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Abstract: Functional brain network (FBN) provides an effective biomarker for understanding brain 

activation patterns, which also improve the diagnostic criteria for neurodegenerative diseases or the 

information transmission of brain. Unfortunately, despite its efficiency, FBN still suffers several 

challenges for accurately estimate the biological meaningful or discriminative FBNs, under the poor 

quality of functional magnetic resonance imaging (fMRI) data as well as the limited understanding 

of human brain. Hence, there still a motivation to alleviate those issues above, it is currently still an 

open field to discover. In this paper, a novel FBN estimation model based on group similarity 

constraints is proposed. In particular, we extend the FBN estimation model to the tensor form and 

incorporate the trace-norm regularizer for formulating the group similarity constraint. In order to 

verify the proposed method, we conduct experiments on identifying Mild Cognitive Impairments 

(MCIs) from normal controls (NCs) based on the estimated FBNs. The experimental results 

illustrated that the proposed method can construct a more discriminative brain network. 

Consequently, we achieved an 91.97% classification accuracy which outperforms the baseline 

methods. The post hoc analysis further shown more biologically meaningful functional brain 

connections obtained by our proposed method. 

Keywords: Functional Brain Network; Functional Magnetic Resonance Imaging; Group Constraint; 

Mild cognitive impairment (MCI)；Pearson’s correlation; Partial correlation; Low-rank Regularizer. 

1. Introduction 

As neurodegenerative disorders, Alzheimer’s disease (AD) is one of the most common cause of 

dementia (Gaugler et al. 2016). According to a recent report (Bain et al. 2008), the incidence of AD 

doubles per 5 year after the age 6. The AD seriously interferes the human daily life, affects memory 

and ability to reason and communication, and eventually causes deaths. Unfortunately, so far, there 
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still no effective treatment for AD. Therefore, it is quite important for delaying the onset and 

progression of AD during its early stage based on the pharmacological or behavioral interventions. 

Mild cognitive impairment (MCI) is often considered to be a critical time window and treatment 

period for the prediction or delaying the conversion in AD (Wee et al. 2012a). In some recent 

statistical studies, nearly 10-15% patients with MCI each year tend to develop probable AD  

(Grundman et al. 2004, Misra, Fan and Davatzikos 2009). The early detection and accurate diagnosis 

for MCI is considered to be a significant means of slowing down the progression of AD (Association 

2017). 

As a successful non-invasive technique, functional magnetic resonance imaging (fMRI) provides 

an effective measurement for revealing the brain activity or pattern (Brunetti et al. 2006, Jin et al. 

2010, Kevin et al. 2008). However, due to its spontaneous brain activities are random and 

asynchronous across subjects or scanners, it is still challengeable for identifying patients from 

normal controls (NC). Furthermore, the high-order statistical information based FBN served as a 

new perspective for discovering the brain activity and connection pattern, which improved the 

stability for understanding brain information (Rosa et al. 2015, Smith et al. 2011b, Sporns 2011, 

Stam 2014, Wee et al. 2012b). Besides, series of researches illustrate that the functional brain 

network are highly related to some neurological or psychological diseases, such as AD (Huang et 

al. 2009, Liu et al. 2012, Supekar et al. 2008), MCI (Fan and Browndyke 2010, Wee et al. 2012b, 

Wee et al. 2014, Yu et al. 2016), autism spectrum disorder (ASD) (Gotts et al. 2012, Theije et al. 

2011), parkinsonism disease (PD) (Baggio et al. 2014) and so on. Note that, all of these depend 

heavily on the quality of the final estimated FBN, so, it is crucial for estimating the more reliable 

FBNs (Li et al. 2019a). 

The second-order statistics (i.e., correlation) based FBN estimation methods play a dominant role 

in FBN estimation. According to a FBN research review (Smith et al. 2011a), the correlation based 

methods such as Pearson’s correlation (PC) (Li et al. 2017), sparse representation (SR) (Lee et al. 

2011, Zhou, Wang and Ogunbona 2014), are generally worked more sensitive than complex high-

order methods. However, due to the influence of noise exists in the observed data, the correlation 

based brain networks will inevitably have dense connections and thus contain a lot of noise or false 

connections. One solution is to introduce sparse priors, such as the thresholding method or the SR 

(LASSO) method. Actually, the topological structure of FBN is no more than just sparsity (Sporns 

2011). Therefore, several studies are focused on incorporating more biological priors of FBN 
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towards more discriminative FBNs. In practice, the commonly-used priors include sparsity, 

modularity, group-sparsity, low-rank and scale-free (Lee et al. 2011, Li et al. 2017, Qiao et al. 2016b, 

Wee, Yap and Shen 2016, Yu et al. 2016). Moreover, the priors can also obtained from the data 

quality (Li et al. 2019a) and other high quality data (Li et al. 2019b). Note that, most of them can 

be summarized into the regularized framework, which illustrate that a reliable FBN estimation 

model should not only fit the data well, but also effectively encode priors of the brain organization 

(Qiao et al. 2016b).  

However，most existing FBN estimation methods mainly focused on a single participant, which 

rarely consider the inter-group information cross participants. Due to the limited data quality, the 

FBNs estimated by these methods are easily tend to have poor performance. This is attributed to the 

human brain networks have a group similarity prior (Wee et al. 2014), while these methods ignoring 

the relations inter group. In addition, it will result in different network topological structures across 

subjects, and thus inevitably make the comparison between subjects difficult and thus possibly 

degrade generalization performance of trained classifiers. Besides, recent studies have also 

illustrated that group constraints can effectively improve the performance of estimated FBNs (Wee 

et al. 2014, Yu et al. 2016). The existing method for group constraints mainly based on the penalty 

of group sparsity (i.e., 𝑙2,1-norm) for mitigating the inter-subject variability. However, it is strong 

penalty to constraint all of the estimated FBN, which will cause the samples of different groups (e.g., 

MCI and NC) to interact with each other, due to the additional 𝑙2-norm penalization. Therefore, this 

approach may hinder performance improvements. 

In this paper, based on the regularization framework, we try to incorporate the group similarity 

constraint into the FBN estimation model and relax the 𝑙2,1-norm penalty. In particular, we first 

extended the traditional matrix regularization framework to the tensor regularization framework for 

obtaining group similar information. Then，we formulate the group similarity prior as a tensor low 

rank regularizer and incorporate it into the FBN estimation model. Since the low-rank is NP-hard, 

we optimize its upper limit (i.e. trace norm regularizer) for better calculating efficiency. In particular, 

we adopt PARAFAC decomposition to calculate its eigenvalues (Liu, Bourennane and Fossati 2012), 

and design a proximal operator to estimate the FBN with group similarity constraint. In the end, we 

incorporate the trace norm regularizer into the SR and PC model as a simple test platform. For 

verifying the proposed methods, we adopted estimated FBN for MCI identification. In fact, the 

proposed method uses the group similarity constraints to shrink the solution space of the FBN, thus 
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can estimate the more discriminative FBNs effectively. The highlight of this paper is given as 

follows: 

1. Compared with the traditional FBN estimation methods of estimating FBN for a single 

participant, we proposed a group FBN estimation scheme, which builds the whole FBN 

simultaneously. In this way, The FBNs with intra-group priors can be naturally incorporated 

by the tensor regularization. 

2. We incorporate the group similarity constraint into the FBN estimation model by a low rank 

regularizer. in addition, we further relaxed it into a trace norm regularizer and design an 

optimization algorithm for estimating the group similarity based FBNs. 

3. We use the group similarity based FBN for identifying the MCIs from NCs. The experimental 

results show that the proposed scheme can achieve the 81.52% classification accuracy, which 

outperforms the baseline methods. Moreover, the provides methods can provide more 

biological meaningful connections. 

4. We provide a FBN estimation module for modeling the group similarity prior, which is 

flexible for incorporating into other FBN estimation model. The experimental results show 

that the proposed module can effectively improve the accuracy of the estimated FBNs for 

MCI classification. 

5. We identified the most significant functional connections and the most discriminative brain 

regions based on the proposed FBN estimation model. The analysis of functional connectivity 

and graph theory attributes can be used to discovering the biological meaningful biomarkers 

and further elucidate the topological properties of brain network in MCI. 

The remainder of this paper is organized as follows. In Section 2, we introduce the material and 

methods which are selected in this paper. Specifically, we first introduce the data acquisition and 

briefly review the two most related methods, i.e., PC and SR. Then, we give the proposed methods 

i.e. group similarity based FBN estimation scheme (TLR), including the motivations, models and 

algorithms for these two methods. In Section 3, we evaluate the proposed methods with experiments 

on identifying MCI. In Section 4, we discuss our findings and prospects of our work. In Section 5, 

we conclude the entire paper briefly. 

2. Material and Methods 

2.1 Data Acquisition 

In this study, we adopt the publically available neuroimaging data from the Alzheimer’s Disease 
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Neuroimaging Initiative (ADNI) database (Jack et al. 2010)1. ANDI was launched in 2003 by the 

National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the 

Food and Drug Administration, private pharmaceutical companies and nonprofit organizations. 

Initially, the goal of ADNI is to define biomarkers for use in clinical trials and to determine the best 

way to measure the treatment effects of AD therapeutics.  

In particular, 137 participants, including 68 MCIs and 69 NCs, are adopted in this experiment, 

which is also similar as (Zhou et al. 2018). The scanning parameter includes: TR/TE = 3000/30mm, 

flip angle = 80, imaging matrix=64×64, 48 slices, 140 volumes, and voxel thickness = 3.3mm. SPM8 

toolbox2 and DPARSFA (version 2.2) (Chao-Gan and Yu-Feng 2010) are used to preprocess the 

fMRI data according to the well accepted pipeline.  The preprocessing pipeline includes remover 

first 10 volumes, Slice timing, Realign, Normalize, Spatially smooth, Temporally Detrend, 

Regression out covariates and Temporally filerting. For alleviating the head motion effect and 

artifacts, we follow the previous work (Chen et al. 2016, Chen et al. 2017), and exclude the subjects 

with more than 2.5 min (50 frames) data of FD>0.5 from further analysis (Power et al. 2012). Finally, 

depending on the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002), the 

pre-processed BOLD time series signals are partitioned into 116 ROIs. At last, we put these time 

series into a data matrix X ∈ R137×116. For more details, please refer to (Zhou et al. 2018). 

2. 2 Functional Brain Network Estimation 

After obtaining the fMRI data matrix 𝑋 from the R-fMRI data, the subsequent task is the FBN 

estimation. As we mentioned above, the correlation based FBN estimation methods have been 

demonstrated to be more sensitive than some complex higher-order methods (Smith et al. 2011b). 

Therefore, in this paper, we focus on the correlation-based methods and adopt it as a baseline. For 

better notation, we first define the data matrix (i.e., BOLD signal matrix) 𝐗 ∈ 𝑅𝑇×𝑁, where T is the 

number of volumes and N is the number of ROIs. The fMRI time series associated with the ith ROI 

is represented by 𝐱𝑖 ∈ 𝑅𝑇, 𝑖 = 1, ⋯ , 𝑁. A 

2. 2. 1 Correlation based Methods 

As the most simplest and widely used FBN estimation scheme, Pearson’s Correlation (PC) based 

FBN estimation methods account for a large proportion in the study of FBNs (Smith et al. 2013). 

The edge weights of the FBN 𝐖 = (𝑊𝑖𝑗) ∈ 𝑅𝑁×𝑁can be calculated by PC as follows: 

 
1 http:/adni.loni.ucla.edu  
2 http://www.fil.ion.ucl.ac.uk.spm 
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 𝑊𝑖𝑗 =
(𝑥𝑖−�̅�𝑖)

𝑇
(𝑥𝑗−�̅�𝑗)

√(𝑥𝑖−�̅�𝑖)
𝑇

(𝑥𝑖−�̅�𝑖)√(𝑥𝑗−�̅�𝑗)
𝑇

(𝑥𝑗−�̅�𝑗)
, (1) 

In Eq. (1), 𝑥𝑖 − �̅�𝑖 is a centralized counterpart of 𝑥𝑖. Due to the effect of the noises mixed in the 

fMRI data, PC always generates dense FBNs. Thus, a thresholding scheme is often selected for 

sparsifying the PC-based FBNs, which aims for filtering out the noisy or weak connections. The PC 

based FBN can be expressed as follows: 

 𝑊𝑖𝑗
(𝑛𝑒𝑤) = {

𝑊𝑖𝑗 , 𝑊𝑖𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2) 

where 𝑊𝑖𝑗
(𝑛𝑒𝑤) denotes the connection value between nodes i and j after thresholding. 

Compared with PC measures the full correlation cross ROIs, the interaction among multiple ROIs 

is neglect due to the cofounding effect. In contrast, the partial correlation is proposed by regressing 

out the confounding effects from other ROIs. However, the partial correlation-based methods can 

be easily ill-posed due to the involvement of inverting the covariance matrix 𝚺 = 𝐗𝑇𝐗 . A base 

solution is to incorporate an 𝑙1-norm regularizer into the partial correlation model (Lee et al. 2011), 

which also naturally incroporates the sparsity prior (SR) of FBN. The model of SR is shown as 

follows: 

 𝑚𝑖𝑛𝑊𝑖𝑗
∑ ‖𝑥𝑖 − ∑ 𝑊𝑖𝑗𝑗≠𝑖 𝑥𝑗‖

2
+ 𝜆 ∑ |𝑊𝑖𝑗|𝑗≠𝑖

𝑛
𝑖=1 ,  (3) 

the matrix form is proposed as follows: 

 
𝑚𝑖𝑛𝐖‖𝐗 − 𝐗𝐖‖𝐹

2 + 𝜆‖𝐖‖1 

𝑠. 𝑡. 𝑊𝑖𝑖 = 0, ∀𝑖 = 1, ⋯ , 𝑛,  

(4) 

Note that the 𝑙1-norm regularizer in Eq. (4) plays a key role in achieving a sparse and stable solution 

(Lee et al. 2011). 

2. 2. 2 Regularization Framework for FBN estimation 

According to the above description, both PC- and SR-based FBN estimation models can be 

summarized into the regularized FBN learning framework. We can naturally incorporate a 

regularized term and statistical information into the objective function for constructing a new 

platform to estimate FBNs. More specifically, the platform can be formulated using a matrix-

regularized learning framework as follows： 

 min𝐖𝑓(𝐗, 𝐖) + 𝜆𝑅(𝐖), s. t. 𝐖 ∈ ∆, (5) 

where 𝑓(𝐗, 𝐖) models the statistical information of FBN, and 𝑅(𝐖) is the regularization term 

for incorporating biological priors of FBN and stabilizing the solutions. In addition, some specific 

constraints such as symmetry or positive semi-definiteness may be included in ∆ for shrinking the 
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search space of 𝐖, which provides an effective way for obtaining a better FBN. The 𝜆 is a hyper-

parameter for controling the balance between the first (data-fitting) term and the second 

(regularization) term. 

In fact, most of the recently-proposed FBN estimation models (Higgins, Kundu and Guo 2018, 

Li, Zhu and Fan 2018, Wang et al. 2018, Zhou et al. 2018) can be unified under this regularized 

framework with different design of the two terms in Eq. (5). The popular data-fitting terms include 

‖𝐖 − 𝐗𝑇𝐗‖𝐹
2 used in Eq. (2) and ‖𝐗 − 𝐗𝐖‖𝐹

2 used in Eq. (4), while the popular regularization 

terms include l1-norm (Huang et al. 2010), trace norm and their combination (Qiao et al. 2016a), 

etc.  

2. 2. 4 Sparse and Low-rank based FBN estimation 

 Before we introduce the proposed method, we would like to brief review the sparse and low-

rank based FBN estimation model (Qiao et al. 2016b). The sparsity and low-rank regularizer (SLR, 

i.e. 𝑙2,1-norm and trace norm) cause the sparse and similar connections cross each brain regions, 

which naturally incorporates the modularity prior of the estimated FBNs. The SLR FBN estimation 

model is given as follows: 

 𝑚𝑖𝑛𝑾‖𝑿 − 𝐗𝐖‖𝐹
2 + 𝜆‖𝐖‖1 + 𝛾‖𝐖‖∗, (6) 

where 𝑿 is the BOLD signal data, 𝐖 is the estimated FBNs, 𝜆‖𝐖‖1 is the sparsity regularizer 

and 𝛾‖𝐖‖∗ is the low-rank regularizer.  

2. 2. 3 Group Sparsity based FBN estimation 

However, the above mentioned FBN estimation models are unable to deal with inter-subject 

variability problem since the FBN is estimated at an individual level, which will easily result in 

different network topological structures across subjects. To mitigate the effects of inter-subject 

variability, Wee et al proposed a group-constrained sparse linear regression model (Wee et al. 2014), 

which follow the idea of joint feature selection concept in group-lasso for regression problems (Yuan 

and Lin 2006). In particular, a group sparsity regularizer (GSR, i.e. 𝑙2,1-norm) is incorporated into 

the FBN estimation model. The GSR FBN estimation model is given as follows: 

 𝑚𝑖𝑛𝐖𝐣
∑‖𝐗𝒋

𝒊 − 𝐗𝒊𝐖𝒋
𝒊‖

𝐹

2
𝑁

𝑖=1

+ 𝜆‖𝐖‖2,1, (7) 

where 𝐗𝐣
𝒊 is the BOLD signal of 𝑗th ROI and 𝑖th participant, 𝐗𝒊 is the data matrix of 𝑖 participant. 

𝐖𝒋
𝒊 is the functional connections of the 𝑗th ROI and 𝑖th participant. 𝜆‖𝐖‖2,1 is the group sparsity 

regularizer. This minimize the inter-subject variability via an additional 𝑙2-norm penalization across 

all subjects than SR method. However, this methods may penalized too much for estimated FBNs, 
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for example, a functional connection is collapse in MCIs and exist in NCs, if the number of NCs is 

larger than MCIs, the GSR method will tend to force this connect exists in MCIs, which will lose 

the discriminative information of the estimated FBNs. 

2. 2. 5 Our Methods 

For easily incorporating the group constraint, 

 

Fig. 1 The motivation of the proposed tensor based FBN estimation model 

 we first extent the existing matrix regularization framework to tensor form, which is defined as 

follows: 

 𝑚𝑖𝑛𝑊 ∑ 𝑓(𝐗(𝑖), 𝐖(𝑖))
𝑛𝑅𝑂𝐼

𝑖=1
− 𝜆𝑅(𝐖) (8) 

where 𝐗 ∈ 𝑅𝑛𝑅𝑂𝐼×𝑇×𝑛 represent the input data，𝑛𝑅𝑂𝐼 is the number of predefined ROIs，T is the 

time length of the observed data，n is the number of participants. In particular, 𝐗(𝑖) represent the 

data matrix of the ith participant. 𝐖 ∈ 𝑅𝑛𝑅𝑂𝐼×𝑛𝑅𝑂𝐼×𝑛 is the estimated FBNs, 𝐖(𝑖) represent the 

corresponding FBN of the ith participant. Obviously, both 𝐗  and 𝐖  are 3-dimensional tensor. 

Similar to the matrix regularization framework, in Eq. (8), ∑ 𝑓(𝐗(𝑖), 𝐖(𝑖))𝑛
𝑖=1 is the data-fitting term 

and 𝑅(𝑾) is the regularization term in tensor format. 

The above mentioned 𝑙2,1-norm penalty excessive punished the estimated FBNs, which will lead 

to interference cross different groups in the data. For alleviating this issue, in this paper, based on 

the tensor regularization framework, we relax the 𝑙2,1-norm penalty and naturally introduce the 

tensor low-rank (TLR) regularizer for formulating the group similarity prior. The proposed tensor 

low-rank based FBN estimation can formulated as follows: 

 𝑚𝑖𝑛𝑊 ∑ 𝑓(𝐗(𝑖), 𝐖(𝑖))
𝑛

𝑖=1
+ 𝜆𝑅(𝐖)𝑙𝑜𝑤𝑟𝑎𝑛𝑘 (9) 

In Eq. (9), for the regularized terms, 𝑅(𝐖)𝑙𝑜𝑤𝑟𝑎𝑛𝑘 indicates the rank of tensor 𝐖, which can be 

represented by number of non-zero elements in the eigenvalue of 𝐖.  Unfortunately, the low-rank 

regularizer is non-convex with respect to 𝐖 and it is NP-hard to solve. Thus, we relax it to trace-
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norm ‖𝐖‖∗, and obtain the following optimization model. 

 𝑚𝑖𝑛𝑊 ∑ 𝑓(𝐗(𝑖), 𝐖(𝑖))
𝑛

𝑖=1
+ 𝜆‖𝐖‖∗ (10) 

Here, due to its empirical effectiveness, we aim for capturing the second-order statistical structure 

of the observed fMRI data. In particular, we adopt SR as a testing platform, since the PC method 

suffers the cofounding effect. In particular, we use ‖𝐗𝒋
𝒊 − 𝐗𝒊𝐖𝒋

𝒊‖
𝐹

2
  as the data-fitting term for 

formulating the inverse covariance structure (i.e., partial correlation) in the data, and adding a 𝑙1-

norm penalty for encoding the sparse priors, and obtaining the following STLR optimization model. 

 𝑚𝑖𝑛𝑊 ∑ ‖𝐗𝒊 − 𝐗𝒊𝐖𝑖‖
𝐹

2
𝑛

𝑖=1
+ 𝜆‖𝐖‖∗ + 𝛾‖𝐖‖1 (10) 

where 𝜆 and 𝛾 are regularized parameters used to control the balance among the three terms in 

the objective function. It should also be noted that the data fitting term can be designed as 

‖𝐖𝑖 − 𝐗𝒊𝑻𝐗𝒊‖
𝐹

2
 for capturing the full correlation statistics. In addition, when 𝛾 = 0, The proposed 

method reduces to the network learning model based on the traditional sparse regression FBN 

estimation method which gives in Eq. (4); when 𝜆 = 0 , Eq. (8) reduces to the tensor low-rank 

representation FBN estimation method. 

2. 2. 4 Algorithm 

For the reason of 𝑙1 -norm and trace penalty exist, the proposed scheme is convex but non-

differentiable, which leads to a nontrivial problem. Fortunately, several approaches are proposed for 

dealing with such issues (Donoho and Elad 2003, Meinshausen and Bühlmann 2006, Tomioka and 

Sugiyama 2009). In this paper, we select the proximal method (Combettes and Pesquet 2011) for 

solving the proposed optimal FBN estimation model, for the reason of its simplicity and efficiency. 

The details are given as follows: 

Firstly, for the data-fitting term of STLR (i.e., ∑ ‖𝐗𝒊 − 𝐗𝒊𝐖𝑖‖
𝐹

2𝑛
𝑖=1 ), whose gradient w.r.t. 𝑊𝑖 

are ∇𝐖𝐢  𝑓(𝐗𝐢, 𝐖𝐢 ) = 𝐗𝐢𝑇
𝐗𝐢𝐖𝐢 − 𝐗𝐢𝑇

𝐗𝐢 . Therefore, for each iteration, we first update the 𝐖 , 

according to the gradient descent criterion: 

 𝐖𝑘
𝐢 = 𝐖𝑘−1

𝐢 − 𝛼𝑘𝛻𝑓(𝐗𝐢, 𝐖𝑘−1
𝐢 ), (11) 

where 𝛼𝑘 denotes the step size of the gradient descent. The initial value of the step size 𝛼𝑘 is 

set to 0.001, and it will be adaptively updated in the following steps based on the line search scheme 

proposed by Nemirovski (NESTEROV 1983), according to the used SLEP toolbox3. 

 
3 http://www.yelab.net/software/SLEP 
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Secondly, for the regularization term ‖W‖1, according to the definition of proximal operator 

(Combettes and Pesquet 2011), the proximal operator of λ‖W‖1is equivalent to the following soft 

thresholding operation on W, 

 proxλ‖∙‖1
(𝐖) = [sign(Wij) × max(𝑊𝑖𝑗 − 𝜆, 0)]𝑛×𝑛, (12) 

Similarly, the proximal operator of λ‖W‖∗ corresponds to a shrinkage operation on the singular 

values of W, as follows. 

 proxλ‖∙‖∗
(𝐖) = ∑ max (𝜆𝑟 − 𝜆, 0)𝛼𝑖𝑟

(1)
𝛼𝑗𝑟

(2)
𝛼𝑘𝑟

(3)
𝑅

𝑟=1
 (13) 

Here, 𝛼𝑖𝑟 , 𝛼𝑗𝑟 , 𝛼𝑘𝑟 is a vector in a unit norm space, and the 𝜆𝑟 is the corresponding eigenvalue 

based on the PARAFAC decomposition. Then, the final algorithm can be given as follows: 

Table 1, The Algorithm for Estimating the FBN based on TLR 

Input: 𝐗, 𝜆 

Output: 𝐖 

Initialize W 

while not converged 

𝐖𝑘+1 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐖); 

𝐖𝑘+1 = proxλ‖∙‖∗
(𝐖𝑘); 

𝐖𝑘+1 = proxλ‖∙‖1
(𝐖𝑘);   

end 

2. 3. 3 Experimental Setting 

After obtaining the FBNs of all subjects, the main task comes to use the constructed FBNs to train 

a classifier for identifying ASDs from NCs. Since the FBN matrix is symmetric, we just use its 

upper triangular elements as input features for classification. Even so, the dimensions of the features 

are still too high to train a classifier with good generalization, due to the limited training samples in 

this study. Therefore, we first conduct a feature filtering operation before training the classification. 

Specifically, the classification pipeline includes the following two main steps. In particular, we first 

estimated FBNs for each individual by PC4, SR, SLR, GSR and STLR, respectively. The estimated 

FBNs is shown in Fig. 1. After we obtain the estimated FBNs, the next task is how to use these 

connections for identifying MCIs from NCs. It should be noted that both the feature selection and 

classifier design have a big influence on the final accuracy (Wee et al. 2014). Therefore, in this 

paper, we only adopt the simplest feature selection method (t-test with p-value<0.01) and the most 

 
4 In order to improve the flexibility of PC and conduct fair comparison, we introduce a hard-thresholding parameter 

in PC by reducing a proportion of weak connections. 
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popular used SVM classifier with default parameter C=1 (Chang and Lin 2007), since our main 

focus is FBN estimation. 

Due to the small sample size, we use the leave one out (LOO) cross validation strategy to verify 

the performance of the methods, in which only one subject is left out for testing while the others are 

used to train the models and get the optimal parameters. For the choice of the optimal parameters, 

an inner LOO cross-validation is further conducted on the training data by grid-search strategy. 

More specifically, for the regularized parameter  𝜆 , the candidate values range in 

[2−5, 2−4, … , 24, 25]; for the hard threshold of PCthreshold, we use 20 sparsity levels ranging in 

[5%, 10%, ⋯ ,95%, 100%]. For example, the 90% means that 10% of the weak edges are filtered 

out from the FBN. 

3. Results 

3.1 Network Visualization 

For visual comparison of the FBN constructed by PC, SR, SLR, GSR and STLR methods, we 

first show the FBN adjacency matrices5 W constructed by different methods in Fig. 1. 

  

(a) PC                     (b) SR 

   

(d) SLR                      (e) GSR                (f)STLR 

Fig. 2. The FBN adjacency matrices of a certain subject, constructed by different methods. 

 
5 The adjacency matrix is an algebraic expression of a graph (or network). The elements of the matrix indicate the 

connection strength of the node pairs in the graph. Here, for the convenience of comparison among different 

methods, all the weights are normalized to the interval [−1 1] 
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It can be observed from Fig. 2 that the PC-based FBN (i.e. Fig.1 (a)) are quite different with the 

SR based FBNs (i.e. Fig.2 (b)-(f)), since it uses a different data-fitting term (i.e., the first term in 

Equation (5)). Moreover, the topology of the FBN estimated by SLR is similar to that of STLR, 

because (1) both methods employ the same data-fitting term, and (2) the low-rank and sparse 

regularity behind SLR (i.e., the trace norm in matrix scheme) is based on the result of STLR (i.e., 

the trace norm in tensor scheme). 

3.2. MCI Identification 

The MCI vs NC classification results on ADNI dataset are given in Table 2. The proposed STLR 

method achieves the best accuracy in this experiment. In addition, the results of SLR and GSR are 

also provided in Table 2 as a reference. 

Table 4. Classification performance corresponding to different FBN estimation methods on ADNI dataset. 

Method Accuracy Sensitivity Specificity 

PC 67.15 72.06 62.32 

SR 78.10 79.41 76.81 

SLR 80.29 80.88 79.71 

GSR 83.21 88.24 78.26 

STLR 91.97 92.65 91.30 

 

A set of quantitative measurements, including accuracy, sensitivity and specificity, are used to 

evaluate the classification performance of four different methods (PC, SR, SLR, GSR and STLR). 

The mathematical definition of these three measures are given as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, (15) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, (16) 

 S𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒
, (17) 

Here, TruePositive is the number of the positive subjects that are correctly classified in the ASD 

indentification task. Similarly, TrueNegative, FalsePostive and FalseNegative are the numbers of 

their corresponding subjects, respectively. 

3.3. Most Discriminant Connections and Brain Regions 

For discovering the biological meaningful biomarkers, we also provided the most significant 

connections estimated by STLR between MCIs and NCs. We firstly identified the most significant 
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connections (p-value<0.01) and projected them into the corresponding subnetworks (Fig.3). We 

found that the most discriminative network connections were distributed mainly in the default mode 

network (DMN), frontoparietal task control network, salience network and visual network. 

 

Fig. 3 The most significant functional connections mapped on the ICBM 152 template using the 

BrainNetViewer package (http://nitrc.org/projects/bnv/). The details are: yellow, frontoparietal task 

control network; blue, salience network; green, default mode network; red, visual network. 

Meanwhile, we projected these significant functional connections into the corresponding brain 

regions. The most 130 significant edges with p-value<0.01 is depicted in Fig. 4 with the width of 

each arc represents the weight of the connection between two end points (i.e., brain regions). These 

brain regions were considered as the extremely predominant areas with largest number of the 

discriminative connections based on the proposed FBN construction model for discriminating MCI 

participants from NCs. The location of these ROIs was labeled according to AAL atlas. 

 

Fig. 4. The most discriminative connections, selected by t-test (p<0.01), between MCI and NC for 

116 ROIs of AAL template,. This figure is created by a Matlab function, circularGraph, shared by 

Paul Kassebaum. http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph 
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As shown in Table 5, the most discriminative brain regions between MCI and NCs were 

distributed mainly in the thalamus, middle temporal gyrus, hippocampus, parahippocampal gyrus, 

inferior parietal which corresponded to the subcortical network, DMN, dorsal attention network, 

and fronto-parietal task control. 

Table 5 | Top-20 brain regions (without cerebellum region) with largest number of the discriminative 

connections 

AAL Number Corresponding brain regions  Sub-networks 

77 Thalamus_L Subcortical network 

85 Temporal_Mid_L Dorsal attention network 

6 Frontal_Sup_Orb_R  Default mode network 

9 Frontal_Mid_Orb_L Default mode network 

38 Hippocampus_R Default mode network 

39 ParaHippocampal_L Default mode network 

61 Parietal_Inf_L Dorsal attention network 

62 Parietal_Inf_R Dorsal attention network 

70 Paracentral_Lobule_R Sensory/somatomotor hand 

71 Caudate_L Fronto-parietal task control 

72 Caudate_R Fronto-parietal task control 

75 Pallidum_L Subcortical network 

11 Frontal_Inf_Oper_L Executive control network 

13 Frontal_Inf_Tri_L Executive control network 

24 Frontal_Sup_Medial_R Fronto-parietal task control 

42 Amygdala_R Subcortical network 

45 Cuneus_L Visual network 

47 Lingual_L Default mode network 

73 Putamen_L Salience network 

78 Thalamus_R Subcortical network 

AAL: the automated anatomical labeling atlas. 

3.4. Altered topological properties of functional networks in MCI patients 

Based on the estimated FBNs by STLR, several global graph theory metrics, including clustering 

coefficients (Cp), shortest path length (Lp), normalized clustering coefficient (γ), normalized 

characteristic path length (λ) small-world (σ) and global efficiency (Eglobal), were calculated to 

uncover the topological properties of functional networks in MCI and NC groups. As expected, both 

two groups fit γ=Cp
real / Cp

rand ＞1, λ=Lp
real / Lp

rand ≈1 and σ=γ/λ＞1. Thus, the functional 

networks of MCI patients and NCs showed the topological attributes of small-world (Watts and 

Strogatz 1998). This means the brain networks of the two groups maintain a complex and efficient 

neural architecture that optimizes the balance between local specialization and global integration 

(Achard 2007, Sporns and Zwi 2004, Sporns 2012). Further comparison suggested that the small-
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world σ value of MCI patients was lower than that of NCs, which indicated the disruption of 

“economic small-world” (i.e., reduction of the segregation and integration functions of effective 

information in the brain network). Furthermore, we found the Cp value and modularity (Q value) in 

MCI patients were lower than that in NC groups significantly (P<0.01). These changes of Cp and 

modularity suggest the reduction of network segregation in local information processing in MCI 

patients. Although there was no significant difference between MCI and NCs in Lp and Eglobal, the 

lower values of these two global topological attributes in MCI indicated the decreased network 

integration. 

 

Fig. 4. The Global graph metrics of the FBNs in MCI and NC groups. 

According to the definition of “hubs”, we identified hub nodes in MCI patients and NCs. As 

shown in table 6, the common hub regions of MCI and NCs were located mainly in the bilateral 

superior temporal gyrus, bilateral heschl gyrus, right middle frontal gyrus and left angular gyrus. 

Most of them mainly distributed in the DMN, Auditory network, fronto-parietal task control 

network and dorsal attention network. Moreover, it is notable that some hub nodes were present 

only in MCI patients and absent in HCs: right middle temporal gyrus, left middle frontal gyrus. 

Simultaneously, there were also some hub nodes in HCs but not in MCI patients. They were located 

on the right inferior parietal and right middle frontal gyrus. These discriminative brain regions 

between MCI and NCs were distributed mainly in DMN, fronto-parietal task control and dorsal 

attention network. The differences of subnetworks and corresponding brain regions play an 

important role in the differential diagnosis of MCI and NC.  

Table 6 | Hubs in MCI and NCs defined with the degree 
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 AAL Number Corresponding brain regions  Sub-networks 

M
C

I 

88 Temporal_Pole_Mid_R Default mode network 

79  Heschl_L  Auditory network 

10  Frontal_Mid_Orb_R  Default mode network 

80  Heschl_R  Auditory network 

81  Temporal_Sup_L  Auditory network 

65  Angular_L  Default mode network 

87  Temporal_Pole_Mid_L  Default mode network 

9  Frontal_Mid_Orb_L Fronto-parietal task control 

83  Temporal_Pole_Sup_L Auditory network 

84  Temporal_Pole_Sup_R  Auditory network 

N
C

 

79  Heschl_L  Auditory network 

81  Temporal_Sup_L  Auditory network 

65  Angular_L  Default mode network 

66  Angular_R  Default mode network 

87  Temporal_Pole_Mid_L  Default mode network 

10  Frontal_Mid_Orb_R  Default mode network 

80  Heschl_R  Auditory network 

62  Parietal_Inf_R  Dorsal attention network 

84  Temporal_Pole_Sup_R  Auditory network 

83  Temporal_Pole_Sup_L  Auditory network 

AAL: the automated anatomical labeling atlas. 

4. Discussion 

The human brain is the most complex systems in the world. In order to ensure an efficient 

interaction of information in the brain, the FBN should has more “structures” than just sparsity 

(Smith et al. 2011b, Sporns 2011). In this work, we incorporated a tensor low rank regularizer for 

modeling the group similarity priors of the estimated FBNS. The proposed models were verified on 

the ADNI dataset for MCI vs NC classification. Based on the results, we give the following brief 

discussion. 

1) The accuracy of the STLR-based methods outperforms the baseline and the states-of-art 

method on our used dataset. A possible reason is that the STLR scheme naturally 

incorporate more information from inter-group subjects, and thus can gain more clearly or 

discriminative FBNs. It should also be noted that the proposed scheme is a flexible module, 

meaning that, besides the SR-based models, it can be easily adopted on other FBN 

estimation models such as PC-based network, Bayesian network or Granger Causal based 

network. Also, we can incorporate some other useful priors such as modularity, scale-free 

into the Tensor based FBN estimation models. 
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2) The most discriminative functional connections and the corresponding predominating 

brain regions. By projecting brain regions with significant differences of functional 

connectivity and graph theory metrics in the brain network to subnetworks, we found that 

the differences between MCI patients and NCs were distributed mainly in the DMN, dorsal 

attention network, frontoparietal task network, executive control network and auditory 

network. Especially, the DMN had the most significant discriminative ability. The changes 

of these subnetworks were consistent with the results of previous studies on cognitive 

function (i.e., spatial attention (Rolle et al. 2017), executive function (Liao et al. 2019)and 

auditory function (Bi et al. 2018)) corresponding to subnetworks in MCI patients. 

Moreover, the DMN has been regarded to be the core part of functional center (Liu et al. 

2019), which is involved in episodic memory and has been considered as the major 

cognitive domain impaired in the early stage of AD (Eyler et al. 2019). Furthermore, in 

our study, except for validating the discriminative ability of the DMN for MCI 

identification, we located the predominant brain regions (i.e., the thalamus, middle 

temporal gyrus, hippocampus, parahippocampal gyrus, inferior parietal and middle frontal 

gyrus). These results could be beneficial for the early, accurate diagnosis of MCI. 

3) Altered pattern of the brain network connectome in MCI. In our study, firstly, we found 

that MCI patients and NCs fitted the small-world attribute in the global topological 

property. That is, the brain network of MCI and NC groups conform to “economic small-

world” which can rapid, real-time information processing across separate brain regions to 

maximize efficiency with minimal cost and to render resilience against pathological 

attacks (Liao, Vasilakos and He 2017, Sporns and Zwi 2004, Sporns 2012). Statistical 

analysis suggested that the value of small-world σ in MCI patients was lower than that in 

NCs, which indicated disruption of brain network integration and segregation. This result 

of small-world in MCI is consistent with some previous research (Yu et al. 2018). 

Moreover, the significantly decreased value of Cp and modularity in MCI further verified 

the reduction of functional segregation of brain network. A lower value of Cp and Q value 

of modularity suggest the less concentrated clustering of local connections and weaker 

capacity for specialized processing of within densely interconnected groups of brain 

regions in MCI (Rubinov and Sporns 2010).  

  However, since the proposed scheme is a simple try for modelling the group similarity prior, 
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there are several limitations in the proposed methods that need to be improved in the future work. 

1) In this paper, we only provide a simply verification for validating the effectiveness of the 

TL scheme, without considering other factors (e.g. the selection of Atlas and data 

preprocessing). Therefore, we simply adopt the commonly used AAL atlas to define ROI. 

In the future, we would like to consider the functional template (e.g. Power264) for 

alleviating this issue. 

2) In this paper, we only use the tensor low-rank module to formulate the group similarity 

prior. In fact, the brain has a very complex structure, and the group similarity can also be 

formulated into another format. Therefore, in the following, we will use more abundant 

prior information or topology structure to construct appropriate regular terms and further 

improve the current group-constraint model. 

3) The global graph theory metrics (i.e., Cp, Lp, small-world) were mainly discussed in our 

study, while nodal and other graph theory metrics could also be used to describe the 

complex topological mechanism of brain networks. In the following research, more graph 

theory metrics, such as nodal shortest path length, local efficiency and participant 

coefficient of modularity can be used to elaborate more specific topological properties of 

local brain network. 

5. Conclusion  

In fact, the pattern of human brain still needed a deep exploration, therefore, how to better 

describe the brain is still a challenging and meaningful. In sprite by the fact that the group similarity 

constraint of FBN cross group, we naturally introduce the tensor low-rank regularer based FBN 

estimation scheme. In particular, we use the PARAFAC decomposition for capturing the FBNs with 

low rank topologies. In the end, we put the estimated FBNs into the classification task. The result 

illustrate that the introduction of the group similarity constraint can effectively improve the 

performance of the baseline method. The post hoc analysis of the graph theory metrics further shown 

more biologically meaningful functional brain connections obtained by our proposed method. 
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