsic-like 

subtypes. 6q25-rs2747652 and 1p36.22-rs616488 were associated particularly with risk of 

HER2-positive subtypes (Figures 2-3; Supplemental Figure 2). In case-case comparisons these 

SNPs were associated with HER2 status (PHER2=1.84x10-7 for rs2747652 and PHER2=2.51x10-6 for 

rs616488), and grade (PGrade=3.82x10-5 for rs2747652 and PGrade=0.02 for rs616488) 

(Supplemental Figure 1). Two additional SNPs in 6q25 showed the strongest evidence for being 

associated with TN disease (OR (95%CI)=1.30 (1.24 to 1.38), P=8.26x10-23 for rs9397437 and OR 

(95%CI)=1.15 (1.12 to 1.19), P=1.24x10-19 for rs3757322; Figures 2-3; Supplemental Figure 2), 

and in case-case comparisons were associated with ER (PER=4.72x10-3 for rs9397437 and 

PER=3.64x10-2 for rs3757322) and grade (Pgrade=2.87x10-5 for rs9397437 and Pgrade=2.34x10-3 for 

rs3757322; Supplemental Figure 1). 13q13.1-rs11571833 was associated with risk of all 

subtypes, but case-case comparisons showed an association only with grade (PGrade=1.78x10-3; 

Supplemental Figure 1). In case-control comparisons the ORs (95% Cis) for rs11571833 with 

grade 3, grade 2 and grade 1 subtypes were: 1.48 (1.36 to 1.62), P=2.3x10-19; 1.27 (1.18 to 

1.35), P=5.0x10-12; and 1.08 (0.97-1.20), P=0.15, respectively (Supplemental Figure 5). 

Cluster 3 included 15 SNPs most strongly associated with risk of HR-negative subtypes, 

including three SNPs with the strongest evidence for associations with TN disease: 19p13.11-

rs67397200 (OR (95% CI)=1.27 (1.23 to 1.31), P=1.07x10-50), 5p15.33-rs10069690 (OR (95% 

CI)=1.27 (1.23 to 1.31), P=3.79x10-48) and 1q32.11-rs4245739 (OR (95% CI)=1.18 (1.14 to 1.22), 
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P=2.72x10-23). Two SNPs at 11q22.3, rs11374964 (OR (95% CI)=0.90 (0.88-0.93), P=2.71x10-11) 

and rs74911261 (OR (95% CI)=0.93 (0.90-0.96), P=2.71x10-11), were significantly associated 

(P<0.05) only with TN disease (Figures 2-3; Supplemental Figure 2). In the extended model 

these five SNPs were associated with TN status (PTN<0.05; Supplemental Figure 3). The 

remaining 10 SNPs in case-control comparisons were all associated with TN disease (P<0.05; 

Figures 2-3; Supplemental Figure 2), and in case-case comparisons seven of these 10 SNPs 

were exclusively associated with ER (PER<0.05): 1q32.1-rs6678914, 2p23.2-rs4577244, 8p23.3-

rs66823261, 13q22.1-rs6562760, 16q12.2-rs11075995, 16p13.3-rs11076805 and 18q12.1-

rs36194942. 5p15.33-rs3215401 was associated with both ER (PER=2.22x10-03) and PR 

(PPR=4.65x10-02). 2p24.1-rs12710696 and 19q12-rs113701136 showed no significant 

associations (P>0.05) with any of the individual tumor markers (Supplemental Figure 1). 

Besides rs11374964 and rs74911261, SNPs in this cluster were not HR-negative or TN-specific 

SNPs as they were also associated with luminal-like subtypes. Three SNPs showed weak 

associations with luminal A-like disease (OR (95% CI)=0.98 (0.97 to 1.00); P=0.039 for 

rs67397200; OR (95% CI)=1.02 (1.00 to 1.03); P=0.024 for rs6678914; and OR (95% CI)=1.02 

(1.00 to 1.04); P=0.02 for rs4577244) in an opposite direction to their associations with TN 

disease (OR (95% CI)=0.93 (0.91 to 0.96); P=1.07x10-4 for rs6678914 and OR (95% CI)=0.90 (0.86 

to 0.93); P=2.99x10-9 for rs4577244; Figures 2-3; Supplemental Figure 2).  

Cluster 4 (n=62 SNPs) showed evidence for associations with risk of luminal-subtypes, 

especially luminal A-like disease. The five SNPs in this cluster showing the strongest evidence 

for associations with risk of luminal A-like disease were: 5q11.2-rs62355902 (OR (95% CI)=1.22 

(1.20 to 1.25), P=3.94x10-85), 11q13.3-rs75915166 (OR (95% CI)=1.44 (1.40 to 1.48), P=2.26x10-
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131), 11q13.3-rs554219 (OR (95% CI)=1.33 (1.30 to 1.37), P=1.31x10-98), 1p11.2-rs11249433 (OR 

(95% CI)=1.17 (1.15 to 1.19), P=5.25x10-90) and 5p12-rs10941679 (OR (95% CI)=1.20 (1.18 to 

1.22), P=1.39x10-93; Figure 2 and Supplemental Figures 2,4). In case-case comparisons these 

five SNPs were associated with grade (Pgrade=2.32x10-02 for rs62355902, Pgrade=1.74x10-13 for 

rs75915166, Pgrade=2.14x10-12 for rs554219, Pgrade=2.20x10-12 for rs11249433 and Pgrade=2.47x10-

06 for rs10941679) and with at least one other tumor marker (Supplemental Figure 1). Eighteen 

of the 62 SNPs also showed weaker evidence for associations with non-luminal subtypes, 11 of 

which were associated with risk of TN disease (P<0.05): 5q11.2-rs62355902, 5p12-rs10941679, 

12q22-rs17356907, 10q21.2-rs10995201, 10p12.31-rs7072776, 19p13.11-rs4808801, 10p12.31-

rs11814448, 8q21.11-rs6472903, 11q24.3-rs11820646, 19p13.13-rs78269692  and 22q12.1-

rs17879961 (I157T; Figure 2 and Supplemental Figures 2,4). Notably, rs7072776 and 

rs17879961 were associated in opposite directions with luminal A-like disease (OR (95% 

CI)=1.10 (1.08 to 1.11); P=4.96x10-27 for rs7072776; and OR (95% CI)=1.44 (1.31 to 1.59); 

P=9.26x10-14 for rs17879961) and TN disease (OR (95% CI)= 0.96 (0.93 to 0.99); P=0.02 for 

rs7072776 and OR (95% CI)=0.61 (0.47 to 0.80); P=2.55x10-4 for rs17879961). In case-case 

comparisons rs7072776 was associated with ER (PER=8.27x10-5) and grade (Pgrade=0.01; 

Supplemental Figure 1), and rs17879961 was associated with the TN phenotype in the 

extended model (PTN=1.45x10-5; Supplemental Figure 3).  

Supplemental Figure 5 shows case-control associations by tumor grade for 12 SNPs 

associated exclusively with grade in case-case comparisons (Pgrade<0.05). rs11571833, 

rs17426269 and rs11820646 showed stronger evidence for predisposing to risk of high-grade 

subtypes, and the remaining SNPs showed stronger evidence for predisposing to risk of low-
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grade subtypes. 

 

Discussion 

We found compelling evidence that about half of the investigated breast cancer 

susceptibility loci (85 of 178 SNPs) predispose to tumors of different characteristics. We 

identified tumor grade, along with confirming ER and TN status, as important determinants of 

etiologic heterogeneity. Associations with individual tumor features translated into differential 

associations with the risk of intrinsic-like subtypes defined by their combinations. 

Many of the SNPs showing subtype heterogeneity predisposed to risk of all subtypes, 

but with different magnitudes. For example, 21 of 65 SNPs found predominately associated 

with risk of luminal-like subtypes were also associated with risk of at least one of the non-

luminal subtypes. These include SNPs identified in early GWAS for overall breast cancer, such as 

SNPs in the loci for FGFR2 (rs35054928 and rs2981578)[16, 17] and 8q24.21 (rs13281615) [16] 

that were associated with luminal-like and HER2-enriched-like subtypes. rs4784227 located 

near TOX3 [16, 18] and rs62355902 located in a MAP3K1 [16] regulatory element, were 

associated with risk of all five subtypes. Of the five SNPs found associated in opposite directions 

with luminal A-like and TN disease, we previously reported rs6678914 and rs4577244 to have 

opposite effects between ER-negative and ER-positive tumors [6]. rs17879961 (I157T), a likely 

causal [19] mis-sense variant located in a CHEK2 functional domain that reduces or abolishes 

substrate binding [20], was previously reported to have opposite directions of effects on lung 

adenocarcinoma and lung squamous cell carcinoma and for lung cancer between smokers and 
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non-smokers [21, 22]. However, further studies are required to follow-up and clarify the 

mechanisms for these apparent cross-over effects. 

In prior ER-negative GWAS we identified 20 SNPs that predispose to ER-negative 

disease, of which five SNPs were only or most strongly associated with risk of TN disease 

(rs4245739, rs10069690, rs74911261, rs11374964, and rs67397200) [6, 7]. We further 

confirmed these five SNPs to be most strongly associated with TN disease and that they were 

associated with TN status in the extended model. The remaining previously identified 15 SNPs 

all showed associations with risk of HR-negative disease, and for all but four SNPs (rs17350191, 

rs200648189, rs6569648, and rs322144) evidence of global heterogeneity was observed. 

Among the SNPs in cluster 3, rs3215401 was the only SNP that was not identified in a prior ER-

negative GWAS [6, 7]. rs3215401 was identified in a fine-mapping analysis of TERT and, 

consistent with our findings, reported to be most strongly associated with ER-negative disease 

but was also associated with ER-positive disease [23]. 

Little is known regarding PR and HER2 as sources of etiologic heterogeneity independent 

of ER or TN status. Of the four SNPs significantly associated only with PR, rs10759243 [5, 24], 

rs11199914 [5] and rs72749841 [5] were previously found primarily associated with risk of ER-

positive disease, and rs10816625 was found to be associated with risk of ER-positive/PR-

positive tumors, but not other ER/PR combinations [11]. rs10995201 was the only variant found 

to be solely associated with HER2 status, although the evidence was not strong, requiring 

further confirmation. Previously rs10995201 showed no evidence of being associated with ER 

status [25]. Among all SNPs found with PR or HER2 associations, few have been investigated for 

PR or HER2 heterogeneity while adjusting for ER [8-12]. We previously reported rs10941679 to 
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be associated with PR-status, independent of ER, and also with grade [9]. We also found 

suggestive evidence of PR-specific heterogeneity for 16q12-rs3803662 [12], which is in high LD 

(r2= 0.78) with rs4784227 (TOX3), which was strongly associated with PR status. Our findings for 

rs2747652 are also consistent with a prior BCAC fine-mapping analysis across the ESR1 locus, 

which found rs2747652 to be associated with risk of the HER2-enriched subtype and high grade 

independent of ER [8]. rs2747652 overlaps an enhancer region and is associated with reduced 

ESR1 and CCDC170 expression [8]. 

Histologic grade is a composite of multiple tumor characteristics including mitotic count, 

nuclear pleomorphism, and degree of tubule or gland formation [26]. Among the 12 SNPs 

identified with evidence of heterogeneity by grade only, rs17426269, rs11820646, and 

rs11571833 were found most strongly associated with grade 3 disease. rs11571833 lies in the 

BRCA2 coding region and produces a truncated form of the protein [27] and has been shown to 

be associated with both risk of TN disease and risk of serous ovarian tumors, both of which tend 

to be high-grade [28]. To our knowledge, rs17426269 and rs11820646 have not been 

investigated in relation to grade heterogeneity. The remaining 9 SNPs were all more strongly 

associated with grade 1 or grade 2 disease. Five of these SNPs were previously reported to be 

associated primarily with ER-positive disease [5, 29, 30], highlighting the importance of 

accounting for multiple tumor characteristics to better illuminate heterogeneity sources. 

A major strength of our study is our large sample size of over 100,000 breast cancer 

cases with tumor marker information, and a similar number of controls, making this the largest, 

most comprehensive breast cancer heterogeneity investigation. Our application of the novel 

two-stage polytomous logistic regression enabled adjusting for multiple, correlated tumor 
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markers and accounting for missing tumor marker data. This is a more powerful and efficient 

modeling strategy for identifying heterogeneity sources among highly correlated tumor 

markers, compared with standard polytomous logistic regression. However, we identified 17 

SNPs with evidence of heterogeneity for which we did not identify specific tumor 

characteristic(s) contributing to observed heterogeneity. This is likely explained by the fact that 

the fixed-effects models evaluating specific tumor markers as heterogeneity sources were less 

statistically powerful compared with the mixed-effects models that evaluated for evidence of 

global heterogeneity [13]. Our approach to cluster SNPs helped describe common 

heterogeneity patterns; however, these clusters should not be interpreted as strictly defined 

categories. Our study was limited by investigating only ER, PR, HER2, and grade as 

heterogeneity sources and future studies with more detailed tumor characterization could 

reveal additional etiologic heterogeneity sources. 

In summary, our findings provide insights into the complex etiologic heterogeneity 

patterns of common breast cancer susceptibility loci. These findings may inform fine-mapping 

and functional analyses to identify the underlying causal variants, clarifying biological 

mechanisms that drive genetic predisposition to breast cancer subtypes. Moreover, these 

analyses provide precise estimates of relative risk for different intrinsic-like subtypes that could 

improve the discriminatory accuracy of subtype-specific polygenic risk scores [31]. 
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Table 1. Distribution of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 

(HER2), and grade and the intrinsic-like subtypes*,†
  among invasive cases of breast cancer in studies from the Breast 

Cancer Consortium Association.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*= luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+);  HER2-

enriched-like (ER- and PR-, HER2+);  TN (ER-, PR-, HER2-) 

†= Intrinsic subtypes defined among 56,373 cases with available tumor marker data 

 

 

 

 N (%) 

ER  

Negative 16,900 (19) 

Positive 70,030 (81) 

Unknown 19,641 

PR  

Negative 24,283 (32) 

Positive 51,603 (68) 

Unknown 30,685 

HER2  

Negative 47,693 (83) 

Positive 9,529 (17) 

Unknown 49,349 

Grade  

1 15,583 (20) 

2 37,568 (49) 

3 24,382 (31) 

Unknown 29,038 

Intrinsic-like subtypes  

Luminal A-like 33,083 (59) 

Luminal B/Her2-

negative-like 
6,804 (12) 

Luminal B-like 6,511 (12) 

HER2-enriched-like 2,797   (5) 

Triple-negative 7,178 (13) 
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Figure 1. Heatmap and clustering of the P-values from the two-stage model’s case-case marker-specific heterogeneity test for associations between each of the 
178 breast cancer susceptibilty SNPs and estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) or grade, 
adjusting for principal components and each tumor marker. Columns represent individual SNPs. For more detailed information on the context of figure see 
Supplemental Figure 1.  
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Figure 2. Heatmap and clustering of case-control P-values and odds ratios (OR) from two-stage models for intrisic-like subtypes, fitted for each of the 85 breast 
cancer susceptibility SNPs with evidence for global heterogeneity. Columns are labeled according to SNP and loci. (A) Clustering based on case-control p-value of 
the associations between susceptibility SNPs and breast cancer intrinsic-like subtypes*,†. (B) Heatmap of ORs between susceptibilit SNPs and intrinsic-like 
subtypes.   

 

 

 

 

 

 

*= luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+); HER2-enriched-like (ER- and PR-, HER2+ ); TN (ER-, PR-, HER2-) 

†= Clusters: 1, 3, 5: strongest associations with hormone receptor (HR)-positive subtypes; 2: Strongest associations with TN subtypes; 4: Strong associations with HR-positive and HR-negative subtypes  

‡ = SNPs previously identified as primarily predisposing to ER-negative or TN disease as reported in Milne RL, et al. Nat Genet 2017;49(12):1767-1778 
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Figure 3. Associations* between breast cancer susceptibility SNPs with evidence of heterogeneity in the two-stage 
model† and intrinsic-like subtypes. SNPs presented in order as shown in figure 2, clusters 1, 2 and 3. 

 

Odds ratio and 95% CI Odds ratio and 95% CI 

SNP Locus Breast cancer risk by subtypes‡  SNP Locus Breast cancer risk by subtypes‡ 

         Luminal A-like              Luminal B/ HER2-negative-like               Luminal B-like              HER2-enriched-like               Triple-negative 

* Per-minor allele odds ratio (95% confidence limits). 
† Two-stage model testing for heterogeneity according to estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade 
‡ luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+); (4) HER2-enriched-

like (ER- and PR-, HER2+), and triple-negative (ER-, PR-, HER2-) 
§ SNPs previously identified as primarily predisposing to ER-negative or TN disease as reported in Milne RL, et al. Nat Genet 2017;49(12):1767-1778. 
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