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Abstract 

Uveal melanoma (UM) is a rare form of melanoma with a genetics and immunology that is 

different from skin melanoma. Previous studies have identified genetic driver events of early 

stage disease when the tumor is confined to the eye. However due to lack of a clinical 

rationale to biopsy metastatic disease, access to tumor material to perform molecular 

profiling of metastases has been limited. In this study, we have characterized genomic 

events in UM metastases using whole-genome sequencing of fresh frozen biopsies from 

thirty-two patients and profiled the transcriptomes of individual tumor infiltrating lymphocytes 

in eight patients by single-cell sequencing. We find that 91% of the patients have metastases 

carrying inactivating events in the tumor suppressor BAP1 and this coincided with somatic 

alterations in GNAQ, GNA11, CYSLTR2, PLCB4, SF3B1 and/or CDKN2A. Mutational 

signature analysis revealed a rare subset of tumors with prominent signs of UV damage, 

associated with outlier mutational burden. We study copy number variations (CNV) and find 

overrepresented events, some of which were not altered in matched primary eye tumors. A 

focused siRNA screen identified functionally significant genes of some of the segments 

recurrently gained. We reintroduced a functional copy of BAP1 into a patient-derived BAP1 

deficient tumor cell line and found broad transcriptomic changes of genes associated with 

subtype distinction and prognosis in primary UM. Lastly, our analysis of the immune 

microenvironments of metastases revealed a presence of tumor-reactive T cells. However, a 

majority expressed the immune checkpoint receptors TIM-3, LAG3 and TIGIT, and to a 

lesser extent PD-1. These results provide an updated view of genomic events represented in 

metastatic UM and immune interactions in advanced lesions. 
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Introduction 

Uveal melanoma (UM) is a rare form of melanoma but the most common intraocular cancer1. 

Enucleation or brachytherapy can provide good local control but in 50% of patients 

metastases develop, most frequently to the liver and generally with lethal outcome1. The 

genetics of UM has primarily been studied in the primary tumors of the eye, including that of 

the TCGA consortium2. Recurrent mutations in GNAQ or GNA11 are common, whereas 

mutations in PLCB4 and CYSLTR2, downstream and upstream of GNAQ/11, are seen in 

occasional cases3–6. These driver mutations are all mutually exclusive. Additional recurrent 

mutations have been found in EIF1AX, SF3B1 and BAP1, where the latter connotes poor 

prognosis and development of metastatic disease7,8. The development of metastatic UM can 

also be predicted using gene expression analyses, where Class 1 tumors have an excellent 

prognosis whereas Class 2 have a very poor prognosis, in a close to binary manner9. 

 Patients with UM metastases are not predicted to respond to the same targeted 

therapies as patients with cutaneous mutations since UM does not have BRAF mutations. 

Moreover, retrospective analyses of outcome following the use of immune checkpoint 

inhibitors have demonstrated poor response rates at multiple centers10. At our center, we are 

using isolated hepatic perfusion with melphalan to treat patients with liver metastases of UM. 

Retrospective analyses have suggested a survival benefit of this surgical method but this is 

now being challenged in a prospective randomized phase 3 trial (the SCANDIUM trial)11. 

Notably, during the surgical procedure leading to the perfusion treatment, there are 

possibilities of procuring fresh biopsies for the generation of PDX models, TIL cultures and 

for genomics studies of metastases (Fig. 1a). Here we describe a profiling of thirty-two 

metastatic UM tumors using whole-genome sequencing and we characterize infiltrating 

lymphocytes, providing molecular insight into the genomic events and immunogenetics 

driving late-stage UM. 

Results 

Recurrently mutated genes in UM metastases 

Thirty-two metastases of UM, six subcutaneous and 26 from the liver (Table S1), were 

collected and subjected to whole-genome sequencing (WGS) and 26 of them to poly-A+ 

RNA sequencing. Twenty-eight of the tumors were pathologically designated as originating 

from the choroid, one in the ciliary body and one in the iris, while two cases were ambiguous. 

All liver metastases came from patients that were untreated at the time of biopsy and 24 of 

them had been enrolled in the SCANDIUM phase III trial. All cutaneous biopsies except one 

came from patients previously treated with chemotherapy (IHP, dacarbazine and/or taxanes). 
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 Variant calling with MuTect 212 revealed mutations in BAP1, GNA11, GNAQ, 

SF3B1, CYSLTR2, and PLCB4 (Fig. 1b, S1 and Table S2), which are recurrently altered in 

UM2–4,7. We discovered no mutations in EIF1AX, which is associated with a good 

prognosis2,7. In all, 29/32 (91%) of metastases were found to harbor BAP1 mutations. These 

were paired with loss of chromosome 3 the vast majority of cases (Fig. 1b). Notably, BAP1 

was also the subject of alterations not detected by standard variant calling, including one 

large deletion spanning the first three exons. In another case, one intronic event far from the 

nearest splice site was associated with novel splicing events at the point of the mutation and 

intron retention (Fig. 1c). A third tumor contained a 48 bp fully intronic homozygous deletion 

that again did not occur at a splice site, but associated with mis-splicing and intron retention 

clearly tied to the event (Fig. 1d). These two alterations most likely created new intronic 

splice sites. A previous study has described a mutation that activates a cryptic splice site 

within an exon in BAP113. To our knowledge no cases have been described for de novo 

splice-site-generating intronic mutations in UM; only cases that disrupt canonical splice sites 

at the exon-intron boundary14. Since BAP1 loss predicts metastasis15, this highlights the 

need to also investigate intronic non-splice site mutations as candidates for loss-of-function 

events, which exome2 or targeted16 sequencing may not be sufficient to reveal. 

 Among the three patients where BAP1 mutations could not be established, two 

had SF3B1 mutations. We also detected mutations in SF3B1 that occurred outside the 

common hotspots K666 or R625. These were K700E, I955S and an in-frame deletion at 

V577. The first has to our knowledge not been described in UM, but is frequent in other 

cancer types, including breast cancer17, chronic lymphocytic leukemia18 and pancreatic 

adenocarcinoma19. Some SF3B1 mutations also co-occurred in tumors with BAP1 mutations, 

illustrating that mutual exclusivity between these events is not perfect2,3. 

  In the third tumor without BAP1 mutation, we did not discover mutations in 

either SF3B1 or EIF1AX. This tumor (UM28) was also the only one inferred to be tetraploid 

(Fig. S2b), and had frequent wide copy number losses, affecting chromosomes 1p, 3, 4q, 6q, 

8p, 9, 11, 14 and 16. Mutated genes in these regions included YEATS2 and ZMAT3 on 

chromosome 3 and AKT1 on chromosome 14. This sample also displayed the second 

highest levels of PRAME expression, which has been independently associated with 

metastasis20. 

 In addition, we found two metastases with mutations in the tumor suppressor 

TET2, in one case leading to a stop-gain. A third tumor had a frame-shift deletion in TET1. 

TET1 and TET2 exert epigenetic control via DNA demethylation21,22. Some metastases also 

had mutations in genes that interact with BAP1, including ASXL2 and FOXK223 (Table S2). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/742023doi: bioRxiv preprint 

https://doi.org/10.1101/742023


 
 

5 

Mutational signature of UV damage in UM 

The causes that underlie UM are to date largely unknown, and despite risk factors implying a 

potential role for UV radiation, no clear evidence has emerged to date and the field is divided 

on whether this can be a driving factor1,4,24–28. The pattern of trinucleotide substitutions 

across the genome can be informative about underlying mutational processes. Therefore, we 

estimated the relative contributions of established mutational signatures29 to the total exonic 

mutational burden in the tumors. 

 Consistent with previous observations4, the dominating signatures were S3, S5 

(COSMIC nomenclature), and to a lesser extent S16. S3 has been associated with defective 

DNA double-stranded break repair, whereas S5 is termed “clock-like” and associates with 

aging29,30 (Fig. 1e). However, one tumor had a distinctly different profile, dominated by 

contributions from S7 (about 63%), with a bias towards the untranscribed strand (q < 0.05, 

Poisson test), more closely resembling cutaneous melanomas sequenced concurrently (Fig. 

1e-f). S7 is known to arise as a consequence of UV radiation-induced damage29. We could 

exclude a mix-up from the presence of the same GNA11 Q209L mutation and BAP1 frame-

shift deletion in RNA, together with transcriptomic classification against ~10000 tumors from 

TCGA (Fig. S3a-c).  

 We hypothesized that this unexpected signature could be explained due to the 

tumor having originated in the iris (Fig. S3d-e), a site from which only 3-5% of cases arise31, 

compatible with an absence of iris melanomas and UV evidence in the TCGA UM cohort2. To 

confirm this, we managed to obtain a second iris UM sample from a patient without 

metastasis, which again revealed a prominent a UV pattern (Fig. 1g). Thus, although rare, 

UM can evidently be induced by UV damage if manifest in the iris. 

Copy number changes overrepresented among metastases  

UM is characterized by highly recurrent copy number aberrations affecting entire 

chromosome arms2. All metastases had gain of chromosome 8q, known to co-occur with 

monosomy 3 in poor prognosis tumors26,32,33 (Fig. 2a). A number of arm-level changes were 

also significantly overrepresented in the metastatic tumors compared to tumors studied by 

TCGA (Fisher’s exact test, q < 0.05). These were loss of 17p and 6q, as well as gain of 8q 

and 5p gain (Fig. 2a-b, Table S3). Loss of chromosome 3 was close to significance at q < 

0.094. Previous studies have also found loss of 6q and 8p to be overrepresented in 

metastatic tumors26,32. Sequencing of matched primary tumors for UM16 and UM24 showed 

that 8q gain and loss of 3 was present already in the primaries in both cases (Fig. 2c). 

However, gain of 5p in UM16 and loss of 6q in UM24 were later events only present in the 
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respective metastases. Overall, genomic losses tended to be more frequent in these 

metastases than observed in TCGA tumors. 

 Focal events were very rare. Notably, however, we discovered somatic focal 

deletions affecting CDKN2A and the nearby gene MTAP in two samples (Fig. 2d, Fig. S4). 

CDKN2A encodes the tumor suppressors p16INK4a and p14ARF and is commonly deleted in 

cutaneous melanoma34. The deletions here were homozygous and hemizygous respectively. 

While CDKN2A expression was still present in the hemizygous case, a subsequent patient-

derived xenograft (PDX) model established from this tumor showed full loss of expression, 

even extending to other nearby genes (Fig. 2e, Fig. S5). This suggests that either a pre-

existing clone with a homozygous deletion or a second loss event was selected for as the 

tumor established itself in this new environment, supporting CDKN2A loss as a late event 

that may be relevant in the metastatic setting. 

Survey of genes in recurrent arm-level copy number events that may influence tumor 
behavior 

To understand how the recurrent chromosomal events in UM affect the transcriptome and to 

rank genes by a potential to influence tumor behavior, we searched for consistent 

correlations between the copy number of each gene affected and its expression in this 

dataset and TCGA UM, and ordered them by their degree of known protein-protein 

interactions from the HPRD database, followed by association with survival. The top 

candidates per region are shown in (Fig. 2f, Table S4). An analysis using the “chemical and 

genetic perturbations” collection in MSigDB showed that regions of gain were enriched for 

the category “uveal melanoma class II up” (q < 1.84*10-19), whereas regions of loss were 

enriched for “uveal melanoma class II down”35 (q < 3.15*10-17). The class II transcriptional 

subtype is one of the two major subdivisions of UM, strongly associated with metastasis35. A 

Reactome enrichment analysis revealed processes that included cell cycle progression, 

chromosome maintenance, immune signaling and hemostasis (Fig. 2g, Table S5). 

 Top ranked genes in loss regions included CASP9, an early activator of 

apoptosis36 and the aforementioned CDKN2A. Candidates in gain regions included  MAPK14 

(p38α), a kinase that operates at the intersection of cell cycle progression, stress signaling, 

immune responses and differentiation37–40, and the very recently proposed UM oncogene 

PTK2 (FAK)41, a negative regulator of cell detachment-initiated apoptosis (anoikis)42,43. A 

small RNAi screen, directed against a list of genes selected based on gain candidates, in a 

cell line derived from the UM22 tumor demonstrated that 8/12 siRNA pools negatively 

affected proliferation (cell count) or viability (ATP production) to a similar or higher level than 

an siRNA against GNAQ (Fig. 2h). Thus, these recurrent arm-level copy number changes 
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contribute to shaping the transcriptomic subtypes of UM and regulate genes that may 

conceivably contribute a fitness advantage. 

BAP1 loss contributes to a transcriptomic shift towards the metastatic class II 

subtype and up-regulates TIM-3 and TIGIT immune checkpoint ligands 

We next asked to what extent BAP1 loss could influence the transcriptome of metastatic UM. 

For this purpose, we used the UM22 cell line, which had been established from one of the 

metastases grown as a PDX, which had a homozygous frame-shift deletion in BAP1 (Fig. 

S5). A functional copy of BAP1 was introduced using a retroviral vector and RNA-seq 

performed on this and an empty vector control sample (Fig. 3a). RNA-seq alignments 

showed successful integration of the wild-type BAP1 allele (Fig. 3b). A differential expression 

analysis between the two conditions revealed a large transcriptomic response, with 518 

genes downregulated and 990 upregulated at an absolute log2 fold change > 1 and q < 0.05 

(Fig. 3c, Table S6). SLC7A11, identified by Zhang et al. as a mediator of ferroptosis-

suppressive effects of BAP144, was significant albeit not as strongly regulated (log2 fold 

change = -0.82, q = 5.42*10-19). Pathways enriched among downregulated genes upon 

reintroduction included GPCR signaling, neurotransmitter receptor transmission, interferon 

alpha/beta signaling and chemokine activity. Upregulated pathways most prominently 

included post-transcriptional and translational mechanisms (Fig. 3d). 

 Notably, we observed significant regulation of nine out of 12 genes used as 

discriminating features in a classifier that distinguishes between the high-risk class II versus 

class I subtypes45,46, some of which are melanocyte lineage markers and a few of which have 

also been found compatibly regulated upon silencing8 (Fig. 3c). These genes were all 

expressed in the inverse fashion expected for class II tumors, with CDH1, ECM1 and HTR2B 

decreasing upon BAP1 reintroduction and LMCD1, LTA4H, MTUS1, ROBO1, SATB1 and 

FXR1 increasing. This was confirmed with additional RT-qPCR measurements for all genes 

but FXR1 (Fig. 3e). 

 To investigate whether this trend was limited to these few discriminating genes 

or representative of a broader transcriptomic shift towards the class I subtype, we performed 

a gene set enrichment analysis on the whole list of differentially expressed genes using the 

“chemical and genetic perturbations” collection from MSigDB47. We found the “uveal 

melanoma class II down” gene signature35 to be significantly enriched among upregulated 

genes (q < 0.00031), and “uveal melanoma class II up” to be enriched among downregulated 

genes (q < 0.012), showing that this trend is indeed broader (Fig. 3f, Table S7). This shift 

towards the class I subtype upon BAP1 reintroduction implies that the inverse drives the cells 

towards the metastatic class II transcriptional subtype, which characteristically has BAP1 

alterations. 
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 Beyond this, BAP1 restoration also downregulated the TIM-3 immune 

checkpoint ligands HMGB1 and PTDSS1 as well as the TIGIT and CD96 ligands PVR and 

PVRL2, implying higher expression levels in BAP1-deficient UM cells (Fig. 3g, Table S6). 

T cells from UM metastases recognize tumor antigens and predominantly express 

the checkpoint receptors LAG3, TIM-3 and TIGIT 

Having observed the regulation of checkpoint proteins in UM cells, we next investigated the 

phenotypes of tumor-infiltrating lymphocytes (TILs) isolated from metastases. Despite the 

generally poor immunogenicity of UM, we could confirm the presence of melanoma-specific 

TILs in a subset of patients (Fig. 4a). This included the UV-associated iris tumor, which was 

also predicted to have the highest neoantigen load (Fig. 4a and Fig. S6). More detailed flow 

cytometry of cryopreserved single cell preparations of tumors revealed PD-1+CD39+ cells 

present in high fractions of CD8+ T cells in a subset of samples (Fig. 4b-c, gating strategy in 

Fig. S7a-b). PD-1+CD39+ cells have been proposed to be tumor-reactive48. Most samples 

maintained their relative proportions of CD8+ and CD4+ T cells after expansion (Fig. S7c). 

We therefore performed single-cell RNA and T cell receptor (TCR) sequencing of TILs from 

these eight tumors for a more comprehensive view.  

 Inference of cellular subtypes by correlation to pure PBMC subsets49 revealed 

similar proportions of CD8+ and CD4+ subsets as observed by flow cytometry (Fig. 4b-d and 

Fig. S7d). The transcriptome analysis also revealed heterogeneity in regulatory CD4+ T cell 

fractions, potentially suggesting samples with more suppressive mircoenvironments. Clusters 

were formed both by cell type and receptor clonotype (Fig. 4d-e), revealing clones in 

different activation states and clonal expansion (Fig. 4f and Fig. S8). Notably, we observed 

abundant expression of activation and exhaustion markers (Fig. 4g and for confirmation by 

flow cytometry, Fig. S9-10). The most prominently expressed checkpoint receptors were 

LAG-3, TIM-3 and TIGIT, with fewer cells expressing PD-1 and CTLA-4. The predominance 

of LAG-3, TIM-3 and TIGIT, together with the observation that BAP1 can suppress ligands 

for the former two, indicates means of immune evasion in UM that are different from 

cutaneous melanoma. 

Discussion 

Metastatic UM currently entails a very poor outcome due to the lack of effective treatment 

options15. Genetics of the primary disease confined to the eye has already been investigated 

in several hallmark studies2–4,7–9. However, only a few metastatic samples have been 

sequenced with exome or whole-genome sequencing and our study has the largest sample 

cohort sequenced to date with whole-genome sequencing. A history of primary uveal 
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melanoma and lack of therapeutic efficacy of surgery makes biopsy and surgical removal of 

samples not clinically meaningful. By obtaining biopsies of liver metastases from patients in 

the SCANDIUM trial or cutaneous metastases of UM, we have been uniquely positioned to 

focus on the metastatic disease by both analyzing fresh frozen material by genomics as well 

as generating PDX, cell lines and TIL cultures for transciptomics analyses. 

 The key event to metastasis in UM is loss of the tumor suppressor BAP18. 

Compatible with this, we observed BAP1 alterations in 91% of the metastases. Two of these 

altered splicing via intronic events outside of canonical splice regions, via creation of new 

intronic splice sites. This illustrates special cases that exome sequencing may not be 

sufficient for detecting, and which have high prognostic value. 

 We furthermore find that out of two tumors studied of the iris subtype, both had 

mutational spectra associated with UV-induced damage. Mutational signatures of UV 

damage in UM have not previously been reported and a consensus of UV-involvement in UM 

has not been reached by previous epidemiological studies. While iris UM is rare, the 

metastasis studied here had much higher than average mutation load, and predicted number 

of neoantigens. This could potentially render such tumors suitable for immunotherapy, which 

otherwise lacks efficacy in UM. Interestingly, the iris UM metastasis concerned here also 

harbored T cells recognizing MART-1. 

  Several broad copy number events were found to be more frequent in the 

metastases studied compared to primary tumors from TCGA, including losses of 17p loss 

and 6q, as well as gains of 8q and 5p. Notably, 8q gain was present in every metastasis. By 

sequencing matched primary tumors for two cases, we could establish that in one of the 

tumors 5p gain and 17p loss had arisen during metastasis, and in the other case 6q loss. 

Furthermore, two tumors had focal deletions of CDKN2A, an event that may have a larger 

relevance in the metastatic setting, as it has not been detected in recent large-scale studies 

of primary UM tumors2–4,26,28. 

 We additionally mapped out genes with correlations between expression and 

arm-level copy number changes in both this dataset and that of TCGA and ranked them by 

their degree of protein-protein interactions and any associations with survival present to gain 

an understanding for central processes affected and potential targets. We found several 

interesting candidates, including the recently proposed UM oncogene PTK241, MAPK14, the 

apoptosis mediator CASP936, as well as CDKN2A to be first-ranked candidates in 8q gain, 6p 

gain, 1p loss and 9p loss, respectively. We performed an siRNA knockdown experiment 

against selected genes and found proliferation and viability decreases to be the 

consequence when targeting the majority of those. In addition, we found expression changes 

mediated by loss events to be enriched for genes generally downregulated in poor-prognosis 
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tumors and gain events enriched for genes upregulated in poor-prognosis tumors, showing 

that these broad events contribute to shaping the distinct transcriptomes of the two subtypes. 

 To increase our understanding for how these transcriptomic subtypes are 

established, we investigated the contribution from BAP1 loss by reintroducing a functional 

allele into a cell line established from one of these metastases. We found that genes 

upregulated in cases with the functional gene where enriched for those that are lowly 

expressed in the poor-prognosis class II subtype, and vice versa. In essence, reintroduction 

indicated a reversal of the transcriptomic subtype. Notably, also immune checkpoint ligands 

where found regulated by BAP1. Of potential importance was the downregulation of TIM-3 

and TIGIT ligands in the cases with functional BAP1, indicating a potential upregulation on 

BAP1 loss that may have consequences for tumor-immune interactions. 

  We profiled the transcriptomes of tumor-infiltrating lymphocytes isolated from 

eight of the metastases by flow cytometry and single-cell sequencing and found tumor-

reactive subsets present in several cases. However, their transcriptomes also indicated a 

high degree of exhaustion, with prominent expression of the checkpoint receptors LAG3, 

TIM-3 and TIGIT, and to a lesser extent PD-1 and CTLA-4. Potentially, the inferred 

upregulation of ligands for TIM-3 and TIGIT upon BAP1 loss may cooperate with the high 

level of expression of these receptors by T cells to interfere with anti-tumor immunity. Given 

the historic failures of anti-PD-1 and anti-CTLA-4 therapies in UM, this may argue for 

exploring these other checkpoint mechanisms.  

 Collectively, these results highlight that exome sequencing may not be 

sufficient to detect BAP1 loss, the most significant event in UM metastasis, that UV damage 

underlies an important mutational process in the iris subtype and that recurrent copy number 

aberrations cooperate with BAP1 loss to shape the transcriptome of the metastatic subtype. 

We also describe immune-profiles of T cells present in metastases that indicate tumor 

recognition, but exhaustion with predominant activation of checkpoints that are not targeted 

by current immunotherapies. 

Methods 

Processing of tumor biopsies 

The patients received oral and written information and signed the informed consent 

according to the ethical approval at the Regional ethical review board (#289-12 and # 144-

13). Biopsies were either extracted from subcutaneous metastases or from liver metastases, 

during the procedure of isolated hepatic perfusion in the SCANDIUM trial for those 

participating in it. Tumor biopsies were divided into pieces that were snap-frozen or minced 
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and used for cryopreservation or tumor-infiltrating lymphocyte cultures. Primary eye tumors 

were formalin fixed and paraffin embedded (FFPE) in blocks at St Erik’s Eye Hospital’s 

pathology biobank. 

Sequencing 

DNA and RNA from fresh frozen biopsies, blood and tumor-infiltrating lymphocytes were 

extracted using the AllPrep DNA/RNA kit (Qiagen). Primary eye tumors were sectioned and 

processed using an FFPE DNA kit (Qiagen). Libraries were made using Illumina TruSeq kit 

and sequenced on HiSeq2500 instruments at SciLifeLabs in Stockholm or on a NovaSeq at 

GeneCore SU in Gothenburg. Exome sequencing libraries were prepared with the 

Nextseq500 Kit HighOutput v2 and sequenced with Nextseq500.  

Preprocessing of DNA sequencing data 

Raw whole-genome sequencing reads were aligned to the 1000 Genomes version of the 

GRCh37 reference genome with bwa50 (version 0.7.12; options “mem” and “-M”). Duplicates 

were marked with Picard (version 1.109; https://broadinstitute.github.io/picard). The resulting 

BAM files were recalibrated with GATK BaseRecalibrator (version 3.3.0)51, supplying lists of 

known polymorphic sites from dbSNP v138 and 1000 Genomes. PDX samples were aligned 

separately to the human reference genome and to the GRCm38 version of the mouse 

reference genome. Reads originating from human were then determined using Disambiguate 

(version 2018.05.03)52, specifying the parameter “-a bwa”. 

Preprocessing of RNA sequencing data 

RNA sequencing reads were aligned to the 1000 Genomes version of the GRCh37 reference 

genome with STAR53 (version 2.7.1a) with the parameters “--twopassMode Basic --

outFilterType BySJout, --outSAMmapqUnique 60”.  Splice junctions were provided from the 

Ensembl GRCh37.75 reference annotation. Gene expression was quantified using htseq-

count54 (version 0.6.0), with parameters “-m intersection-strict -s reverse”. Transcript-level 

expression was quantified using kallisto55 (default parameters), based on cDNA sequences 

corresponding to the Ensembl annotation of the GRCh37 human reference genome. PDX 

samples were aligned separately to the human reference genome and to the GRCm38 

version of the mouse reference genome with STAR. Reads originating from human were 

then determined using Disambiguate, specifying the parameter “-a star”. 
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Variant calling 

Variant calling was performed with MuTect 2 (GATK v. 4.0.11.0) with a panel of normals for 

paired tumor and normal samples and in a minority of cases on tumor samples alone, with 

lists of known population variants provided from the Genome Aggregation Database56, 

specifying the parameters “--af-of-alleles-not-in-resource 0.0000025” and “--disable-read-

filter MateOnSameContigOrNoMappedMateReadFilter”. Construction of a panel of normals 

was done by first running MuTect2 in on each normal with the parameter parameter “--

disable-read-filter MateOnSameContigOrNoMappedMateReadFilter” and then merging the 

resulting lists with “CreateSomaticPanelOfNormals” from GATK. MuTect2 calls were filtered 

by first running “FilterMutectCalls” and then removing all that failed these filters. Variant 

annotation was performed with VEP (v. 91.3) and ANNOVAR57 (version 2016-05-11), using 

the databases COSMIC (v. 79), ESP6500 (v. “siv2_all”), 1000 Genomes (v. “2015aug_all“) 

and dbSNP (v. “snp138NonFlagged”). For two of the tumors, exome-sequenced normals 

were used for further filtering using GATK SelectVariants.   

Mutational signature analysis 

To determine mutation spectra, all exonic somatic mutations (including synonymous) not 

present in any population variant resource were converted into a 96-trinucleotide mutation 

frequency matrix using the function “mut_matrix” (parameter: ref_genome = 

“Bsgenome.Hsapiens.UCSC.hg19”, excluding the sex chromosomes) from the R package 

MutationalPatterns58. Known mutational signature trinucleotide frequencies, obtained via 

COSMIC (http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt; 

accessed October 27, 2017), were then fitted to the observed mutations using the function 

“fit_to_signatures” of the same R package. This algorithm operates by searching for the 

nonnegative linear combination of the predefined mutational signatures that best explains all 

mutations in a given sample, which is done by solving a nonnegative least squares 

optimization problem58. As a result, estimations of the relative contributions of the known 

mutational signatures in each sample were obtained. 

HLA-genotyping 

HLA genotyping was performed using polysolver (version 1.0)59 on whole-genome 

sequencing data, with the parameters “Unknown 0 hg19 STDFQ”.  

Neoantigen prediction 

Mutated 17-mer peptide sequences centered at each mutation were constructed from non-

synonymous point mutations not present in any population variant resource. Neoantigen 
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predictions against the HLA class I genotypes of each sample were then performed using 

netMHCpan60 (version 4.0, default parameters), considering only 9-mers. Peptides with 

predicted affinity < 500nM were retained and those deriving from transcripts without 

expression were removed. 

Generation of PDX models and a BAP1 deficient UM cell line 

Animal experiments were performed in accordance with E.U. directive 2010/63 (Regional 

animal ethics committee of Gothenburg approval #36-2014). Cryopreserved biopises were 

thawed and single cells were transplanted into the flank (UM22) or the liver (UM9) of 

immunocompromised, non-obese severe combined immune deficient interleukin-2 chain 

receptor γ knockout mice (NOG mice; Taconic, Denmark) to form xenografts. Tumors were 

analyzed by immunohistochemistry using clinically used antibodies against Melan-A, PMEL 

(HMB45) and S100. For generation of a cell line, a PDX tumor was minced and seeded at 

high density into a 5 cm culture plate in RPMI medium supplemented with 10% fetal bovine 

serum. Surviving cells were expanded and characterized by RNA-seq. The cells were 

transduced with a retrovirus expressing HA-tagged BAP1 or a control retrovirus (MSCV-

IRES-GFP), both of which were made using plasmids from Addgene. 

Differential expression analysis 

RNA-seq data was aligned and quantified as described. Differential expression was 

assessed using DESeq2, with the parameter “alpha=0.05”. Genes with q-values below 0.05 

were considered statistically significant. Gene set enrichment analysis was carried out with 

the R package “fgsea”61, with gene sets obtained from MSigDB47, using parameters 

“minSize=0”, “maxSize=10000” and “nperm=107”. Categories with q < 0.05 were considered 

statistically significant. 

RT-qPCR validation of genes identified from differential expression analysis 

RNA was extracted from the indicated cell lines with Nucleospin RNA II kit (Macherey-

Nagel), and converted to cDNA using iScript cDNA synthesis kit (Bio-Rad). qPCR was 

performed using 2x qPCR SyGreen Mix (PCR Biosystems) and the CFX Connect Real-Time 

System (Bio-Rad). Data analysis was performed by comparing ΔΔCT values using 

Ubiquitin as a reference gene. 

Transcriptome comparison with tumors from TCGA 

RNA sequencing data for 9,583 tumors from 32 cancer types were downloaded from the 

cgHub repository on December 18, 2015, and aligned to the hg19 human genome assembly, 
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excluding alternative haplotype regions, with hisat62 0.1.6-beta (parameters: “--no-mixed --

no-discordant --no-unal --known-splicesite-infile”), using splice junctions defined in the 

GENCODE (version 19) reference human genome annotation. Gene read counts were 

derived with htseq-count54 (parameters: “-m intersection-strict -s no”). RPKM normalized 

values were calculated, taking into account the max mature transcript length of each gene 

and using robust size factors as previously described for the DESeq method63. For the 

correlation analysis, reads from our own sample was realigned and read counts requantified 

and normalized using the same methods described for TCGA data. However, standard read 

depth-based size factors were used for the RPKM normalization of this sample. Pairwise 

Spearman correlation coefficients were then calculated between our sample and each TCGA 

sample, with respect to all coding genes (using the function “corr” in MATLAB R2018a). For 

t-distributed stochastic neighbor embedding (t-SNE) analysis, log2 transformed (pseudocount 

of 1 added) expression values of all coding genes were used, together with the “Rtsne” 

function from the “Rtsne” R package64. A separate classification was performed using a 6-

nearest neighbor approach based on Spearman correlations, as previously described65. 

Copy number segmentation and purity estimation 

Copy number segmentation was performed using binocular 

(https://sourceforge.net/projects/binocular), with input from an unfiltered VCF file from 

MuTect for a given sample, together with WGS BAM files for tumor and normal samples. 

Parameters used were “--delta=90,” “--min-maf-delta=0.05,” “--ai-cutoff=0.001” and “--min-

copy-ratio=1.1” for the majority of samples, although for samples with more variable 

coverage this threshold was raised. For tumors without matching normals, the intersect of 

segments defined using normals from the other samples were used. Sample purity and 

ploidy was estimated with ichorCNA66, using the parameters “--ploidy "c(2,3,4)" --normal 

"c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)" --maxCN 10“, based on the segmented copy number 

values. 

Associations between broad copy number changes and metastatic or primary 

tumors 

Segmented copy number data from TCGA primary tumors were downloaded from GDC Data 

Portal (accessed on 6 October 2017). Copy number changes with an absolute log2 ratio 

relative to diploid chromosomes less than 0.2 and with width less than 106 base pairs were 

filtered out from both TCGA UMs and our tumors. The general events to test were defined as 

those where a contiguous altered region spanning all events in all metastasis samples were 

present that had a width of at least 106 base pairs, and which occurred in at least 5% of 
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samples in either dataset, to avoid events that were unlikely to be relevant to selection. 

Changes of same direction (loss or gain) affecting each region were then assessed for 

association with each of the two datasets using Fisher’s exact test (two-tailed) using the 

function “fisher.test“ in R 3.5.0. Since the resulting contiguous regions practically spanned 

the entire length of each affected chromosome arm, with the exception of chromosome 3, 

which spanned the entire chromosome, one test was performed per gain or loss event of 

each such arm. p-values were corrected for multiple testing using the Benjamini-Hochberg 

method. 

Ranking of genes in broad copy number aberrations 

RNA-seq data for the TCGA UVM dataset (n = 80) were downloaded using the TCGAbiolinks 

R package67, with parameters “project = ‘TCGA-UVM’, data.category = ‘Transcriptome 

Profiling’, data.type = ‘Gene Expression Quantification’, workflow.type = ‘HTSeq - Counts’”. 

Read counts were normalized using the “rpkm” method from the “edgeR” package 

(“log=FALSE, prior.count=1”), with gene lengths chosen as the maximum transcript length 

obtained via biomaRt and the “ensembl” database. Segmented copy number profiles for 

each sample were downloaded from the GDC data portal. The copy number status of each 

gene was calculated by choosing the maximal absolute log2 ratio among segments spanning 

the gene. Genes with both copy number and gene expression values assigned were 

retained. 

 To focus on genomic regions subject to copy number changes recurrent 

enough to indicate selection, TCGA GISTIC results2 were used (obtained from 

gdac.broadinstitute.org, accessed 4 July 2017). Recurrent broad copy number changes with 

q-values < 0.05 were retained. To focus on genes that were altered at relevant frequencies 

and more likely to be part any minimal region of overlap, genes with an absolute log2 copy 

number ratio < 0.2 were filtered out and only genes with an alteration frequency in the upper 

third quartile per chromosome arm event were retained. The third quartile was chosen, rather 

than a stricter threshold, since some regions may be subject to low-frequency focal events of 

a random or artifactual nature. 

 To find genes altered in expression in tandem with the copy number changes, 

linear regression between copy number and expression was performed, adjusting for tumor 

purity estimates obtained from Zheng et al.68. Genes with too low expression variance to test 

were removed (defined as those for which regression failed to converge). Univariate survival 

tests with Cox regression (the “coxph” function from the “survival” R package69) were then 

carried out against clinical data downloaded using TCGAbiolinks67, using the variables 

“vital_status”, “days_to_death” and “days_to_last_follow_up”. 
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 Segmented copy number values from our metastasis samples were mapped to 

gene names as described above and converted to log2 ratios. Values of zero prior to 

transformation were set to the lowest observed non-zero copy number value. Gene 

expression values for the metastasis dataset were normalized with RPKM as described 

above and batch corrected using the “removeBatchEffect” function of the “limma” R 

package70. Genes with values in both the copy number and gene expression dataset as well 

as preserved after the filtering on the TCGA data were retained. Associations between gene 

expression and copy number status were assessed as for the TCGA dataset, considering 

sample purity. p-values from associations in the TCGA data and metastasis dataset were 

combined using Fisher’s method and FDR adjusted using the Benjamini-Hochberg method. 

Candidates with q-values < 0.05, an independent raw p-value of less than 0.05 in each 

dataset and correlations consistent with the direction of the assessed copy number event 

were retained. Candidates in regions with more samples harboring gains than losses were 

retained as candidates of gains and vice versa. 

 To assess the extent to which a given gene may have a wider impact on 

cellular behavior, manually curated protein-protein interactions with experimental evidence 

defined in the Human Protein Reference Database (HPRD)71 were used. The database was 

accessed using the “iRefR” R package72 and node degrees calculated using the “degree” 

function in the “igraph” package73. The candidates were then ranked by the number of HPRD 

connections, and then by whether any univariate survival associations existed (p < 0.05) 

implying worse survival consistent with the nature (gain or loss) of the copy number event 

assessed. This way, survival associations were placed a low weight, with the motivation that 

such associations are easily confounded by multiple genomic and clinical factors. 

 

siRNA screen 

In vitro knockdown of selected genes was performed using siRNA in UM22 cells. Transient 

transfection was performed with mock siRNA (control), a positive control siRNA (GNAQ) or a 

pool of 4 siRNA per gene of interest. The siRNA duplexes were purchased from Dharmacon 

(Thermo Fisher Scientific, Waltham, MA, USA) and the lipid based transfection was 

performed with Lipofectamine-RNAiMAX® (Thermo Fisher Scientific, Waltham, MA, USA) 

using 1 pmol of siRNA per well of a 96-well plate as per the guide line provided by 

manufacturer. The RNA-Lipid complex was made in Opti-MEM® Reduced Serum medium. 

The cells were seeded in black 96-well plates (Corning) and 72 hours post-transfection cells 

and viability of was monitored with ATP measurement using CellTiter-Glo® Assay (Promega) 

the luminescence was measured with GloMax Discover plate reader (Promega). In parallel 
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the manual cell count was performed using Trypan blue staining of cells obtained from 

transfections in 12-well format.    

Single-cell RNA-seq analysis of immune infiltrates 

Small pieces of tumor biopsies were cultured for two weeks in RPMI medium containing 10% 

human serum and 6000 U/ml IL-2. Young TIL (yTIL) cultures were then cryopreserved before 

use. Two days before performing the single cell experiments, yTIL cultures were thawed. 

Cells were counted and 7 000 cells were injected into a single cell library preparation 

instrument (10x Genomics). The steps following were performed using the Single Cell V(D)J 

kit according to the kit description (10x Genomics). V(D)J libraries were sequenced on a 

MiSeq instrument (Illumina) whereas the gene expression libraries were run on a NextSeq 

(Illumina). Single-cell transcriptomics data were aligned against the hg38 reference genome 

and preprocessed using the Cellranger pipeline provided by 10x Genomics. Expression 

levels were estimated using the Cellranger “count” function, with default parameters. TCR 

chain assembly was also performed using the Cellranger pipeline, using default parameters. 

t-SNE maps for each sample were generated using the SingleR R package (version 1.0) and 

cell types were inferred using the approach described by Zheng et al.49, with two 

modifications: correction of a code error that misclassified some CD4+ cells and 

reclassification of cells classified as memory CD4+ cells not expressing CD4 but CD8 as the 

closest matching non-CD4+ cell type. Doublet cells were defined as those expressing more 

than one alpha or beta chain and those that were classified as doublets by the tool 

DoubletFinder74 (default parameters). TCR clonotype diversity was assessed for CD8+ cells 

using clonotype frequency and the “diversity” function (type = "e") from the “diverse” R 

package75. Clonotype activation states were defined by first independently clustering each 

clonotype by Spearman correlations with respect to the mean expression of cytotoxicity 

markers and T cell terminal differentiation / exhaustion markers obtained from Azizi et al.76, 

using complete linkage hierarchical clustering with a Euclidean distance metric (“pheatmap” 

R package). The number of clusters were defined based on the number of clusters 

maximizing the clustering indices calculated with the NbClust R function (“NbClust” package; 

parameters: min.nc=4, max.nc=20, method = "complete", index = index[i], alphaBeale = 0.1 , 

where index[i] indicates each of the supported indices for a distance matrix). The resulting 

clusters were then used to define overlapping sets of clusters. 

Flow cytometry 

Single cell suspensions from cryopreserved tumor biopsies and yTILs were surface stained 

for 30 minutes in RT. The following antibodies were used for surface staining: CD3 (HIT3a), 

CD4 (A161A1), CD8 (HIT8a), CD45 (2D1), CD69 (FN50), CTLA-4 (BNI13), PD-1 (EH12.H7), 
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TIGIT (A15153G) and TIM-3 (F38-2E2) from BioLegend and CD39 (eBioA1) from 

eBioscience. For detection of melanoma antigen specific CD8 T cells, cells were surface 

stained for 45 min in 37°C using Melanoma Dextramer Collection 1 kit from Immudex. Dead 

cells were excluded from the analysis using Live/Dead Aqua (Invitrogen). Flow cytometry 

data was acquired using BD Accuri C6 (BD Biosciences), BD LSRFortessa X-20 (BD 

Biosciences) or BD FACSARIA FUSION (BD Biosiences) and analysed using FlowJo 

software (FlowJo LLC). The gating strategy is shown in Fig. S6. 
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Supplementary figure and table legends 

 

Figure 1. Recurrently mutated genes and copy number aberrations in metastatic uveal 

melanoma (UM). a) Schematics of the study. b) Mutations in genes recurrently altered in UM. 

Chromosome 3 status is indicated. c) Intronic non-splice site point mutation in BAP1, 

associated with aberrant splicing. d) Intronic large deletion in BAP1 associated with aberrant 

splicing. e) Estimated contributions of COSMIC mutational signatures. Samples and 

signatures are ordered by agglomerative hierarchical clustering. Signatures with estimated 

contribution < 25% excluded. Two cutaneous melanomas (indicated “CM”) sequenced at the 

same time were included for comparison. Only tumors with matching normals were included. 

Signatures were inferred using both synonymous and non-synonymous mutations in exonic 

regions. f) Overall mutational spectrum of UM11, shown on WGS and RNA-seq data. The 

canonical profile of the UV-associated “signature 7” is shown for comparison. g) Mutational 

spectrum of an unrelated iris melanoma of a primary site. The tumor was sequenced by 

exome sequencing. 

 

Figure 2. Copy number analysis. a) Copy number profiles of each tumor. b) Broad copy 

number changes enriched in the metastases (n = 32) compared to TCGA tumors (n = 80), 

assessed using two-tailed Fisher’s exact tests and adjusted for multiple testing using the 

Benjamini-Hochberg method. c) Copy number profiles of two primary tumors together with 

the corresponding matched metastases. d) Focal deletions of CDKN2A in two samples. e) 

RNA-seq of the samples with focal CDKN2A deletions in samples taken from the metastases 

and samples taken from PDX models established from these tumors. f) Genes in recurrent 
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arm-level copy number aberrations ranked by correlation between gene expression and copy 

number consistent among the metastases and in TCGA tumors as well as protein-protein 

interaction network degree from the Human Protein Reference Database (HPRD), with the 

top three candidates shown in each region. Connecting lines represent protein interactions of 

the highest ranked gene per region. Blue represents regions of loss and red regions of gain. 

Summarized representations of copy number profiles per region show the relative numbers 

of gain and loss events, with the inner circle representing TCGA samples and the outer our 

cohort. g) Gene pathways enriched among the combined set of genes per region of gain or 

loss. h) Functional interrogation by siRNA of a selected amount of genes whose expression 

is elevated due to CNV. Cells were counted or viability were measured 72 h after transfection 

of the siRNA pools. 

 

Figure 3. Reintroduction of BAP1 into a deficient tumor. a) Schematic representation of the 

experiment. Cell lines from a PDX model established from tumor UM22 were transduced with 

either BAP1 wild-type containing viral vectors or empty vectors and subjected to RNA 

sequencing. b) RNA-seq alignments of BAP1 in the two conditions. c) Differentially 

expressed genes for q < 0.05 and absolute log2 fold change > 1. n = 3 biological replicates 

were used and differences were assessed using DESeq2, with the parameter alpha = 0.05. 

Genes from a clinical assay distinguishing the class I and II UM subtypes are indicated45. d) 

Top ten enriched gene sets for the “canonical pathways” MSigDB category. e) RT-qPCR 

results for the genes indicated in (c), with n = 3 biological replicates. Bars represent means 

and error bars represent standard deviations. f) Gene set enrichment analysis with respect to 

MSigDB “chemical an genetic perturbation“ category, with results from the two sets 

discriminating between class I and II subtypes shown35,47. g) Downregulation of ligands to the 

immune checkpoint receptors TIM-3, TIGIT and CD96 upon BAP1 reintroduction. 

 

Figure 4. Analysis of tumor-infiltrating lymphocytes. a) Assessment of T cell reactivity 

against MART-1 and gp100. Proportions found to be specific are indicated. b-c) Flow 

cytometry analysis of T-cells. (a) Proportions of CD8+ and CD4+ cells. (b) Proportions of PD-

1+ and CD39+ CD8+ cells. (d-g) Paired transcriptome and TCR profiling of T cells. d) t-SNE 

representations of cell transcriptomes, colored by inferred cell type (upper) and the most 

abundant T cell receptor clonotypes (lower). e) Relative proportions of each cell type. f) TCR 

diversity, measured by Shannon entropy. g) Expression of exhaustion markers in each cell.   

Supplementary Figure Legends 

Figure S1: Multiple BAP1 mutations in UM16 present in both metastasis and primary tumor. 
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Figure S2: Tumor purity and ploidy analysis. a) Tumor purity per sample. b) Tumor ploidy. 

Values were estimated using ichorCNA. 

 

Figure S3: a) GNA11 Q209L mutation and b) BAP1 deletion in UM11 DNA and RNA. c) 

Transcriptomic classification of UM11 using t-SNE against TCGA tumors (n = 9,583) from 32 

cancer types. 6-nearest neighbor classification based on Spearman correlation coefficients, 

according to a previously described approach45, gave that 6/6 of the top ranked samples in 

TCGA were UMs (average correlation coefficient 0.93). d-e) Clinical manifestation of an iris 

melanoma. At diagnosis an iris nevus was seen (c) which progressed to an iris melanoma (d) 

two years later. e-g) Histological sections of different magnifications showing the locally 

invasive iris melanoma.  

 

Figure S4: Focal deletions of CDKN2A. a) RNA-seq reads of the CDKN2A locus in UM9 and 

UM22 metastases and PDX models. b) Exome sequencing of tumor-infiltrating lymphocytes 

confirming the somatic identity of CDKN2A deletion in UM22. 

 

Figure S5: Immunohistochemistry of PDX models with respect to hematoxylin and eosin, 

Melan-A, HMB-45 and S100-P. 

 

Figure S6: Estimated number of neoepitope-generating mutations per sample, using 

netMHCpan, with HLA genotype inferred using polysolver. 

 

Figure S7: Gating strategy for identification of CD4+ and CD8+ T cells among REP-TILs, 

yTILs and original material from the metastasis. a) Representative plots from UM13 showing 

the gating strategy used to identify MART-1 specific CD8+ T cells among REP-TILs. b) 

Gating strategy from yTIL material of UM22 illustrating the gating strategy for analysis of 

CD4+ and CD8+ T cells in PR and yTIL samples. c) Flow cytometry analysis of T-cells, with 

respect to CD4 and CD3. d) Single-cell RNA expression levels of CD3G, CD8A, CD4 and 

NCAM1 in TILs. 

 

Figure S8: Analysis of T cell receptor clonotypes. a) Clustering of CD8+ T-cell clonotypes 

using average clonotype expression and Spearman correlation, based on exhaustion / 

terminal differentiation genes and cytotoxicity genes. b) Clonotypes in the intersection from 

the clusters in (a), colored by membership in the clusters from (a). Sizes of dots are 

proportional to the number of cells having each clonotype. 
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Figure S9: Flow cytometry analysis of T-cells. Proportions of a) CD8+ and b) CD4+ cells 

positive for PD-1 and TIGIT. Proportions c) CD8+ and d) CD4+ cells positive for CTLA-4. 

 

Figure S10: Flow cytometry analysis of T-cells. Proportions of a) CD8+ cells and b) CD4+ 

cells positive for PD-1 and TIM-3. 

Supplementary Table Legends 

 

Table S1: Clinical details of patients. 

 

Table S2: Annotated mutations detected in each tumor. 

 

Table S3: Statistics for tests of association between broad copy number changes in our 

samples versus TCGA tumors. 

 

Table S4: Ranking of genes relevant in broad copy number changes, per affected 

chromosome arm. Genes are ordered by presence of correlation between copy number and 

expression in both datasets, known protein-protein interactions and univariate survival 

statistics. 

 

Table S5: Enriched Reactome gene sets among genes in the combined ranked lists either 

regions of gain or loss. 

 

Table S6: Differentially expressed genes between biological replicates (n = 3 per condition) 

transduced with functional BAP1 vectors or empty vectors. 

 

Table S7: Gene set enrichment analysis for the category “chemical and genetic 

perturbations” of MSigDB of genes assessed in the comparison of replicates transduced with 

functional BAP1 vectors or empty vectors. 
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