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 32 

Abstract 33 

Gas chromatography mass spectrometry (GC-MS) platforms for use in high throughput and 34 

discovery metabolomics have heavily relied on time of flight (ToF), and low resolution 35 

quadrupole and ion trap mass spectrometers and are typically run in electron ionization (EI) 36 

modes for matching spectral libraries. Traditionally, detectors such as flame ionization detection 37 

(FID), have also helped in identification and quantification of compounds in complex samples 38 

for diverse clinical applications, i.e., fatty acids. We probed if combination of FID in line with a 39 

high-resolution instrument like a GC-Orbitrap-MS may confer advantages over traditional mass 40 

spectrometry using EI.  41 

We used a commercially available human serum sample to enhance the chemical space of serum 42 

using an advanced high resolution mass spectrometry (HR-MS) platform (QExactive Orbitrap-43 

MS) with an FID feature for confident metabolite identification to assess the suitability of the 44 

platform for routine clinical metabolomics research. Using the EI mode, we quantified 294 45 

metabolites in human serum using GC-Orbitrap-MS. These metabolites belonged to 89 46 

biological pathways in KEGG. Following a sample split, using an in-line FID analysis, 1117 47 

peaks were quantified. Moreover, representative peaks from FID and their corresponding MS 48 

counterparts showed a good correspondence when compared for relative abundance.  49 

Our study highlights the benefits of the use of a higher mass accuracy instrument for untargeted 50 

GC-MS-based metabolomics not only with EI mode but also orthogonal detection method such 51 

as FID, for robust and orthogonal quantification, in future studies addressing complex biological 52 

samples in clinical set ups.  53 

 54 

Keywords: metabolomics; flame ionization detection; Orbitrap; electron ionization; GC-MS; 55 

serum; high resolution mass spectrometry.  56 
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1. Introduction 61 

Metabolomics is the comprehensive study and systematic quantification of small molecules in 62 

the molecular weight range of 50-2000 Daltons in biological samples (cells, tissues, organs, 63 

biofluids, or whole organisms), and thus, complements efforts from other high throughput omics 64 

platforms such as genomics, transcriptomics, and proteomics as an indispensable platform. 65 

Platforms for generating metabolomics data typically include gas and liquid chromatography, or 66 

capillary electrophoresis linked with mass-spectrometry (GC-MS, LC-MS, and CE-MS), and 67 

spectroscopy approaches [such as nuclear magnetic resonance (NMR), infrared (IR), Raman] that 68 

have helped address diverse biological questions allowing to connect the genotype with 69 

molecular phenotype (1). Particularly, gas chromatography mass spectrometry (GC-MS) is very 70 

amenable to polar primary metabolites (such as sugars, amino acids, amines, sugar phosphates, 71 

or sugar alcohols) (2) and fatty acids, in addition to excellent chromatographic resolution, thus 72 

lending itself to routine quantitative metabolomic applications (2). Newer high resolution (HR) 73 

instruments such as Orbitrap mass spectrometers are capable of providing sub-ppm mass 74 

accuracy at high mass resolutions (i.e., > 60,000), and hence allow calculation of predicted 75 

molecular formulas based on the mass defect of a detected metabolite ion (3-5), and generate 76 

mass spectral data at high resolving power with mass accuracies <1 ppm. However, these HRGC-77 

MS platforms have found limited applications till date, baring handful applications in microbial 78 

metabolomics (6) and a recent use in non-human primate biofluid (i.e., baboon) serum 79 

metabolomics (7).  80 

Most studies have used (GC)-high resolution accurate mass (HRAM) mass spectrometers only in 81 

electron ionization (EI) mode of operation. However, flame ionization detection (FID) is without 82 

a doubt the most often used gas chromatography (GC) detection method, a technology which 83 

dates back to early 1960s and finds applications ranging from analysis of hydrocarbons to fatty 84 

acids. When a full spectrum is recorded using mass selective detector (MSD) during a 85 

chromatographic run, sensitivity is often inferior in a MS detector when compared to a FID (8). 86 

A combination of GC-MS and gas chromatography-flame-ionization detection (GC-FID) also is 87 

an old idea, typically run independently and/ or in parallel, with its roots going back to the 1960s. 88 

Then the chromatograms are manually aligned and then peaks were partitioned into bins 89 

according to retention time values. Unfortunately, comparisons between chromatograms by MS 90 
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and by GC detectors are difficult since the results vary depending on the samples and the carbon 91 

atoms in the molecules being analyzed. FID is sensitive for compounds containing carbon, and 92 

its sensitivity is better than thermal conductivity detector (TCD). Previous studies have claimed 93 

that GC-FID is considered to be more reliable and sensitive for quantitative analysis than GC–94 

MS, while GC–MS can provide more definite qualitative information and biomolecule 95 

identification (9). GC-FID is also considered more sensitive, more reproducible and covers a 96 

wider dynamic range when compared to GC-MS in full scan monitoring mode (10).  97 

Recent studies have applied GC-FID in cataloging the human serum metabolomes as a 98 

complimentary technique to GC-MS, LC-MS and NMR (11). However, GC-FID and GC-MS or 99 

LC-MS as parallel methods have only been used in analysis of bacterial metabolites (12), for 100 

targeted fatty acid and lipid characterization in human plasma (13), fecal volatile characterization 101 

(14), and transgenic rice metabolism (15) among others. However, none of these analyses were 102 

performed using HRMS equipped with both FID and MS detectors that used the same samples at 103 

the same time. Combined TLC/GC-FID analysis when compared to GC-MS as the two methods 104 

for analysis of human serum lipids, allowed identification and quantification of only eight 105 

metabolites in common (arachidonic acid, eicosanoic acid, linoleic acid, oleic acid, palmitelaidic 106 

acid, palmitic acid, stearic acid and tetradecanoic acid) (11), suggesting significant 107 

complementarity of FID and MS analysis of the human metabolome. Previously, ethanol, 108 

methanol, and formate concentrations were measured by headspace GC-FID analysis in vitreous 109 

and blood samples collected postmortem (16).  110 

As can be seen, most of these efforts used GC-FID and GC-MS as two independent approaches 111 

one after another and not in-line. To our knowledge, studies have not attempted to characterize 112 

the complex biological matrixes of clinically relevant samples such as human serum, and to 113 

show their joint application in clinical metabolomics, and rather have only been used for targeted 114 

chemical constituents such as drugs, pesticides, and organic exogenous chemicals. Our study is 115 

the first attempt to identify and quantify serum metabolites using a high mass resolution gas 116 

chromatography mass spectrometer (GC-Orbitrap-MS) with two detectors (FID and MS) on a 117 

comparative basis. The principal aims of this study were to assess the capabilities of GC-FID 118 

analysis in parallel to a GC-Orbitrap-MS analysis for quantification and identification of 119 
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metabolites in human serum as a test sample, in order to exploit the full capabilities of these two 120 

detectors and instrument for untargeted clinical metabolomics. 121 

  122 

2.Materials and Methods 123 

2.1 Chemicals 124 

Solvents such as acetonitrile, isopropanol, and pyridine were of HPLC grade, and methoxyamine 125 

hydrochloride (MeOX), 1% TMCS in N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA), 126 

and adonitol, were obtained from Sigma-Aldrich, St. Louis, USA.  127 

 128 

2.2 Human serum sample 129 

Human serum (Cat. No. H6914, from a male AB clotted whole blood, USA origin, sterile-130 

filtered) was obtained from Sigma-Aldrich, St. Louis, USA.  131 

2.3 Serum sample extraction and derivatization for GC-MS and GC-FID analysis  132 

Serum samples (30 µL) were subjected to sequential solvent extraction once each with 1 mL of 133 

acetonitrile: isopropanol: water (3:3:2, v/v) ratio and 500 µL of acetonitrile: water (1:1, v/v) ratio 134 

mixtures at 4 °C(17). Adonitol (5 µL from 10 mg/ml stock) was added to each aliquot as an 135 

internal standard prior to solvent extraction. The pooled extracts (~ 1500 µL) from the two steps 136 

were dried under vacuum at 4 °C and parallel extractions performed on empty microcentrifuge 137 

tubes only served as extraction blanks to account for background (extraction conditions, 138 

derivatization reagents) noise and other sources of contamination (septa, liner, column, vials, 139 

handling among others). Blanks were intermittently used to see that no carryovers occurred 140 

during randomized run orders and to manually filter out contaminating chemicals from the 141 

combined list of features obtained from the blanks. Samples were then sequentially derivatized 142 

with methoxyamine hydrochloride (MeOX) and 1% TMCS in N-methyl-N-trimethylsilyl-143 

trifluoroacetamide (MSTFA) as described elsewhere (7, 18, 19). Steps involved addition of 10 144 

μL of MeOX (20 mg/mL) in pyridine, followed by incubation under shaking at 55 °C for 60 min 145 

followed by trimethylsilylation at 60 °C for 60 min after adding 90 μL MSTFA as described (2, 146 

7).  147 

 148 
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2.4 GC-Orbitrap-MS instrument parameters 149 

A robotic arm TriPlus™ RSH autosampler (Thermo Fisher Scientific™, Bremen, Germany) 150 

injected 1µL of derivatized sample into a Programmable Temperature Vaporizing (PTV) injector 151 

at initial temp of 90 °C to a transfer temp of 290 °C on TRACE™ 1310 gas chromatograph 152 

(Thermo Fisher Scientific™, Austin, TX). Helium carrier gas at a flow rate of 1.6 mL/min was 153 

used for separation on a Thermo Fisher Scientific™ TG-5MS (60 m length × 0.25 mm i.d. × 0.25 154 

µm film thickness) column. The initial oven temperature was held at 90 °C for 0.5 min, followed 155 

by an initial gradient of 10 °C/min ramp rate to 250 °C, where it was held for 5 min, and a 156 

gradient of 5 °C/min ramp rate to 295 °C. The final temperature was 295 °C and was held for 35 157 

min. Eluting peaks were transferred through an auxiliary transfer temperature of 250 °C into a Q 158 

Exactive™-GC mass spectrometer (Thermo Fisher Scientific™, Bremen, Germany). The mass 159 

spectrometer has a resolving power (RP) of 120,000 full width at half maximum (FWHM) at m/z 160 

200 with EI or CI capabilities. From the ion source, an AQT quadrupole is used for precursor ion 161 

isolation, which leads into the Orbitrap mass analyzer. Electron ionisation (EI) at 70 eV energy, 162 

emission current of 50 µA with an ion source temperature of 230 °C was used in all experiments. 163 

A filament delay of 5.3 min was selected to prevent excess reagents from being ionized. High 164 

resolution EI spectra were acquired using 60,000 resolution (FWHM at m/z 200) with a mass 165 

range of m/z 50-650.  166 

 167 

2.5 GC-FID analysis 168 

GC-FID (Supplementary Figure S1) analysis was accomplished on the TRACE™ 1310 gas 169 

chromatograph (Thermo Fisher Scientific™, Austin, TX). The detector temperature was set at 170 

305 °C where the ignition threshold was 0.5 Pa, airflow of 350 mL/min, hydrogen flow 35 171 

mL/min., and makeup gas 30 mL/min. All other analytic conditions including the column type 172 

and column temperature, the injection temperature, splitless injection conditions, carrier gas and 173 

the linear velocity were the same as those of GC–MS analysis. 174 

For both analyses, the acquisition sequence started with blank solvent (pyridine) injections, 175 

followed by randomized lists of extraction blanks (B), reagent blanks (R), solvent (pyridine-P), 176 

and samples (S), where sequences of B, R, and P were injected at scheduled intervals for 177 
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monitoring shifts in retention indices (RI) as well as serving as system quality control (QC) 178 

checks.  179 

2.6 GC-Orbitrap-MS data processing 180 

Acquired data was processed using Thermo Fisher Scientific™ TraceFinder™ 4.1 (Thermo 181 

Fisher Scientific, Bremen, Germany) software for untargeted analysis. Initial analysis of 182 

collected spectra included baseline correction, peak filtering, quantification, assignment of a 183 

unique mass and retention indices, signal-to-noise calculation, and compound identification 184 

based on the mass spectral pattern as compared to EI spectral libraries. Spectral libraries 185 

consulted included: NIST Mass Spectral Reference Library (NIST14/2014; National Institute of 186 

Standards and Technology, USA), the Wiley Registry of Mass Spectra – 11th Edition, the MSRI 187 

spectral libraries from Golm Metabolome Database (20) available from Max-Planck-Institute for 188 

Plant Physiology, Golm, Germany (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html), 189 

MassBank (21), MoNA (Mass Bank of North America, (http://mona.fiehnlab.ucdavis.edu/) and a 190 

vendor supplied high resolution (HR)-MS mass spectral library for the GC-MS dataset using 191 

proprietary TraceFinder™ software (Thermo Fisher Scientific) and MS-DIAL software ver. 3.51 192 

(22) for additional searches, visualization and spectral matching. Further, to filter out noise and 193 

less confident compounds, we discarded all compounds with a CV > 30 %. Further, all siloxane, 194 

halogen-derivatives, phthalate, acrylate, and silyloxy, borane, dioxolan, and silan, silox, -195 

derivative compounds were removed from the list manually. For the MS platform, metabolite 196 

annotation and assignment followed the metabolomics standards initiative (MSI) guidelines for 197 

metabolite identification (23), with Level 2 identification based on spectral database match 198 

(match factor >80%) and Level 3 identification where only compound groups were known 199 

(specific ions and RT regions of metabolites).  200 

 201 

2.7 Data sharing 202 

The raw datasets and the metadata obtained from both the platforms are deposited at the 203 

Metabolomics Workbench (Study ID: ST001037) which are available for download at this link: 204 

https://bit.ly/2PlFlW9 (pending publication date).  205 

 206 

2.8 Statistical analysis  207 
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Statistical processing of both GC-FID and GC-MS data sets were performed using statistical 208 

software R (Version 3.5.1) (24). Imputed, outlier removed, and scaled peak areas representative 209 

of relative metabolite amounts obtained using DeviumWeb (25) are presented. Univariate and 210 

multivariate analysis: Hierarchical clustering analysis (HCA) was performed on Pearson 211 

distances using PermutMatrix (26). The raw metabolite abundance values were Z-score 212 

normalized, and the color scale represents +2 (high) to -2 (low) abundance in the heat map. 213 

Correlations reported are Pearson correlations which were visualized as heat maps, based on Z-214 

score normalized data ranging from +1 (positive, red), 0 (no correlation, black), and -1 (negative, 215 

green) correlation of metabolite abundance across biological and technical replicates. Partial 216 

least squared discriminant analyses (PLSDA) were performed using MetaboAnalyst 3.0 (27) and 217 

DeviumWeb (25) where the output displayed score plots to visualize the sample groups. The data 218 

were scaled with unit variance without any transformation.  219 

 220 

2.9 Pathway enrichment analysis 221 

Pathway enrichment was performed using MetaboAnalyst 3.0 (www.Metaboanalyst.ca) (27). For 222 

ID conversions, the Chemical Translation Service (CTS: 223 

http://cts.fiehnlab.ucdavis.edu/conversion/batch) was used in batch mode to convert the common 224 

chemical names into their KEGG, HMDB, Metlin, PubChem CID, and ChEBI identifiers.  225 

 226 

3. Results and Discussion 227 

 228 

3.1 Comparison of metabolites and peaks from MS and FID detectors 229 

We previously reported on the analysis of non-human primate serum from a baboon using HR-230 

GC-MS alone (7). Here, we expanded our metabolomics analysis to human serum, and compared 231 

two orthogonal detection techniques attached to a GC, a MS and a FID detector. Quantitation 232 

using a FID is simple, as FID is a mass-sensitive detector that provides a nearly equal molar 233 

response to the number of carbon atoms in a hydrocarbon where the detector is fast, and response 234 

is linear over a wide dynamic range (∼ 107 to 108) (28). A comparison of the FID-chromatogram 235 

and total ion chromatogram (TIC) from MS analysis are provided (Figure 1). The extracted FID 236 

data (filtered) (Supplementary Table S1) and the annotated MS-data (Supplementary Table 237 
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S2) are provided. Furthermore, given that there was a solvent delay time used for MS detector, 238 

only peaks from 8 to 60 min. (i.e., total 52 min.) were considered for FID peak quantification as 239 

well, to only compare peaks/metabolites in affixed retention time windows. We ran five 240 

individual serum aliquots (n=5) with three technical replicates each, generating 15 runs and 241 

corresponding data files. For MS-based analysis, 2765 metabolites were detected at least once 242 

across all the samples (including blanks, reagent blanks, and solvent), which were reduced to 298 243 

compounds that passed all the quality filters described above. However, the S/N criteria used for 244 

FID and MS analysis are not comparable as they are different detection methods, and hence, the 245 

total number of confident peaks called were very different from both the analysis. For FID-246 

analysis, about 1117 peaks were quantified with retention times across all samples (with < 50% 247 

missing values). The median and mean CVs for FID were at 73.43 and 87.90%, whereas those 248 

for MS were 43.77 and 51.44%. Thus, with stringent filtering criteria, such as retaining only 249 

compounds/ peaks with < 30% RSD, we retained 298 metabolites in the MS analysis and 83 such 250 

peaks in the FID analysis. A previous study using fatty acid methyl ester (FAME) analysis 251 

showed that 28 FAME standards tested provided similar results for the novel GC-EI-MS-SIM 252 

method and GC-EI-MS in the full scan mode, both of which were slightly worse than GC-FID 253 

analysis (29).  254 

When we performed hierarchical clustering (HCA) analysis of the top 50 features (either peaks 255 

from FID or metabolites abundances from MS) from the two platforms, the results reveal a 256 

clearer separation of sample groups (blanks vs samples) for the FID analysis (Figure 2 A, B) 257 

when compared to those obtained from MS analysis. Similarly, a metabolite-metabolite Pearson 258 

correlation analysis for peak and metabolite abundances revealed clearer clusters (two such 259 

modules) for the FID data (Figure 3 A, B) as opposed to the MS data where the clusters are 260 

diffused. When performing a supervised PLS-DA analysis, the FID data explained the clusters 261 

better [cumulative score for the first two PCs (PC1, PC2) = 71%] when compared to the MS-data 262 

[cumulative score for the first two PCs (PC1, PC2) = 23%] (Figure 3 C, D).  263 

We further evaluated the linear correspondence of the quantified compounds based on FID and 264 

MS results. We obtained good correlations for randomly handpicked compounds such as 265 

glucose, alanine, citric acid, and an unknown, as an example, with correlation scores ranging 266 

from 0.99 to 0.89, and fitting linear regression models (Figure 4 A-D). Nonetheless, in 267 
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comparative analysis of volatile compounds in virgin olive oil, it was demonstrated that good 268 

selectivity, linearity and higher upper values of the working range are the main advantages of 269 

solid-phase microextraction (SPME)-GC-FID versus low bottom values of working ranges, 270 

better sensitivity and lower limits of detection and quantification of SPME-GC-MS (30). In 271 

another study, no differences associated to particular functional groups were observed between 272 

GC-FID and GC-MS, except for the acids, for which working range is much better for GC-FID 273 

(30). Also, one-dimensional GC using FID may be sufficient to define biomarker ratios; 274 

however, if the samples are too complex, interferences from coeluting compounds will 275 

complicate the analysis (31) (Bai et al., 2018). 276 

 277 

3.2 Analysis of human serum using FID and HR MS  278 

We analyzed the HRGC-MS data from human serum for its relevance to both clinical and 279 

biological analysis. Of the 294 metabolites quantified, we obtained 56 metabolites as 280 

trimethylsilylated derivatives and 238 others that were not derivatized (Supplementary Table 281 

S2). Of these, 133 metabolites were assigned KEGG IDs belonging to various human metabolic 282 

pathways. These metabolites included S-adenosyl-L-methionine, adenosine monophosphate, S-283 

adenosyl-L-homocysteine, glucose, alanine, lysine, formic acid, arginine, serine, tryptophan, 284 

phenylalanine, urea, 5-phosphorylribose 1-pyrophosphate, biotin, histidine, proline, citric acid, 285 

benzoic acid, valine, and threonine. The significantly higher number of metabolites detected in 286 

our current efforts, compared to our earlier analysis of a baboon serum sample (7) is attributed to 287 

a longer run time of 60 minutes as opposed to the shorter protocol of 23 minutes in the earlier 288 

study. Moreover, there are species specific metabolite differences among primate tissues (32) 289 

and biofluids. Another 16 metabolites matched KEGG IDs belonging to drugs (i.e., lisinopril, 290 

atazanavir, amisulpride, metergoline phenylmethyl ester, alfuzosin decanedioic acid, dibutyl 291 

ester, aliskiren, zopiclone, bezafibrate, sulpiride, carbachol, risperidone, ranitidine, indapamide, 292 

droperidol). The list also included 41 metabolites that were assigned a LIPIDMAPS ID. These 293 

quantified metabolites belonged to 89 various metabolic pathways (and 35 pathways with at least 294 

3 metabolites mapped onto each of them), such as methylhistidine metabolism, thiamine 295 

metabolism, glycine and serine metabolism, glucose-alanine cycle, biotin metabolism, carnitine 296 

synthesis, transfer of acetyl groups into mitochondria, urea cycle, methionine metabolism, 297 
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homocysteine degradation, alanine metabolism among others (Supplementary Table S3). 298 

Recently, GC-FID combined with precolumn derivatization with isobutyl chloroformate was 299 

used for confident determination of nucleobases guanine, adenine, cytosine, and thymine from 300 

DNA samples (33). Other studies have focused on detection of the food chemicals, i.e., caffeine 301 

in coffee grains using GC-FID as well (34). A very recent analysis of a reference material, NIST 302 

Standard Reference Material (SRM) 2378 fatty acids in frozen human serum using methods 303 

NIST-1 and NIST-2 that use GC-FID and GC-MS platforms, respectively, revealed expanded 304 

uncertainties for 12 fatty acids and reference values with expanded uncertainties for an additional 305 

18 fatty acids (35).  306 

Conversely, one cannot map peaks obtained from FID analysis for pathway mapping analysis or 307 

enrichment analysis, without access to individual chemical/metabolite standards. However, as 308 

mentioned in the previous section, the robust quantification obtained from FID data is 309 

advantageous for better quantification when compared to MS-based analysis only. Given that the 310 

past FID analysis efforts relied on FAME analysis for metabolite profiling, future analysis can 311 

potentially expand on this detection method to use such integrated workflows as the one 312 

described in this manuscript. However, robust software tools and analysis workflows that can 313 

seamlessly integrate FID and MS-data in real time or offline, are clearly missing.  314 

Nonetheless, both detectors represent a flexible tool for explorative studies and, if supported by 315 

appropriate data-processing tools, would appear to be useful in any metabolic profiling study, as 316 

was shown using 28 standard compounds including 17 amino acid standards and in CSF samples 317 

with simultaneous acquisition with both MS and FID detectors (36). It was also reported that 318 

limit of detection (LOD) and limit of quantification (LOQ) are significantly lower for GC-319 

APCI/ToF-MS than for GC-FID. Moreover, the quantitative response of the FID detector is free 320 

from ionization bias and those biases introduced by the type of mass analyzer or the instrumental 321 

design of a mass spectrometer. Consequently, FID gives a better overall quantitative 322 

representation in complex biological samples where traditional MS analysis often is challenged 323 

by ion interference effects (36). Further, in a comparison of the non-esterified or free fatty acids 324 

quantitative results between the TLC/GC-FID and the GC-MS platforms demonstrated that the 325 

GC-MS concentrations of palmitic acid, vaccinic acid, oleic acid, linoleic acid, dihomo-γ-326 

linolenic acid and docosapenta-(4,7,10,13,16)-enoic acid are generally higher than those 327 
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measured by TLC/GC-FID (11) indicating higher sensitivity and detector-bias as far as MS is 328 

concerned.  329 

Our study suffers from several limitations that we clearly recognize, esp. with lower sample size 330 

for this proof-of-concept study to demonstrate the applicability of the dual-detector platform for 331 

clinical metabolomics studies. Secondly, there are other biofluids such as plasma, saliva and 332 

even tissue or cell samples from humans that could be informative for further screening for 333 

comparison of those datasets on this new platform. Other complimentary approaches such as 334 

high resolution LC-MS/MS or even other detectors such as thermal conductivity detector (TCD) 335 

and electron capture detector (ECD) among a host of others would be worth exploring.  336 

 337 

4. Conclusions 338 

We demonstrated the advantages of a combined GC-FID and HRGC-MS analyses when 339 

compared to results obtained from the individual platforms, and how this can boost analytical 340 

biochemistry and downstream metabolomics applications. It remains a challenge, like any other 341 

untargeted metabolomics platform, to consolidate and align features detected using FID and MS 342 

for reliable quantification. We also propose that such instruments which lend the capabilities of 343 

detectors that work on different principles would be helpful for correct identification of 344 

compounds, especially when standards are available.  345 
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Figure Legends 469 

 470 

Figure 1. Comparison of chromatograms for human serum sample and representative HR-471 

GC-MS spectra. Chromatograms derived from FID analysis, and a total ion chromatogram 472 

obtained from MS analysis, and XIC (m/z 353.17774; unknown) at 5 ppm accuracy are shown. 473 

The HRGC-EI-MS spectra of six representative compounds are (A) 2-deoxytetronic acid, (B) 474 

methionine, (C) glutamic acid, (D) phenylalanine, (E) lauric acid, and (F) aminomalonic acid.  475 

Figure 2. A two-way hierarchical clustering heat map of the serum metabolome (top 50 476 

peaks as obtained from PLS-DA analysis) data for (A) MS detector and (B) FID detector. 477 

Each column displays the metabolic pattern of individual samples (extraction blanks, solvents, 478 

reagent blanks, and samples). Amount of each peak in individual samples is expressed as relative 479 

value obtained by Z-normalization and is represented by the color scheme, in which red and blue 480 

indicate high and low concentrations of metabolites, respectively. Rows: samples; Columns: 481 

metabolites. 482 

Figure 3. Metabolite-metabolite Pearson correlation map for peak areas for (A) MS 483 

analysis and (B) FID-detected peaks. Amount of each peak in individual samples is expressed 484 

as relative value obtained by Z-normalization and is represented by the color scheme, in which 485 

red and blue indicate high and low values for respectively, for peaks (FID) and metabolites 486 

(MS). Supervised PLS-DA analysis for (C) MS analyzed compounds and (D) FID-detected 487 

peaks.  488 

Figure 4. Scatter plots (fitting linear regression models) for FID (x-axis) and MS data (y-489 

axis) for showing linearity in their response factors for all the samples. (A) Glucose 490 

[Correlation coefficient (r): 0.9999; Sample size: 13; Intercept (a): -363496920.727; Slope (b): 491 

1.08; Regression line equation: y=1.08x-363496920.727], (B) Alanine (Correlation coefficient 492 

(r): 0.958; Sample size 15, Intercept (a): 65761895.608, Slope (b): 0.232, Regression line 493 

equation: y=65761895.608+0.232x], (C) Citric acid [Correlation coefficient (r): 0.993; Intercept 494 

(a): 229891680.564, Slope (b): 2.059, Regression line equation: y=229891680.564+2.059x) (D) 495 

Unknown (Correlation coefficient (r): 0.8954) ; Sample size 15; Intercept (a): -37477621.483; 496 

Slope (b): 13462.916, Regression line equation: y=13462.916x-37477621.483].  497 
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Supplementary Table S1. Peak lists obtained for GC-FID analysis. 498 

Supplementary Table S2. List of metabolites captured using MS data. 499 

Supplementary Table S3. Pathway enrichment analysis for the MS quantified metabolites. 500 

Supplementary Figure S1. The GC-FID detector (Thermo Fisher Scientific).  501 

 502 
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