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Detailed computational model 1 

Previous models of the Dl nuclear gradient can be classified in terms of their complexity and the number 2 

of realistic features they support. In 2009, Kanodia et al. published pioneering modeling work on the Dl 3 

gradient, which captured the establishment of Dl gradient by an interaction between Dl, Cact and Toll in 4 

the cytoplasm. It was found that this model was inconsistent with the data from live measurements of 5 

Venus-tagged Dl. The only way to work around this inconsistency was to assume the presence of nuclear 6 

Cact, thus nuclear Dl/Cact. The following model equations represents the full model for the Dl system, 7 

which consists of three species namely, Dl, Cact and Dl/Cact complex that are allowed to move between 8 

cytoplasmic compartments and between nucleus and cytoplasm within a cell. 9 

𝑑[𝑉𝑛𝑢𝑐𝐶𝑑,𝑛𝑢𝑐
ℎ ]

𝑑𝑡
=  𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑑𝐶𝑑,𝑐𝑦𝑡

ℎ − 𝑘𝑜𝑢𝑡,𝑑𝐶𝑑,𝑛𝑢𝑐
ℎ ) − 𝑉𝑛𝑢𝑐(𝑘𝑏𝐶𝑑,𝑛𝑢𝑐

ℎ 𝐶𝑐,𝑛𝑢𝑐
ℎ ) (1) 

𝑑[𝑉𝑐𝑦𝑡𝐶𝑑,𝑐𝑦𝑡
ℎ ]

𝑑𝑡
=  𝐴𝑐𝑦𝑡𝛤𝑑(𝐶𝑑,𝑐𝑦𝑡

ℎ−1 − 2𝐶𝑑,𝑐𝑦𝑡
ℎ +  𝐶𝑑,𝑐𝑦𝑡

ℎ+1 ) + 𝑉𝑐𝑦𝑡 (
𝑘𝑑(𝑥)𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ

𝜅 + 𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ

−  𝑘𝑏𝐶𝑑,𝑐𝑦𝑡
ℎ 𝐶𝑐,𝑐𝑦𝑡

ℎ )   − 𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑑𝐶𝑑,𝑐𝑦𝑡
ℎ − 𝑘𝑜𝑢𝑡,𝑑𝐶𝑑,𝑛𝑢𝑐

ℎ ) 

(2) 

𝑑[𝑉𝑛𝑢𝑐𝐶𝑑𝑐,𝑛𝑢𝑐
ℎ ]

𝑑𝑡
=  𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑑𝑐𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ − 𝑘𝑜𝑢𝑡,𝑑𝑐𝐶𝑑𝑐,𝑛𝑢𝑐
ℎ ) +  𝑉𝑛𝑢𝑐(𝑘𝑏𝐶𝑑,𝑛𝑢𝑐

ℎ 𝐶𝑐,𝑛𝑢𝑐
ℎ ) (3) 

𝑑[𝑉𝑐𝑦𝑡𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ ]

𝑑𝑡
=  𝐴𝑐𝑦𝑡𝛤𝑑𝑐(𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ−1 − 2𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ + 𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ+1 ) − 𝑉𝑐𝑦𝑡 (
𝑘𝑑(𝑥)𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ

𝜅 + 𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ

−  𝑘𝑏𝐶𝑑,𝑐𝑦𝑡
ℎ 𝐶𝑐,𝑐𝑦𝑡

ℎ )   − 𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑑𝑐𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ − 𝑘𝑜𝑢𝑡,𝑑𝑐𝐶𝑑𝑐,𝑛𝑢𝑐

ℎ ) 

(4) 

𝑑[𝑉𝑛𝑢𝑐𝐶𝑐,𝑛𝑢𝑐
ℎ ]

𝑑𝑡
=  𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑐𝐶𝑐,𝑐𝑦𝑡

ℎ − 𝑘𝑜𝑢𝑡,𝑐𝐶𝑐,𝑛𝑢𝑐
ℎ ) − 𝑉𝑛𝑢𝑐(𝑘𝑏𝐶𝑑,𝑛𝑢𝑐

ℎ 𝐶𝑐,𝑛𝑢𝑐
ℎ ) (5) 
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𝑑[𝑉𝑐𝑦𝑡𝐶𝑐,𝑐𝑦𝑡
ℎ ]

𝑑𝑡
=  𝐴𝑐𝑦𝑡𝛤𝑐(𝐶𝑐,𝑐𝑦𝑡

ℎ−1 − 2𝐶𝑐,𝑐𝑦𝑡
ℎ +  𝐶𝑐,𝑐𝑦𝑡

ℎ+1 ) + 𝑉𝑐𝑦𝑡 (
𝑘𝑑(𝑥)𝐶𝑑𝑐,𝑐𝑦𝑡

ℎ

𝜅 + 𝐶𝑑𝑐,𝑐𝑦𝑡
ℎ −  𝑘𝑏𝐶𝑑,𝑐𝑦𝑡

ℎ 𝐶𝑐,𝑐𝑦𝑡
ℎ

−  𝑘𝑑𝑒𝑔𝐶𝑐,𝑐𝑦𝑡
ℎ )   − 𝐴𝑛𝑢𝑐(𝑘𝑖𝑛,𝑐𝐶𝑐,𝑐𝑦𝑡

ℎ − 𝑘𝑜𝑢𝑡,𝑐𝐶𝑐,𝑛𝑢𝑐
ℎ ) + 𝑃𝑐 

(6) 

Here, subscripts nuc and cyt represent nucleus and cytoplasm respectively; d, c, and dc represent species 10 

Dl, Cact, and Dl/Cact complex respectively; superscript h represents a nucleus and its associated 11 

cytoplasmic compartment. The parameters, 𝑘𝑖𝑛,𝑠𝑝𝑒𝑐𝑖𝑒𝑠 and 𝑘𝑜𝑢𝑡,𝑠𝑝𝑒𝑐𝑖𝑒𝑠 represents nuclear import and 12 

export rates, 𝑘𝑏 represents Dl/Cact binding constant, 𝛤𝑠𝑝𝑒𝑐𝑖𝑒𝑠 represents intercompartmental exchange 13 

rates, 𝑘𝑑(𝑥) = 𝑘𝑑
𝑚𝑎𝑥𝑒𝑥𝑝 (𝑥

𝜙⁄ )
2

represents the gaussian Toll-mediated rate constant and 𝜅 represents 14 

the Michaelis Menten constant for the dissociation of Dl/Cact complex, 𝑘𝑑𝑒𝑔 represents the degradation 15 

rate constant for Cact and 𝑃𝑐 represents rate of production of Cact. 16 

The Dl system is represented by 6 equations consisting of Dl, Cact and Dl/Cact in the nucleus and in the 17 

cytoplasm. This model is based on previous models used in the literature with some modifications. Firstly, 18 

Cact and the Dl/Cact complex were allowed to enter the nucleus and secondly Michaelis Menten kinetics 19 

was used to describe the dissociation of the Dl/Cact complex by Toll in the cytoplasm. The width of Toll 20 

gradient was fixed at 𝜙 =  0.15, which approximates the width of wildtype Dl gradients.  In order to 21 

minimally describe the effect of dosage of the Dl morphogen on the embryo’s development these 22 

equations were simplified based on the following assumptions. Firstly, since the time scales of transport 23 

of species between adjacent cytoplasmic compartments is much higher than that of nuclear exchange, a 24 

state of pseudo equilibrium is assumed between the nucleus and cytoplasm. Thus, 𝑘𝑜𝑢𝑡𝐶𝑛𝑢𝑐 ≈ 𝑘𝑖𝑛𝐶𝑐𝑦𝑡 or 25 

𝐶𝑛𝑢𝑐 ≈ 𝐾𝑒𝑞𝐶𝑐𝑦𝑡   where, 𝐾𝑒𝑞   ≡ 𝑘𝑖𝑛 𝑘𝑜𝑢𝑡⁄  is defined as the equilibrium constant for nuclear 26 

import/export. The values for the equilibrium constants are fixed at 𝐾𝑒𝑞,𝑑  =  4, 𝐾𝑒𝑞,𝑑𝑐  =  1 and 𝐾𝑒𝑞,𝑐  =27 

 1 (1). Secondly, since Cact has a high turnover rate, a uniform concentration of Cact, equal to that at the 28 

beginning of nuclear cycle 14 in wildtype embryos, was assumed. Shown below are equations where 29 
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concentrations have been non-dimensionalized using conditions at the beginning of nuclear cycle 14 in 30 

wildtype embryos.  31 

𝑑[(𝑉𝑛𝑢𝑐𝐾𝑒𝑞,𝑑 + 𝑉𝑐𝑦𝑡)𝑢ℎ]

𝑑𝑇

= 𝛤𝑑𝐴𝑐𝑦𝑡(𝑢ℎ−1 − 2𝑢ℎ +  𝑢ℎ+1) + 𝑉𝑐𝑦𝑡 (
𝛽(𝑥)𝑤ℎ

𝜅 + 𝐶𝑑
𝑤𝑡𝑤ℎ

− 𝑘𝑏𝐶𝑑
𝑤𝑡𝐶𝑐

𝑤𝑡 𝑢ℎ𝑣ℎ)

− 𝑉𝑛𝑢𝑐(𝑘𝑏𝐾𝑒𝑞,𝑑𝐾𝑒𝑞,𝑐𝐶𝑑
𝑤𝑡𝐶𝑐

𝑤𝑡 𝑢ℎ𝑣ℎ)    

(7) 

𝑑[(𝑉𝑛𝑢𝑐𝐾𝑒𝑞,𝑑𝑐 + 𝑉𝑐𝑦𝑡)𝑤ℎ]

𝑑𝑇

= 𝛤𝑑𝑐𝐴𝑐𝑦𝑡(𝑤ℎ−1 − 2𝑤ℎ +  𝑤ℎ+1)  − 𝑉𝑐𝑦𝑡 (
𝛽(𝑥)𝑤ℎ

𝜅 + 𝐶𝑑
𝑤𝑡𝑤ℎ

− 𝑘𝑏𝐶𝑐
𝑤𝑡𝑢ℎ𝑣ℎ)

+ 𝑉𝑛𝑢𝑐(𝑘𝑏𝐾𝑒𝑞,𝑑𝐾𝑒𝑞,𝑐𝐶𝑐
𝑤𝑡 𝑢ℎ𝑣ℎ) 

(8) 

𝑑[(𝑉𝑛𝑢𝑐𝐾𝑒𝑞,𝑐 + 𝑉𝑐𝑦𝑡)𝑣ℎ]

𝑑𝑇

= 𝛤𝑐𝐴𝑐𝑦𝑡(𝑣ℎ−1 − 2𝑣ℎ + 𝑣ℎ+1)

−
𝑉𝑐𝑦𝑡

𝐶𝑐
𝑤𝑡 (

𝛽(𝑥)𝐶𝑑
𝑤𝑡𝑤ℎ

𝜅 + 𝐶𝑑
𝑤𝑡𝑤ℎ

− 𝑘𝑏𝐶𝑑
𝑤𝑡𝐶𝑐

𝑤𝑡𝑢ℎ𝑣ℎ − 𝑘𝑑𝑒𝑔𝐶𝑐
𝑤𝑡𝑣ℎ)

+
𝑉𝑐𝑦𝑡

𝐶𝑐
𝑤𝑡 (𝑘𝑏𝐾𝑒𝑞,𝑑𝐾𝑒𝑞,𝑐𝐶𝑑

𝑤𝑡𝐶𝑐
𝑤𝑡 𝑢ℎ𝑣ℎ) +

𝑃𝑐

𝐶𝑐
𝑤𝑡 

(9) 

where, 32 

𝑢ℎ =
𝐶𝑑,𝑐𝑦𝑡

ℎ

𝐶𝑑
𝑤𝑡  𝑤ℎ =

𝐶𝑑𝑐,𝑐𝑦𝑡
𝑤𝑡

𝐶𝑑
𝑤𝑡  𝑣ℎ =

𝐶𝑐,𝑐𝑦𝑡
ℎ

𝐶𝑐
𝑤𝑡  𝐶𝑐

𝑤𝑡 =
𝑃𝑐

𝑘𝑑𝑒𝑔 
 33 

Due to the high turnover rate of Cact, equation 9, upon non-dimensionalizing simplifies to 𝑣ℎ  =  1. 34 

Finally, the equations in the main text were derived by non-dimensionalizing equations 7 and 8 using the 35 

following dimensionless parameters.  36 

 𝑉̃𝑐𝑦𝑡 =
𝑉𝑐𝑦𝑡

𝑉14̂
  𝐴̃𝑐𝑦𝑡 =

𝐴𝑐𝑦𝑡

𝐴14̂
   γ = −𝑘𝑏𝐶𝑐

𝑜𝑇̅  β = 𝑘𝑑
𝑚𝑎𝑥𝑇̅ λ𝑑 =  

𝐴𝑛𝑢𝑐
14 Γ𝑑𝑇

𝑉𝑛𝑢𝑐
14   λ𝑑𝑐 =  

𝐴𝑛𝑢𝑐
14 Γ𝑑𝑐𝑇

𝑉𝑛𝑢𝑐
14  37 
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Thus, based on the two assumptions, the full six equation model was reduced to the two-equation model 38 

as shown in the main text. 39 

Least squares method for determining robustness in the model 40 

The error in the predictions of boundaries of gene expression was defined, for every border, as follows, 41 

𝑒β(θ) = (𝜀β,1𝑥)
2

+ (𝜀β,2𝑥)
2

+ (𝜀β,4𝑥)
2

 

= (
𝑥𝛽,𝑚𝑜𝑑𝑒𝑙,1𝑥(𝜃) −  𝑥𝛽,𝑒𝑥𝑝,1𝑥

𝜎𝛽,𝑒𝑥𝑝,1𝑥
)

2

+ (
𝑥𝛽,𝑚𝑜𝑑𝑒𝑙,2𝑥(𝜃) −  𝑥𝛽,𝑒𝑥𝑝,2𝑥

𝜎𝛽,𝑒𝑥𝑝,2𝑥
)

2

+ (
𝑥𝛽,𝑚𝑜𝑑𝑒𝑙,4𝑥(𝜃) −  𝑥𝛽,𝑒𝑥𝑝,4𝑥

𝜎𝛽,𝑒𝑥𝑝,4𝑥
)

2

 

 

(10) 

where, 𝑥𝛽,𝑚𝑜𝑑𝑒𝑙,𝑔 is the model boundary prediction,𝑥𝛽,𝑒𝑥𝑝,𝑔 is the experimental measure of border and 42 

𝜎𝛽,𝑒𝑥𝑝,𝑔 is the experimentally observed variation in boundary of gene 𝛽 of genotype g. 43 

For any gene expression border 𝛽 ∈ 𝐵, where 𝐵 = {sna, sogd, sogv} and genotype 𝑔 ∈ 𝐺 where 𝐺 = {1x, 44 

2x, 4x}, the error is calculated by minimizing 𝑒𝛽(𝜃) with respect to its concentration threshold 𝜃. Those 45 

parameter sets with error values less than 1.5 for all gene expression boundaries, were deemed robust. 46 

  47 

Approximate gradient width for dl 1x gradients 48 

As the Dl gradient in embryos from mothers heterozygous for dl is not Gaussian-shaped, fitting it to a 49 

Gaussian gives an aberrant value for 𝜎. To attempt to characterize the flat-topped gradients by a value of 50 

𝜎 equivalent to its closest approximation to a wildtype gradient, we did the following. First, by averaging 51 

∼75 Dl gradients from 1x embryos, we created a “canonical” flat-topped gradient, normalized between 52 

zero and one, denoted 𝑓50(𝑥). Next, we fit each 1x Dl gradient to this canonical gradient by allowing the 53 
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spatial coordinate to be stretched (see Carrell et al., 2017; Liberman et al., 2009; Trisnadi et al., 2013 for 54 

examples). Therefore, for each 1x embryo 𝑖, we obtained a best-fit value of the spatial stretching factor, 55 

𝛿𝑖. 56 

Next, we calculated the area under the curve of a wt Gaussian: 57 

𝐼100 = ∫ exp (−
𝑥2

2𝜎2) 𝑑𝑥
1

0

≈ ∫ exp (−
𝑥2

2𝜎2) 𝑑𝑥
∞

0

= 𝜎√2 ∫ exp(−𝑧2) 𝑑𝑧
∞

0

= 𝜎√
𝜋

2
 (10) 

 58 

where 𝑧 = 𝑥 (𝜎√2)⁄ , and the change of the upper limit of integration to ∞ is valid because 𝜎 ≤ 0.3. The 59 

average width of the wildtype gradient is 𝜎𝑤𝑡 = 0.152, which implies 𝐼100 = 0.1880.  60 

Next, we calculated the area under the curve of 𝑓50(𝑥), which was 𝐼50 = 0.2438. Next, we computed the 61 

value of 𝛼50 makes 𝛼50𝐼50 = 0.5𝐼100, and found  that 𝛼50 = 0.3855. Finally, to calculate the equivalent 62 

Gaussian-like width of the 1x Dl gradients, we computed the value of sigma that minimizes the following: 63 

𝜀 = ∫ [𝑓100(𝑥; 𝜎) − 𝛼50𝑓50(𝑥)]2𝑑𝑥
𝑥2

𝑥1

 (11) 

This value of 𝜎, which we will call 𝜎1×
𝑒𝑓𝑓

 is 0.1283. In other words, if the average 1x embryo has 50% of the 64 

Dl in an average wildtype embryo, then the Dl gradient in an average 1x embryo looks most like a wildtype 65 

gradient with a width of 0.1283 (slightly narrower than the average wildtype gradient). Taking this base 66 

value of 𝜎1×
𝑒𝑓𝑓

, we can find the effective gradient width for each embryo 𝑖 by multiplying by 𝛿𝑖. 67 

 68 

Least squares calculations for thresholds and amplitudes in the empirical description 69 

To estimate the necessary amplitude of the 1x and 4x canonical curves, with respect to wt, in order to 70 

achieve the observed gene expression (and given the observed shape and width of the Dl gradient), we 71 
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constructed a least squares estimation. Let the objective function 𝑓 be the sum of the squares of error 72 

between the (empirical) Dl gradient at the locations of a given gene expression boundary and the 73 

estimated threshold for that gene: 74 

𝑓(𝜶, 𝜽, 𝑿, 𝑺) = ∑ ∑(𝜀𝛽,𝑔)
2

𝛽∈𝐵𝑔∈𝐺

= ∑ ∑ (
𝛼𝑔𝐷𝑙𝑔(𝑥𝛽,𝑔, 𝜎𝑔) − 𝜃𝛽

𝑠𝛽,𝑔
)

2

𝛽∈𝐵𝑔∈𝐺

 (12) 

 75 

…where the vector 𝜶 = [𝛼1𝑥, 𝛼2𝑥 , 𝛼4𝑥], the vector 𝜽 = [𝜃𝑠𝑛𝑎, 𝜃𝑠𝑜𝑔𝑣 , 𝜃𝑠𝑜𝑔𝑑], the set of genotypes is 𝐺 =76 

{1x,2x,4x}, the set of boundaries is 𝐵 = {sna, sogv, sogd}, and 𝑥𝛽,𝑔 is the boundary location and 𝑠𝛽,𝑔 is a 77 

measure of the variability for that genotype and boundary. In addition, the position array 𝑿 and standard 78 

error array 𝑺 are: 79 

 80 

𝑿 = [

𝑥𝑠𝑛𝑎,1𝑥 𝑥𝑠𝑛𝑎,2𝑥 𝑥𝑠𝑛𝑎,4𝑥

𝑥𝑠𝑜𝑔𝑣,1𝑥 𝑥𝑠𝑜𝑔𝑣,2𝑥 𝑥𝑠𝑜𝑔𝑣,4𝑥

𝑥𝑠𝑜𝑔𝑑,1𝑥 𝑥𝑠𝑜𝑔𝑑,2𝑥 𝑥𝑠𝑜𝑔𝑑,4𝑥

] 
(13) 

 81 

𝑺 = [

𝑠𝑠𝑛𝑎,1𝑥 𝑠𝑠𝑛𝑎,2𝑥 𝑠𝑠𝑛𝑎,4𝑥

𝑠𝑠𝑜𝑔𝑣,1𝑥 𝑠𝑠𝑜𝑔𝑣,2𝑥 𝑠𝑠𝑜𝑔𝑣,4𝑥

𝑠𝑠𝑜𝑔𝑑,1𝑥 𝑠𝑠𝑜𝑔𝑑,2𝑥 𝑠𝑠𝑜𝑔𝑑,4𝑥

] 
(14) 

This can also be written more transparently as: 82 

𝑓(𝜶, 𝜽, 𝑑𝑎𝑡𝑎) = ∑(𝜀𝛽,1𝑥)
2

+ (𝜀𝛽,2𝑥)
2

+ (𝜀𝛽,4𝑥)
2

𝛽∈𝐵

 
(15) 
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= ∑ (
𝛼1𝑥𝐷𝑙1𝑥(𝑥𝛽,1𝑥, 𝜎1𝑥) − 𝜃𝛽

𝑠𝛽,1𝑥
)

2

+ (
𝐷𝑙𝑤𝑡(𝑥𝛽,2𝑥, 𝜎2𝑥) − 𝜃𝛽

𝑠𝛽,2𝑥
)

2

𝛽∈𝐵

+ (
𝛼4𝑥𝐷𝑙𝑤𝑡(𝑥𝛽,4𝑥, 𝜎4𝑥) − 𝜃𝛽

𝑠𝛽,4𝑥
)

2

 

 83 

This function can be minimized by least squares, with respect to varying 𝛼1𝑥 , 𝛼4𝑥, 𝜃𝑠𝑛𝑎, 𝜃𝑠𝑜𝑔𝑣 , 𝜃𝑠𝑜𝑔𝑑.  84 
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 104 

Figure S1. Concentration profiles of free Dl and Dl/Cact (robust parameters). This figure shows 105 

concentration profiles of free Dl & Dl/Cact, for parameter sets that were accepted as robust. The plots 106 

show non-zero concentration for Dl/Cact complexes at the dorsal midline at 𝑥 =  1. 107 
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109 

Figure S2. Concentration profiles of free Dl (non-robust parameters). This figure shows concentration 110 

profiles of free Dl, for parameter sets, that were rejected as not robust. In most cases, concentration 111 

curves do not decay to zero at the dorsal midline. 112 
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