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Abstract 
Identifying species at risk of extinction is necessary to prioritise conservation efforts. The International 

Union for Conservation of Nature’s (IUCN) Red List of Threatened Species is the global standard for 

quantifying extinction risk, with many species categorised on the basis of a reduction in population size. 

We introduce the Bayesian state-space framework ‘JARA’ (Just Another Red-List Assessment). Designed 

as decision-support tool, JARA allows both process error and uncertainty to be incorporated into IUCN 

Red List assessments under criterion A. JARA outputs easy to interpret graphics showing the posterior 

probability of the population decline displayed against the IUCN Red List categories, and assigns each 

category an associated probability given process and observation uncertainty. JARA is designed to be easy 

to use, rapid and widely applicable, so conservation practitioners can apply it to their own count or relative 

abundance data. We illustrate JARA using three real-world examples: (1) relative abundance indices for 

two elasmobranchs, Yellowspotted Skate Leucoraja wallacei and Whitespot Smoothhound Mustelus 

palumbes; (2) a comparison of standardized abundance indices for Atlantic Blue Marlin Makaira nigricans 

and (3) absolute abundance data for Cape Gannets Morus capensis. Finally, using a simulation experiment, 

we demonstrate how JARA provides greater accuracy than two approaches commonly used to assigning a 

Red List Status under criterion A. Tools like JARA can help further standardise Red List evaluations, 

increasing objectivity and lowering the risk of misclassification. The consequences for global conservation 

efforts could be substantial. 

 

Introduction 
Quantifying trends in population abundance is central to ecological research and to conservation 

biology in particular, where understanding extinction risk is necessary to prioritise effort in the 
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face of ever-increasing biodiversity loss (Butchart et al. 2004; Hoffmann et al. 2008). Although a 

number classification protocols exist to assess a species’ extinction risk (Regan et al. 2013), the 

International Union for the Conservation of Nature’s (IUCN) Red List of Threatened Species is 

viewed widely as the global standard (Hoffmann et al. 2008; Mace et al. 2008).  

 

To list a species in a threatened category (vulnerable [VU], endangered [EN] or critically 

endangered [CR]) on the Red List, assessors can consider the risks associated with both the small-

population paradigm and the declining population paradigm (Caughley 1994) under five 

assessment criteria (A to E). However, quantitative information on species abundance – as a direct 

measure of the status of a population – is often preferred over less direct measures of extinction 

risk, like changes in habitat extent or quality (Mace et al. 2008; Wilson et al. 2011). Moreover, the 

IUCN guidelines allow for assignment to a category (ranging from Least Concern [LC] to Extinct) 

based only on the criterion that produces the highest estimated risk (Mace et al. 2008). Therefore, 

species are often listed only on the basis of a reduction in population size (Criterion A); as of today 

> 5,000 species are classified as threatened on this basis alone (Rueda-Cediel et al. 2018). Criterion 

A is thus considered to be the most widely used stand-alone criterion for assigning a Red List 

status to a wide range of animal taxa, including mammals, birds, reptiles, fishes and insects 

(Butchart et al. 2004; Dulvy et al. 2006; Mace et al. 2008; Seminoff & Shanker 2008; Fox et al. 

2018).  

 

Although the IUCN Red List provides a set of unified quantitative decision rules for assigning 

threatened categories based on population decline thresholds, data quality and analytical 

approaches can differ vastly (Mace et al. 2008; Wilson et al. 2011). Estimating the decline between 

just two points in time remains widely applied as a rapid assessment approach (Wilson et al. 2011; 

IUCN 2017; Lee et al. 2019). Even when model-predicted abundance indices or population 

trajectories with associated uncertainty estimates exist, it appears common practice to simply 

extract the two points that come closest to the desired IUCN assessment time frame of 10 years or 

(if longer) three generation lengths and then calculate the decline as the ratio between these two 

points. If the observation period is shorter than three generation lengths, a simple extrapolation 

formula may be applied (IUCN 2017; Lee et al. 2019). Fitting linear or log-linear regression 

models to time series of abundance observations is a second widely-applied approach (Dulvy et 
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al. 2006; Wilson et al. 2011; IUCN 2017; Fox et al. 2018). An advantage of using a regression is 

that estimates of the significance of the estimated slope, parameter uncertainty, and goodness-of-

fit can be obtained, which is not possible with only two points (Wilson et al. 2011). However, 

regression implicitly assumes that the “true” population follows a constant deterministic trend, 

with all deviations from this trend attributable to statistically-independent observation errors 

(Hilborn & Mangel 1997). This assumption does not agree well with our understanding of the real 

world. For example, a population diminished due to a severe drought year or a spike in poaching 

will start from a lower state than would be expected from an average long-term trend. In reality, 

animal population trajectories can diverge substantially from this deterministic expectation due to 

persistent variations in environmental regimes or human impacts (Connors et al. 2014; D’Eon-

Eggertson et al. 2015; Keith et al. 2015).  

 

In contrast to deterministic regression models, state-space models provide a general framework 

for analysing dynamical systems that considers process (year-to-year variation) and observation 

(or reporting) error simultaneously (de Valpine & Hastings 2002; Kéry & Schaub 2012). State-

space formulations add more biological realism by assuming a Markovian process, such that the 

population size in the next time step is conditioned on its current state, but independent of past and 

future states (Kéry & Schaub 2012). From a statistical perspective, the observations are 

independent given the unobservable (latent) states of population. This can help in preventing 

violation of independence in observation errors, which often manifest themselves as serial residual 

correlations when fitting simple regressions to time-series data. Given these desirable properties, 

it is not surprising that there has been a rapid uptake of state-space approaches for modelling 

population dynamics (de Valpine & Hastings 2002; Buckland et al. 2004; Thorson & Minto 2015), 

including more recent applications of quantifying population decline (Wilson et al. 2011; Bauer et 

al. 2015; Simmons et al. 2015; Boyd et al. 2017). State-space models have also been specifically 

applied in simulation studies that highlight the need for a more rigorous quantification of process 

and observation uncertainties in the context of threat category (mis)classification (Wilson et al. 

2011; Regan et al. 2013; Connors et al. 2014).  

 

Bayesian implementations of state-space models offer a powerful framework to improve the 

characterization and communication of uncertainty during IUCN Red List assessments. The 
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posterior probabilities provide an intuitive and transparent way to express uncertainty about 

population declines to conservation practitioners (Bauer et al., 2015; Sherley et al., 2018), which 

can be translated directly into probabilistic statements about a population falling into a threatened 

category (Bauer et al. 2015; Boyd et al. 2017). However, developing customized Bayesian state-

space models can be technically demanding and time consuming, especially when dealing with 

often case-specific, ‘messy’ abundance data that are subject to missing values, irregular spacing 

or multiple indices that are measured at different scales. These issues may therefore dissuade some 

conservation practitioners and hamper broader applications.  

 

To address this, we have developed the Bayesian state-space framework ‘JARA’ (Just Another 

Red-List Assessment). Designed as an easy to use, rapid and widely applicable decision-support 

tool, JARA allows both process error and uncertainty to be incorporated into Red List assessments. 

A key output of JARA is an easy to interpret graphic in which the probability distribution of the 

population decline is displayed against the IUCN Red List categories, and where each category is 

assigned a probability given process and observation uncertainty. To ensure a high degree of 

transparency and reproducibility, we provide fully commented R code on the global open-source 

platform GitHub (https://github.com/henning-winker/JARA), so that JARA can be modified and 

applied by conservation practitioners to their own count or relative abundance data. On GitHub, 

we provide a number of worked examples. Here, we illustrate the main features of JARA using 

three real-world examples and a simulation experiment to examine how accurately JARA classifies 

complex population declines under criterion A, relative to the regression and “two-points” 

approaches discussed above. 

 

Material and Methods 
JARA is a generalized Bayesian state-space decision-support tool for trend analysis of abundance 

indices with direct applications to IUCN Red List assessments. The name ‘Just Another Red-List 

Assessment’ acknowledges JAGS (Just Another Gibbs Sampler, Plummer, 2003), the software 

used to run the Bayesian state-space model application. The name reference, together with user-

friendly R interface and modulated coding structure follows the example of the new open source 

fisheries stock assessment software ‘Just Another Bayesian Biomass Assessment‘ (JABBA; 

Winker et al. 2018). JARA enables analysis of one or multiple abundance indices simultaneously, 
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where each index can contain missing years and span different periods. JARA provides the option 

for fitting relative abundance indices to estimate a mean trend or absolute abundance indices (from 

e.g. different subpopulations) to produce a summed population trend for the total population. 

 

State-Space Model Formulation 

A central assumption of the state-space approach is that the abundance (𝐼$) trend follows a 

Markovian process, such that 𝐼$ in year t will be conditioned on 𝐼$&' in the previous year. For 

generality it is assumed that the underlying population trend follows a conventional exponential 

growth model 𝐼$(' = 𝐼$𝜆$ (e.g. Kéry & Schaub 2012), where 𝜆$ is the growth rate in year t. The 

growth rate 𝜆$ can vary annually to accommodate fluctuations in reproductive success and survival 

as a result of environmental conditions, anthropogenic activity or other latent (unobservable) 

impacts. State-space models are hierarchical models that explicitly decompose an observed time-

series into a process variation and an observation error component (Simmons et al. 2015). On the 

log scale, the process equation becomes 𝜇$(' = 𝜇$ + 𝑟$, where 𝜇$ = log	(𝐼$) and 𝑟$ = log	(𝜆$) is 

the year-to-year rate of change, with variations in log-growth rates following a random normal 

walk 𝑟$~𝑁𝑜𝑟𝑚𝑎𝑙9𝑟̅;, 𝜎>?@, given the estimable process error variance 𝜎>? and the estimable mean 

population rate of change  (i.e. the underlying trend). The corresponding observation equation is 

of the form log	(𝑦$) = 𝜇$ + 𝜖$, where 𝑦$ denotes the abundance value for year t, 𝜖$ is observation 

residual for year t, which is assumed to be normally distributed on log-scale 𝜀$~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎E?) 

as a function of the observation variance 𝜎E?.  

 

The model notation for relative abundance indices builds on the approach in JABBA for averaging 

relative abundance indices (Winker et al. 2018) and assumes that the mean underlying abundance 

trend is an unobservable state variable. The corresponding observation equation is then modified, 

such that log	(𝑦$,F) = 𝜇$ + log	(𝑞F) + 𝜖$,F, where 𝑦$,F is the relative abundance value for year t and 

index i, 𝜇$	is the natural logarithm of the mean abundance trend, 𝜀$,F is the lognormal observation 

error term for index i and year t, and 𝑞F is a scaling parameter for index i. The abundance index 

with the chronologically oldest record is taken as a reference index by fixing 𝑞' = 1 and the other 

indices are scaled to this reference index, respectively, with 𝑞?,...,J being estimable model 

pr
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parameters. The estimated posterior of the population trend	for year t is then given by 𝐼;,$ =

exp	(𝜇$). 

 

To estimate a total abundance trajectory for the “global” population from multiple absolute 

abundance indices, we assume that each absolute abundance index represents a ‘subpopulation’ 

that may increase or decline independently from other subpopulations. The process equation is 

therefore modified to 𝜇$,F = 𝜇$,F + 𝑟$,F, where 𝑟$,F = log	(𝜆$,F) is the year-to-year rate of change 

specific to index i that is assumed to vary around 𝑟̅F to represent the underlying mean rate of change 

for the subpopulation (instead of a global population mean 𝑟̅;), but with a process variance 𝜎>?	that 

is common to all subpopulations: 𝑟$,F~𝑁𝑜𝑟𝑚𝑎𝑙9𝑟̅F, 𝜎>?@. The corresponding observation equation 

is adjusted to log	(𝑦$,F) = 𝜇$,F+𝜖$,F, so that abundance trend 𝜇$,F and the error term 

𝜀$,F~𝑁𝑜𝑟𝑚𝑎𝑙90, 𝜎EN
?@ now become the specific to subpopulation i. The estimated posterior of the 

global population trajectory 𝐼;,$ for year t is then estimated from the sum of all individual 

subpopulation trajectory posteriors, such that 𝐼;,$ = ∑ exp	(𝜇$,F)F .  

 

Bayesian Framework 

JARA is run from the statistical environment R (R Core Team 2018) and executed in JAGS 

(Plummer 2003), using a wrapper function from the R library ‘r2jags’ (Su & Yajima 2012). The 

Bayesian posterior distributions are estimated by means of Markov Chain Monte Carlo (MCMC) 

simulation. In JAGS, all estimable hyper-parameters have to be assigned to a prior distribution. 

JARA uses vague (uninformative) prior distributions throughout, so all inferences are drawn from 

the information in the data. The estimation of annual growth rate deviates 𝑟$, is implemented 

through hierarchical priors (Jiao et al. 2009), where 𝑟$ is informed by the population mean 𝑟̅;	for 

relative abundance indices and 𝑟$,F is informed by 𝑟̅F for absolute abundance indices. Normal prior 

distributions of 𝑝𝑟𝑖𝑜𝑟~𝑁𝑜𝑟𝑚𝑎𝑙(0,1000) are assumed for both 𝑟̅; or 𝑟̅F. The initial population size 

in the first year 𝐼$R',F is drawn in log-space from a ‘flat’ normal distribution with the mean equal 

to the log of the first available count 𝑦$R',F and a standard deviation of 1000. Priors for the process 

variance can be either fixed or estimated. If estimated (default), the process variance prior is 

implemented via a vague inverse-gamma distribution by setting both scaling parameters to 0.001 
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(Chaloupka & Balazs 2007; Brodziak & Ishimura 2012; Carvalho et al. 2014), which yields an 

approximately uniform prior on the log scale. 

 

The total observation variance 𝜎E? can be separated into three components: (1) externally derived 

standard errors 𝜎STU,N
?  for each abundance index i, (2) a fixed input variance 𝜎VFW?  and (3) estimable 

variance 𝜎XY$? , where the prior for 𝜎XY$?  assumes an uninformative inverse-gamma distribution with 

both scaling parameters set to 0.001. All three variance components are additive in their squared 

form (Francis et al. 2003), so the total observation variance for abundance index i and year y is: 

𝜎EU,N
? = 𝜎STU,N

? +	𝜎VFW? +	𝜎XY$? . Each variance component can be individually switched on or off by 

the user (Winker et al. 2018). Adding a fixed observation error to externally estimated standard 

errors is common practice to account for additional sampling error associated with abundance 

indices and also informs the process variance as a portion of total variance is assigned a priori to 

observation variance (Winker et al. 2018). 

 

Estimating probabilities of population decline  

A posterior probability for the percentage change (C%) associated with each abundance index can 

be conveniently calculated from the posteriors of 𝐼Z;,[, the model predicted population trajectory. 

If 𝐼Z;,[ represents a longer time span than the assumed three generation lengths (GL), C% is 

automatically calculated as the difference between a three-year average around the final observed 

data point 𝑇, and a three-year average around the year corresponding to 𝑇 − (3 × 𝐺𝐿). The year 

𝑇 + 1 is always projected to obtain a three-year average around 𝑇 to reduce the influence of short-

term fluctuations (Froese et al. 2017). When the span of 𝐼Z$ is < 3 × GL, JARA projects forward, 

by passing the number of desired future years without observations to the state-space model until 

𝐼Z$ > (3	 × 𝐺𝐿) + 2. The projections for a single population or multiple subpopulations i are based 

on all possible posterior realizations of 𝑟$,F across all T years in the observed time series: 𝑟̃F =
'
e
∑ 𝑟$,Fe
$R' . 

 

Model Diagnostics  

To evaluate the model fit, JARA provides the user with four plots. The first illustrates the unscaled 

input data and uncertainty estimates around each observation in the form 95% Confidence Intervals 
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(Figure 1a-b). The second shows the observed and predicted abundance values for each time series 

together with the 95% posterior predictive credibility intervals (Figure 1c-d). The third shows 

individual fits on the log-scale, as well as the 95% Bayesian credible intervals (CI) derived from 

the observation variance 𝜎EU,N
?  (Figure 2). The fourth is a residual plot (Figure 1e-f) to illustrate 

potential data conflict when fitting multiple time series (Winker et al. 2018). This plot includes: 

(1) colour-coded lognormal residuals of observed versus predicted abundance indices i, (2) 

boxplots indicating the median and quantiles of all residuals available for each year; the area of 

each box indicates the strength of the discrepancy between the abundance indices (larger box 

means higher degree of conflicting information), and (3) a loess smoother through all residuals 

which highlights systematically auto-correlated residual patterns (Figure 1e-f). In addition, the 

Root-Mean-Squared-Error (RMSE) and the deviance information criterion (DIC) are provided for 

the comparison of goodness-of-fit and model selection purposes respectively. Convergence of the 

MCMC chains is diagnosed using the ‘coda’ package (Plummer et al. 2006), adopting minimal 

thresholds of p = 0.05 for Heidelberger and Welch (Heidelberger & Welch 1992) and Geweke’s 

(Geweke 1992) diagnostics called from R. 

 
JARA decision support plots 

To facilitate decision-making, JARA routinely produces four key plots (Figures 3–5) for each input 

dataset showing: (1) the combined state-space model fit and 95% CI to abundance time-series 

where multiple indices relative abundance (e.g. Figure 4a) and stock assessment results (Figure 

4b) are used, or the individual state-space models fits to each count dataset for absolute abundance 

indices (e.g. individual colony counts for Cape Gannet; Figure 5a); (2) the overall observed and 

projected (±95% CI) population trajectory over three GL (e.g. Figure 3a and b); (3) the median 

and posterior probabilities for the percentage annual population change calculated from all the 

observed data, and from each of the most recent 1 GL, 2 GL, and 3 GL (depending on the length 

of the observed time-series), shown relative to a stable population (%C = 0) (e.g. Figure 5c); and 

(4) how the posterior distribution for the percentage change in abundance (%C) over 3 GL aligns 

against the thresholds for the Red List categories (Least Concern LC, Near Threatened NT, 

Vulnerable VU, Endangered EN or Critically Endangered CR) under criteria A2–A4 (e.g. Figure 

4e and f) or under A1. In addition, JARA can be used to undertake a retrospective analysis through 

the sequential removal of terminal years and subsequent forward projections to attain 3 GL 
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(“retrospective peel”). This enables to user to identify points in time where the %C crosses over 

into different Red List categories (Figure 5f). 

 

Simulation experiment 

We conducted a simulation experiment to compare the performance of JARA against two 

conventional approaches suggested  in the IUCN Red List guidelines: (1) the ‘two-point’ approach 

that calculates %C between two years with observations that are 3 × GL apart and (2) regression 

analysis that extrapolates %C from the estimated slope over a given assessment horizon of 3 × GL 

(IUCN 2017). We first used an operating model (OM) to generate a ‘true’ population trend and an 

‘observed’ abundance index (Figure S1). The observed abundance index is then passed to the three 

estimation models (EMs: ‘Two-Points’, ‘Regression’, ‘JARA’) to determine the likely threat 

category (Figure 6). 

 

We modelled the ‘true’ population numbers using a log-linear Markovian process, such that 

log	(𝑁$) = log	(𝑁$&') + 𝑟$, where 𝑟$ determines the annual rate of change in the population 

numbers 𝑁$. We assumed that 𝑟$ can be decomposed into three processes: (i) an underlying mean 

population trend 𝑟̅, (ii) stochastic annual variation in the population 𝜐$ and (iii) annual variation in 

anthropogenic impact 𝜏$, such that 	𝑟$ = 𝑟̅ + 𝜐$ − 𝜏$ (Fig. S1). The process error deviations 

associated with 𝜐$ and 𝜏$ were assumed to be normally distributed and temporally autocorrelated 

(Connors et al. 2014; Keith et al. 2015) by implementing first-order autoregressive functions 

(AR1) of the form:	𝜐$ = 𝜐$&'𝜙i + 𝛿$k1 − 𝜙i? and	𝜏$ = 𝜐$&'𝜙l + 𝛾$k1 − 𝜙l? where 𝜙i and 

𝜙$	are the AR1 autocorrelation coefficients and 𝛿$~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎n?) and 𝛾$~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎o?) are 

normally distributed random variables representing uncorrelated process errors with variances 𝜎n? 

and 𝜎o?, respectively (Thorson et al. 2014).  The observed abundance index 𝐼[	is then generated as 

a function of the ‘true’ population numbers and a lognormal observation error of the form: 𝐼[ =

𝑁$𝑒Eq, where  𝜀$~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎E?) and 𝜎E?	is the an observation variance 𝜎E?. A generic R function 

of the population simulator is provided in the Supplementary Information. 

 

We simulated 200 random sets of population time series of 35 years with an assumed assessment 

horizon of 30 years corresponding to a GL of 10 years (Figure 6). The initial population size was 
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𝑁' = 10,000 and random deviates of 𝑟̅, describing the underlying trend, were randomly generated 

using a uniform distribution between −0.05 and 0 to cover a wide range of population trends and 

associated %C (Figure S1-2). We set the standard deviation for the stochastic variation to a 

moderate value of 𝜎i = 0.1 with a process error autocorrelation of 𝜙i = 0.3. This choice of values 

was intended to describe a population where annual reproductive success is fairly variable and 

autocorrelation arises from individual age-classes of varying strengths growing through the 

population. By comparison, the variation in anthropogenic impact was assumed to be less variable 

𝜎i = 0.05 and more persistent over longer, regime-like periods by assuming a fairly large 

autocorrelation coefficient of 𝜙l = 0.7.  The observation error for the observed abundance was set 

to 𝜎E = 0.15 (i.e. CV ~ 15%). The resulting simulations produced a wide range of plausible 

population trajectories (Figure 6). 

 

We evaluated model performances in terms of the accuracy of the estimated ‘true’ %C over 3 GL 

and the proportion of correctly classified threat categories according to the IUCN Red List A2 

decline criterion. Accordingly, the ‘true’ %C over 30 years (3 GL) was calculated as 

%𝐶 = (𝑁vw/𝑁y − 1) × 100. For the ‘Two-Point’ EM we calculated %𝐶Z = (𝐼vw/𝐼y − 1) × 100. 

For the ‘Regression’ EM we closely followed the IUCN guidelines by: (i) fitting a log-linear 

regression of the form log9𝐼[@ = 𝛼 + 𝛽𝑦 to all observations 𝐼'&vw, (ii) predicting the expected 

values 𝐼Z'&vw, (iii) and then extrapolating the expected  %𝐶Z over 3 GL as: 	%𝐶Z =

9𝐼Zvw/𝐼Z'@
9v|}/JU@ − 1) × 100 where 𝑛[ is the number of years. As described above (Estimating 

probabilities of population change), for the JARA EM the %𝐶Z was calculated as the median of the 

posterior %C. Accuracy and bias were calculated using Median Absolute Error (MAE) and Median 

Error (ME), where the error is the difference between the estimated %𝐶Z and the ‘true’ %𝐶. 

 

Results 
Case study applications  

We illustrate applications of JARA using the following worked examples for different abundance 

data types: (1) multiple relative abundance indices (1991–2017) from South African scientific 

demersal trawl surveys for two elasmobranchs, Yellowspotted Skate Leucoraja wallacei and 

Whitespot Smoothhound Mustelus palumbes; (2) a comparison of model-predicted biomass 
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trajectories from the 2018 Atlantic Blue Marlin Makaira nigricans stock assessments and 

standardized catch-per-unit-effort (CPUE) abundance indices from various fishing fleet, which 

were used as input into the assessment model and (3) census data for a large seabird, the Cape 

Gannet Morus capensis, in the form of total breeding size estimates for its six global breeding 

localities in Namibia and South Africa (1979–2017). All worked examples and input data are 

available on GitHub (https://github.com/henning-winker/JARA). 

 

(1) White-spotted smoothhound and Yellowspotted skate are both endemic to southern Africa and 

had been previously listed as Data Deficient by the IUCN (Smale 2009; Smale 2006). During the 

2018 Southern African IUCN Red List workshop, hosted by the IUCN Shark Specialist Group 

(SSG), both species were reassessed using JARA as a decision support tool. Based on available 

life-history information, the GLs were empirically estimated as 14 years for Whitespot 

Smoothhound and 12 years for Yellowspotted Skate. Long-term abundance indices were obtained 

from analysis of demersal research trawl survey data that were conducted with alternating trawl 

gear configurations (old/new gear) during summer along South Africa’s west coast (1991–2017) 

and during autumn and spring along the south coast (1991–2016) by the Department of 

Agriculture, Forestry and Fisheries. Yellowspotted skate was only encountered during South Coast 

Surveys. Annual density estimates (kg per nm2 area swept) and associated standard errors on log-

scale were estimated using a geostatistical delta-GLMM (Thorson et al. 2015, 2016). We only 

considered the period from 1991 onwards due to evident learning effects for identifying 

Chondrichthyes during initial survey years. The estimated abundance indices were separately 

derived for each gear type, survey (coast/season). The input data are characteristic of multiple 

indices with irregular spacing due to missing survey years (Figure 1 and 2), and are estimated at 

varying spatial scales. They are therefore treated as relative abundance indices. 

 

JARA combined six abundance indices for Whitespot Smoothhound (Figure 1a) and four 

abundance indices for Yellowspotted Skate (Figure 1b). Both sets of abundance indices spanned 

~2 GL, so JARA automatically projected over ~ 1 GL to provide %𝐶 estimates of +20.2% with 

95% of the posterior falling in LC for Whitespot Smoothhound and −47.1% for Yellowspotted 

Skate, with EN the best-supported category (Figure 3). The plots of the percentage annual 

population change (Figure 3c and d) nicely illustrate the contrasting situations for these two 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/672899doi: bioRxiv preprint 

https://doi.org/10.1101/672899


Draft – BioR𝝌iv Preprint 

12 
 

species, with Whitespot Smoothhound showing an improving population growth rate in the most 

recent 1 GL (relative to the whole dataset, Figure 3c), while for Yellowspotted Skate the decline 

appears to have worsened over the last 1 GL (Figure 3d). 

 

(2) The blue marlin, one of the most iconic gamefishes, is a highly migratory billfish species 

distributed circumglobally in mostly tropical waters. The last IUCN assessment in 2010 classified 

the species globally as VU (Collete et al. 2011). The Atlantic population was assessed by fitting 

linear regressions to biomass trend estimates from stock assessments undertaken by the 

International Commission for the Conservation of Atlantic Tunas (ICCAT; 2011). GL was 

assumed to be up to 6 years, corresponding to an IUCN trend assessment horizon of 18 years (3 x 

GL). Here, we use the 2018 ICCAT stock assessment of Atlantic Blue Marlin to illustrate how 

JARA can objectively convert such stock assessment outputs into corresponding IUCN Red List 

decline thresholds and threat categories recommendations. The assessment output used as input 

for JARA is the median of the estimated biomass for the period 1950–2016 across all accepted 

candidate models (Figure 4b). Uncertainty was represented by annual standard errors (SEs) of the 

log-biomass estimates (ICCAT 2018). We then compared the JARA results with a complementary 

JARA analysis of multiple CPUE indices that served as input data into the 2018 stock assessment. 

This CPUE dataset comprised standardized CPUE indices (+SEs) from ten different fishing fleets 

that covered different periods between 1959 and 2016 (Figure 4a). 

 

JARA estimated similar median %𝐶 for the Atlantic Blue Marlin whether using the multiple CPUE 

indices (−29.3%) or the stock biomass (−21.8%) as input data. In both cases, the best-supported 

category was LC, but uncertainty was (unsurprisingly) lower when using the biomass estimates 

from the stock assessment (80.7% of the posterior in LC) versus the much more variable and 

partially conflicting CPUE indices (51.4% in LC; Figure 4e and f). Although either input series 

would likely lead to the same outcome (a classification of LC) if JARA were used a decision-

support tool to assess Atlantic Blue Marlin, the analysis of the stock assessment data would result 

in greater confidence in the assessment’s conclusion. 

 

(3) The Cape Gannet is a large seabird endemic to southern Africa, where it breeds during the 

austral spring and summer at six islands. Aerial photographs and on the ground measurements of 
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nesting density at all six breeding colonies have been used by the Department of Environmental 

Affairs (South Africa) and the Ministry of Fisheries and Marine Resources (Namibia) to estimate 

the total breeding population since the summer of 1956/57 (Crawford et al. 2007). Counts were 

sporadic until 1978/79 but undertaken approximately annually thereafter (Figure 5). Cape Gannets 

generally have high adult survival, strong breeding site fidelity (Distiller et al. 2012) and low 

reproductive success (≤ 0.82 chicks fledged per pair annually; Crawford et al. 2019). Accordingly, 

their GL is estimated as 20.2 years (BirdLife-International 2018) and we use annual count data 

from 1956/57 to 2016/2017, which spans 3 GL or the recommended Red List assessment period. 

Of a possible 366 annual counts between 1956/57 to 2016/2017, 173 were not made for various 

reasons. Thus, the Cape Gannet dataset is chosen an example of multiple absolute abundance 

indices (with missing data) that in sum represents the trend of the global population. 

 

The output for Cape Gannet nicely exemplifies the decision-support element of JARA. Based on 

only the median %𝐶 (−51.3%), the species meets the criteria for classification as EN (Figure 5d). 

However, the uncertainty spans LC to EN; assessors may, therefore, also want to consider that 

while 55.6% of the posterior probability distribution falls into EN, 41.8% also falls into VU (Figure 

5d). Moreover, the percentage annual population change plots show that the decline has slowed 

and then accelerated over the last 2 GL (Figure 5c), while the retrospective plots show that the 

threshold for EN was first exceeded in 2013, but the situation has not worsened markedly to 2016. 

Assessors could then make an informed decision on whether to list the Cape Gannet as VU or EN, 

depending on how risk prone or adverse they wanted to be in their assessment and the presence of 

other mitigating factors. 

 

Simulation experiment results 

Median Absolute Errors (MAEs) between the estimated and ‘true’ percentage change over 3 

generation lengths (GL) using JARA as the EM was 3.63%. The Regression EM (7.87%) and Two-

Point EM (10.96%) had MAEs >2 and >3 times larger, respectively, showing a distinct decrease 

in the accuracy of the estimated %𝐶 in comparison to the JARA EM (Figure 7). In addition, 

although all three EMs showed a tendency towards a positive bias (Median Errors > 0), this bias 

was ~3.7 times larger for the regression EM (0.71%) and ~12 times larger for the Two-Point EM 

(2.26%) than for JARA (0.19%). Moreover, the median %C from JARA correctly identified the 
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‘true’ IUCN threat category in 89.5% of cases; > 10% more than the regression EM (which was 

based on the current IUCN guidelines) and >20% more than the Two-Point EM (Figure 7). 
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Figures 

 
Figure 1: Input datasets of standardized relative abundance indices (± 95% CIs) from South African trawl 
surveys for two chondrichthyes species, (a) Whitespot Smoothhound Mustelus palumbes and (b) 
Yellowspotted Skate Leucoraja wallacei and Model diagnostics plots produced by JARA showing (c) – (d) 
scaled observed relative abundance (coloured points) for each catch per unit effort (CPUE) timeseries with 
model fits (predicted relative abundance, black line) and 95% posterior predictive credibility intervals (grey 
polygons) and (e) – (f) colour-coded lognormal residuals of observed versus predicted abundance indices 
(coloured points), boxplots (grey bars) indicating the median and quantiles of all residuals available for any 
given year, and a loess smoother (black line) through all residuals to highlight any systematically auto-
correlated residual patterns. 
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Figure 2: Model diagnostics plots produced by JARA using data from Whitespot Smoothhound Mustelus 
palumbes. Each panel shows the state-space model fit (blue line) to the natural logarithm (log) of the 
observed relative abundance data (white points), shown with 95% credible intervals (black lines) derived 
from the observation variance. 
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Figure 3: JARA decision-support plots for (left) Whitespot Smoothhound Mustelus palumbes and (right) 
Yellowspotted Skate Leucoraja wallacei showing (a) – (b) the overall JARA fit (black line) to the observed 
timeseries and the projected (red line) population trajectory over three generation length (GL); (c) – (d) the 
posterior probability for the percentage annual population change calculated from all the observed data (in 
black), from the last 1 generation length (in blue), from the last 2 generation lengths (in green) with the 
medians (solid lines) shown relative to a stable population (% change = 0, black dashed line); (e) – (f) the 
median change over three generation lengths (“Change = xx”) and corresponding probabilities for rates of 
population change falling within the IUCN Red List categories. 
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Figure 4: JARA plots for trend analyses of two types of abundance information for Blue marlin Makaira 
nigricansbase: (left) ten standardized catch per unit effort (CPUE) indices from multiple fishing fleets 
(1959–2016) and (right) estimated biomass estimates from the 2018 Atlantic stock assessment conducted 
by the International Commission for the Conservation of Atlantic Tuna (ICCAT), showing (a) – (b)  scaled 
observed relative abundance with model fits (predicted relative abundance, black line) and 95% posterior 
predictive credibility intervals (grey polygons); (c) – (d) the overall JARA fit (black line) over the observed 
timeseries with vertical dashed lines denoting the periods corresponding to 1–3 GL; (e) – (f) the median 
change over three generation lengths (“Change = xx”) and corresponding probabilities for rates of 
population change falling within the IUCN Red List categories. 
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Figure 5: JARA decision-support plots for Cape Gannet Morus capensis showing (a) the JARA fits 
(coloured lines) and 95% credible intervals (grey polygons) to each observed abundance timeseries 
(coloured points); (b) the overall JARA fit (black line) to the observed timeseries and the projected (red 
line) population trajectory over three generation times (GLs); (c) the posterior probability for the percentage 
annual population change calculated from all the observed data (in black), from the last 1 generation length 
(in blue), from the last 2 generation lengths (in green), and from the last 3 generation lengths (in red) with 
the means (solid lines) shown relative to a stable population (% change = 0, black dashed line); (e) the 
median change over three GLs (“Change = xx”) and corresponding probabilities for rates of population 
change falling within the IUCN Red List categories; (e) retrospective pattern of total abundance estimates 
obtained through sequential removal of terminal years and subsequent forward projections to attain 3 GL 
(“retrospective peel”); and corresponding retrospective status posteriors of change over three generation 
lengths - coloured according to the IUCN Red List category thresholds for the Red List criteria A2. 
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Figure. 6: Simulated ‘true’ abundance trajectories and observations for the first 15 of 200 simulation runs 
together with estimated abundance trends using three alternative estimation models (EMs): (1) ‘Two-
Point”, (2) “Regression”, and (3) ‘JARA’. The vertical red dashed line denotes the assessment horizon of 
30 years (3 GL) and grey polygons show the 95% credible intervals for the JARA fit. 
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Figure. 7: Simulation testing results across 200 runs showing (a) boxplots of errors between the estimated 
and ‘true’ percentage change over 3 generation lengths (GL) with Median Absolute Errors and Median 
Errors (in brackets) displayed of each box and (b) barplots illustrating the percentages of correctly classified 
IUCN threat categories (LC, VU, EN, CR) for the three alternative estimation models (EMs): (1) ‘Two-
Point”, (2) “Regression”, and (3) ‘JARA’. 
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Supplementary Information 
 

 
Figure S1: Illustrations of (a) a simulated ‘true’ population trajectory, the corresponding observed 
values given the observation error and the underlying deterministic mean trend 𝑟̅; and (b) 
decomposed first-order autoregressive process error deviations simulating the natural variation in 
population numbers (Stochasticity) and a more persistent, regime-like variation in anthropogenic 
impact (Impact), together with a random observation deviations from the ‘true’ abundance due to 
random sampling error. 
 

 
Figure S2: Simulated distribution of the ‘true’ %C generated from 200 simulation replicates of 
abundance trajectories over a 30-year assessment horizon.    
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#------------------------------------------------------------------------------------------------------------- 
# Generic Population Simulator  
#------------------------------------------------------------------------------------------------------------- 
 
popsim = function(n0 = 1000 ,simyrs = 40,r.mu = runif(1,-0.05,0),proc.pop = 

0.1,AR1.pop=0.3,proc.imp=0.05,AR1.imp=0.8,CV.obs=0.15,GT=10,Plot=TRUE){  
# Process error 
# (1) stochastic variation in popdyn  
pop_var = rnorm(simyrs,0,proc.pop)  
# Add AR1 (serial auto-correlation) 
pop_dev = pop_var[1] 
for(y in 2:simyrs) pop_dev[y] =  AR1.pop * pop_dev[y-1]+pop_var[y]*sqrt(1-AR1.pop^2) 
 
# (2) random variation in impact (e.g. offtake)  
imp_var = rnorm(simyrs,0,proc.imp)  
# Add AR1 (serial auto-correlation) 
imp_dev = imp_var[1] 
for(y in 2:simyrs) imp_dev[y] =  AR1.imp * imp_dev[y-1]+imp_var[y]*sqrt(1-AR1.imp^2) 
 
# Combine all as latent effect in r vector given r.mu 
r = r.mu+pop_dev-imp_dev 
 
# Add random observation error 
obs_dev = rnorm(simyrs,0,CV.obs) 
 
# True Population 
n_t = n0*exp(r[1])  
for(t in 2:simyrs){  
n_t[t] =  n_t[t-1]*exp(r[t-1])  
if(n_t[t]>n0*1.5) n_t[t] = n0*1.5} 
 
# Deterministic trend 
nbar = n0  
for(t in 2:simyrs){ 
nbar[t] =  nbar[t-1]*exp(r.mu)} 
 
# Imperfect observation 
y_t =exp(log(n_t)+obs_dev) 
 
if(Plot==TRUE){ 
Par = list(mfrow=c(1,2),mar = c(4, 4, 1, 1), mgp =c(2.5,1,0),mai = c(0.6, 0.6, 0.1, 0.1),mex=0.8, tck = -0.02,cex=0.8) 
par(Par) 
# Error  
plot(n_t,ylim=c(0,max(n_t,y_t,n0*1.05)),type="l",col=2,lwd=2,ylab="Abundance",xlab="Year") 
points(y_t,pch=21,bg="white",type="p") 
lines(nbar,lty=2) 
legend("topright",c("True","Observed","Mean trend"),pch=c(-1,1,1),lwd=c(2,-1,1),col=c(2,1,1),lty=c(1,-1,2),bty="n",cex=0.8) 
legend("topleft","a)",bty="n",cex=1.1,x.intersp = -0.5,y.intersp = -0.2) 
plot(pop_dev,ylim=range(c(pop_dev,imp_dev,obs_dev)),type="l",col=3,lwd=2,ylab="Deviations",xlab="Year") 
lines(imp_dev,col=4,lwd=2) 
legend("topright",c("Stochasticity","Impact","Observation"),pch=c(-1,-1,1),lwd=c(2,2,1),col=c(3,4,1),bty="n",cex=0.8) 
points(obs_dev,type="b") 
abline(h=0,lty=2) 
legend("topleft","b)",bty="n",cex=1.1,x.intersp = -0.5,y.intersp = -0.2) 
 
} 
return(list(dat=data.frame(yr=1:simyrs,y=y_t),N=data.frame(yr=1:simyrs,N=n_t),r.mu=r.mu,perc.change=(n_t[simyrs]/n_t[simyrs-3*GT+1]-

1)*100)) 
} 
 
# Run function 
popsim() 
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