Previous models of the DI nuclear gradient can be classified in terms of their complexity and the number of realistic features they support. In 2009, Kanodia et al. published pioneering modeling work on the DI gradient, which captured the establishment of DI gradient by an interaction between DI, Cact and Toll in the cytoplasm. It was found that this model was inconsistent with the data from live measurements of Venus-tagged DI. The only way to work around this inconsistency was to assume the presence of nuclear Cact, thus nuclear DI/Cact. The following model equations represents the full model for the Dl system, which consists of three species namely, DI, Cact and DI/Cact complex that are allowed to move between cytoplasmic compartments and between nucleus and cytoplasm within a cell.

$$
\begin{align*}
& \frac{d\left[V_{n u c} C_{d, n u c}^{h}\right]}{d t}= A_{n u c}\left(k_{i n, d} C_{d, c y t}^{h}-k_{o u t, d} C_{d, n u c}^{h}\right)-V_{n u c}\left(k_{b} C_{d, n u c}^{h} C_{c, n u c}^{h}\right) \tag{1}\\
&\left.\begin{array}{rl}
\frac{d\left[V_{c y t} C_{d, c y t}^{h}\right]}{d t}= & A_{c y t} \Gamma_{d}\left(C_{d, c y t}^{h-1}-2 C_{d, c y t}^{h}+C_{d, c y t}^{h+1}\right)+V_{c y t}\left(\frac{k_{d}(x) C_{d c, c y t}^{h}}{\kappa+C_{d c, c y t}^{h}}\right. \\
& \left.-k_{b} C_{d, c y t}^{h} C_{c, c y t}^{h}\right)-A_{n u c}\left(k_{i n, d} C_{d, c y t}^{h}-k_{o u t, d} C_{d, n u c}^{h}\right) \\
\frac{d\left[V_{n u c} C_{d c, n u c}^{h}\right]}{d t}= & A_{n u c}\left(k_{i n, d c} C_{d c, c y t}^{h}-k_{o u t, d c} C_{d c, n u c}^{h}\right)+V_{n u c}\left(k_{b} C_{d, n u c}^{h} C_{c, n u c}^{h}\right) \\
\begin{array}{rl}
\frac{d\left[V_{c y t} C_{d c, c y t}^{h}\right]}{d t}= & A_{c y t} \Gamma_{d c}\left(C_{d c, c y t}^{h-1}-2 C_{d c, c y t}^{h}+C_{d c, c y t}^{h+1}\right)-V_{c y t}\left(\frac{k_{d}(x) C_{d c, c y t}^{h}}{\kappa+C_{d c, c y t}^{h}}\right. \\
& \left.-k_{b} C_{d, c y t}^{h} C_{c, c y t}^{h}\right)-A_{n u c}\left(k_{i n, d c} C_{d c, c y t}^{h}-k_{o u t, d c} C_{d c, n u c}^{h}\right) \\
\frac{d\left[V_{n u c} C_{c, n u c}^{h}\right]}{d t}= & A_{n u c}\left(k_{i n, c} C_{c, c y t}^{h}-k_{o u t, c} C_{c, n u c}^{h}\right)-V_{n u c}\left(k_{b} C_{d, n u c}^{h} C_{c, n u c}^{h}\right)
\end{array}
\end{array}\right) \tag{2}
\end{align*}
$$

$$
\begin{align*}
\frac{d\left[V_{c y t} C_{c, c y t}^{h}\right]}{d t} & =A_{c y t} \Gamma_{c}\left(C_{c, c y t}^{h-1}-2 C_{c, c y t}^{h}+C_{c, c y t}^{h+1}\right)+V_{c y t}\left(\frac{k_{d}(x) C_{d c, c y t}^{h}}{\kappa+C_{d c, c y t}^{h}}-k_{b} C_{d, c y t}^{h} C_{c, c y t}^{h}\right. \tag{6}\\
& \left.-k_{d e g} C_{c, c y t}^{h}\right)-A_{n u c}\left(k_{i n, c} C_{c, c y t}^{h}-k_{o u t, c} C_{c, n u c}^{h}\right)+P_{c}
\end{align*}
$$

Here, subscripts nuc and cyt represent nucleus and cytoplasm respectively; d, c, and $d c$ represent species DI, Cact, and DI/Cact complex respectively; superscript h represents a nucleus and its associated cytoplasmic compartment. The parameters, $k_{\text {in,species }}$ and $k_{\text {out,species }}$ represents nuclear import and export rates, k_{b} represents $\mathrm{Dl} /$ Cact binding constant, $\Gamma_{\text {species }}$ represents intercompartmental exchange rates, $k_{d}(x)=k_{d}^{\max } \exp (x / \phi)^{2}$ represents the gaussian Toll-mediated rate constant and κ represents the Michaelis Menten constant for the dissociation of DI/Cact complex, $k_{\text {deg }}$ represents the degradation rate constant for Cact and P_{c} represents rate of production of Cact.

The DI system is represented by 6 equations consisting of DI , Cact and $\mathrm{DI} /$ Cact in the nucleus and in the cytoplasm. This model is based on previous models used in the literature with some modifications. Firstly, Cact and the $\mathrm{DI} /$ Cact complex were allowed to enter the nucleus and secondly Michaelis Menten kinetics was used to describe the dissociation of the DI/Cact complex by Toll in the cytoplasm. The width of Toll gradient was fixed at $\phi=0.15$, which approximates the width of wildtype DI gradients. In order to minimally describe the effect of dosage of the DI morphogen on the embryo's development these equations were simplified based on the following assumptions. Firstly, since the time scales of transport of species between adjacent cytoplasmic compartments is much higher than that of nuclear exchange, a state of pseudo equilibrium is assumed between the nucleus and cytoplasm. Thus, $k_{\text {out }} C_{n u c} \approx k_{\text {in }} C_{c y t}$ or $C_{n u c} \approx K_{e q} C_{c y t}$ where, $K_{e q} \equiv k_{\text {in }} / k_{\text {out }}$ is defined as the equilibrium constant for nuclear import/export. The values for the equilibrium constants are fixed at $K_{e q, d}=4, K_{e q, d c}=1$ and $K_{e q, c}=$ 1 (1). Secondly, since Cact has a high turnover rate, a uniform concentration of Cact, equal to that at the beginning of nuclear cycle 14 in wildtype embryos, was assumed. Shown below are equations where
concentrations have been non-dimensionalized using conditions at the beginning of nuclear cycle 14 in wildtype embryos.

$$
\begin{align*}
& \frac{d\left[\left(V_{n u c} K_{e q, d}+V_{c y t}\right) u^{h}\right]}{d T} \\
& \quad=\Gamma_{d} A_{c y t}\left(u^{h-1}-2 u^{h}+u^{h+1}\right)+V_{c y t}\left(\frac{\beta(x) w^{h}}{\kappa+C_{d}^{w t} w^{h}}-k_{b} C_{d}^{w t} C_{c}^{w t} u^{h} v^{h}\right) \tag{7}\\
& \quad-V_{n u c}\left(k_{b} K_{e q, d} K_{e q, c} C_{d}^{w t} C_{c}^{w t} u^{h} v^{h}\right) \\
& \begin{aligned}
\frac{d\left[\left(V_{n u c} K_{e q, d c}+V_{c y t}\right) w^{h}\right]}{d T}
\end{aligned} \\
& \quad=\Gamma_{d c} A_{c y t}\left(w^{h-1}-2 w^{h}+w^{h+1}\right)-V_{c y t}\left(\frac{\beta(x) w^{h}}{\kappa+C_{d}^{w t} w^{h}}-k_{b} C_{c}^{w t} u^{h} v^{h}\right) \tag{8}\\
& \quad+V_{n u c}\left(k_{b} K_{e q,, d} K_{e q, c} C_{c}^{w t} u^{h} v^{h}\right) \\
& \frac{d\left[\left(V_{n u c} K_{e q, c}+V_{c y t}\right) v^{h}\right]}{d T} \\
& \\
& \quad=\Gamma_{c} A_{c y t}\left(v^{h-1}-2 v^{h}+v^{h+1}\right) \tag{9}\\
& \\
& \quad-\frac{V_{c y t}}{C_{c}^{w t}}\left(\frac{\beta(x) C_{d}^{w t} w^{h}}{\kappa+C_{d}^{w t} w^{h}}-k_{b} C_{d}^{w t} C_{c}^{w t} u^{h} v^{h}-k_{d e g} C_{c}^{w t} v^{h}\right) \\
& \\
& \quad+\frac{V_{c y t}}{C_{c}^{w t}}\left(k_{b} K_{e q, d} K_{e q, c} C_{d}^{w t} C_{c}^{w t} u^{h} v^{h}\right)+\frac{P_{c}}{C_{c}^{w t}}
\end{align*}
$$

where,
$u^{h}=\frac{C_{d, c y t}^{h}}{C_{d}^{w t}} \quad w^{h}=\frac{C_{d, c, c y t}^{w t}}{C_{d}^{w t}} \quad v^{h}=\frac{C_{c, c y t}^{h}}{C_{c}^{w t}} \quad C_{c}^{w t}=\frac{P_{c}}{k_{\text {deg }}}$
Due to the high turnover rate of Cact, equation 9 , upon non-dimensionalizing simplifies to $v^{h}=1$. Finally, the equations in the main text were derived by non-dimensionalizing equations 7 and 8 using the following dimensionless parameters.

$$
\tilde{V}_{c y t}=\frac{V_{c y t}}{V_{14}} \quad \tilde{A}_{c y t}=\frac{A_{c y t}}{\widehat{A_{14}}} \quad \gamma=-k_{b} C_{c}^{o} \bar{T} \quad \beta=k_{d}^{\max } \bar{T} \quad \lambda_{d}=\frac{A_{n u c}^{14} \Gamma_{d} T}{V_{n u c}^{14}} \quad \lambda_{d c}=\frac{A_{n u c}^{14} \Gamma_{d c} T}{V_{n u c}^{14}}
$$

Thus, based on the two assumptions, the full six equation model was reduced to the two-equation model as shown in the main text.

Least squares method for determining robustness in the model

The error in the predictions of boundaries of gene expression was defined, for every border, as follows,

$$
\begin{gather*}
e_{\beta}(\theta)=\left(\varepsilon_{\beta, 1 x}\right)^{2}+\left(\varepsilon_{\beta, 2 x}\right)^{2}+\left(\varepsilon_{\beta, 4 x}\right)^{2} \\
=\left(\frac{x_{\beta, \text { model,1x }}(\theta)-x_{\beta, \text { exp }, 1 x}}{\sigma_{\beta, \exp , 1 x}}\right)^{2}+\left(\frac{x_{\beta, \text { model,2x }}(\theta)-x_{\beta, \text { exp }, 2 x}}{\sigma_{\beta, \exp , 2 x}}\right)^{2} \tag{10}\\
+\left(\frac{x_{\beta, \text { model }, 4 x}(\theta)-x_{\beta, \exp , 4 x}}{\sigma_{\beta, \exp , 4 x}}\right)^{2}
\end{gather*}
$$

where, $x_{\beta, \text { model,g }}$ is the model boundary prediction, $x_{\beta, e x p, g}$ is the experimental measure of border and $\sigma_{\beta, \operatorname{exp,g}}$ is the experimentally observed variation in boundary of gene β of genotype g.

For any gene expression border $\beta \in B$, where $B=\{$ sna, sogd, sogv $\}$ and genotype $g \in G$ where $G=\{1 x$, $2 \mathrm{x}, 4 \mathrm{x}\}$, the error is calculated by minimizing $e_{\beta}(\theta)$ with respect to its concentration threshold θ. Those parameter sets with error values less than 1.5 for all gene expression boundaries, were deemed robust.

Approximate gradient width for dl 1x gradients

As the Dl gradient in embryos from mothers heterozygous for $d l$ is not Gaussian-shaped, fitting it to a Gaussian gives an aberrant value for σ. To attempt to characterize the flat-topped gradients by a value of σ equivalent to its closest approximation to a wildtype gradient, we did the following. First, by averaging ~75 DI gradients from 1x embryos, we created a "canonical" flat-topped gradient, normalized between zero and one, denoted $f_{50}(x)$. Next, we fit each $1 x$ DI gradient to this canonical gradient by allowing the
spatial coordinate to be stretched (see Carrell et al., 2017; Liberman et al., 2009; Trisnadi et al., 2013 for examples). Therefore, for each $1 x$ embryo i, we obtained a best-fit value of the spatial stretching factor, δ_{i}.

Next, we calculated the area under the curve of a wt Gaussian:

$$
\begin{equation*}
I_{100}=\int_{0}^{1} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x \approx \int_{0}^{\infty} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x=\sigma \sqrt{2} \int_{0}^{\infty} \exp \left(-z^{2}\right) d z=\sigma \sqrt{\frac{\pi}{2}} \tag{10}
\end{equation*}
$$

where $z=x /(\sigma \sqrt{2})$, and the change of the upper limit of integration to ∞ is valid because $\sigma \leq 0.3$. The average width of the wildtype gradient is $\sigma_{w t}=0.152$, which implies $I_{100}=0.1880$.

Next, we calculated the area under the curve of $f_{50}(x)$, which was $I_{50}=0.2438$. Next, we computed the value of α_{50} makes $\alpha_{50} I_{50}=0.5 I_{100}$, and found that $\alpha_{50}=0.3855$. Finally, to calculate the equivalent Gaussian-like width of the $1 \times$ Dl gradients, we computed the value of sigma that minimizes the following:

$$
\begin{equation*}
\varepsilon=\int_{x_{1}}^{x_{2}}\left[f_{100}(x ; \sigma)-\alpha_{50} f_{50}(x)\right]^{2} d x \tag{11}
\end{equation*}
$$

This value of σ, which we will call $\sigma_{1 \times}^{e f f}$ is 0.1283 . In other words, if the average 1 x embryo has 50% of the Dl in an average wildtype embryo, then the DI gradient in an average $1 x$ embryo looks most like a wildtype gradient with a width of 0.1283 (slightly narrower than the average wildtype gradient). Taking this base value of $\sigma_{1 \times}^{e f f}$, we can find the effective gradient width for each embryo i by multiplying by δ_{i}.

Least squares calculations for thresholds and amplitudes in the empirical description

To estimate the necessary amplitude of the $1 x$ and $4 x$ canonical curves, with respect to $w t$, in order to achieve the observed gene expression (and given the observed shape and width of the DI gradient), we
constructed a least squares estimation. Let the objective function f be the sum of the squares of error between the (empirical) DI gradient at the locations of a given gene expression boundary and the estimated threshold for that gene:

$$
\begin{equation*}
f(\boldsymbol{\alpha}, \boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{S})=\sum_{g \in G} \sum_{\beta \in B}\left(\varepsilon_{\beta, g}\right)^{2}=\sum_{g \in G} \sum_{\beta \in B}\left(\frac{\alpha_{g} D l_{g}\left(x_{\beta, g}, \sigma_{g}\right)-\theta_{\beta}}{s_{\beta, g}}\right)^{2} \tag{12}
\end{equation*}
$$

...where the vector $\boldsymbol{\alpha}=\left[\alpha_{1 x}, \alpha_{2 x}, \alpha_{4 x}\right]$, the vector $\boldsymbol{\theta}=\left[\theta_{\text {sna }}, \theta_{\text {sogv }}, \theta_{\text {sogd }}\right]$, the set of genotypes is $G=$ $\{1 \mathrm{x}, 2 \mathrm{x}, 4 \mathrm{x}\}$, the set of boundaries is $B=\{$ sna, sogv, sogd $\}$, and $x_{\beta, g}$ is the boundary location and $s_{\beta, g}$ is a measure of the variability for that genotype and boundary. In addition, the position array \boldsymbol{X} and standard error array \boldsymbol{S} are:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
x_{\text {sna }, 1 x} & x_{\text {sna }, 2 x} & x_{\text {sna }, 4 x} \tag{13}\\
x_{\operatorname{sogv}, 1 x} & x_{\text {sogv }, 2 x} & x_{\operatorname{sogv}, 4 x} \\
x_{\text {sogd }, 1 x} & x_{\text {sogd }, 2 x} & x_{\text {sogd }, 4 x}
\end{array}\right]
$$

$$
\boldsymbol{S}=\left[\begin{array}{ccc}
s_{\text {sna }, 1 x} & s_{\text {sna }, 2 x} & s_{\text {sna }, 4 x} \tag{14}\\
s_{\text {sogv }, 1 x} & s_{\text {sogv }, 2 x} & s_{\text {sogv }, 4 x} \\
s_{\text {sogd }, 1 x} & s_{\text {sogd }, 2 x} & s_{\text {sogd }, 4 x}
\end{array}\right]
$$

This can also be written more transparently as:

$$
\begin{equation*}
f(\boldsymbol{\alpha}, \boldsymbol{\theta}, \text { data })=\sum_{\beta \in B}\left(\varepsilon_{\beta, 1 x}\right)^{2}+\left(\varepsilon_{\beta, 2 x}\right)^{2}+\left(\varepsilon_{\beta, 4 x}\right)^{2} \tag{15}
\end{equation*}
$$

$$
\begin{gathered}
=\sum_{\beta \in B}\left(\frac{\alpha_{1 x} D l_{1 x}\left(x_{\beta, 1 x}, \sigma_{1 x}\right)-\theta_{\beta}}{s_{\beta, 1 x}}\right)^{2}+\left(\frac{D l_{w t}\left(x_{\beta, 2 x}, \sigma_{2 x}\right)-\theta_{\beta}}{s_{\beta, 2 x}}\right)^{2} \\
+\left(\frac{\alpha_{4 x} D l_{w t}\left(x_{\beta, 4 x}, \sigma_{4 x}\right)-\theta_{\beta}}{s_{\beta, 4 x}}\right)^{2}
\end{gathered}
$$

This function can be minimized by least squares, with respect to varying $\alpha_{1 x}, \alpha_{4 x}, \theta_{\text {sna }}, \theta_{\text {sogv }}, \theta_{\text {sogd }}$.

References

1. O^{\prime} Connell MD, Reeves GT. The presence of nuclear cactus in the early drosophila embryo may extend the dynamic range of the dorsal gradient. Baker RE, editor. PLoS Comput Biol [Internet]. 2015 Apr 16 [cited 2018 Jan 11];11(4):e1004159. Available from: http://dx.plos.org/10.1371/journal.pcbi. 1004159
2. Liberman LM, Reeves GT, Stathopoulos A. Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc Natl Acad Sci U S A [Internet]. 2009 Dec 29 [cited 2018 Jan 11];106(52):22317-22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20018754
3. Trisnadi N, Altinok A, Stathopoulos A, Reeves GT. Image analysis and empirical modeling of gene and protein expression. Methods [Internet]. 2013 Jul 15 [cited 2018 Jul 16];62(1):68-78. Available from: https://www.sciencedirect.com/science/article/pii/S1046202312002629?via\%3Dihub
4. Carrell SN, O’Connell MD, Jacobsen T, Pomeroy AE, Hayes SM, Reeves GT. A facilitated diffusion mechanism establishes the Drosophila Dorsal gradient. Development [Internet]. 2017 [cited 2018 Mar 6];144(23):4450-61. Available from:

Figure S1. Concentration profiles of free Dl and $\mathrm{Dl} /$ Cact (robust parameters). This figure shows concentration profiles of free $\mathrm{Dl} \& \mathrm{Dl} /$ Cact, for parameter sets that were accepted as robust. The plots show non-zero concentration for $\mathrm{Dl} /$ Cact complexes at the dorsal midline at $x=1$.

Figure S2. Concentration profiles of free DI (non-robust parameters). This figure shows concentration profiles of free DI, for parameter sets, that were rejected as not robust. In most cases, concentration curves do not decay to zero at the dorsal midline.

