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Summary7

1. The increase in availability of species data sets means that approaches8

to species distribution modelling that incorporate multiple data sets are9

in greater demand. Recent methodological developments in this area10

have led to combined likelihood approaches, in which a log-likelihood11

comprised of the sum of the log-likelihood components of each data source12

is maximised. Often, these approaches make use of at least one presence-13

only data set and use the log-likelihood of an inhomogeneous Poisson14

point process model in the combined likelihood construction. While these15

advancements have been shown to improve predictive performance, they16

do not currently address challenges in presence-only modelling such as17

checking and correcting for violations of the independence assumption18

of a Poisson point process model or more general challenges in species19

distribution modelling such as overfitting.20

2. In this paper, we present an extension of the combined likelihood frame-21

work which accommodates alternative presence-only likelihoods in the22

presence of spatial dependence as well as lasso-type penalties to account23

for potential overfitting. We compare the proposed combined penalised24

likelihood approach to the standard combined likelihood approach via25

simulation and apply the method to modelling the distribution of the26

Eurasian lynx in the Jura Mountains in eastern France.27

3. The simulations show that the proposed combined penalised likelihood28

approach has better predictive performance than the standard approach29

when spatial dependence is present in the data. The lynx analysis shows30

that the predicted maps vary significantly between the model fitted with31

the proposed combined penalised approach accounting for spatial depen-32

dence and the model fitted with the standard combined likelihood.33

4. This work highlights the benefits of careful consideration of the presence-34

only components of the combined likelihood formulation, and allows35

greater flexibility and ability to accommodate real datasets.36

Keywords: area-interaction models; diagnostic tools; lasso; occupancy models;37

point process models; presence-only data38
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1 Introduction39

Species distribution models (SDMs), in which the distributions of species are modelled as40

a function of environmental predictors, rely on information about where a species has been41

observed (Guisan et al., 2017). Different SDM methods have been developed over the past42

few decades to accommodate the different protocols by which this species information is43

collected. For example, logistic regression and its extensions are often used when species44

detections and non-detections are recorded at a set of systematically designed locations45

(known as “presence-absence” data), while point process models (PPMs, see Renner et al.46

(2015) for an overview) have emerged as a unifying framework for fitting SDMs informed47

by “presence-only” data, in which only information about species presence locations are48

available. Statistically, these methods are often fitted by maximising a corresponding49

likelihood expression, and the parameter estimates which maximise the likelihood may be50

used to produce maps of relative habitat suitability, reported as a habitat suitability index51

(Hirzel et al., 2002), probability of species presence (Phillips et al., 2006), or intensity of52

locations per unit area (Warton & Shepherd, 2010) depending on the method.53

Increasingly, species data are available from multiple sources and types. Many papers54

have advocated for fitting models to a combination of the available data types, illustrat-55

ing benefits in model performance (Miller et al., 2019). Dorazio (2014) illustrated via56

simulations that adding a small amount of systematically-collected presence-absence data57

to available presence-only data significantly improves predictive performance. Fithian58

et al. (2015) showed that fitting a combined presence-only and presence-absence model to59

multiple species leverages the information of more abundant species to improve predictive60

performance for less prevalent species and allows sampling bias inherent in presence-only61

data to be estimated and corrected. These models are fitted by maximising a combined62

log-likelihood expression which is the sum of the log-likelihoods of the presence-only and63

presence-absence components:64

`(α,β; sPO,yPA) = `PO(αPO,β; sPO) + `PA(αPA,β; yPA).

Here, sPO contains the locations of a presence-only data source, while yPA contains a vector65

of presence-absence detections and non-detections at a set of pre-selected sites. Param-66

eters associated with the observation process unique to the presence-only and presence-67

absence data sets are denoted by αPO and αPA, respectively, and collectively contained68

in the vector α. Hereafter, we refer to these parameters as sampling bias parameters, as69

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/615583doi: bioRxiv preprint 

https://doi.org/10.1101/615583
http://creativecommons.org/licenses/by-nc-nd/4.0/


I.W. Renner, O.Gimenez, and J. Louvrier Combined Penalised Likelihood for SDMs

they may bias the intensity estimates as a result of the process of sampling the data. The70

key advancement of the combined likelihood approach is that the environmental response,71

parameterised by β, is informed by both the presence-only and presence-absence data.72

Such an approach implicitly assumes that the data sets are statistically independent,73

which allows for the combined log-likelihood to be expressed as a sum of the single-source74

log-likelihoods.75

Other combinations may be done in similar fashion. For example, Koshkina et al. (2017)76

considered a combination of presence-only data with site-occupancy data, and Pacifici77

et al. (2017) developed a multivariate conditional autoregressive model to account for78

spatial autocorrelation in occurrence and detection error.79

While these papers clearly advance the practice of fitting SDMs in important ways, they80

do not address some common challenges that arise in real datasets. For example, they81

all consider an inhomogeneous Poisson point process model (IPPPM) for the presence-82

only data in the combination. In many real data sets, however, the implicit assumption83

that the point locations are independently distributed conditional on the environment is84

not met. Residual clustering or repulsion of the point locations not accounted for with85

an IPPPM due to the observation process, unconsidered environmental covariates, or86

biological factors would hence render the IPPPM inappropriate. One option to account87

for spatial dependence is to consider a log-Gaussian Cox Process, as Gelfand & Shirota88

(2018) do for a combination of presence-only and presence-absence data. Furthermore,89

none of the current literature in combined likelihood approaches includes ways to account90

for possible overfitting that results from including too many covariates in the model.91

However, advances in SDM literature provide solutions to these common problems. Di-92

agnostic tools such as the inhomogeneous K function (Baddeley & Turner, 2000) and93

its simulation envelope (Diggle, 2003) can be used to determine departures from the94

independence assumption, and a wide number of alternative PPMs which account for95

spatial dependence may be included in the likelihood combination instead. Furthermore,96

penalised regression techniques such as the lasso penalty (Tibshirani, 1996) and its exten-97

sion the adaptive lasso (Zou, 2006) may be used as a way to perform variable selection.98

Lasso regularisation has been shown to boost predictive performance of SDMs and has99

been applied to IPPPMs (Renner & Warton, 2013) and occupancy models (Hutchinson100

et al., 2015).101

In this paper, we present a penalised combined likelihood model in a way that it is more102
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suitable for real data sets. In particular, we accommodate alternative forms of presence-103

only models to account for spatial dependence and affix a penalty on model complexity104

to address overfitting. In Section 2, we present the penalised combined likelihood formu-105

lation. In Section 3, we illustrate via simulations the improvements that this formulation106

provides and apply the proposed formulation to analyse the distribution of the Eurasian107

lynx (lynx lynx ) in the Jura Mountains in eastern France. Finally, we present a discussion108

and further avenues for research in this area in Section 4.109

2 Materials and Methods110

2.1 Combined Penalised Likelihood Formulation111

We define the weighted, combined penalised log-likelihood as follows112

`(α,β; y) =
D∑
i=1

`i(αi,β; yi)− p(α,β). (eqn 1)

Here, α = (α1, . . . ,αD)> is a q-dimensional vector that collects coefficients for the vari-113

ables Z used to model sampling bias for each of the D components individually. The114

environmental response is measured by a set of variables X and is parametrised by115

β = (β1, . . . , βp)
>, which is collectively informed by all D components. The species116

data for all D components is collected in a set y, with each individual data source yi de-117

termining the form of the component likelihood `i(αi,β; yi). Finally, p(α,β) is a penalty118

term described in further detail below.119

While many possibilities for the likelihood terms `i(αi,β; yi) are possible, we will focus120

on likelihood expressions for a PPM and for an occupancy model. For an IPPPM, we121

typically model the intensity of points µ(s) over a given study region A as a log-linear122

function of environmental variables X and sampling bias terms Z and derive estimates β̂123

and α̂PO of the associated parameters by maximising a log-likelihood expression given by124

(Cressie, 1992):125

`PO(αPO,β; sPO) =
∑
s∈sPO

lnµ(s)−
∫
s∈A

µ(s)ds. (eqn 2)

In the simple occupancy model we consider, each site i is visited Ji times. We collect the126

history of detections and non-detections for all N sites in a matrix yocc. We assume that127

the probability that site i is occupied is given by ψi and that the occupancy of the sites128

remains constant throughout the history of visits. We further assume the probability of129
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detecting the species if present is pi. Under these assumptions, we can then model the130

probability of observing yi detections at site i as131

P (Yi = yi) = ψi

(
Ji
yi

)
pyii (1− pi)Ji−yi︸ ︷︷ ︸

species present

+ I(yi = 0)(1− ψi),︸ ︷︷ ︸
species absent

where I(·) is the indicator function.132

We can relate the occupancy ψi of site i to an inhomogeneous Poisson intensity µi of the133

species distribution over site i as in Koshkina et al. (2017):134

ψi = 1− e−µi×Ai ,

where Ai is the area of site i. Note that µi×Ai is an approximation of
∫
s∈site i µ(s)ds that135

is reasonable if µi reasonably approximates the average intensity within site i.136

As with the IPPPM, we can then model intensity as a log-linear function of environmental137

variables X and model detection probability pi as a function of some detection covariates138

Z, such as the logit or complementary log-log function. We can then compute estimates β̂139

and α̂occ of the associated model parameters by maximising the log-likelihood expression140

given by:141

`occ(αocc,β; yocc) = ln
N∏
i=1

P (Yi = yi)

The term p(α,β) in eqn 1 is a penalty on model complexity applied to both the envi-142

ronmental parameters β and the sampling bias parameters α to shrink these parameters143

toward zero in order to boost predictive performance. Here, we consider both the tradi-144

tional lasso penalty (Tibshirani, 1996) and the adaptive lasso penalty (Zou, 2006). For145

the traditional lasso penalty,146

p(α,β) = λ

(
p∑
j=1

|βj|+
q∑

k=1

|αk|

)
,

where λ is the tuning parameter. For the adaptive lasso penalty,147

p(α,β, γ) = λ

(
p∑
j=1

wj|βj|+ wp+k

q∑
k=1

|αk|

)
,

where w = (w1, . . . , wp+q)
> are weights for the adaptive lasso, typically of the form:148
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wi =


∣∣∣β̂(unp)
i

∣∣∣−γ 1 ≤ i ≤ p∣∣∣α̂(unp)
i−p

∣∣∣−γ p+ 1 ≤ i ≤ p+ q,

for γ > 0. Here, β̂
(unp)
i is the unpenalised coefficient estimate corresponding to the ith en-149

vironmental variable xi and α̂
(unp)
i is the unpenalised coefficient estimate corresponding to150

the ith sampling bias variable zi. The shape of the weights is determined by the parameter151

γ. The data-driven choice of the adaptive weights w ensures that more important covari-152

ates (i.e. those with coefficient estimates further away from 0) will be penalised less. This153

construction also enables the adaptive lasso to achieve so-called oracle properties (Zou,154

2006), which means that asymptotically, the correct subset of coefficients will be chosen155

and the procedure has an optimal estimation rate.156

We can use eqn 1 to represent the simpler framework introduced by Dorazio (2014) and157

Fithian et al. (2015) by setting p(α,β) = 0. We further extend this framework by158

considering alternative choices for those component likelihoods `i(αi,β; yi) informed by159

presence-only data. Rather than consider only inhomogeneous Poisson point process160

models, we consider area-interaction models (Widom & Rowlinson, 1970; Baddeley & van161

Lieshout, 1995) when diagnostic analysis of these data sources identifies spatial depen-162

dence among the presence-only locations. Area-interaction models account for spatial163

dependence through a vector of computed point interactions ts, which measure the pro-164

portion of overlap among circles of a nominal radius around the observed points s. They165

can account for both clustering and repulsion of points – the model parameter η charac-166

terises the nature of the spatial dependence, with values of η less than 1 signalling point167

repulsion and values of η greater than 1 signalling point clustering.168

Because the likelihood expression of an area-interaction model is intractable, it is typically169

fitted via maximum pseudolikelihood (Besag, 1977):170

`AI(αPO,β, η; sPO) =
∑
s∈sPO

lnµ(s; sPO)−
∫
s∈A

µ(s; sPO)ds.

This log-pseudolikelihood expression appears the same as eqn 2, with the exception that171

the intensity µ(s) is replaced by conditional intensity µ(s; sPO) (Papangelou, 1974), re-172

flecting the fact that for the area-interaction model, intensity at a location s is conditional173

on the other points in the pattern sPO.174
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2.2 Implementation in R175

To fit models with the combined penalised log-likelihood in eqn 1, we have developed a set176

of functions in R inspired by the optim function and ppmlasso package (Renner & Warton,177

2013). The main function comb lasso takes as an input a list of species data, associated178

environmental data, and formulae for the environmental trend and sampling bias trends179

for each component, along with details such as type of presence-only likelihoods to use,180

the type of penalty, the number of models to fit, and the tuning parameter criterion.181

The function applies the coordinate descent algorithm of Osborne et al. (2000). This182

requires the derivatives of the component likelihoods (also known as “score equations”)183

to be computed. Analytical score equations are supplied directly to the optim function,184

which serves as the machinery of the optimisation. A tutorial illustrating use of this code185

for the simulations as performed in Section 3.1 as well as some functions written to plot186

intensity maps and features of the lasso penalisation is provided in the supplementary187

material.188

3 Results189

3.1 Simulations190

To investigate the benefits of the proposed penalised combined likelihood formulation, we191

used the rpoispp function in spatstat (Baddeley & Turner, 2005) to generate a large192

inhomogeneous Poisson pattern strue of roughly 10,000 points on a 30 × 30-unit square193

window from an intensity pattern defined by linear and quadratic terms of two gener-194

ated variables (hence four meaningful covariates x1, . . . ,x4 parameterised by coefficients195

β1, . . . , β4).196

From this pattern, we generated two presence-only subsamples s1 and s2 biased by a197

different observation process. The first presence-only subsample s1 was biased by z1, the198

distance to a simulated road network, and the other s2 by z2, the distance to a simulated199

categorical covariate. We varied the size of the subsamples such that each pattern had200

25, 100, or 400 points. We also varied the strength of the clustering of the presence-only201

subsamples by setting the coefficient of the interaction term νi = ln ηi for i = 1, 2. Here,202

the patterns either exhibit no clustering (νi = 0), moderate clustering (νi = 0.5) or strong203

clustering (νi = 1). In each case, the radius of interactions is set to 1 spatial unit. To204

sample the points in s1, we proceed as follows:205
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1. Initialise the set of sampled points s1 = ∅ and the point interactions ts1 to be a206

vector of 0s207

2. Compute the biased conditional intensity µ1(s; s1) at every point in strue using208

x1, . . . ,x4, the sampling bias covariate z1, and the current vector of point inter-209

actions ts1 , where the biased conditional intensity is defined as follows:210

lnµ1(s; s1) = β1x1(s) + β2x2(s) + β3x3(s) + β4x4(s) + α1z1(s) + ν1ts1(s)

3. Set µ1(s; s1) = 0 for all s ∈ s1. That is, we set the conditional intensity for any211

point already selected in s1 to 0 to ensure these points are not resampled212

4. Randomly select a point from strue with sampling probabilities proportional to the213

conditional intensities and add the selected point to s1214

5. Update the vector of point interactions ts1 for all points in strue using the internal215

evalInteraction function in spatstat, which computes point interactions based216

on a supplied point pattern for a given set of locations and interaction radius217

6. Repeat steps 2-5 until we have sampled the desired number of points218

We sample s2 in a similar manner, using z2 instead of z1 to create the sampling bias and219

computing point interactions ts2 .220

Because the true pattern strue is Poisson, this simulation setup emulates a scenario in which221

the clustering of the observed point patterns is an artefact of the observation process –222

this can happen if, for example, records are publicly available and enthusiasts for the223

species report further observations near the publicly available locations (Johnston et al.,224

2019).225

We also generated a history yocc of detections and non-detections from 5 visits to each of226

100 sites centred along a regular grid in the 30 × 30-unit observation window to emulate227

a data set for which we could consider occupancy modelling. The species was considered228

present at a site if the closest point in the pattern strue was within a distance of 0.18229

units of the centre of the site, such that the area of each site is roughly 0.1 square units.230

The history of detections and non-detections at each site where the species was considered231

present was randomly generated according to detection probabilities defined by the inverse232

of the cloglog function evaluated at a generated detection covariate z3.233
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Finally, we generated four dummy covariates d1, . . . ,d4 to include in fitted models that234

were meaningless in describing the true species distribution. We did this to reflect the235

fact that in real applications, we may not know which among a suite of candidate vari-236

ables truly determine the species distribution. We ensured that the maximum absolute237

correlation among all pairs of variables was smaller than 0.5.238

After generating the species data, we fit a number of models, using as input environmental239

covariates the four meaningful covariates x1, . . . ,x4 (parameterised by β1, . . . , β4) as well240

as four dummy covariates d1, . . . ,d4 (parameterised by β5, . . . , β8) and using as sampling241

bias covariates z1, z2, and z3 (parameterised by α1, α2, and α3). For both Poisson and242

area-interaction presence-only likelihoods, we fit a model without any penalty, with a243

lasso penalty, and with an adaptive lasso penalty. For the models fitted with either a244

lasso or an adaptive lasso penalty, we fit regularisation paths of 1000 models, increasing245

the penalty from 0 to the smallest penalty λmax that would shrink all coefficients to 0,246

thus covering the entire scope of possible model sizes. The model which minimised BIC247

was chosen among the 1000 fitted models. We considered as species data a combination248

of all three of s1, s2, and yocc. This led to a total of six models being fitted, summarised249

in Table 1.250

Model Species Data Presence-only likelihood Penalty

1 s1, s2, and yocc IPPPM None

2 s1, s2, and yocc IPPPM Lasso

3 s1, s2, and yocc IPPPM Adaptive Lasso

4 s1, s2, and yocc Area-interaction None

5 s1, s2, and yocc Area-interaction Lasso

6 s1, s2, and yocc Area-interaction Adaptive Lasso

Table 1: Models fitted in each simulation using the proposed combined penalised likeli-

hood. The models also varied based on the likelihood expression for any presence-only

components and the type of penalty used, if any.

To evaluate performance, we compared the integrated mean squared error of the true251

intensity surface with rescaled fitted intensity surfaces of the six models. The fitted252

intensity surfaces were rescaled to have the same mean intensity as the true intensity253

surface to ensure that fair comparisons are made as models using different species data254

sources will have varying intercepts to reflect the estimated abundance of the points.255

We performed 1,000 simulations of the data sets for each of the nine combinations of256
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presence-only data set size and clustering strength and the resultant model fits on 512GB257

nodes powered by 3.0 GHz Intel Xeon Gold (E5-6154) processor from the University258

of Newcastle’s High Performance Computing cluster. The 9,000 simulation tasks took259

approximately 7,000 hours.260

Figure 1 shows boxplots of the calculated integrated mean squared errors from the sim-261

ulations. From these results, we can draw the following conclusions. First, the models262

fitted with the area-interaction presence-only likelihoods have performance benefits over263

the models fitted with Poisson presence-only likelihoods when clustering is present. When264

clustering is not present (first column), a setting for which the Poisson likelihood is appro-265

priate, the models fitted with area-interaction presence-only likelihoods perform no worse266

than models fitted with Poisson presence-only likelihoods. Comparing the plots across267

rows and down columns, we see that the performance advantage of the models fitted with268

area-interaction presence-only likelihoods tends to increase as the degree of clustering gets269

larger and as the sample size increases, respectively.270

In the Appendix, we show that the parameter coefficients β1, . . . , β4 corresponding to the271

meaningful covariates x1, . . . ,x4 are increasingly biased away from 0 for the models fitted272

with Poisson presence-only likelihoods, both as sample size increases and as the strength273

of presence-only clustering increases. The inclusion of the area-interaction term takes274

an increasing amount of signal from the environmental covariates as the strength of the275

presence-only clustering increases. For low sample sizes, there is a suggestion that this276

signal dampening may be too strong, though such an overcorrection disappears as sample277

size increases.278

Second, penalisation via the lasso or adaptive lasso improves model performance when279

there is no presence-only clustering, and this improvement is greatest for smaller sam-280

ple sizes. This is an expected conclusion given the danger of overfitting is greater with281

fewer observations. Models penalised with the adaptive lasso tend to outperform models282

penalised with the lasso when there is no presence-only clustering. However, lasso penal-283

isation does not notably improve performance when there is presence-only clustering. In284

fact, there is a suggestion that applying a lasso penalty may slightly hinder performance285

when applying an area-interaction presence-only likelihood for small sample sizes. Al-286

though the benefits of penalisation are negligible with large data sets, fitting models with287

a penalty does not hurt the performance.288

In summary, it appears that the proposed combined penalised likelihood framework pro-289

vides the best performance. Furthermore, incorporating area-interaction presence-only290
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likelihoods improves performance when clustering is present, and can likewise reliably291

estimate that there are negligible point interactions if clustering is not present, in effect292

relaxing to the simpler model with Poisson presence-only likeihoods when this additional293

complexity is not needed. A more detailed discussion of the simulation results, including294

boxplots of the fitted coefficients, appears in the Appendix.295
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Figure 1: Boxpots of integrated mean squared error for the six models described in Table 1

for different combinations of presence-only sample size and clustering strength.

3.2 Analysis of Eurasian lynx distribution in the Jura Moun-296

tains297

We now demonstrate the use of the combined penalised likelihood approach to analyse298

the distribution of the Eurasian lynx in the Jura Mountains in eastern France.299

Lynx went extinct in France at the end of the 19th century due to habitat degradation,300

human persecution and decrease in prey availability (Vandel & Stahl, 2005). The species301

was reintroduced in Switzerland in the 1970s (Breitenmoser et al., 1998), then re-colonised302

France through the Jura mountains in the 1980s (Vandel & Stahl, 2005). The species is303
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listed as endangered under the 2017 IUCN Red list and is of conservation concern in304

France due to habitat fragmentation, poaching and collisions with vehicles. The Jura305

holds the bulk of the French lynx population.306

We have three sources of lynx data in the Jura Mountains: a presence-only data set307

consisting of 440 opportunistic sightings in the wild from 2009-2011 (denoted sw), another308

presence-only data set consisting of 240 reported interferences of lynx with domestic309

livestock in 2009-2011 (denoted sd), and pictures of lynx taken from cameras set up in310

73 locations sc in the Jura Mountains in 2012. Lynx presence-only data were made311

of presence signs sampled all year long thanks to a network of professional and non-312

professional observers. Every observer is trained during a 3-day teaching course led by the313

French National Game and Wildlife Agency (ONCFS) to document signs of the species’314

presence (Duchamp et al., 2012). Presence signs went through a standardised control315

process to prevent misidentification (Duchamp et al., 2012). The camera data has daily316

reportings of the lynx across a total of 77 days. Due to this, we can consider the picture317

history of lynx at the camera locations in an occupancy modelling framework (Blanc et al.,318

2014). In particular, we split the 77-day period into seven 11-day periods, such that the319

site history yc comprises seven detections and non-detections at each site in sc over each320

11-day period.321

Figure 2 shows the locations of the sightings in both presence-only data sets as well as322

the locations of the cameras. Both presence-only data sources appear to have different323

distributions, reflecting different sampling biases. There are more wild sightings in the324

northeast of the Jura Mountains, and more domestic interferences toward the southwest.325

Additionally, there appear to be some tight clusters within both data sets, with several326

records very close to each other.327

To model the lynx distribution, we consider altitude, percentage of forest cover, distance328

to the nearest water source, and human population density as environmental variables.329

We model sampling bias in the wild records sw with distance to the nearest main road330

and distance to the nearest train line, and sampling bias in the domestic records sd331

with distance to the nearest farm and percentage of agricultural land. Finally, we model332

detection probability for the camera data with distance to the nearest urban area. We333

established this set of potential candidate environmental and detection variables based on334

previously studied species habitat preferences and detectability (Bouyer et al., 2015). The335

Corine Land Cover land use repository from 2012 (Büttner et al., 2014) supplies a map of336

land coverage including urban areas, water areas, forest areas, farm areas, and agricultural337
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Lynx Locations

sw
sd
sc

Figure 2: Locations of the lynx data in the Jura Mountains, including 440 observations

in the wild sw, 220 reports of domestic interference sd, and 73 camera traps sc.

areas that was used to generate the percentage of forest areas and agricultural areas over338

1 km × 1 km cells as well as distances to the nearest urban area, water source, and farm.339

Altitude was averaged over 1km × 1km cells from data available in the raster package340

in R, while human population density was averaged over 1 km × 1km cells taken from341

version 4 of the Gridded Population of the World data repository (Center for International342

Earth Science Information Network (CIESIN) – Columbia University, 2016). Distances343

from the nearest main road and railway were computed from shapefiles from Version 151344

of the ROUTE 500 database, accessible at http://professionnels.ign.fr/route500.345

We fitted initial separate IPPPMs to the wild records sw and the domestic records sd using346

linear, quadratic, and interaction terms for the four environmental covariates, and linear347

terms for the sampling bias covariates. From these models, we are able to assess whether348

the assumption of independence inherent to the IPPPMs is appropriate with simluation349

envelopes of the inhomogeneous K-function in spatstat, as shown in Figure 3. Both350

of the envelopes for the IPPPMs fitted to the wild model (left panel) and the domestic351

model (middle panel) demonstrate additional clustering as the observed inhomogeneous352

K-function values plotted in red fall above the simulation envelopes for small radii. This353
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suggests that fitting an IPPPM is inappropriate for these data sets. The right panel shows354

a simulation envelope of the cross K function as produced by the Kcross.inhom function355

of spatstat, which counts the expected number of wild sightings within a given distance356

of a domestic sighting, conditional on the spatially varying intensities of both patterns.357

We estimate the wild and domestic intensities from area-interaction models, and as the358

observed values of the cross K-function fall within the envelope boundaries, this suggests359

that there is no clustering across the two data sets. This, in turn, suggests that the360

observed clustering within the wild and domestic data sets may be more likely attributable361

to the observation process than to some biological reality that induces clustering or a362

missed environmental covariate.363
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Figure 3: 95% simulation envelopes of the inhomogeneous K-function for the fitted

IPPPM of the wild records (left), the fitted IPPPM of the domestic records (middle),

and across the two fitted IPPPMs (right).

Consequently, we fit combined likelihood models using both the standard, unpenalised364

approach (analogous to Model 1 in Table 1) and the combined penalised likelihood for-365

mulation eqn 1 with a lasso penalty and area-interaction models for the presence-only366

data sources (analogous to Model 5 in Table 1). The radii chosen to capture the residual367

spatial patterning in the wild and domestic models are 2km and 5km, as chosen by the368

profilepl function in spatstat.369

Figure 4 shows the bias-corrected fitted intensities from these two models. For the com-370

bined model which uses IPPPMs (left panel), the fitted intensity is corrected for the sam-371

pling bias terms modelled for the presence-only components using the method of Warton372

et al. (2013). For the combined penalised model which uses area-interaction models (right373

panel), the fitted intensity is corrected for these same sampling bias terms as well as the374

fitted point interactions – that is, we treat the interaction parameter ν as belonging to the375

set of sampling bias parameters α. The fitted models show strikingly different patterns,376

with the model which uses area-interaction components highlighting much more of the377
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Jura Mountains as preferred habitat of lynx than the model which uses IPPPMs. The378

models suggest similar numbers of points throughout the Jura, but the distribution of379

these points are more heavily concentrated in the IPPPM model. This is because the380

area-interaction terms in the AI model lessen the impact of some clusters of points on the381

scale of the displayed bias-corrected intensities.382

We do not have access to additional data with which to validate the performance of these383

models such as GPS data as in Gould et al. (2019), but the results of Section 3.1 suggest384

that the model which uses area-interaction components is likely to better reflect the true385

distribution of lynx.386

The combined penalised model with the area-interaction components found the optimal387

lasso penalty was 0, resulting in a model which included all 18 covariates and both of388

the area-interaction terms. The fact that the optimal penalty is 0 suggests that the suite389

of covariates we chose to include, motivated by existing literature, seems to have been a390

good choice. In general, we recommend use of the lasso penalty as a safeguard against391

overfitting, particularly in contexts where the suite of candidate covariates for a species392

is less established as an insurance against overfitting.393

4 Discussion394

The proposed combined penalised likelihood framework addresses some common problems395

that arise in real datasets. The flexibility to incorporate an area-interaction likelihood396

when there is spatial dependence in the presence-only data set and affix a penalty on model397

complexity enables improvements in predictive performance, as shown in Section 3.1.398

4.1 Possible extensions399

Despite these improvements, further advances are possible. Other penalty structures400

could be incorporated into the same framework. While the lasso and adaptive lasso401

showcased here show clear benefits in simulations, other penalised likelihood variants402

such as SCAD (Fan & Li, 2001) could lead to superior performance in some situations,403

and alternative methods to BIC of choosing the size of the penalty such as the Extended404

Bayesian Information Criterion (“ERIC”, Hui et al., 2015) could likewise be used.405

While we make use of the area-interaction likelihood in this paper, there is a large family of406

Gibbs PPMs (Cressie, 1992) which accommodate different sorts of spatial dependence that407
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Combined IPPPM
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Figure 4: Fitted intensities using the combined likelihood formulation. Left: the model

is fitted without any penalty and using inhomogeneous Poisson point process models for

the presence-only data sources. Right: the model is fitted with a lasso penalty and using

area-interaction models for the presence-only sources.

could be used. Our choice of the area-interaction model as the alternative is motivated by408

the fact that it accommodates interactions of all orders instead of just pairwise interactions409

and that it can be used to model both clustering and repulsion of points.410

The inclusion of the area-interaction terms dampens the signal of the environmental co-411

variates. Although this makes sense when spatial dependence exists, we may dampen the412

signal too much. In the context of species distribution models, we might ask the question,413

“Does a given species record exist because its location is in particularly suitable habitat414

for the species, or because there are other records nearby?” If the answer to this question415

appears to be “both”, as is often the case for presence-only data, we are at risk of “spatial416

confounding”. In the single-source context, Hodges & Reich (2010) propose restricting the417

spatial effect to be orthogonal to the fixed covariate effects, while Simpson et al. (2017)418

and Sørbye et al. (2019) suggest careful selection of associated spatial priors to alleviate419

this risk. With our implementation, we could achieve something similar to the latter two420

papers by adjusting the magnitude of the lasso penalty for the area-interaction terms. In421
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the Appendix, we highlight the tradeoff between the estimates of the interaction parame-422

ters ν̂i and both the estimates of the environmental parameters β̂i and the sampling bias423

parameters α̂i. However, a full exploration of the effects of spatial confounding remains424

an open area of research and is beyond the scope of this paper.425

In both the simulations in Section 3.1 and the lynx data analysis in Section 3.2, we made426

the rather limiting assumption of a closed population and that sites are either always427

occupied or always unoccupied. Nonetheless, occupancy models which take into account428

changing site dynamics could be used (MacKenzie et al., 2003). Similarly, we have ignored429

the temporal aspect of the lynx distribution in this paper, but there is a wide suite of430

tools to fit spatio-temporal models in order to capture distribution dynamics for both431

the aforementioned occupancy modelling component as well as presence-only components432

(Cressie & Wikle, 2015).433

Further improvements could be made by incorporating source weights in situations in434

which the data sources vary in quality. Indeed, presence-only data sources may be more435

prone to errors in coordinate locations as well as correct species identification, as they often436

include records by amateur enthusiasts. The combined penalised likelihood framework437

could easily be extended to include weights for the various data sources by adding a438

vector of source weights w = (w1, . . . , wD)> to the formulation in eqn 1:439

`(α,β; y) =
D∑
i=1

wi`i(αi,β; yi)− p(α,β). (eqn 3)

One possible strategy to incorporate such weights in eqn 3 could be to compare perfor-440

mance of single source models on independent data and upweight the contribution of data441

sources that are shown to have good performance.442

Finally, while we incorporate sampling bias as a linear effect, non-linear effects can also443

be used as appropriate for a given sampling protocol, for example with distance sampling444

as discussed in Yuan et al. (2017).445

4.2 Accounting for dependence within and among data sources446

In the lynx data analysis in Section 3.2, we diagnosed spatial dependence within each447

of the presence-only data sources but found no spatial dependence across data sources.448

Tools such as the inhomogeneous K-envelope provide great insight into the underlying449

individual spatial processes that are observed. However, such diagnostic tools are not450
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currently available for the combined likelihood models, and research in this area would451

be valuable as these models grow in popularity.452

Another approach to constructing SDMs from multiple data sources could be to introduce453

a common latent spatial term ξ(s), such as a Gaussian random field, which would account454

for spatial dependence among points in all of the data sources as in Gelfand & Shirota455

(2018). The resulting likelihood expression would be:456

`(α,β; y) =
D∑
i=1

`i(αi,β; yi) + ξ(y)− p(α,β), (eqn 4)

where ξ(y) ∼ MVN(0,Σ). Models of this type are typically fitted in a Bayesian frame-457

work. We could reduce the dimension of ξ through methods like fixed rank kriging or458

induce sparsity in Σ through lasso-type penalties such that the likelihood in eqn 4 could459

be fitted with software such as Template Model Builder (TMB, Kristensen et al., 2016).460

Another way to achieve sparsity is with the stochastic partial differential equation ap-461

proach (SPDE, Lindgren et al., 2011), as implemented in the inlabru package (Bachl462

et al., 2019).463

4.3 Conclusion and Perspectives464

The development of statistical methods is often motivated by new challenges raised by465

novel types of data sets. While the current literature on combined likelihood approaches466

represents a significant recent advancement, advances in other areas can be lost if not467

carried over with such methodological developments. This paper attempts to build a468

bridge between this exciting new arena for species distribution modelling and the rich469

suite of tools available for species distribution modelling, particularly that for presence-470

only data. Our hope is that other such bridges continue to be built in this spirit.471
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Valéry Montpellier through the Professeurs en mobilité universitaire fund for funding479
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