SUPPLEMENTARY METHODS

Priming and infection protocol

We used a strain of *Bacillus thuringiensis* (DSM 2046) (Bt) originally isolated from a Mediterranean flour moth (Roth *et al.* 2009) as a model pathogen to prime and infect adult *T. castaneum* beetles as outlined in Khan et al. (2017a). We used heat-killed bacteria to prime the immune system by activating the immune response without any direct cost of infection. Briefly, we first primed beetles by pricking them with a 0.1mm insect pin (Fine Science Tools, CA) dipped in heat-killed bacterial suspension prepared from freshly grown overnight Bt culture at 30°C (optical density of 0.95), or insect Ringer solution (mock priming) between their head and thorax. After six days, we infected individuals with live bacterial culture adjusted to ~10¹⁰ cells in 75 µl insect Ringer solution (delivers approximately 12000 live cells per beetle; see Khan et al. 2017a) or pricked with sterile Ringer solution (mock challenge). We used the same priming and infection protocol for all subsequent assays, unless stated otherwise.

SUPPLEMENTARY FIGURES

Figure S1. Survival curves for within-generation priming and resistance in males (n= 12 males/treatment/selection regime/replicate population) after 14 generations of selection. Asterisks and the numbers in parentheses for I beetles denote the hazard ratios calculated from survival curves for priming that are significantly greater than 1 (p<0.05; a greater hazard ratio indicates higher benefit of priming)

Figure S2. Adult survival during the first 48 h after infection with live Bt cells, during the course of experimental evolution between generation 12 and 14.

Figure S3. Survival curves of naïve males and females under starvation, across selection regimes. P values for the impact of selection regime are reported in each panel.

Figure S4. Survival curves of naïve females under normal condition up to 95 days post-emergence, across selection regimes. P values for the impact of selection regime are reported in each panel.

Figure S5. (A) Survival curves of the trans-generationally primed I offspring, based on the mean survival calculated from each parental pair. P values for the impact of TGIP are reported in each panel. (B) Survival benefits of WGIP vs. TGIP, based on the hazard function calculated from survival curves shown in panel A (offspring from unprimed parents vs. primed parents) and Fig 2 & S1 (males and females from unprimed vs. primed groups). A greater hazard ratio indicates higher benefit of priming. P values for the impact of priming type (P _{Priming}) and sex (P _{Sex}) are reported in each panel.

SUPPLEMENTARY TABLES

Table S1. A. Number of females that were alive to reproduce after within-generation priming and infection across replicate populations, selection regimes and treatments. B. Summary of Wilcoxon Rank Sum Test on post-infection replicate size across priming treatments and selection regimes.

A.	Replicate				
	population	Selection regime	Naïve	Unprimed	Primed
	1	Control	5	7	4
		Priming only	8	9	10
		Priming-Infection	7	11	12
		Infection only	6	5	11
	2	Control	7	10	10
		Priming only	6	8	10
		Priming-Infection	8	10	8
		Infection only	10	8	10
	4	Control	6	8	9
		Priming only	6	9	7
		Priming-Infection	11	10	10
		Infection only	7	8	10
B.	Trait	χ2	df		Р
	Treatment	1.545	1	0.	213
	Regime	5.452	3	0.	141

Table S2. Summary of Cox proportional hazard analysis on survival data for within-generation priming in females.

Regime	Replicate	df	χ2	Р
	population			
Control	1	1	0.414	0.519
Infection only		1	6.502	0.01
Priming only		1	0.247	0.618
Priming & Infection		1	0.064	0.799
Control	2	1	0.297	0.585
Infection only		1	6.493	0.01
Priming only		1	1.961	0.161
Priming & Infection		1	0.005	0.942
Control	4	1	0.088	0.765
Infection only		1	4.783	0.028
Priming only		1	0.721	0.395
Priming & Infection		1	0.032	0.855

Regime	Replicate population	df	χ2	Р
Control	1	1	0.743	0.388
Infection only		1	7.562	0.005
Priming only		1	1.388	0.238
Priming & Infection		1	0.759	0.383
Control	2	1	0.449	0.502
Infection only		1	5.766	0.016
Priming only		1	0.882	0.347
Priming & Infection		1	0.0002	0.988
Control	4	1	0.019	0.888
Infection only		1	4.843	0.027
Priming only		1	1.531	0.215
Priming & Infection		1	0.117	0.731

Table S3. Summary of Cox proportional hazard analysis on survival data for within-generation priming in males.

Table S4. Summary of Cox proportional hazard analysis on survival data of naïve beetles infected with Bt.

	Comparison	Replicate	Hazard	df	χ2	Р
		population	function			
Mothers	C vs. P	1	1.51	1	0.973	0.323
		2	2.34	1	3.478	0.062
		4	1.36	1	0.519	0.471
	C vs. PI	1	5.87	1	11.265	0.001
		2	4.3	1	7.882	0.005
		4	3.03	1	5.318	0.021
	C vs. I	1	0.95	1	0.01	0.919
		2	1.34	1	0.504	0.473
		4	0.958	1	0.011	0.912
Fathers	C vs. P	1	3.03	1	5.391	0.02
		2	1.41	1	0.657	0.417
		4	1.28	1	0.358	0.549
	C vs. PI	1	28.9	1	20.407	< 0.001
		2	8.52	1	13.608	0.001
		4	4.37	1	8.24	0.004
	C vs. I	1	1.54	1	1.052	0.305
		2	0.91	1	0.043	0.835
		4	1.15	1	0.107	0.743

Block	Trait	χ2	df	Р
1	Regime	6.046	3	0.109
	Treatment	1.055	2	0.589
2	Regime	2.933	3	0.402
	Treatment	1.531	2	0.464
4	Regime	7.653	3	0.0537
	Treatment	1.647	2	0.438

Table S5. Summary of Wilcoxon Rank Sum test on beetle reproduction before infection as function of within-generation priming and selection regime

Table S6. Summary of Wilcoxon Rank Sum test for change in reproductive output with infection across replicate populations and selection regimes. C- Control; P – Priming only; PI- Priming-Infection; I- Infection only.

Regime	Replicate populations	Treatment	χ2	df	Р
С	1	Naive	6.043	1	0.013
		Unprimed	8.337	1	0.003
		Primed	0.134	1	0.713
	2	Naive	6.685	1	0.009
		Unprimed	9.486	1	0.002
		Primed	5.353	1	0.02
	4	Naive	4.854	1	0.027
		Unprimed	10.54	1	0.001
		Primed	4.71	1	0.029
Р	1	Naive	5.55	1	0.018
		Unprimed	6.247	1	0.012
		Primed	5.225	1	0.022
	2	Naive	5.089	1	0.024
		Unprimed	1.258	1	0.262
		Primed	4.5	1	0.033
	4	Naive	0.718	1	0.396
		Unprimed	7.321	1	0.006
		Primed	0.652	1	0.419
PI	1	Naive	1.121	1	0.289
		Unprimed	4.84	1	0.028
		Primed	0.067	1	0.794
	2	Naive	0.542	1	0.461
		Unprimed	0.184	1	0.667
		Primed	4.73	1	0.029
	4	Naive	0.095	1	0.757

		Unprimed	4.898	1	0.026
		Primed	1.933	1	0.164
Ι	1	Naive	4.486	1	0.034
		Unprimed	8.475	1	0.003
		Primed	11.91	1	0.001
	2	Naive	11.81	1	0.001
		Unprimed	8.408	1	0.003
		Primed	6.324	1	0.011
	4	Naive	4.484	1	0.034
		Unprimed	3.163	1	0.075
		Primed	5.66	1	0.017

Table S7. Summary of ANOVA on reproductive output after within-generation priming and bacterial infection across A. all the selection regimes; B. Control (C) vs. Priming only (P); C. Control (C) vs. Priming-Infection (PI); D. Control (C) vs. Infection only (I).

		Trait	SS	SS	F-ratio	Р
A.	All regime	Replicate population (B)	90.439	2	1.128	0.324
		Regime (R)	1399.783	3	11.647	3.40872e-7
		Treatment (T)	317.954	2	3.968	0.02
		$\mathbf{B} \times \mathbf{R}$	207.363	6	0.8626	0.522
		$B \times T$	54.542	4	0.34	0.85
		$R \times T$	639.203	6	2.6597	0.016
		$\mathbf{B} \times \mathbf{R} \times \mathbf{T}$	504.924	12	1.05	0.403
		Error	10616.212	265		
В.	C vs. P	В	92.547	2	1.028	0.36
		R	291.311	1	6.476	0.012
		Т	541.137	2	6.015	0.003
		$\mathbf{B} \times \mathbf{R}$	6.848	2	0.076	0.926
		$B \times T$	45.137	4	0.255	0.908
		$\mathbf{R} \times \mathbf{T}$	276.217	2	3.07	0.05
		$\mathbf{B} \times \mathbf{R} \times \mathbf{T}$	240.453	4	1.336	0.26
		Error	5442.71	121		
C.	C vs. PI	В	101.513	2	1.396	0.251
		R	563.698	1	15.507	0.0001
		Т	410.017	2	5.639	0.004
		$\mathbf{B} \times \mathbf{R}$	67.251	2	0.925	0.399
		$B \times T$	144.875	4	0.996	0.411
		$\mathbf{R} \times \mathbf{T}$	477.395	2	6.566	0.001
		$\mathbf{B} \times \mathbf{R} \times \mathbf{T}$	96.024	4	0.66	0.62
		Error	4907.311	135		
D.	C vs. I	В	67.991	2	0.974	0.38
		R	61.381	1	1.76	0.187
		Т	467.012	2	6.695	0.0017

$\mathbf{B} imes \mathbf{R}$	25.001	2	0.351	0.699
$B \times T$	93.715	4	0.671	0.612
R imes T	311.382	2	4.464	0.013
$B \times R \times T$	156.131	4	1.119	0.35
Error	4289.419	123		

Table S8. Summary of Cox proportional hazard analysis on survival under starvation of unhandled naïve beetles across selection regimes.

Replicate	Sex	df	χ2	Р
population				
1	Female	3	0.45	0.92
	Male	3	5.323	0.149
2	Female	3	4.156	0.245
	Male	3	1.353	0.716
4	Female	2	1.16	0.55
	Male	2	4.099	0.128

Table S9. Summary of Cox proportional hazard analysis on long-term survival of unhandled naïve females across selection regimes.

Replicate population	df	χ2	Р
1	3	13.6393732	0.003
2	3	2.06145929	0.559
4	3	5.47204481	0.14

Table S10.	. Summary	of (A)	two-way	ANOVA	and (B)	one-way	ANOVA	on early	survival	and
developmen	ntal rate.									

A.	Assay	Trait	df	SS	F ratio	Р
	Egg-hatchability	Regime Replicate Regime × Replicate		1527.375	52.206	3.21391e-8
				1328.446	45.406	9.2751e-8
				196.92	3.3653	0.031
		experiment				
	Pupae_3 week	Regime	2	0.0192	3.0433	0.072
		Replicate	2	0.035	5.587	0.012
		Regime × Replicate	4	0.006	0.494	0.739
		experiment				
	Adult_4 week	Regime	2	0.045	4.886	0.02
		Replicate	2	0.024	2.58	0.103
		Regime × Replicate	4	0.005	0.292	0.879
		experiment				
	%viability	Regime	2	1444.91	26.32	4.52819e-6

		Replicate	2	577.819	10.525	0.001
		Regime × Replicate	4	140.737	1.281	0.313
		experiment				
B .	Replicate experiment	Assay	df	SS	F ratio	Р
	1	hatchability	2	416.907	20.104	0.002
		pupae_3	2	0.003	0.586	0.585
		%viability	2	281.635	5.642	0.041
	2	hatchability	2	718.315	34.241	0.001
		pupae_3	2	0.0104	2.88	0.132
		%viability	2	623.794	9.836	0.012
	3	hatchability	2	589.072	12.79	0.006
		pupae_3	2	0.0119	1.201	0.364
		%viability	2	680.217	13.244	0.006

Table S11. Summary of 4-way ANOVA on mean post-infection survival of offspring as a function of replicate population, selection regime, parental priming status and sex

Trait	SS	df	F-ratio	Р
Replicate population (B)	1.985	2	6.688	0.001
Selection regime (R)	88.118	3	197.903	< 0.001
Sex (S)	0.001	1	0.006	0.933
Parental priming (P)	5.271	2	17.757	< 0.001
$B \times R$	2.039	6	2.29	0.03
$B \times S$	0.206	2	0.695	0.499
$\mathbf{B} \times \mathbf{P}$	0.08	4	0.135	0.969
$\mathbf{R} imes \mathbf{S}$	0.101	3	0.226	0.877
$\mathbf{R} imes \mathbf{P}$	10.571	6	11.871	< 0.001
$\mathbf{G} imes \mathbf{S}$	0.364	2	1.228	0.293
$\mathbf{B} imes \mathbf{R} imes \mathbf{S}$	0.83	6	0.932	0.47
$\mathbf{B} imes \mathbf{R} imes \mathbf{P}$	2.133	12	1.197	0.281
$\mathbf{B} \times \mathbf{S} \times \mathbf{P}$	0.506	4	0.852	0.492
$R \times S \times P$	0.547	6	0.614	0.718
$\mathbf{B}\times\mathbf{R}\times\mathbf{S}\times\mathbf{P}$	1.755	12	0.985	0.461
Error	586	86.97		

Table S12. Summary of 3-way ANOVA on mean post-infection survival of offspring as a function of selection regime, parental priming status and sex, from replicate populations that were handled together.

Replicate	Trait	df	SS	F-ratio	Р
population					
1	Selection regime (R)	3	38.755	93.81	<0.001
	Sex (S)	1	0.103	0.754	0.386
	Parental priming (P)	2	2.035	7.389	0.001
	$\mathbf{R} imes \mathbf{S}$	3	0.024	0.058	0.981
	$\mathbf{R} \times \mathbf{P}$	6	4.657	5.637	< 0.001

	$\mathbf{S} \times \mathbf{P}$	2	0.029	0.108	0.897
	$R \times S \times P$	6	0.555	0.671	0.672
	Error	196	73.58		
2	R	3	26.168	54.598	<0.001
	S	1	0.004	0.025	0.873
	Р	2	1.432	4.483	0.012
	$\mathbf{R} \times \mathbf{S}$	3	0.276	0.577	0.63
	$\mathbf{R} \times \mathbf{P}$	6	5.217	5.442	< 0.001
	$\mathbf{S} \times \mathbf{P}$	2	0.793	2.482	0.086
	$R \times S \times P$	6	0.567	0.591	0.736
	Error	193	30.83		
4	R	3	25.067	56.473	< 0.001
	S	1	0.099	0.672	0.413
	Р	2	1.861	6.29	0.002
	$\mathbf{R} \times \mathbf{S}$	3	0.632	1.424	0.236
	$\mathbf{R} \times \mathbf{P}$	6	2.874	3.237	0.004
	$\mathbf{S} \times \mathbf{P}$	2	0.034	0.116	0.889
	$R \times S \times P$	6	1.161	1.308	0.255
	Error	197	61.057		

Table S13. Summary of Cox proportional hazard analysis on mean progeny survival from I regime

Replicate population	Sex	Hazard	df	χ2	Р
		function			
1	Female	7.943	1	12.491	0.0004
	Male	4.398	1	8.443	0.003
2	Female	11.332	1	14.116	0.0001
	Male	3.589	1	4.819	0.02
4	Female	2.337	1	2.655	0.103
	Male	1.74	1	1.408	0.235
	Whate	1.71	1	1.100	0.235

Table S14. Summary of Wilcoxon Rank Sum test on progeny fitness before infection, as a function of selection regimes and priming treatments

Block	Trait	χ2	df	Р
1	Regime	7.792	3	0.052
	Treatment	2.147	1	0.143
2	Regime	3.499	3	0.32
	Treatment	0.418	1	0.517
4	Regime	6.867	3	0.077
	Treatment	0.029	1	0.864

Replicate	Treatment	Selection	χ2	df	Р
population		regime			
1	Unprimed	С	3.303	1	0.0691
	primed		7.828	1	0.005
	Unprimed	Р	0.157	1	0.691102
	primed		4.3246	1	0.037563
	Unprimed	PI	1.107	1	0.292
	primed		0.918	1	0.337
	Unprimed	Ι	10.115	1	0.001
	primed		0.894	1	0.344
2	Unprimed	С	3.481	1	0.062
	primed		3.951	1	0.046
	Unprimed	Р	0.903	1	0.341
	primed		4.698	1	0.03
	Unprimed	PI	0.707	1	0.4
	primed		1.949	1	0.162
	Unprimed	Ι	5.080	1	0.024
	primed		9.163	1	0.002
4	Unprimed	С	5.08	1	0.024
	primed		6.33	1	0.011
	Unprimed	Р	2.668	1	0.102
	primed		5.512	1	0.018
	Unprimed	PI	1.106	1	0.292
	primed		0.148	1	0.7
	Unprimed	Ι	9.29	1	0.002
	primed		8.235	1	0.004

Table S15: Summary of Wilcoxon Rank Sum test for change in offspring's reproductive output with infection across replicate populations and selection regimes. C- Control; P – Priming only; PI- Priming-Infection; I- Infection only.

Table S16. Summary of 3-way ANOVA on offspring fitness after infection

Traits	df	SS	F Ratio	Р
Block	2	11.761	0.326	0.721
Regime	3	655.498	12.133	< 0.001
Treatment	1	59.057	3.279	0.071
$Block \times Regime$	6	36.509	0.337	0.916
Block × Treatment	2	5.569	0.154	0.856
Regime × Treatment	3	9.839	0.182	0.908
Block × Regime × Treatment	6	58.544	0.541	0.775
Error	194	3493.667		