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Abstract 

Recent advances in single-cell RNA sequencing (scRNA-Seq) have driven the simultaneous 

measurement of the expression of 1,000s of genes in 1,000s of single cells. These growing data 

sets allow us to model gene sets in biological networks at an unprecedented level of detail, in 

spite of heterogenous cell populations. Here, we propose an unsupervised deep neural 

network model that is a hybrid of matrix factorization and conditional variational 

autoencoders (CVA), which utilizes weights as matrix factorizations to obtain gene sets, while 

class-specific inputs to the latent variable space facilitate a plausible identification of cell 

types. This artificial neural network model seamlessly integrates functional gene set inference, 

experimental batch effect correction, and static gene identification, which we conceptually 

prove here for three single-cell RNA-Seq datasets and suggest for future single-cell-gene 

analytics. 

 

Main 

Gene expression is a hierarchical, structured and highly controlled process that is the major 

determinant of identity and state in cells. Thereby, genes of same functional ‘origin’ can 

typically be grouped into sets that share a common expression, regulation, or function across 

different cells. These gene sets or genetic pathways can be identified through prior 

knowledge. Additionally, co-expression and co-regulation of genes from measured 

experiments have been used to inform these pathways by regulators1 or tissue-specificty2.  

However, manual generation and curation of these data is biased towards published sets3, 

error-prone, and time consuming as well. Until recently, the modeling of gene sets using 
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advanced machine learning (ML) approaches was limited by unbalanced RNA sequencing 

studies measuring the expression of 10,000s known genes expressed in only few tissue 

samples, completely neglecting cellular heterogeneity within bulk samples. With the advent 

of single-cell RNA sequencing the simultaneous measurement of individual gene expression 

in 1,000s to 100,000s single cells is feasible. By massive probing of gene expression correlation 

in the variation of gene expression within tissues, subtle genetic relationships in heterogenous 

tissues can now be studied. 

Because of typical multiple assignments of genes (N) to different sets (M), methods that 

parameterize weights to connect genes to sets, capture biological complicity more accurately 

than any hard-clustering (1-to-M). To this end, in very high-dimensional scRNA-Seq 

factorizations and rotations of the gene expression matrices such as principal component 

analysis (PCA) or its variant singular value decomposition (SVD)4–6, and in case of multiple 

samples related canonical correlation analysis (CCA), are applied7,8. Easier interpretability of 

matrix factorization in scRNA-Seq has been achieved through enforcing sparsity of weights in 

sparse decomposition of arrays (SDA)9,10. Non-negative matrix factorization (NMF) and 

derived methods specifically account for the inherent non-negativity of gene expression by 

decomposing the expression matrix into matrices with strictly positive values11 and are 

accordingly performed in single cell sequencing analysis12–14. Moreover, further 

decomposition steps can adequately add hierarchical organization of the component spaces 

in NMF15,16. Although these deep NMF algorithms are algorithmically similar to deep 

autoencoders (AEs)16,17, they do not satisfy more complex, nonlinear relationships18. 

Variational autoencoders (VAE) estimating the underlying probability distribution of the input 

data19,20 have been successfully used in scRNA-Seq, with a special focus on the latent variable 
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space for dimension reduction and clustering21,22. It is worth noting that the two previously 

mentioned algorithms are not mutually exclusive and concepts may be combined for specific 

applications (NMF12 and AE12,17), becoming more practical if the latent variable space takes 

specific cell type classes into account across training of the network model. 

A hybrid VAE and NMF based network for gene set inference 

We propose a VAE and NMF based neural network architecture for gene set inference and 

batch effect correction using scRNA-Seq data as input, named conditional variational 

autoencoder (CVA). This architecture can assign dimensions or latent variables to certain 

predefined classes by setting the activation of all other latent variables to zero. The resultant 
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Figure 1 – CVA network architecture a) General architecture of the deep neural network employed here. 
b) Illustration of the connectivities and encoded entities within the decoder part of the network, which is 
used for gene set inference. c) Mathematical operations in the decoder network and their counterparts in 
biological systems. d) Clustered heatmap depicting the weight mappings from the class specific latent 
variable space (rows) to genes (columns). 
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network has a shared encoder and decoder network, but a class-specific, spherical latent 

variable space (Fig. 1a). This allows for separation of the contribution of overlapping effects, 

e.g. when the latent space separation is used to encode for cell type, batch, and other 

confounders. Individual decomposing layers in the neural network can access different, 

hierarchically organized structures of the data. In the case of cell types as latent variable 

determinants, hierarchical grouping of pathways and co-expressed gene sets are modeled in 

decoder layers of the CVA (Fig. 1b). In contrast to most standard neural network architectures, 

we omitted the bias terms from all decoder layers, making our decoder network more similar 

to an NMF. Keeping the bias term of the output layer as trainable parameter abstracts static 

components of gene expression, i.e. housekeeping genes (expressed in all cell types). In 

contrast to algorithms performing matrix factorizations, we implement activation functions 

for all layers to mimic complexity in gene expression and toggle switching of e.g. transcription 

factors. In the context of our VAE, gene expression and pathway activity correspond to layer 

activations, which are consequently forced to be zero or positive by the rectifier linear unit 

(ReLU) activation (Fig. 1c). The separation of activation and weights allows the isolation of the 

magnitude and direction of the influence of gene sets on genes, irrespective of their current 

activation state. The connection strength between a hidden decoder layer and the output 

layer representing individual genes can thus be obtained by multiplying the weight matrices 

of all subsequent layers. This results in a single matrix of genes assigned to introduced cell 

types (Fig. 1d). 

Gene set inference from entire organisms 

In order to evaluate the performance of our CVA model for gene set inference, we applied the 

algorithm to a scRNA-Seq dataset from C. elegans, comprising over 30,000 cells of 27 different 
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Figure 2 – Gene set and housekeeping gene inference from C. elegans scRNA-Seq a – c) Gene set 
enrichment of the mappings from three cell type specific latent variable spaces to genes. Only gene sets 
with an enrichment P-value < 10-2 are shown and lists are truncated to a maximum of 11 entries. a) 
cholinergic neuron, b) germ cell, c) body wall muscle specific latent variable space mapping. d – f) Gene set 
enrichment of weight mappings from three neurons from the first decoder layer to genes. g) Gene set 
enrichment of weight mappings from one neuron from the second decoder layer to genes. h) Gene set 
enrichment of the genes with high bias terms associated with them. i) Scatterplot and kernel density 
estimate of bias terms versus Gini coefficient in the normalized expression matrix for all genes in the 
dataset. The C. elegans orthologs of b-actin (act-2), a-tubulin (tba-1), b-tubulin (tbb-2), and the eukaryotic 
translation initiation factor 2 (eef-2) are highlighted. Colors of the graphics a)-h) correspond to the layers 
of the CVA in Fig. 1b. 
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cell types23. This dataset captures most cell types present in the adult worm, making it ideally 

suited for gene set and pathway inference. In a first sanity check, we obtained the connection 

weights from the cell type encoding latent variable space to the output genes. We then 

calculated the associated genes and performed gene set enrichment analyses using 

Metascape24 as benchmarks. Example mappings for different cell types showed a good 

concordance of the obtained pathway enrichments with expected values (Fig. 2a-c). The 

presence of ‘acetylcholine metabolic process’ in the enriched terms for cholinergic nerve cells 

(Fig. 2a) shows that specific terms for subtypes are detected by the algorithm. We then set 

out to investigate gene sets activated by specific (mathematical) neurons of the hidden 

decoder layers (Fig. 2d-g). Early decoder layer neurons tended to access more complex 

pathways, such as molting (Fig. 2d), stress response (Fig. 2e), and muscle development (Fig. 

2f), while neurons in late decoder layers access more specific gene sets, such as protein 

targeting to membranes (Fig. 2g). In conclusion, we successfully deciphered specific biological 

useful pathways and as well as co-expressed gene sets.  

Housekeeping gene identification 

To test whether the bias term of the output layer does indeed identify the static component 

of gene expression, which should correspond to housekeeping genes, we investigated the bias 

terms further. Pathway enrichment of genes that had exceedingly high bias terms associated 

with them revealed a strong link to housekeeping functions such as ribosome biogenesis and 

function, oxidative phosphorylation, and cytoskeletal biogenesis and function (Fig. 2h). 

Housekeeping genes should show very little variability in the input expression matrix and 

should thus have low Gini coefficients in the dataset used for training. To investigate the 

relationship between the bias terms and the Gini coefficients, we plotted both against each 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2019. ; https://doi.org/10.1101/740415doi: bioRxiv preprint 

https://doi.org/10.1101/740415
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

8 

other and observed a strong negative correlation, as would be expected if bias terms capture 

the static element of gene expression (Fig. 2i). We highlighted the C. elegans orthologs of b-

actin (act-2), a-tubulin (tba-1), b-tubulin (tbb-2), and eukaryotic translation elongation factor 

2 (eef-2), commonly used housekeeping genes that all show low Gini coefficients and high bias 

terms, supporting the hypothesis that bias term analysis can be directly used for housekeeping 

gene identification.  

Master regulator identification 

Co-expressed genes often share similar transcription factor binding sites (TFBSs) in their 

promoter, and the degree of co-expression is correlated with the number of shared TFBSs25. 

The identification of shared transcriptional regulators of the genes influenced by one neuron 

should thus allow the identification of master regulators of both gene sets and cell types. To 

investigate this, we ran our network on a scRNA-Seq dataset of 2,552 cells from mouse testis26. 

We obtained gene sets from our model by extracting the mappings from decoder hidden layer 

neurons to genes and performed sequence motif enrichment analyses using HOMER27. From 

these, we identified gene sets targeted by the transcription factors CREMt, MYBL1, and 

MEF2A. As previously described, we found the CREMt motif to be strongly associated with 

gene sets that were activated by cell type specific latent variable space neurons corresponding 

to late stages of spermatogenesis, but not to stages before the completion of meiosis28 (Fig. 

3a). In contrast, the motif that MYBL1 is known to bind to was strongly enriched in gene sets 

that were specifically activated in pre- and early meiotic cells, peaking around prophase I (Fig. 

3b), also in line with previous literature describing MYBL1 to be a master regulator of 

meiosis29. A single neuron was identified that showed the MEF2A associated motif as top 

enriched TFBS. MEF2A has been described to be restricted to somatic cell populations in the 
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testis30. Inspection of the weight mappings confirmed the hypothesis that the associated gene 

set should thus be most strongly active in Sertoli and Leydig cells (Fig. 3c). 

Batch effect correction 

Reserving dimensions of the latent variable space for specific cell types and the introduction 

of a bias term on the output layer allowed us to isolate specific gene expression programs for 

individual cell types (Fig. 2a-c). We thus hypothesized that it should be possible to isolate the 

effects of further characteristics, such as experimental batch, sex, or age. To demonstrate this, 

we obtained scRNA-Seq datasets of pancreatic islet cells, generated using four 

differenttechnologies (CelSeq: GSE81076, CelSeq2: GSE85241, Fluidigm C1: GSE86469, 

SMART-Seq2: E-MTAB-5061)31–34. Cell type assignments were obtained from the 

accompanying datasets of Stuart et al.8. We restricted the analysis to the four most common 
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Figure 3 – Upstream regulator identification in mouse testis data a, b) Weight mapping strength from the 
cell type specific latent variable space (x-axis) to gene set neurons in the first decoder layer that show 
specific enrichment of a) CREM-t or b) Mybl1 target genes. The motif enrichment of each gene set is color-
coded (yellow = lower P-value). The corresponding motif is indicated above the plot. c) Weight mappings 
as in a) and b) of the single neuron showing a strong enrichment in MEF2A target genes. The x-axis position 
indicates whether a cell type is somatic. Spg = spermatogonia, SC = spermatocytes, RS = round spermatids, 
ES = elongating spermatids, CS = condensing and condensed spermatids. 
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Figure 4 – Batch effect correction in human pancreatic islet data from different sources a) Weight 
mappings from the cell type specific latent variable space to four marker genes. Left panel: batch correcting 
network encoding the batch in the latent variable space. Right panel: standard network without batch 
correction. b, c) Normalized expression values of b) glucagon and c) PCSK1N in different cell types and 
techniques. 
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cell types (alpha, beta, acinar, and ductal cells) to avoid issues with low cellular coverage of 

rare cell types in some datasets. The identity matrix for latent variable space assignment was 

created by concatenating two one-hot encoded matrices, one for cell type and one for 

technology. For comparison purposes, a second model was trained with the cell type as only 

assignment variable for the latent variable space, leaving all other parameters and 

hyperparameters identical. We then evaluated the quality of batch correction by comparing 

the mappings from the cell type specific latent variable space to specific markers genes for 

each cell type. We chose CPB1 as marker for acinar cells, glucagon (GCG) for alpha cells, insulin 

(INS) for beta cells, and CFTR for ductal cells. The weights observed in the batch corrected 

model were far more strongly associated with the correct cell type when compared to the 

model without batch correction (Fig. 4a). The list of genes with strong mappings from the 

batch or technology part of the latent variable space was dominated by ERCC spike-in controls 

and mitochondrial transcripts: of the 20 genes with the highest weight mappings to the batch 

dimensions, six were mitochondrial genes, and four were ERCC spike-ins. The percentage of 

mitochondrial genes is frequently used as an indicator of the quality of cells, as 

mitochondrially transcribed RNA is retained even when cytoplasm is lost in broken cells35. 

Finding the expression of these genes attributed to batch effects is thus unsurprising, as 

different single-cell isolations are likely to be of differing quality, even more so when they are 

performed with complex protocols and at different labs. Of note, known markers for individual 

cell types in the pancreas had a strong mapping to the batch dimension. Investigation of these 

markers, PCSK1N (ranked 2nd in batch weight) and GCG (ranked 6th in batch weight) revealed 

that they had been correctly identified as genes associated with batch effect. Despite being 

described as excellent marker for endocrine cells, PCSK1N expression was almost exclusively 
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found in the Smart-seq2 dataset34,36 (Fig. 4b). As the authors of the corresponding study found 

a correlation of PCSK1N and BMI, this observation may be due to differences in the patient 

collective.  The high weight mappings of GCG were caused by the presence of this transcript 

in all cell types in the Smart-seq2 dataset, while being absent from non-alpha cells in the other 

datasets (Fig. 4c). This might be caused by contaminating RNA molecules from broken alpha 

cells in this dataset. 

Discussion 

It should be noted that gene sets identified by our model are not ordered and may be 

redundant to some extent. While this redundancy can be reduced by imposing stricter 

penalties on the L1 norm, manual inspection of the gene sets reported is still necessary. The 

same holds true for matrix factorization based techniques, which have however been 

successfully used for the analysis of and hypothesis generation based on scRNA-Seq10. 

Compared to these methods, our algorithm has some major advantages. Firstly, it allows for 

the direct identification of gene sets active in a specific cell type without having to infer this 

through population averages. Secondly, batch effects can be isolated from other contributors 

to gene expression. With standard techniques based on NMF, a gene set’s activity might not 

be clearly attributable to a batch effect, as no separation between different variables is 

enforced. 

In summary, we present a conditional variational autoencoder layout based on a combination 

of variational autoencoders and matrix factorization techniques that can be utilized to identify 

gene modules such as co-expressed gene sets and pathways. Reserving dimensions of the 

latent variable space for specific parameters of our input datasets allows us to identify gene 

sets specific for certain cell types and isolate batch effects and other confounders. The 
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identification of static components of gene expression, i.e. housekeeping genes, is possible 

through the inspection of a bias term in the linear part of the model. The presence of shared 

transcription factor binding sites in the promoters of identified gene sets provides support for 

the notion that the identified relationships have a biological relevance rather than being 

spurious correlations. 

Although this study concentrates only on gene expression studies, CVA is not restricted to this 

particular application. As it is conceptually similar to deep NMF models, it can aid the analysis 

of any form of data that can be structured, interconnected, and overlapping sets in other fields 

such as natural language processing or market segmentation. 

 

Methods 

Data preprocessing 

Example datasets were obtained as described in the data availability section. Genes that were 

expressed in less than three cells were removed from the expression matrices. No further 

filtering was performed. Cluster assignments were obtained from the respective download 

sources. 

Input formatting 

Our model has two input requirements. The first is a matrix 𝐗	 ∈ 	ℝ%×' with n cells and m 

genes, where 𝑥),+  denotes the expression values of gene j in cell i. The second input is a vector 

of cluster identities 𝒚	 ∈ 	ℕ < 𝑐, where c is the number of cell types with 𝑦)	denoting the 

cluster identity of cell i. In an initial step, each row of the expression matrix is scaled to unit 

norm, with ‖𝑥)‖2 being the ℓ2 norm of cell i: 
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𝑥),+4 =
𝑥),+
‖𝑥)‖2

 

Furthermore, in the case of a single cell type variable, e.g. hard clustering, the vector of 

clusters 𝒚 is one-hot encoded, yielding a binary matrix of shape 𝑛 × 𝑐. Note that in case of 

mixed cell identities, such as doublets or soft-clustering results, decimal numbers can be used 

instead of zeros and ones to indicate mixing proportions. If several variables are to be 

encoded, the corresponding matrices can be concatenated, leading to a matrix of shape 

𝑛 × (𝑐2 + 𝑐9 + ⋯+ 𝑐;) for k classes. 

VAE encoder 

The first two layers of the model are standard densely connected layers of 128 and 64 

neurons, respectively, with rectifier linear unit (ReLU) activation functions: 

𝐴(𝑧) = ?𝑧 𝑧 > 0
0 𝑧 ≤ 0C 

The layer number and size worked well for the example datasets presented here, but the 

option to alter/specify the values remains in our implementation. The dense layers are 

followed by two layers representing the mean and log variance of a normal distribution. This 

allows to model hidden influence factors in a way that emphasizes the mean while retaining 

variation, rather than reducing the networks loss by outputting the mean19,20. Furthermore, a 

constraint is placed on these two layers to minimize the Kullback-Leibler divergence to a 

Gaussian 𝒩(0 + 𝑠; 1), where s is a location shift parameter: 

𝐷IJ =
1
2
L1 + log(𝜎) − (𝑠 − 𝜇)9 − 𝑒TUV(W)X 

This allows generating simulated data by sampling from a Gaussian 𝒩(0 + 𝑠; 1) and passing 

the values to the decoder part of the network. While in standard VAEs s is 0, we use a 

sufficiently large value (>= 10, equal to 10s) to shift the mean of the Gaussian away from 0 
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and avoid mixing with the zero values obtained due to the enforced sparsity for inapplicable 

classes (see below). 

In contrast to regular implementations of variational autoencoders, the following is applied 

for latent index 𝑙	 ∈ 	 {ℤ	 × 	𝑐} of a cell with cluster identity 𝑘: 

(𝜇T; 𝜎T) = 	^
(0; 0)

𝑙
𝑘 ∉ ℤ

(𝜇T; 𝜎T)
𝑙
𝑘 ∈ ℤ

` 

The same is applied to the Kullback-Leibler loss, effectively just considering a reserved 

subspace of the latent dimension for cell attributed to each cluster. In case of partial cell 

identities, all cluster subspaces are scaled according to cell type proportions. 

The actual latent layer 𝑧 is then calculated from the mean and the log variance as19: 

𝑧T = 	^
0

𝑙
𝑘 ∉ ℤ

𝜇T × 𝑒abc Wd × 𝜀
𝑙
𝑘 ∈ ℤ

` ; 	𝜀~𝒩(0; 1) 

VAE decoder 

In the decoder part of the network, the output of this latent layer is then fed into two densely 

connected layers of 256 and 512 neurons with ReLU activation, batch normalized, and passed 

to the final layer with 𝑚 neurons and a softmax activation function: 

𝐴L𝑧+X = 	
𝑒hi

∑ 𝑒hkl
mn2

	 

The latter ensures all expression values of a cell sum to one, which is also true for the scaled 

input. 

The cost function of the network is the sum of the Kullback-Leibler divergence and the mean-

squared error of the reconstruction: 
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𝑙𝑜𝑠𝑠 = 	p(𝑿𝒊𝒏 − 𝑿𝒐𝒖𝒕)9 +p
1
2
L1 + log(𝝈) − (𝑠 − 𝝁)9 − 𝑒TUV(𝝈)X 

In our implementation, the mean-squared reconstruction error can be changed to mean 

absolute error, if large-scale errors are not considered to be relatively more important. 

Since our model is run to identify gene co-expression modules, the hidden layers of the 

decoder are used without biases, simplifying their activation from: 

𝑟(𝑾 × 𝑿 + 𝒃) 

where r is the ReLU function, W is the weight matrix, X are the inputs, and b are the biases, 

to: 

𝑟(𝑾 × 𝑿) 

In order to arrive at distinct gene co-expression modules, a dynamic weight regularizer is 

employed in this mode imposing a penalty of: 

𝑙 ∗ (1 + 𝑡)p|𝑾| 

where l is a scaling factor for the penalty and t is the training epoch. Again, as these can be 

critical tunable hyperparameters, our implementation allows the user to choose either a 

dynamic or static 𝐿2, 𝐿9, or combined regularizer with a user-defined initial penalty 𝑙. 

Obtaining gene sets from weight matrices 

The strength of connection between a hidden decoder layer neuron and an output gene is 

then estimated as the sum over all weights from this neuron through the following layers to 

the output, disregarding the ReLU function: 

𝑨 =	𝑾𝒉𝟐 ×𝑾𝑶 

Where 𝑨 ∈ ℝ��×' is an activity matrix with h1 as the size of hidden layer 1 and m as the output 

size (gene number), 𝑾�9 ∈ ℝ��×�� is the weight matrix of hidden layer 2, and 𝑾U ∈ ℝ��×' is 
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the weight matrix of the output layer. If more than two layers are involved, the matrix 

multiplication is carried out step by step to arrive at the final activity matrix. 

In order to identify the top associated genes per neuron in the activity matrix, the elbow point 

for positive and negative enrichment is calculated. The elbow point in this case is the point of 

maximum distance from the diagonal connecting the lowest and highest values on a sorted 

list of weights. When scaling the weights and ranks of the positive or negative weights to the 

range [0,1), this diagonal has a slope of 0 and an intercept of 1, so 𝑦 = 𝑥 + 𝑛. The distance 

between the curve of weights and the diagonal is calculated along a line perpendicular to the 

first diagonal, going through the point on the weight curve (𝑥�,𝑦�) with an intercept 𝑛�, so 

𝑦� = −𝑥� + 𝑛� ⟺	𝑛� = 𝑦� + 𝑥�. The intersect of both diagonals is at −𝑥 + 𝑦� + 𝑥� =

𝑥 ⇔ 𝑥 = 𝑦 = �����
9

. It follows that the distance of the weights curve from the diagonal is 

𝑑� = ��𝑥� −
�����

9
�
9
+ �𝑦� −

�����
9

�
9
. Since 𝑥� and 𝑦� are both strictly positive and 𝑥� ≥

𝑦�, this simplifies to 𝑑� ∝ 𝑥� − 𝑦�.  

Housekeeping gene identification 

In contrast to the hidden decoder layers, the bias vector is retained as trainable parameter in 

the calculation of the output layer activation, capturing the static components of gene 

expression, yielding the following activation: 

𝑨𝑶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑶 × 𝑿 + 𝒃𝑶) 

𝑏�  is a vector whose length equals the number of genes, indicating a sort of steady-state 

activity of that gene irrespective of the variables encoded in the latent variable space. 

Batch effect correction 
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For batch effect correction, the latent variable space of the network was constructed as 

described above, assigning latent dimensions to batches as well as to cell types. The weight 

mappings from the batch specific latent variable space were then analyzed in isolation from 

the cell type specific ones. In cases were smoothing and batch effect correction are desired, 

one could train the network as described here and then perform prediction with a class matrix 

whose batch components are set to zero. 

Gene set enrichment 

Gene set enrichment calculations were performed using Metascape24. The set of genes 

annotated in the expression matrix before filtering was used as background. 

Motif enrichment 

Motif enrichment was performed using the findMotifs.pl command of HOMER v4.1027. The 

standard promoter annotations for the mm10 mouse genome as of July 2019 were used. 

Genes contained in the filtered expression matrix, but not enriched in a specific gene set, were 

used as background. 

 

Data availability 

All example datasets were used in previously published studies. The C. elegans dataset was 

downloaded according to the instructions provided at http://atlas.gs.washington.edu/worm-

rna/docs/#use-case-1-expression-pattern-of-a-gene-of-interest23. The testis scRNA-Seq data 

with the accession number GSE104556 was downloaded from GEO26. The set of pancreas 

scRNA-Seq datasets including annotations was downloaded according to the instructions on 

https://satijalab.org/seurat/v3.0/integration.html. The individual datasets can be accessed on 

GEO (GSE81076, GSE85241, GSE86469) and SRA (E-MTAB-5061)31–34. 
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Code availability 

The code for our implementation of the CVA algorithm is available at 

https://bitbucket.org/conrad_lab/CVA. 
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