1	Complex processes of cryptic speciation in mouse lemurs from a micro-
2	endemism hotspot in Madagascar
3	
4	Running title: Cryptic speciation in mouse lemurs
5	
6	Dominik Schüßler ^{1#} , Jordi Salmona ^{2#} , Marina B. Blanco ^{3,4#} , Jelmer Poelstra ^{4#} , George P. Tiley ^{4#} ,
7	Jean B. Andriambeloson ⁵ , Olivier Bouchez ⁶ , C. Ryan Campbell ^{4†} , Paul D. Etter ⁷ , Amaia Iribar ² ,
8	Paul A. Hohenlohe ⁸ , Kelsie E. Hunnicutt ^{4@} , Eric A. Johnson ⁷ , Peter A. Larsen ^{4&} , Jasmin
9	Mantilla-Contreras ¹ , Sophie Manzi ² , Alexandra Miller ⁹ , Blanchard Randrianambinina ^{10,11} , David
10	W. Rasolofoson ¹⁰ , Amanda R. Stahlke ⁸ , David Weisrock ¹² , Rachel C. Williams ^{3,4} , Lounès
11	Chikhi ^{2,9} , Edward E Louis Jr. ¹³ , Anne D. Yoder ^{4*} , Ute Radespiel ^{14*}
12	
13	¹ : Research Group Ecology and Environmental Education, Institute of Biology and Chemistry,
14	University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
15	² : CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité 11
16	Biologique), 118 route de Narbonne, 31062 Toulouse, France
17	³ : Duke Lemur Center, Duke University, Durham, NC 27705, USA
18	⁴ : Department of Biology, Duke University, Durham, NC 27708, USA
19	⁵ : Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
20 21	⁶ : INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
22	⁷ : Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
23	⁸ : Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences,
24	University of Idaho, Moscow, ID 83844, USA

25	⁹ : Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
26	¹⁰ : Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP); BP 779,
27	Antananarivo 101, Madagascar
28	¹¹ : Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
29	¹² : Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
30	¹³ : Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium,
31	Omaha, NE
32	¹⁴ : Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559
33	Hannover, Germany
34	
35	#: joint first authors
36	*: joint senior authors (corresponding authors)
37 38	@: current address: Department of Biological Sciences, University of Denver, Denver, CO 80208
39 40	&: current address: Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
41	
42	†: current address: Department of Evolutionary Anthropology, Duke University, Durham, NC
43 44	27708, USA
45	
46 47	Corresponding outhors
4/	Corresponding authors:
48	Ute Radespiel, Institute of Zoology, University of Veterinary Medicine Hannover, Germany,
49	email: ute.radespiel@tiho-hannover.de
50	Anne D. Yoder, Department of Biology, Duke University, Durham, NC, USA, email:
51	anne.yoder@duke.edu
52	
53	Author contributions:

- 54 Conception and design of study:
- 55 DS, JS, LC, JP, GPT, JMC, ADY, UR
- 56 Data collection:
- 57 DS, MBB, JBA, AM, EELJ, DWR, BR collected samples in the field.
- 58 Data analysis and interpretation:
- 59 DS, JS, LC, OB, PE, CRC, PAL, ARS, DW, AIP, PH, KEH, EJ, SM, RCW, EELJ, UR generated
- 60 sequencing data.
- 61 DS, JS, MBB, JP, GPT, ADY, UR conducted and interpreted morphometric, population genetic
- 62 and phylogenetic analyses.
- 63 Drafting and revising manuscript:
- 64 DS, JS, JP, GPT, ADY, UR drafted the manuscript.
- 65
- 66 All co-authors revised and agreed on the last version of the manuscript.
- 67
- 68 Data Accessibility Statement:
- 69 XXX

70 Abstract

71	Species delimitation is ever more critical for assessing biodiversity in threatened regions of the
72	world, with cryptic species offering one of the greatest challenges. Our study focuses on a
73	conservation hotspot in northeastern Madagascar where at least five species of mouse lemur
74	(Microcebus spp.) occur, some of them in sympatry. One of these, M. jonahi, is described here as
75	new to science and is accompanied by a complete genome. While morphometric analyses
76	confirmed the cryptic nature of taxa, phylogenetic and population genetic analyses clarified
77	species boundaries despite some interspecific gene flow, including introgression of mtDNA. The
78	sister species pair that includes M. jonahi passed all tests of species delimitation, whereas the
79	other pair showed more marginal results. This is at least partially due to differences in effective
80	population sizes, which affect coalescence rates and thus influence the recently introduced
81	genealogical divergence index (gdi). Whole-genome and RADseq analyses suggest a precipitous
82	decline in effective population sizes associated with successive divergence events of lineages
83	leading to the micro-endemics M. jonahi and its sister species, giving rise to grave conservation
84	concern for both. Finally, our study demonstrates the power of genomic species delimitation
85	approaches for revealing hidden evolutionary processes in cryptic species complexes.
86	

86

Keywords: effective population size, *Microcebus jonahi*, cryptic species, multispecies coalescent,
species delimitation, speciation

89 Introduction

90	The investigation of evolutionary mechanisms that drive speciation heavily depends on
91	accurately delimiting species. In the past decade, both the theory and the methods for species
92	delimitation have seen substantial progress and stimulating debate (Yang and Rannala 2010;
93	Edwards and Knowles 2014; Barley et al. 2017; Sukumaran and Knowles 2017; Jackson et al.
94	2017; Luo et al. 2018; Leaché et al. 2019). In parallel, genomic technologies have yielded a
95	powerful toolkit for examining complex evolutionary processes with sophisticated statistical
96	approaches, such as detecting the presence and magnitude of gene flow before or after speciation
97	events (Payseur and Rieseberg 2016; Dalquen et al. 2017; Wen et al. 2018).
98	
99	Mouse lemurs (Microcebus spp.) provide an intriguing system for investigating the evolutionary
100	processes that give rise to new species, given that they show patterns of rapid diversification,
101	cryptic morphology, and overlapping geographic distributions (e.g., Zimmermann et al. 1998;
102	Rasoloarison et al. 2000; Radespiel et al. 2008). More generally, Madagascar is a global
103	biodiversity hotspot (Myers et al. 2000; Goodman and Benstead 2005; Estrada et al. 2017) that is
104	severely threatened (e.g., Schwitzer et al., 2014, Waeber et al. 2016) and thus species delimitation
105	in mouse lemurs is of direct conservation interest. Mouse lemurs are small-bodied (approximately
106	40 - 80 g), nocturnal primates whose high species diversity was long overlooked due to their
107	cryptic nature (Zimmermann and Radespiel 2014). With the introduction of genetic analyses, it
108	became feasible to identify diverging lineages despite minimal morphological differences. This
109	has led to the description of many new species of mouse lemur, with a total of 24 species now
110	recognized (Zimmermann et al. 1998; Rasoloarison et al. 2000; Yoder et al. 2000; Olivieri et al.

2007, Louis et al. 2006, 2008; Radespiel et al. 2008, 2012, Rasoloarison et al. 2013, Hotaling et
al. 2016, Louis and Lei 2016).

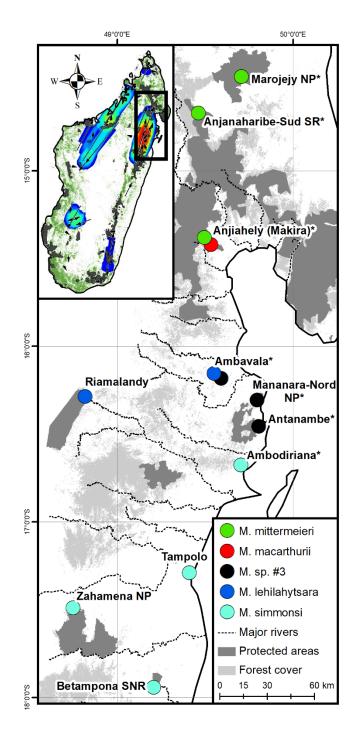
113

114 Many taxonomic descriptions have relied strongly, if not entirely, on mitochondrial sequence 115 divergence to delimit species. This approach is widely regarded as problematic, however, given 116 that the mitogenome represents only a single, non-neutral, non-recombining locus whose gene 117 tree may not represent the underlying species tree (e.g., Pamilo and Nei 1988; Maddison 1997). 118 Mitochondria are also maternally inherited and therefore susceptible to effects of sex-biased 119 dispersal (e.g., Dávalos and Russell 2014), which is prevalent in mouse lemurs (Radespiel et al. 120 2001). To further complicate matters, previous attempts to resolve relationships using sequences 121 from nuclear markers were not successful due to high gene tree discordance consistent with 122 strong incomplete lineage sorting (e.g., Heckman et al. 2007; Weisrock et al. 2010). But now, 123 with modern sequencing techniques, investigators can sample thousands of loci across multiple 124 individuals, which provides power for simultaneously resolving phylogenetic relationships and 125 for estimating demographic parameters such as divergence times, effective population sizes, and 126 rates of gene flow — even among closely related species (e.g., Pedersen et al. 2018; Palkopoulou 127 et al. 2018).

128

The power of genomic data for delimiting species has been further enhanced by methods that leverage the multispecies coalescent (MSC) model (Pamilo and Nei 1988; Rannala and Yang 2003). Even so, recent work has pointed out that MSC methods, such as BPP (Yang and Rannala, 2010; Flouri et al., 2018) do not consider an alternative hypothesis of strong population structure when assigning species boundaries (Sukumaran and Knowles 2017; Jackson et al. 2017; Leaché et al. 2019; Chambers and Hillis 2019). To overcome this issue, Jackson et al. (2017) proposed a

135	heuristic criterion, the genealogical divergence index (gdi), with Leaché et al. (2019) further
136	suggesting that gdi helps to differentiate between species-level divergence and population
137	structure. These analytical developments are crucial to our ability to recognize mechanisms that
138	drive the speciation process, despite the challenge of separating evolutionary lineages without
139	universally agreed criteria (de Queiroz 2007).
140	
141	Though mouse lemurs have been extensively studied in western Madagascar (e.g., Zimmermann
142	et al. 1998; Rasoloarison et al. 2000; Olivieri et al. 2007), the diversity and geographic
143	distributions of species along the eastern coast have only recently received as much attention.
144	Studies from the past decade show that this region contains rich species diversity for mouse
145	lemurs, with several new species described (Kappeler et al. 2005; Louis et al. 2006; Radespiel et
146	al. 2008, 2012; Rasoloarison et al. 2013; Hotaling et al. 2016). In particular, Radespiel et al.
147	(2008) surveyed the forests of the Makira region (Fig. 1) and found evidence for three
148	different lineages occurring in sympatry, a phenomenon previously undocumented for mouse
149	lemurs. One of these was identified as <i>M. mittermeieri</i> , while the second was newly described as
150	<i>M. macarthurii</i> . A third lineage (M . sp. #3) was hypothesized to be a new species based on
151	mitochondrial DNA (mtDNA) sequence data but could not be formally described given that only
152	a single individual was sampled.
153	


In this study, we revisit the Radespiel et al. (2008) findings by expanding the geographic and species-level sampling to reconstruct the evolutionary history of the mouse lemur lineages inhabiting this region and to test the hypothesis that *M*. sp. #3 represents a new species. We also provide a novel whole genome for this hypothesized new species thus allowing for a detailed conservation genomic analysis. Our study therefore represents the most intensive examination to

- 159 date of speciation dynamics within this cryptic species radiation, with the additional benefit of
- 160 yielding an intimate view of conservation dynamics in a biodiversity hotspot in northeastern
- 161 Madagascar.

162 Materials and methods

163 Study sites and sampling

- 164 *Microcebus* individuals were sampled between 2008 and 2017 at seven rain forest sites (50-979
- 165 m a.s.l.; Kottek et al. 2006) in the Analanjirofo and Sava regions of northeastern Madagascar
- 166 (Fig. 1; Tab. S1). All study sites harbor a variety of habitats ranging from undisturbed
- 167 near-primary rain forest to heavily degraded secondary shrub-, grass- and fern-lands (Radespiel et
- al. 2008; Miller et al. 2018; Schüßler et al. 2018). Additional samples were used from
- 169 Riamalandy, Zahamena National Park (NP), Betampona Strict Nature Reserve (SNR) and
- 170 Tampolo (Louis et al. 2006; Weisrock et al. 2010; Louis and Lei 2016; Fig. 1). With this
- 171 sampling strategy, we expect to detect all mouse lemur species that occur in the region. These are
- 172 (from north to south) *M. mittermeieri*, *M. macarthurii*, *M.* sp. #3, *M. lehilahytsara* and *M.*
- 173 simmonsi (Fig. 1). Microcebus murinus, which occurs throughout western and southern
- 174 Madagascar, was used as an outgroup for the analyses.

175

Figure 1: Sampling sites in northeastern Madagascar. New sampling locations are marked with *. The
region coincides with a conservation hotspot for lemurs (see heat map in the inlay with warm colors
representing conservation concern based on predicted range shifts in a large number of lemur species
reproduced from Brown and Yoder 2015). Forest cover in 2018 derived from Schüßler et al. (under
review).

182 Sequencing, assembly, and annotation of a *M*. sp. #3 draft genome

183	The genome of one individual of M . sp. #3 sampled from Mananara-Nord NP (Tab. S2) was
184	sequenced with a single 500bp insert library on a single lane of an Illumina HiSeq 3000 with
185	paired-end 150bp reads. We used MaSuRCA v3.2.2 (Zimin et al. 2013) for contig assembly and
186	SSPACE (Boetzer et al. 2011) for scaffolding, which uses BOWTIE (Langmead et al. 2009) to
187	realign short reads to the <i>de novo</i> assembly in order to potentially correct erroneously joined
188	contigs. Quality control and annotation of the draft genome is described in the Supplementary
189	Material. Scaffolds potentially containing mitochondrial or X-chromosome sequence data were
190	removed for downstream analyses (see Supplementary Methods).
191	
192	RADseq laboratory procedures and data processing
193	We generated Restriction site Associated DNA sequencing (RADseq) libraries using the SbfI
194	restriction enzyme, following three protocols (Supplementary Methods, Tab. S1). Cleaned
195	sequences were aligned to M. sp. #3 genome and to the M. murinus mitogenome (Lecompte et al.
196	2015; see Supplementary Methods for further details).
197	
198	We used two fundamentally distinct approaches for genotyping to ensure robustness of our
199	results to variant calling errors. First, we estimated genotype likelihoods (GL) with ANGSD
200	v0.92 (Nielsen et al. 2012; Korneliussen et al. 2014). ANGSD retains information about
201	uncertainty in base calls, which alleviates some issues commonly associated with RADseq data
202	such as unevenness in sequencing depth and allele dropout (Lozier 2014; Pedersen et al. 2018;
203	Warmuth and Ellegren 2019). Second, we called genotypes with GATK v4.0.7.0 (dePristo et al.
204	2011), and filtered GATK genotypes following the "FS6" filter of O'Leary et al. (2018; see
205	Supplementary Methods for further details).

206

207	Three mtDNA fragments [Cytochrome Oxidase II (COII), Cytochrome B (cytB), d-loop] were
208	amplified and Sanger sequenced for additional phylogenetic analyses. For further details on
209	sequencing and genotyping procedures, see the Supplementary Material.

210

211 Mutation rate and generation time

212 To convert coalescent units from BPP and G-PhoCS analyses into absolute times and population 213 sizes, we used empirical estimates of mutation rate and generation time, but used uncertainty in estimates to construct distributions rather than using a single point estimate for BPP and G-214 215 PhoCS results. For each sampled generation of the MCMC chain, we drew a random number 216 from the mutation rate and generation time distributions, to better reflect our uncertainty in 217 absolute estimates. A recent pedigree-based estimate of mutation rate in *M. murinus* (Campbell et al. 2019) found a mean of 1.64 x 10⁻⁸ with a 95% CI of 1.41 x 10⁻⁸ to 1.98 x 10⁻⁸. We roughly 218 219 capture this mutation rate variation with a normal distribution that has a mean of 1.64 and a 220 standard deviation of 0.08. For generation time, two estimates were available for Microcebus. M. 221 rufus was estimated to have an average generation time of 4.5 years calculated from survival data 222 (Zohdy et al. 2014; Yoder et al. 2016), and 2.5 years was estimated for *M. murinus* using average 223 parent age based on capture-mark-recapture and parentage data in the wild (Radespiel et al. in 224 revision). We used a lognormal distribution with a mean of ln(3.5) and standard deviation of 225 $\ln(1.16)$. MSMC parameter estimates were converted using the point estimates.

226

227 **Phylogenetic analyses**

We used three phylogenetic approaches to infer relationships among lineages and to provide a

framework for subsequent species delimitation analyses. Phylogenetic analyses were conducted

230	via (1) maximum likelihood (RaxML v8.2.11; Stamatakis 2014), (2) a MSC method that is
231	statistically consistent and uses phylogenetic invariants (SVDquartets in PAUP v4a163, Chifman
232	and Kubatko 2014), and (3) a full-likelihood MSC method for biallelic data that does not require
233	joint gene tree estimation (SNAPP v1.3.0; Bryant et al. 2012). Analyses with RAxML and
234	SVDquartets used all available individuals, whereas SNAPP analyses were only performed with
235	subsets of individuals for computational feasibility. Specifically, a 12-individual dataset that used
236	two samples per species, and a 22-individual dataset with four samples per species were analyzed
237	with SNAPP (Tab. S1). All analyses used <i>M. murinus</i> samples as outgroup. Phylogenetic
238	software details are given in the Supplementary Material.
239	
240	Species delimitation
241	Model-based inference with the MSC
242	We used SNAPP to test if the two pairs of sister taxa, M . sp. $#3 - M$. macarthurii and M .
243	mittermeieri – M. lehilahytsara, could be delimited at the molecular level using Bayes factors
244	(Leaché et al. 2014). Marginal likelihood estimation used stepping stone sampling (Xie et al.
245	2011) with 20 steps for both the 12- and 22- individual datasets, and we interpreted 2ln Bayes
246	factors greater than six as strong evidence for a given model (Kass and Raftery 1995). We tested
247	two hypotheses: the first considered the two taxa in each species pair as separate species, and the
248	second considered them as belonging to the same species.
249	
250	We also applied guided species delimitation analyses with BPP (Yang and Rannala 2010;
251	Rannala and Yang 2013) based on the species tree estimated by SVDquartets and SNAPP but
252	using analytical integration of population sizes (Hey and Nielsen 2007). MCMC options and
253	prior choices for analyses are detailed in the Supplementary Material. Because BPP uses

- substitution models not suitable for SNP data, we created full-sequence fasta files based on the
- 255 GATK genotypes using a series of in-house scripts
- 256 (https://github.com/jelmerp/msp3/tree/master/vcf2fullfasta; Supplementary Material).
- 257

258 BPP parameter estimates from the 12-individual dataset with the MSC were used to compute the 259 genealogical divergence index (gdi, Jackson et al. 2017; Leaché et al. 2019) for M. sp. #3 - M. 260 macarthurii and M. lehilahytsara – M. mittermeieri. We calculated gdi as in Leaché et al. (2019), 261 using their equation 7 ($gdi = 1 - e^{-2\tau/\theta}$), where $2\tau/\theta$ represents the population divergence time 262 between taxa A and B in coalescent units, and θ is taken for a focal taxon (A or B). Again, as in 263 Leaché et al. (2019), gdi was calculated twice for each species pair, using each species as the 264 focal taxon once. We computed gdi using τ and θ parameter estimates for each posterior sample 265 from independent BPP chains, to directly incorporate uncertainty in the τ and θ estimates. 266 Jackson et al. (2017) suggested the following guidelines for the interpretation of gdi values: the 267 focal taxon pair is unambiguously a single species for gdi < 0.2, is unambiguously two separate species for gdi > 0.7, and falls in an ambiguous zone for 0.7 > gdi < 0.2. 268

- 269
- 270 *Clustering approaches and summary statistics*

We performed model-based as well as naive clustering analyses in order to check for congruence
with phylogenetic analyses, to identify intraspecific genetic structure, and to perform an initial
exploration of gene flow or admixture between species. Clustering analyses were performed
using corresponding methods based on ANGSD genotype likelihoods [clustering in NgsAdmix
v32 (Skotte et al. 2013) and PCA in ngsTools va4d338d (Fumagali et al. 2013, 2014)], on
GATK-called genotypes (ADMIXTURE v1.3.0; Alexander et al. 2009) and glPca (adegenet
v2.1.1; Jombart 2008; Jombart and Ahmed 2011). These analyses were run separately for all

278 successfully sequenced samples for the five focal taxa (Tab. S1) and for a subset comprising 279 only individuals from *M. macarthurii* and *M.* sp. #3. Heterozygosity and F_{ST} were estimated with 280 the R packages adegenet v2.1.1 (Jombart 2008) and hierfstat (Goudet 2005) on variable sites 281 inferred from ANGSD for comparison with clustering results. 282 283 *Morphometric analyses* 284 We measured 13 different morphometric parameters (ear length, ear width, head length, head width, snout length, inter- and intra-orbital distance, lower leg length, hind foot length, third toe 285 286 length, tail length, body length and body mass) according to Hafen et al. (1998) and 287 Zimmermann et al. (1998). Individuals were assigned to their respective taxon based on 288 phylogenetic and clustering analyses. The morphological data of all captured and released adult 289 mouse lemurs were compared among species and with data sets available from geographically 290 neighboring species (Fig. 1). A linear discriminant analysis (LDA) was conducted to test for 291 species differentiation based on morphometrics using the "MASS" R package (v7.3-51.3; 292 Venables and Ripley 2002). Model fit was evaluated by a jackknife cross-validation and Wilks' 293 Lambda was computed to evaluate the LDA model. R² values were calculated using the 294 "flipMultivariates" package (Displayr 2018) to document the proportion of variance per 295 parameter that is explained by the species. Quantitative morphometric comparisons between taxa 296 were performed for all measurements with a one-way ANOVA and a post hoc Tukey test. 297 Assumptions of the respective tests were examined using Shapiro-Wilk and Levene's tests in the 298 R package car v3.0-2 (Fox and Weisberg 2011) beforehand. 299 300 One limitation to the morphometric analyses is that body measurements of the different taxa were

301 obtained by at least four researchers across the five different lineages, and it cannot be ruled out

that researchers may have differed slightly in how they applied the calipers. However, the same
 researcher contributed data points to more than one species in at least two cases (DS, DWR).

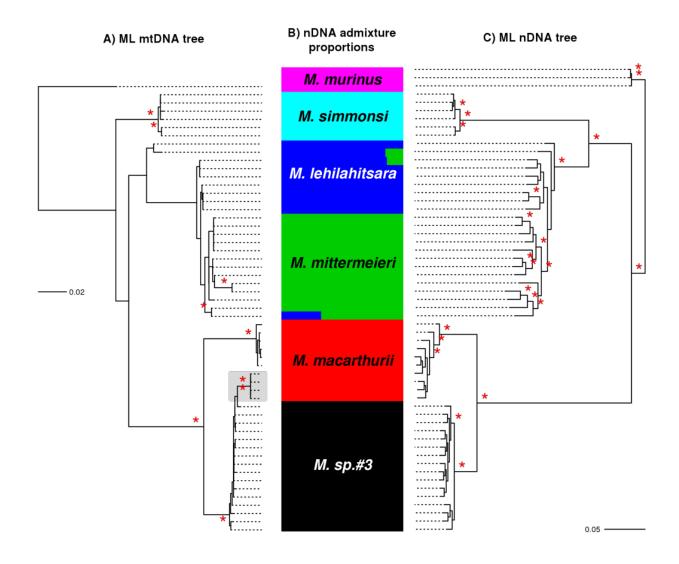
- 304
- 305 Inference of interspecific gene flow

306 The D-statistic and related formal statistics for admixture make use of phylogenetic invariants to 307 infer post-divergence gene flow between non-sister populations or taxa. However, it is important 308 to note that the D-statistic may also be influenced by ancient population structure and should thus 309 be interpreted with care (Eriksson and Manica, 2012; Chikhi et al., 2018). We used admixtools 310 v4.1 (Patterson et al. 2012) to compute four-taxon D-statistics (qpDstat program), which tests for 311 gene flow between P3 and either P1 or P2 given the topology (((P1, P2), P3), P4). In order to test 312 for gene flow between *M. macarthurii* and *M.* sp. #3, we separately treated (1) the two distinct *M*. 313 sp. #3 population groups detected by clustering approaches, and (2) M. macarthurii individuals 314 with and without "M. sp. #3-type" mtDNA (see Results). We also used all possible configurations 315 in which gene flow between non-sister species among the five ingroup species could be 316 evaluated. In all tests, *M. murinus* was used as P4 (outgroup). Significance of D-values was 317 determined using the default Z-value reported by qpDstat, which is determined by weighted 318 block jackknifing and is conservative for RADseq data given that linkage disequilibrium (LD) is, 319 on average, expected to be lower across a pair of RADseq SNPs than across a pair of SNPs 320 derived from whole-genome sequencing (Patterson et al. 2012; Kim et al. 2018). 321 322 G-PhoCS v1.3 (Gronau et al. 2011), a Bayesian MSC approach that incorporates introgression,

323 was used to jointly infer divergence times, population sizes, and rates of gene flow between

324 specific lineages. Because running G-PhoCS for all individuals was not computationally feasible,

325 we performed separate runs for two sets of individuals: (1) a 3-species (and 12-individual) data


326	set with six <i>M</i> . sp. #3, three <i>M</i> . macarthurii, and three <i>M</i> . lehilahytsara individuals, wherein <i>M</i> .
327	sp. #3 was divided into the two distinct population clusters detected using clustering approaches;
328	and (2) the 5-species (and 12-individual) data set used for SNAPP and BPP. Details of the
329	inference of gene flow are described in the Supplementary Material.
330	
331	Estimation of divergence times
332	We used two approaches to estimate divergence times under the MSC model: (1) BPP v4.0.4
333	(Flouri et al. 2018), which assumes no migration after the onset of divergence, and (2) G-PhoCS,
334	which can accommodate migration between specific lineages and co-estimate migration rates and
335	divergence times.
336	
337	Both BPP and G-PhoCS analyses used full-length RAD loci from the 12-individual dataset. The
338	species tree recovered from phylogenetic analyses was fixed for parameter sampling. We
339	required at least one individual per species to be present for each locus (on a total of 17,422 RAD
340	loci) and all individuals were treated as unphased diploid sequences. We used diffuse priors,
341	multiple chains, and checked for convergence (Supplementary Material). We also compared
342	posteriors to marginal priors to check that parameter estimates were informed by the RADseq
343	data and not only the priors.
344	
345	Inference of effective population sizes through time
346	A number of studies have shown that population structure can generate spurious signals of
347	population size change (Beaumont, 2004; Chikhi et al., 2010; Heller et al., 2013). For example,
348	sequentially Markovian coalescent approaches such as MSMC accurately which is only
349	equivalent to an effective size in panmictic models (Mazet et al., 2016; Rodriguez et al. 2018).

350	We therefore inferred and compared population size histories using several methods for the focal
351	species M . sp. #3, for which we had whole-genome sequence data in addition to the RADseq
352	data. For all species, we examined changes in N_e over time based on θ estimates from BPP and
353	G-PhoCS for each predefined extant or ancestral population, which also allowed us to evaluate
354	uncertainty in population size estimates due to migration. For M . sp. #3, we also estimated N_e
355	over time with the Sequential Markovian Coalescent as implemented in MSMC (Schiffels and
356	Durbin 2014) using the whole-genome data. A detailed description for these analyses is given in
357	the Supplementary Material.

358 **Results**

359 RADseq data and *M*. sp. #3 genome sequence

360	This study demonstrates the utility of cross-laboratory RAD sequencing for primates, as
361	previously shown in other taxa (e.g., Gonen et al. 2015). We used three different library
362	generation protocols, two sequencing lengths, and a combination of single and paired-end
363	sequencing, yielding highly compatible data for all 65 individuals included in the study. From
364	more than 447 million raw reads (Tab. S1), over 394 million passed quality filters with
365	approximately 182 million successfully aligned to the M. sp. #3 reference genome. There was an
366	average of 120,000 loci per individual with coverage ranging from ~1 to ~22x (Tab. S1).
367	
368	We assembled approximately 2.5 Gb of nuclear genome sequence data for <i>M</i> . sp. #3 with a contig
369	N50 around 36 Kb (Tab. S2). While the final assembly was fragmented, as expected for a
370	single Illumina library genome, only 6.4% of mammalian BUSCOs were found to be missing.
371	Annotation statistics were largely comparable to BUSCO analysis of the genome assembly. The
372	genome sequence and associated gene annotations can be accessed through NCBI (Bioproject
373	PRJNA512515).

374

375 Figure 2: Phylogenetic relationships and ancestry proportions

376 (A) Maximum-likelihood RAxML tree of 55 samples represented by 4,060 bp of mtDNA recovered from

377 RADseq and Sanger sequencing (Table S1). The gray shaded box highlights individuals of *M. macarthurii*

378 with *M*. sp. #3 mtDNA haplotypes. (B) Clustering results using NgsAdmix at *K* = 6. (C) Maximum-

379 likelihood RAXML tree obtained using RADseq nuclear data (nDNA). For all trees, *M. murinus* is used as

380 the outgroup. In (A) and (C), bootstrap support values >90% are indicated above each node as a red

381 asterisk.

Phylogenetic relationships

383	Five divergent lineages (M. simmonsi, M. lehilahytsara, M. mittermeieri, M. macarthurii, M. sp.
384	#3) were confirmed to occur in the study region by phylogenetic approaches (Fig. 2). One
385	lineage, M. sp. #3, is described here as new to science (see Species Description).
386	
387	RAxML, SVDquartets, and SNAPP analyses recovered well-supported monophyletic nDNA
388	clades for <i>M. simmonsi</i> , <i>M. macarthurii</i> , and <i>M.</i> sp. #3 (Fig. 2; Fig. S1; Fig. S2), with
389	M. sp. #3 as sister to M. macarthurii with 100% bootstrap support (RAxML and SVDquartets,
390	Fig. 2; Fig. S2). In contrast, M. lehilahytsara and M. mittermeieri were not consistently
391	monophyletic in RAxML analyses of nDNA (Fig. 2C) or mtDNA (Fig. 2A), both of which
392	nested M. mittermeieri within M. lehilahytsara. SVDquartets analysis of nDNA placed an
393	individual from Ambavala (B12) as sister to all other <i>M. lehilahytsara</i> and <i>M. mittermeieri</i> with
394	weak bootstrap support (Fig. S2A). Unsurprisingly, species tree analyses with SNAPP (the 22-
395	individual dataset included B12 from Ambavala) recovered M. lehilahytsara as sister to M.
396	mittermeieri with no topological uncertainty (Fig. S1).
397	
398	One case of mitonuclear discordance was found. Although mtDNA analyses placed several
399	individuals from Anjiahely (see Fig. 1) in a well-supported clade with M. sp. #3 individuals from
400	Ambavala, Mananara-Nord NP and Antanambe (Fig. 2A; see lower red box), analyses of the
401	nuclear RADseq data placed them unambiguously within the M . macarthurii clade (Fig.
402	2B, C). This suggests that individuals from Anjiahely belong to <i>M. macarthurii</i> yet carry two
403	divergent mtDNA lineages, and that M. sp. #3 is only found from Ambavala to Antanambe
404	(Fig. 1). The cause of potential mitonuclear discordance for <i>M. macarthurii</i> in Anjiahely was
405	subject to further investigation (see below in the section "Interspecific Gene Flow").

406

407 **Species delimitation**

- 408 *Genetic structure*
- 409 Clustering analyses (NgsAdmix and ADMIXTURE) at K = 5 grouped individuals into the five
- 410 nominal species in accordance with phylogenetic results and F_{ST} estimates (Fig. S3; Fig.
- 411 S4; Tab. S3), although some individuals were inferred to have ancestry from both *M*.
- 412 *mittermeieri* and *M. lehilahytsara* (Fig. 2B). Using NgsAdmix, three or five clusters best
- 413 explained the data (Fig. S3; Fig. S5), while using ADMIXTURE, three clusters had a
- 414 slightly lower cross-validation error than five (Fig. S5). PCA readily distinguished all species

415 (including the two sister species *M*. sp. #3 and *M*. *macarthurii*) across the first four principal

416 components with both GATK genotypes (Fig. 3A, B) and ANGSD genotype likelihoods

417 (Fig. S7).

419	When restricting clustering analyses to <i>M. macarthurii</i> and <i>M.</i> sp. #3 individuals, $K = 2$ was the
420	best-supported number of clusters using both approaches (Fig. S5; Fig. S6), which
421	divided <i>M. macarthurii</i> and <i>M.</i> sp. #3 individuals into separate clusters. At $K = 3$, <i>M.</i> sp. #3 was
422	split into two clusters individuals from Mananara-Nord NP and Antanambe on one hand and
423	individuals from Ambavala on the other (Fig. S8). PCA analyses for this subset of individuals
424	clearly distinguished these two groups along PC2 (Fig. $3C$). Hereafter, we refer to these two
425	groups as "southern M . sp. #3" (Mananara-Nord NP and Antanambe, which is south of the large
426	Mananara river) and "northern <i>M</i> . sp. #3" (Ambavala, which is north of the river; Fig. 1).
427	

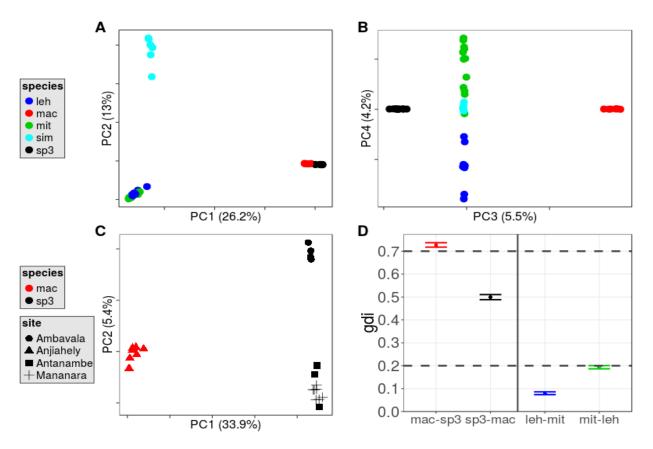


Figure 3: Population genetic structure and the gdi.

PCA analyses for (A, B) all five species and (C) restricted to *M*. sp. #3 and *M. macarthurii* individuals, the latter showing the split of the two population groups "northern" (Ambavala) and "southern" *M*. sp. #3 (Antanambe and Mananara-Nord NP). (D) Genealogical divergence index (*gdi*) for *M. macarthurii* – *M*. sp. #3 and *M. mittermeieri* – *M. lehilahytsara. gdi* values > 0.7 suggest separate species; *gdi* values < 0.2 are below the lower threshold for species delimitation; 0.2 < gdi < 0.7 are in an "ambiguous" range (Jackson et al. 2017). Abbreviations: leh: *M. lehilahytsara*, mac: *M. macarthurii*, mit: *M. mittermeieri*, sim: *M. simmonsi*, sp3: *M*. sp. #3.

428 SNAPP Bayes Factors

429 Bayes factors strongly favored splitting *M*. sp. #3 and *M*. macarthurii into two separate species in

- 430 the 22-individual analyses ($2\ln BF = 34,326.39$, Tab. 1). This indicates that levels of gene flow
- 431 between *M*. sp. #3 and *M*. *macarthurii* are low, considering that one migrant per generation

432	between species can erode evidence for species assignment under the MSC (Zhang et al. 2011).
433	Bayes factors for the 22-individual dataset also supported splitting <i>M. lehilahytsara</i> and <i>M.</i>
434	mittermeieri, albeit with much weaker support than the M. sp. #3 and M. macarthurii split (2lnBF
435	= 993.06). All species assignments were also recovered by the guided delimitation analysis
436	(Fig. S9).
437	

438 Table 1: Bayes factor support for sister species pairs.

Marginal likelihoods were computed for a hypothesis of no speciation (Merge) and a hypothesis of a
speciation event (Split). We tested both the *M.* sp. #3 - *M. macarthurii* lineages and *M. lehilahytsara* - *M. mittermeieri* species pairs with a 12- and 22-individual dataset. [†]Bayes factors calculated as 2 * (InL_{Split} InL_{Merge}).

Species Pair	Number of Individuals	Merge Marginal InL	Split Marginal lnL	2ln Bayes factor [†]
M. macarthurii -	12	-134254.14	-125601.69	17304.91
M. sp. #3	22	-204540.32	-187377.12	34326.39
M. lehilahytsara -	12	-126515.89	-125601.69	1828.41
M. mittermeieri	22	-187873.65	-187377.12	993.06

443

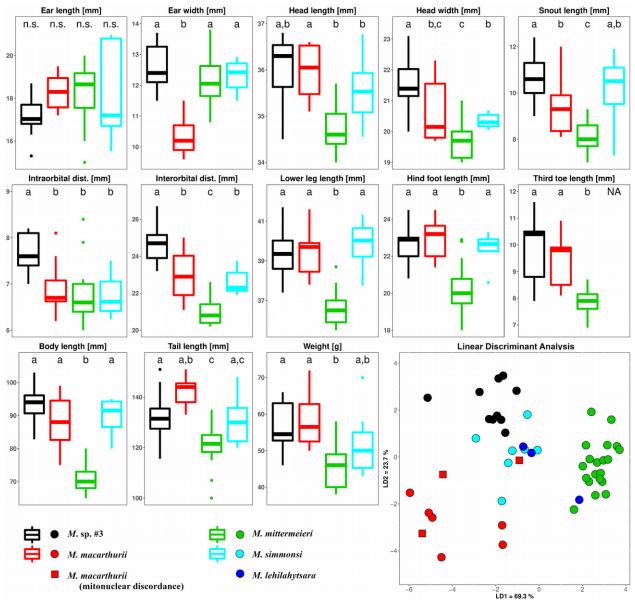
444 *Genealogical divergence index (gdi)*

445 For the *M*. sp. #3 - *M*. macarthurii sister pair, gdi was 0.727 (95% HPD: 0.718-0.737) from the

446 perspective of *M. macarthurii* (i.e. above the upper threshold for species delimitation), and 0.500

447 (0.488-0.511) from the perspective of *M*. sp. #3 (i.e. in the upper ambiguous zone for species

448 delimitation; Fig. 3D). In contrast, gdi values for the M. lehilahytsara - M. mittermeieri


species pair were much lower and even below the lower threshold for species delimitation: 0.080

450 (0.074-0.086) from the perspective of *M. lehilahytsara*, and 0.193 (0.187-0.201) from the

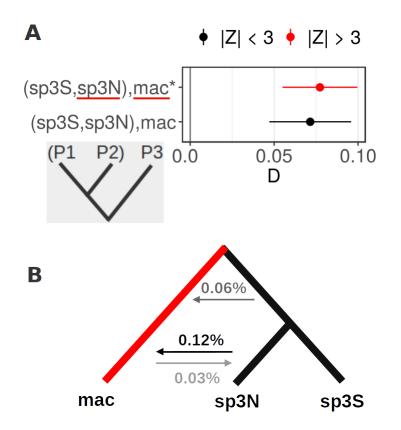
451 perspective of *M. mittermeieri* (Fig. 3D).

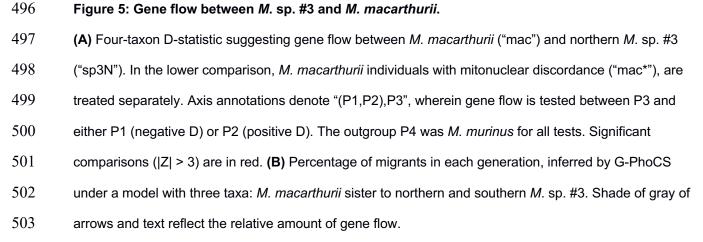
453 *Morphometric comparisons*

454	Though morphological distinctions are subtle, Microcebus sp. #3, M. macarthurii, M. simmonsi
455	and M. mittermeieri can be statistically distinguished based on morphometrics (LDA: Wilks'
456	Lambda = 0.0175, F = 6.7941, P < 0.001; Fig. 4). Apart from ear length, all parameters
457	contributed significantly to species assignments in the LDA model ($P < 0.001$), with body length
458	and inter-orbital distance having the highest R^2 -values (Fig. 4, Tab. S4). Prediction
459	accuracy of the jackknife cross-validated LDA model was 81%. Mis-classifications occurred with
460	<i>M. simmonsi</i> , but not between the other three taxa (Tab. S5). All three linear discriminant
461	functions were statistically significant of which the first (LD1) explained 69.3% of interspecific
462	variation and LD2 and LD3 the remaining 23.7% and 7.0%, respectively. <i>M</i> . sp. #3 and <i>M</i> .
463	macarthurii predominantly differed in five "head-associated" parameters (head width, inter- and
464	intra-orbital distance, snout length, ear width, all larger in M . sp. #3) while limb proportions did
465	not show significant differences (Fig. 4).
466	
467	Two out of three M. macarthurii individuals with mitonuclear discordance clustered
468	morphometrically with the other <i>M. macarthurii</i> , whereas the third was positioned with <i>M</i> .
469	simmonsi (Fig. 4).

471 Small plots: Comparisons based on one-way ANOVA (P < 0.001 for all parameters except ear length) and 472 grouping (letters after values) according to Tukey post-hoc tests. For parameter values, see Table S4.

473 Large plot in bottom right: Linear discriminant analysis (LDA) based on morphometric measurements (M.


sp. #3, n = 11; *M. macarthurii*, n = 6; *M. mittermeieri*, n = 22; *M. simmonsi*, n = 7). Individuals of *M*.


- 475 *macarthurii* with mitonuclear discordance and of *M. lehilahytsara* were not used to calculate the LDA
- 476 model due to small sample sizes, their position was predicted using the LDA model (*M. macarthurii*, n = 3;

477 *M. lehilahytsara*, n = 3).

479 Interspecific gene flow

480	D-statistics suggested that northern <i>M</i> . sp. #3 and <i>M</i> . macarthurii share a slight excess of derived
481	alleles in relation to southern M . sp. #3, significantly deviating from 0 for the comparison
482	inferring gene flow between northern M. sp. #3 and M. macarthurii with "M. sp. #3-type"
483	mtDNA (Fig. 5A). Using a G-PhoCS model with separate northern and southern M. sp. #3
484	population groups, we found asymmetric gene flow between M. sp. #3 and M. macarthurii, and
485	additionally inferred that (1) gene flow with <i>M. macarthurii</i> took place before as well as after the
486	onset of divergence between northern and southern M . sp. #3, (2) gene flow between extant
487	lineages occurs only between northern (and not southern) <i>M</i> . sp. #3 and <i>M</i> . macarthurii and (3)
488	gene flow is asymmetric, predominantly into <i>M. macarthurii</i> (Fig. 5B). In a G-PhoCS model
489	with all species, we additionally inferred gene flow from M. mittermeieri to M. lehilahytsara at
490	higher levels than that from <i>M</i> . sp. #3 to <i>M</i> . macarthurii (Fig. 6A).
491	
492	Low levels of gene flow were also inferred between the <i>M</i> . sp. #3 - <i>M</i> . macarthurii clade and the
493	M. mittermeieri - M. lehilahytsara clade, most likely between ancestral populations but the
494	timing and direction of gene flow could not be determined in more detail (Supplementary
495	Results; Fig. S10).

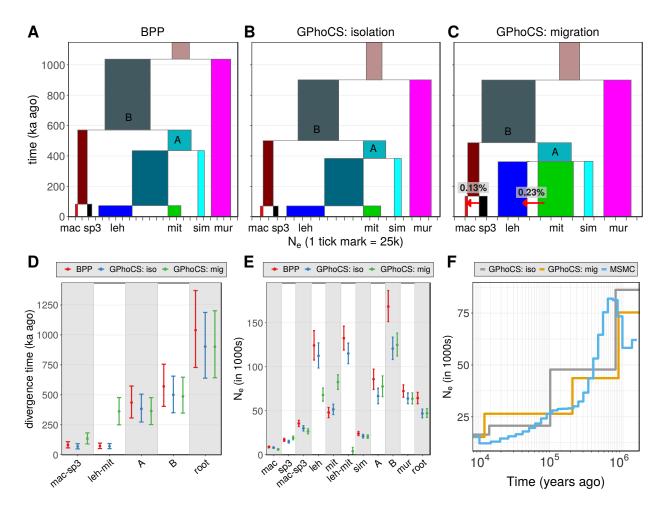
504 Divergence Times

505	We estimated divergence times using the MSC model with BPP as well as G-PhoCS with and
506	without interspecific gene flow (Fig. 6; Fig. S11). Results were similar across these
507	approaches, although divergence times were estimated to be older in G-PhoCS models with
508	migration compared to models without migration (Fig. 6). Specifically, the divergence time of
509	M. sp. #3 and its sister taxon M. macarthurii was estimated at 50-109 kya (min. max. of 95%
510	HPD across all models) without migration (Fig. 6; Fig. S11), but at 91-183 kya when
511	incorporating gene flow between the two (Fig. 6). The effect of accounting for gene flow was
512	particularly strong for divergence times between <i>M. mittermeieri</i> and <i>M. lehilahytsara</i> (Fig.
513	6): while the estimated divergence time of <i>M. mittermeieri</i> and <i>M. lehilahytsara</i> without gene
514	flow was highly similar to that between <i>M</i> . sp. #3 and <i>M. macarthurii</i> (50-97 kya; Fig. 6), it
515	was estimated to be 250-478 kya in the presence of migration (Fig. 6). Ages of other nodes
516	were not affected strongly by including migration into the MSC model. For example, the split
517	between the last common ancestor of <i>M</i> . sp. #3 / <i>M</i> . macarthurii and the last common ancestor of
518	M. mittermeieri / M. lehilahytsara / M. simmonsi was estimated to be 351-756 kya when not
519	accounting for gene flow, and 348-648 kya when accounting for gene flow (Fig. 6D). These
520	posterior estimates are likely not influenced strongly by the model priors based on comparison of
521	marginal priors and posteriors across four BPP chains (Fig. S12).
500	

522

523 *Population sizes through time*

524 Effective population sizes for extant as well as ancestral lineages were first estimated using BPP


525 and G-PhoCS (with and without interspecific gene flow; Fig. 6A-C). We found large

526 differences among species, with considerably larger effective population sizes for *M. murinus*

527 (min. and max. 95% HPD across the BPP and both G-PhoCS models: 59-79 k), *M. lehilahytsara*

528	(63-139 k), <i>M. mittermeieri</i> (42-86 kya), and most ancestral lineages, than for <i>M.</i> sp. #3 (14-20
529	k), M. macarthurii (6-10 k), and M. simmonsi (19-26 k). Wide HPD intervals for M. mittermeieri
530	and M. lehilahytsara were due to differences between models that did and did not account for
531	gene flow between these two species. Using the 3-species G-PhoCS model, effective population
532	sizes were estimated separately for northern (14-41 k), southern (7-20 k), and ancestral (18-31 k)
533	<i>M</i> . sp. #3 lineages (Fig. S10). An MSMC analysis for a single <i>M</i> . sp. #3 individual belonging
534	to the southern group resulted in highly similar estimates of population sizes through time,
535	showing a marked long-term decline towards the present (Fig. 6F). The estimated differences
536	in recent effective population sizes across taxa were further reflected by differences in genetic
537	diversity across populations (Fig. S13).

bioRxiv preprint doi: https://doi.org/10.1101/742361; this version posted August 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

538

539 Figure 6: Demographic histories inferred by G-PhoCS, BPP and MSMC.

540 (A-C) Divergence times (y-axis) and effective population sizes (x-axis) inferred with and without migration. 541 (D, E) Comparison of divergence times and effective population sizes for each node and lineage, 542 respectively. "A" represents the lineage ancestral to M. simmonsi, M. mittermeieri and M. lehilahytsara, "B" 543 represents the lineage ancestral to M. sp. #3, M. macarthurii, M. simmonsi, M. mittermeieri and M. 544 lehilahytsara, and "root" represents the lineage ancestral to all six species included. (F) Effective 545 population sizes through time for M. sp. #3 as inferred by MSMC for whole-genome data from a single 546 individual (blue line), and by G-PhoCS for RADseq data for individuals from the same population group 547 (southern M. sp. #3) in the 3-species model, with and without gene flow (yellow and gray lines, 548 respectively).

Discussion

550	The results of this study document rapid lineage diversification of mouse lemurs within a
551	restricted region in Madagascar. Even though the species from the study region all diverged from
552	their common ancestors within the past 500,000 years, two pairs of non-sister species occur
553	sympatrically. Evidence supporting the divergent species identity of <i>M. jonahi</i> and its sister
554	species <i>M. macarthurii</i> is much stronger than for a previously described species pair.
555	Furthermore, a comparison of MSC models with and without gene flow produced different
556	divergence age estimates and showed that differences in effective population size appear to have
557	consequences for species delimitation.
558	
559	Strong support for <i>M</i> . sp. #3 as a separate species: <i>M. jonahi</i>
560	Evidence for distinguishing M. sp. #3 as a separate species from M. macarthurii was strong and
561	consistent across a variety of species delimitation approaches. The two lineages were found to be
562	reciprocally monophyletic across all phylogenetic analyses of RADseq data (Fig. 2C; Fig.
563	S1; Fig. S2), separated unambiguously in clustering analyses (Fig. 2B; Fig. 3;
564	Fig. S3; Fig. S5-S7), had strong support for two separate species from SNAPP Bayes
565	factors (Tab. 1) and BPP (Fig. S9), and passed the heuristic criterion of gdi (Fig. 3D).
566	Nevertheless, these two lineages have diverged from each other relatively recently, with median
567	estimates of the divergence time across three different models with and without gene flow all
568	under 100 kya. While recent, it is important to keep in mind that if we were to transpose the
569	number of generations in this divergence time to a "hominin scale" (with a generation time that is
570	seven to ten times longer than that of mouse lemurs), this would correspond to a period longer
571	than 500,000 years, close to the estimated divergence time between Neanderthals and Homo
572	sapiens.

574	Though subtle, morphological evidence also supported the distinctiveness of M . sp. #3 in
575	comparison to all other species that occurred in the same biogeographic region (Fig. 4). M . sp.
576	#3 is differentiated from its sister species M. macarthurii in five out of 13 measured
577	morphometric parameters. Differences between the two sister taxa predominantly appeared in
578	head-associated parameters such as ear and head width, orbital distances, and snout length. It has
579	been suggested that skull parameters vary with feeding habits in lemurs and strepsirrhine
580	primates in general (e.g., omnivorous, folivorous or frugivorous etc.; Viguier 2004; Meloro et al.
581	2015; Fabre et al. 2018). We hypothesize that the morphometric differences in head-associated
582	parameters may indicate dietary and possibly cognitive differentiation between these two sister
583	species (Zimmermann and Radespiel 2014). Based on these signatures of genomic and
584	morphological distinctiveness, species status is supported for M . sp. #3 and a full species
585	decomination using the name M is national states and of the manuscrime
585	description using the name <i>M. jonahi</i> is given at the end of the manuscript.
586	description using the name <i>M</i> . <i>Jonani</i> is given at the end of the manuscript.
	Signatures of gene flow between a recently diverged sister species pair
586	
586 587	Signatures of gene flow between a recently diverged sister species pair
586 587 588	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from
586 587 588 589	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from Anjiahely. Though having nDNA indistinguishable from other <i>M. macarthurii</i> at the same site,
586 587 588 589 590	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from Anjiahely. Though having nDNA indistinguishable from other <i>M. macarthurii</i> at the same site, across phylogenetic and clustering analyses, these individuals carried mtDNA similar to that of
586 587 588 589 590 591	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from Anjiahely. Though having nDNA indistinguishable from other <i>M. macarthurii</i> at the same site, across phylogenetic and clustering analyses, these individuals carried mtDNA similar to that of <i>M.</i> sp. #3 (see Radespiel et al. 2008). And though genealogical discordance is not unexpected due
586 587 588 589 590 591 592	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from Anjiahely. Though having nDNA indistinguishable from other <i>M. macarthurii</i> at the same site, across phylogenetic and clustering analyses, these individuals carried mtDNA similar to that of <i>M.</i> sp. #3 (see Radespiel et al. 2008). And though genealogical discordance is not unexpected due to incomplete lineage sorting, the strength and direction of the disagreement suggests
586 587 588 589 590 591 592 593	Signatures of gene flow between a recently diverged sister species pair Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from Anjiahely. Though having nDNA indistinguishable from other <i>M. macarthurii</i> at the same site, across phylogenetic and clustering analyses, these individuals carried mtDNA similar to that of <i>M.</i> sp. #3 (see Radespiel et al. 2008). And though genealogical discordance is not unexpected due to incomplete lineage sorting, the strength and direction of the disagreement suggests mitochondrial introgression, which was supported by D-statistics (Fig. 5A) and the inference

- discovery of a new species, appears to have been the result of local mtDNA introgression into itssister species.
- 599

600 The roles of population size and gene flow in species delimitation

- 601 In contrast to M. sp. #3 and M. macarthurii, we found only weak support for separate species 602 status of *M. lehilahytsara* and *M. mittermeieri*. They showed paraphyly in ML and SVDquartets 603 analyses (Fig. 2A, C; Fig. S2), were not as clearly separated in clustering analyses (Fig. 2B; Fig. S3; S5; Fig. S6), and had weak Bayes factor support in SNAPP relative to M. 604 605 sp. #3 and *M. macarthurii* (Tab. 1). Most strikingly, reciprocal *gdi* statistics were below the 606 recommended lower range for diagnosing species status (Jackson et al. 2017; Leaché et al. 2019; 607 Fig. 3D). We must therefore remain open to the possibility that boundaries between previously 608 described species may be revealed as ambiguous in light of new methods and results. The 609 methods used here thus do not necessarily lead to ever-increasing numbers of species, but rather 610 offer a reasonable way forward in our effort to accurately delimit biodiversity. And, when 611 coupled with other population genomic approaches, these methods offer insight into the complex 612 demographic history of diverging populations that may be in the process of speciation.
- 613

Even so, it should be emphasized, that most of the disparities in levels of support for species status between the two pairs of sister species may be a fundamental consequence of differences in effective population sizes, which are much larger for the *M. mittermeieri / M. lehilahytsara* pair than for the *M.* sp. #3 / *M. macarthurii* pair. The *gdi* is calculated using the population sizes and divergence times that are estimated without accounting for potential gene flow. Since those divergence time estimates are highly similar for both species pairs, the difference in *gdi* is largely the result of differences in effective population sizes. This is expected, since larger effective

621	population sizes result in slower sorting of ancestral polymorphisms (Maddison 1997), and the
622	gdi relies on quantifying the probability that two sequences from the focal taxon coalesce more
623	recently than the divergence time between the taxa. More generally, differences in population
624	sizes may also explain why M. mittermeieri and M. lehilahytsara were not resolved as clades in
625	the nDNA phylogeny (Fig. 2C) yet are shown to have distinct genetic clusters (Fig. 2B;
626	Fig. 3B).
627	
628	Assessing speciation completion by quantifying rates of neutral coalescence is based on the
629	assumption that the magnitude of genetic drift is a good predictor of progress in speciation. This
630	is problematic, however, given that the role of drift in speciation is generally thought to be small
631	(Rice and Hostert 1993; Coyne and Orr 2004; Czekanski-Moir and Rundell 2019; but see Uyeda
632	et al. 2009), and a high prevalence of gene flow during and after speciation (Feder et al. 2012;
633	Harrison and Larson 2014; Mallet et al. 2016; Campbell et al. 2018) may restrict the build-up of
634	neutral differentiation, even over longer time spans. Moreover, the possibility that progress in
635	speciation is decoupled from neutral genetic differentiation cannot be avoided when delimiting
636	species using molecular data (Guilot et al. 2012; Solis-Lemus et al. 2015). Nevertheless, a
637	reliance on genealogical divergence in coalescence-based species delimitation specifically
638	renders effective population size a key variable. It is not clear whether this is justified, and
639	additional measures of divergence that do not depend on effective population sizes may also need
640	to be considered (see also Hey and Pinho 2012; Martien et al. 2017 – Appendix 2). Thus far, few
641	studies have examined a potential link between effective population size and speciation rates
642	(Khatri and Goldstein 2015; Khatri and Goldstein 2018; Huang et al. 2018), especially outside of
643	the context of founder effect speciation (Mayr 1959; Boake and Gavrilets 1998; Matute 2013).
644	

. . .

A further distinction between the two pairs of sister species examined by this study is that we find

646	higher rates of gene flow between <i>M. mittermeieri</i> and <i>M. lehilahytsara</i> (Fig. 6A). This is not
647	simply a consequence of overall lower differentiation, since divergence time is estimated to be
648	substantially older than that of M. sp. #3 / M. macarthurii when accounting for gene flow within
649	both species pairs. Thus, a joint consideration of genealogical divergence and rates of gene flow
650	may offer a way forward for effective and consistent genomic species delimitation (see also Hey
651	and Pinho 2012) with our study showing that this is an area ripe for future exploration.
652	
653	Rapid speciation in mouse lemurs
654	Sympatric Microcebus species were found at two study sites: M. macarthurii and M. mittermeieri
655	in Anjiahely (Makira) and M. sp. #3 and M. lehilahytsara in Ambavala (Fig. 1). This is
656	remarkable given that until now, only four other cases of sympatry among mouse lemur species
657	are known, and in all cases with only two species co-occurring, and always with M. murinus as
658	the other resident (Radespiel 2016). Moreover, the two sympatric pairs of species in this study
659	were estimated to have a common ancestor only \sim 500-600 kya. This provides strong evidence
660	that mouse lemurs not only developed widespread and rapid genetic divergence among
661	geographic areas, but also rapid reproductive isolation. Assuming that the geographic mode of
662	speciation has been largely allopatric (which is e.g. supported by the allopatric distributions of
663	sister species in this study), the observed sympatry of two pairs of non-sister species also reveals
664	substantial dynamism in the ranges of at least some of the focal species. It is tempting to
665	speculate that secondary contact occurred due to range expansion of <i>M. mittermeieri</i> and <i>M.</i>
666	lehilahytsara, which have larger ranges and population sizes as well as higher levels of
667	interspecific gene flow than the decreasing micro-endemics M. sp. #3 and M. macarthurii.

668

645

669	Coalescent-based estimates of divergence times constrain the speciation of the focal lineages to
670	the Pleistocene (<600,000 years). It is therefore plausible that past climatic oscillations,
671	especially periods of drought accompanied with turnovers in vegetation composition and the
672	contraction of forested habitats were a factor in the isolation and genetic divergence of the
673	sampled species and populations (Burney et al. 1997; Gasse and Van Campo 2001; Kiage and
674	Liu 2006; Wilmé et al. 2006). In addition, the Mananara river appears to have impacted
675	population structure within M . sp. #3 and restricted gene flow between M . sp. #3 and M .
676	macarthurii, emphasizing that large rivers can be phylogeographic barriers in lemurs (Martin
677	1972; Pastorini et al. 2003; Goodman and Ganzhorn 2004; Olivieri et al. 2007).
678	
679	Making direct links between molecular divergence and geological time is challenging. As a case
680	in point, some estimated divergence times were sensitive to whether gene flow was accounted for
681	in the MSC model (Fig. 6). Specifically, the model incorporating gene flow between M .
682	lehilahytsara and M. mittermeieri shifted their divergence time backwards by nearly 300 kya,
683	though estimates for deeper nodes were not similarly affected. The substantial effect of
684	incorporating or disregarding gene flow on divergence time estimation has been previously noted
685	(Leaché et al. 2014) and we here reiterate its importance for future studies. Furthermore,
686	development and application of methods that co-estimate divergence and gene flow for large-
687	scale genomic data, such as recent MSC methods that model introgression with phylogenetic
688	networks that are capable of marginal likelihood estimation (Zhang et al. 2017), will be crucial
689	for the accurate characterization of speciation processes.
690	
601	A notable feature of the coolescent based estimates of divergence times presented here is that

A notable feature of the coalescent-based estimates of divergence times presented here is that
 they are drastically different compared to those derived from fossil-calibrated molecular clock

693	methods. The basal divergence between <i>M. murinus</i> and the focal five-species clade in this study
694	was estimated to be close to 1 mya, but has consistently been estimated to be approximately 8 -
695	10 mya using fossil-calibrated estimates (Yang and Yoder 2003; dos Reis et al. 2018). Several
696	factors may explain this difference. First, we used a recent pedigree-based estimate of the mouse
697	lemur mutation rate that is about 2.5-fold higher than the phylogenetically-based estimate for
698	mouse lemurs (Campbell et al. 2019). Second, concatenated and gene tree-based estimates are
699	theoretically expected to overestimate recent species divergence times (Edwards and Beerli 2000,
700	Arbogast et al. 2002) and empirical comparisons have indeed found considerably more recent
701	divergence time estimates using coalescent-based estimates (McCormack et al. 2011; Angelis &
702	Dos Reis 2015; Colombo et al. 2015). Finally, fossil-calibrated estimates for lemurs require
703	external calibrations from distantly related lineages given the absolute dearth of lemur fossils
704	(e.g., Yang and Yoder 2003; Herrera and Dávalos 2016). Overall, the mouse lemur radiation is
705	likely more recent than previously suggested, yet further investigation is needed to understand the
706	magnitude of these disparate estimates.
707	
708	Endangered "hotspot for micro-endemism" in northeastern Madagascar
709	In total, we found five evolutionarily divergent lineages of Microcebus within a 130 km wide
710	stretch of lowland rain forest in northeastern Madagascar making this restricted region one of the

711 most species-rich areas thus far identified for mouse lemurs. Although all taxa can be found in

varying habitat types (except heavily degraded grass- and fernlands), primary forests, even of

varying degradation stages, are strongly preferred (Knoop et al. 2018; Miller et al. 2018; Schüßler

714 et al. 2018).

715

716 A long-term decline in population size was inferred for the lineage leading to M. sp. #3. While 717 changes in inferred N_e may be confounded by changes in population structure, especially for 718 single-population PSMC/MSMC models that do not explicitly consider population subdivision 719 (Mazet et al., 2016, Chikhi et al., 2018), we found highly similar results between MSMC and G-720 PhoCS analyses that considered divergence across a model with three species, treating the two M. 721 sp. #3 population clusters separately (Fig. 6F). This is especially reassuring since MSMC 722 analysis used whole-genome data for a single individual, while RADseq data from multiple 723 individuals per population underlies the G-PhoCS analyses. Importantly, changes in population 724 structure may also be associated with actual changes in population size, such as successive 725 population subdivision events with limited or no subsequent gene flow. If such changes in 726 population structure are the main cause of population size changes, as appears to be the case for 727 the lineage leading to M. sp. #3, a high degree of concordance between these different types of 728 analyses would in fact be expected. Nevertheless, we stress that future work will likely need to 729 study more complex scenarios of connectivity using metapopulation models, as has been 730 suggested for humans (Scerri et al., 2018).

731

732 The decline and population subdivision of M. sp. #3 was inferred to have started long before 733 anthropogenic land use fragmented the forest habitats, supporting the emerging consensus that 734 human colonization in Madagascar alone does not explain the occurrence of open habitats and 735 isolated forest fragments (Quéméré et al. 2012; Yoder et al. 2016; Vorontsova et al. 2016; Hackel 736 et al. 2018). However, we also observed clade-specific population size dynamics within the same 737 region, with *M. mittermeieri* and especially *M. lehilahytsara* maintaining much larger population 738 sizes than M. sp. #3 and its sister species, M. macarthurii, which appear to have decreased in 739 ranges and population sizes. It remains unclear what underlies these striking differences in

- population sizes between the two pairs of sister species, which is especially mysterious given thatthe four lineages occupy essentially the same geographic area.
- 742

743	Even so, the results of our study emphasize the need to intensify conservation activities in the
744	region (Schüßler et al. 2018). The exact range of M . sp. #3 is not yet established, but likely does
745	not exceed a maximum size of about 6,700 km ² . The known distribution includes community-
746	protected forests around Ambavala (Schüßler et al. 2018) and one nationally protected area with
747	Mananara-Nord NP. The southern range boundary of this species is most likely the Anove river
748	(Fig. 1), given that we detected <i>M. simmonsi</i> directly south of this river (which represents a
749	northern expansion of the known range for <i>M. simmonsi</i> that had previously been found at
750	Zahamena NP, Betampona and Tampolo; Louis et al. 2006; Louis and Lei 2016).
751	
752	M. lehilahytsara has so far been assumed to represent a highland specialist, with no previous
753	records below 825 m a.s.l. (Weisrock et al. 2010; Radespiel et al. 2012). Unexpectedly,
754	individuals at Ambavala, at an elevation of 235 m a.s.l., were grouped together with M.
755	lehilahytsara from a highland study site (Riamalandy). This finding needs to be interpreted with
756	caution, however, due to weak overall differentiation between M. lehilahytsara and M.
757	mittermeieri and a lack of samples from intermediate locations. Thus, further research is required
758	to resolve this relationship and implications for the evolutionary history and biogeography of M .
759	lehilahytsara.
760	
761	Recent analyses show that preferred forest habitats are rapidly declining and the isolation of
762	protected areas is inevitable in the foreseeable future (Schüßler et al. under review). We are now

763 beginning to appreciate that the area of northeastern Madagascar represents a "hotspot for micro-

764	endemism", while simultaneously finding that a newly described species may be under high
765	extinction risk due to ongoing deforestation (Schüßler et al. under review) and anticipated
766	environmental changes due to climate change (Brown and Yoder 2015). This situation is
767	unfortunately reminiscent of the recent discovery of Pongo tapanuliensis, which became the last
768	great ape species to be discovered and the most threatened at the same time (Nater et al., 2017).
769	
770	Conclusions
771	We have used both morphometric analyses and genomic species delimitation to show that five
772	species of mouse lemurs, one of which is newly described, occur in a restricted region of
773	northeastern Madagascar, making it a hotspot for micro-endemism and conservation concern in
774	accordance with findings from Wilmé et al. (2006) and Brown and Yoder (2015). Furthermore,
775	we have shown that two pairs of non-sister species occur sympatrically despite surprisingly
776	recent estimated divergence times. From these results, we infer that speciation in mouse lemurs
777	can occur more rapidly than previously suspected, and the challenge ahead is to disentangle the
778	temporal dynamics and the geographic and ecological drivers of evolutionary diversification
779	within cryptic, young, and highly speciose radiations.
780	

We also emphasize the need to carefully consider the potentially confounding effects of gene flow and population structure when estimating divergence times and changes in effective population sizes, and call for the development of metapopulation models to interpret genomic data and increase our understanding of the consequences of past climatic oscillations on patterns of genomic diversity and differentiation. Finally, we show that the inference of the degree to which speciation has progressed in the two sister-species pairs of mouse lemurs studied here correlates strongly with their respective effective population sizes. This finding suggests the need

- for a critical evaluation of the implicit assumption in molecular species delimitation that N_e and
- rates of drift correlate with the rate at which speciation progresses.

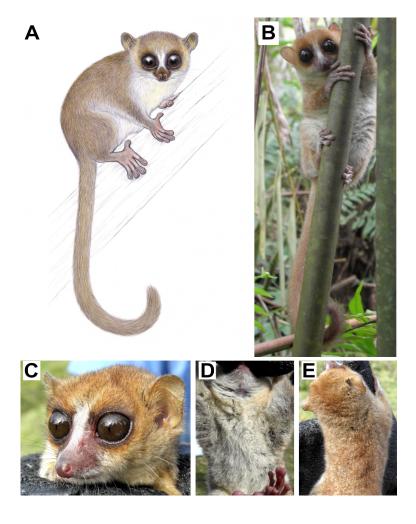
790 Species Description

- 791 <u>Systematics</u>
- 792 Order: Primates (Linnaeus 1758)
- 793 Suborder: Strepshirrini (É. Geoffroy 1812)
- 794 Family: Cheirogaleidae (Gray 1873)
- 795 Genus: *Microcebus* (É. Geoffrroy 1828)
- 796 Species: *Microcebus jonahi* species nova
- 797

798	Holotype

- B34, adult male, captured on 06 September 2017 by DS. Tissue samples, hair samples as well as
- 800 e-voucher photos of the animal are stored at the Institute of Zoology, University of Veterinary
- 801 Medicine Hanover, Germany. The animal itself was released after field handling, sampling, and
- 802 photographing, since its taxonomic distinctiveness was not recognized at the time of capture.
- Field measurements (all lengths measured in mm): ear length: 17.6, ear width: 13.7, head length:
- 804 37.7, head width: 23.0, snout length: 10.0, intra-orbital distance: 8.2, inter-orbital distance: 26.0,
- lower leg length: 41.7, hind foot length: 24.5, third toe length: 10.6, body length: 95.6, tail length:
- 806 130.0, body mass: 66 g. The population around Ambavala is designated as the source population
- 807 for physical specimens in support of the holotype.
- 808

809 <u>Type locality</u>


810 Forest near the rural village of Ambavala (S 16° 12.307', E 49° 35.371'), in a community

- 811 protected forest at about 342 m a.s.l. approx. 20 km west of Mananara North, Province of
- 812 Analanjirofo, Madagascar.

814 <u>Paratypes</u>

815	(a) BD1, adult female, captured in the community protected forest of Antsiradrano (near
816	Ambavala) on 04 September 2017. Tissue and hair samples as well as photographs and
817	morphometric measurements are stored at the Institute of Zoology, University of Veterinary
818	Medicine Hanover, Germany.
819	(b) B13, adult male, captured in the community protected forest near Ambavala on 11 September
820	2017. Tissue and hair samples as well as photographs and morphometric measurements are stored
821	at the Institute of Zoology of the University of Veterinary Medicine Hanover in Germany.
822	It is planned that one physical specimen will be obtained as a further paratype in the near future
823	and that this specimen will then be deposited in the Museum of the Zoology, Department of the
824	University of Antananarivo, Madagascar.
825	
826	Description
827	Microcebus jonahi is a large-bodied, reddish-brown and small-eared mouse lemur (Fig. 7).
828	This species has short and dense fur. The head is rufous colored with a darker brownish area
829	around the eyes which can slightly vary among individuals. A distinct white stripe lies between
830	the eyes ending at the forehead (Fig. 7C). The ears are of the same rufous color as the head.
831	The cheeks are lighter brownish and less rufous than the head becoming even lighter and almost
832	white towards the throat. The ventrum is white with slightly yellowish nuances (Fig. 7D)
833	which can vary in appearance among individuals. The dorsum is rather uniformly brown than
834	reddish (Fig. 7E). A darker dorsal stripe can be either present or absent. The ventrum and
835	dorsum are separated by a significant change in coloration with only marginal transition. The
836	coloration of the limbs shows the same pattern with a brownish dorsal and a white to slightly
837	yellowish ventral side. The tail is densely furred and of the same coloration as the dorsum. Hands

- 838 and feet show only sparse but whitish-gray hair. The skin on the palmar and plantar surfaces of
- hands and feet is brownish-pink. Males and females do not show any sexual dimorphism.

- 842 Habitus of adult female (paratype individual BD1); (C-E) Close-ups of adult male (holotype
- 843 B34). Illustration copyright by Stephen D. Nash / IUCN SSC Primate Specialist Group; used with
- 844 permission. Photos by D. Schüßler.
- 845
- 846 <u>Diagnosis</u>
- 847 *M. jonahi* can be distinguished from other taxa in northeastern Madagascar by morphometric and
- genetic differences. Compared to its closest relative, *M. macarthurii*, *M. jonahi* has a larger snout

Figure 7: Outer morphology of *Microcebus jonahi*. (A) Drawing of an adult individual; (B)

849	length, ear and head width as well as a larger intra- and inter-orbital distance. In addition, M.
850	jonahi can be easily differentiated from <i>M. macarthurii</i> by its ventral coloration which is rather
851	whitish (Fig. 7), but distinctly yellowish-orange in <i>M. macarthurii</i> (Radespiel et al. 2008;
852	Radespiel and Raveloson unpubl. data).
853	Moreover, it can be easily distinguished from the sympatric, small-bodied M. lehilahytsara (at
854	Ambavala) by its higher weight, larger body size and tail length. Finally, M. jonahi can be
855	differentiated from its southern geographical neighbor, M. simmonsi, by its larger head width as
856	well as wider inter- and intra-orbital distances. M. jonahi could be unambiguously distinguished
857	from the other four taxa in this study across all analyses of nuclear RADseq data (see above).
858	However, it may not be reliably distinguished from <i>M. macarthurii</i> based solely on mtDNA
859	sequences, likely due to some introgression of mtDNA from M. jonahi into M. macarthurii (see
860	above) in the past.
861	
862	Etymology
863	M. jonahi is named in honor of Malagasy primatologist Professor Jonah Ratsimbazafy. He has
864	dedicated his life's work to the conservation of Malagasy lemurs. With both national and
865	international outreach to the scientific community (e.g., GERP, IPS, LemurPortal), to the public
866	of Madagascar (e.g., by initiating the World Lemur Festival), and to the political leaders of
867	Madagascar, he serves as an inspirational role model for young Malagasy students and scientists.
868	He provides hope for the future of Madagascar and for its iconic lemurs during very challenging
869	times.
870	
871	Vernacular name

872 English name: Jonah's mouse lemur, French name: Microcèbe de Jonah, German

873 name: Jonah's Mausmaki.

874 Acknowledgements

875	This study was conducted under the research permit No. 197/17/MEEF/SG/DGF/DSAP/SCB.Re
876	(DS), 072/15/MEEMF/SG/DGF/DCB.SAP/SCB (MBB), 137/13/MEF/SG/DGF/DCB.SAP/SCB
877	(DWR), 175/14/MEF/SG/DGF/DCB.SAP/SCB (AM), kindly issued by the directeur du système
878	des aires protégées, Antananarivo and the regional authorities (Direction Régional de
879	l'Environnement, de l'Ecologie et de Forêts). We are endebted to J.H. Ratsimbazafy, N.V.
880	Andriaholinirina, C. Misandeau, B. Le Pors and S. Rasoloharijaona, for their help with
881	administrative tasks and to G. Besnard for facilitating this study. We thank our field assistants (I.
882	Sitrakarivo, C. Hanitriniaina and T. Ralantoharijaona) and the ADAFAM (Association Des Amis
883	de la Forêt d'Ambodiriana-Manompana) for their valuable help during sample collection. We
884	warmly thank the many local guides and cooks for sharing their incomparable expertise and help
885	in the field, misaotra anareo jiaby.
886	Funding was granted by the Bauer Foundation and the Zempelin Foundation of the "Deutsches
887	Stiftungszentrum" under grant no. T237/22985/2012/kg and T0214/32083/2018/sm to DS, Duke
888	Tropical Conservation Initiative Grant to ADY, and Duke Lemur Center/SAVA Conservation
889	research funds to MBB, the School of Animal Biology at The University of Western Australia to
890	AM, the Fundação para a Ciência e a Tecnologia, Portugal (PTDC/BIA-BEC/100176/2008,
891	PTDC/BIA-BIC/4476/2012, and SFRH/BD/64875/2009), the Groupement de Recherche
892	International (GDRI) Biodiversité et développement durable – Madagascar, the Laboratoire
893	d'Excellence (LABEX) TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-25-01, the
894	Instituto Gulbenkian de Ciência, Portugal to LC and JS, the ERA-NET BiodivERsA project:
895	INFRAGECO (Inference, Fragmentation, Genomics, and Conservation, ANR-16-EBI3-0014 &
896	FCT-Biodiversa/0003/2015) the LIA BEEG-B (Laboratoire International Associé -
897	Bioinformatics, Ecology, Evolution, Genomics and Behaviour, CNRS) to LC and JS. Further

898	financial support came from the Institute of Zoology, University of Veterinary Medicine
899	Hannover and UR acknowledges the long-term support of the late Elke Zimmermann for her
900	research activities on Madagascar. The genomic data were generated with funds from NSF DEB-
901	1354610 to ADY and DWW and from the EDB Lab to JS. ADY also gratefully acknowledges
902	support from the John Simon Guggenheim Memorial Foundation and the Alexander von
903	Humboldt Foundation. EELJ would like to acknowledge support from the Ahmanson Foundation
904	for the data generation. This work was performed in collaboration with the GeT core facility,
905	Toulouse, France (http://get.genotoul.fr), and was supported by France Génomique National
906	infrastructure, funded as part of "Investissement d'avenir" program managed by Agence
907	Nationale pour la Recherche (contract ANR-10-INBS-09). JS, UR & LC also gratefully
908	acknowledge support from the Get-Plage sequencing and Genotoul bioinformatics
909	(BioinfoGenotoul) platforms Toulouse Midi-Pyrenees.

910 **References**

- Alexander, D.H., Novembre, J., and Lange, K. 2009. Fast model-based estimation of ancestry in
 unrelated individuals. *Genome Res.* 19: 1655–1664.
- 913 Ali, O. A., O'Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., and Miller, M. R.
- 914 2016. RAD capture (rapture): Flexible and efficient sequence-based genotyping. *Genetics*915 202: 389–400.
- Angelis, K., & Dos Reis, M. 2015. The impact of ancestral population size and incomplete
 lineage sorting on Bayesian estimation of species divergence times. *Current Zoology* 61:
 874-885.
- Barley, A. J., Brown, J. M., and Thomson, R. C. 2017. Impact of model violations on the
 inference of species boundaries under the multispecies coalescent. *Syst. Biol.* 67: 269–284.
- Beaumont, M. A. 2004. Recent developments in genetic data analysis: What can they tell us
 about human demographic history? *Heredity* 92: 365–379.
- Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. 2011. Scaffolding preassembled contigs using sspace. *Bioinformatics* 27: 578–579.
- Brown, J. L. and Yoder, A. D. 2015. Shifting ranges and conservation challenges for lemurs in
 the face of climate change. *Ecol. Evol.* 5: 1131–1142.
- 927 Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., and RoyChoudhury, A. 2012.
- 928 Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full
 929 coalescent analysis. *Mol. Biol. Evol.* 29: 1917–1932.
- Burney, D., James, H., Grady, F., Rafamantanantsoa, J. G., Wright, H., and Cowart, J. 1997.
- 931 Environmental change, extinction and human activity: evidence from caves in NW
- 932 Madagascar. J. Biogeogr. 24: 755–767.

933	Campbell, C. R., Poelstra, J. W., and Yoder, A. D. 2018. What is speciation genomics? The roles
934	of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn.
935	<i>Soc.</i> 124 : 561–583.
936	Campbell, C. R., Tiley, G. P., Poelstra, J. W., Hunnicutt, K. E., Larsen, P. E., dos Reis, M., and
937	Yoder, A. D. 2019. Pedigree-based measurement of the de novo mutation rate in the gray
938	mouse lemur reveals a high mutation rate, few mutations in CpG sites, and a weak sex bias.
939	BiorXiv, posted August 5, 2019. doi: https://doi.org/10.1101/724880.
940	Chambers, E. A. and Hillis, D. M. 2019. The multispecies coalescent over-splits species in the
941	case of geographically widespread taxa. Syst. Biol. 68: doi: org/10.1093/sysbio/syz042.
942	Chifman, J. and Kubatko, L. 2014. Quartet inference from SNP data under the coalescent model.
943	<i>Bioinformatics</i> 30 : 3317–3324.
944	Chikhi, L., Sousa, V., Luisi, P., Goossens, B., and Beaumont, M.A. 2010. The confounding
945	effects of population structure, genetic diversity and the sampling scheme on the detection
946	and quantification of population size changes. Genetics 186: 983-995.
947	Chikhi, L., Rodríguez, W., Grusea, S., Santos, P., Boitard, S., Mazet, O. 2018. The IICR (inverse
948	instantaneous coalescence rate) as a summary of genomic diversity: insights into
949	demographic inference and model choice. <i>Heredity</i> 120 : 13-24.
950	Colombo, M., Damerau, M., Hanel, R., Salzburger, W., and Matschiner, M. 2015. Diversity and
951	disparity through time in the adaptive radiation of Antarctic notothenioid fishes. J. Evol.
952	<i>Biol.</i> 28 : 376–394.
953	Coyne, J. and Orr, H. 2004. Speciation. Sinauer Associates, Sunderland.
954	Czekanski-Moir, J. E. and Rundell, R. J. 2019. The ecology of nonecological speciation and
955	nonadaptive radiations. Trends Ecol. Evol. 34: 400-415.

956	Dalquen, D. A., Zhu, T., and Yang, Z. 2017. Maximum likelihood implementation of an
957	isolation-with-migration model for three species. Syst. Biol.66: 379-398.
958	Dávalos, L. M. and Russell, A. L. 2014. Sex-biased dispersal produces high error rates in
959	mitochondrial distance-based and tree-based species delimitation. J. Mammal.95: 781–791.
960	De Queiroz, K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879-886.
961	DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis,
962	A. A., Del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky
963	A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., Daly, M. J. 2011. A
964	framework for variation discovery and genotyping using next-generation DNA sequencing
965	data. Nat. Genet. 43: 491–498.
966	Displayr. 2018. flipMultivariates R package. URL https://github.com/Displayr/flipMultivariates
967	Dos Reis, M., Gunnell, G. F., Barba-Montoya, J., Wilkins, A., Yang, Z., and Yoder, A. D. 2018.
968	Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies
969	on divergence time estimation: Primates as a test case. Syst. Biol.67: 594-615.
970	Edwards, D. L. and Knowles, L. L. 2014. Species detection and individual assignment in species
971	delimitation: can integrative data increase efficacy? Proc. Roy. Soc. B 281: 20132765.
972	Edwards, S. V., and Beerli, P. 2000. Gene divergence, population divergence, and the variance in
973	coalescent time in phylogeographic studies. Evolution 54: 1839–1854.
974	Eriksson, A., and Manica, A. 2012. Effect of ancient population structure on the degree of
975	polymorphism shared between modern human populations and ancient hominins. Proc. Natl.
976	Acad. Sci. USA 109: 13956-13960.
977	Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Di Fiore, A., Nekaris,
978	K. A. I., Nijman, V., Heymann, E. W., Lambert, J. E., Rovero, F., Barelli, C., Setchell, J. M.,

979 Gillespie, T. R., Mittermeier, R. A., Arregoitia, L. V., de Guinea, M., Gouveia, S.,

980	Dobrovolski, R., Shanee, S., Shanee, N., Boyle, S. A., Fuentes, A., MacKinnon, K. C.,
981	Amato, K. R., Meyer, A. L. S., Wich, S., Sussman, R. W., Pan, R., Kone, I., and Li, B. 2017.
982	Impending extinction crisis of the worlds primates: Why primates matter. Sci. Adv. 3:
983	e1600946.
984	Fabre, A. C., Perry, J. M., Hartstone-Rose, A., Lowie, A., Boens, A., and Dumont, M. 2018. Do
985	muscles constrain skull shape evolution in strepsirrhines? Anat. Rec. 301: 291-310.
986	Feder, J. L., Egan, S. P., and Nosil, P. 2012. The genomics of speciation-with-gene-flow. Trends
987	<i>Genet.</i> 28 : 342–350.
988	Flouri, T., Jiao, X., Rannala, B., and Yang, Z. 2018. Species tree inference with BPP using
989	genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35: 2585–2593.
990	Fox, J. and Weisberg, S. 2011. An R Companion to Applied Regression. Second Edition. Sage,
991	Thousand Oaks CA. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
992	Fumagalli, M., Vieira, F. G., Korneliussen, T. S., Linderoth, T., Huerta-Sánchez, E., Albrechtsen,
993	A., and Nielsen, R. 2013. Quantifying population genetic differentiation from next-
994	generation sequencing data. Genetics 195: 979-992.
995	Fumagalli, M., Vieira, F. G., Linderoth, T., and Nielsen, R. 2014. ngstools: methods for
996	population genetics analyses from next-generation sequencing data. <i>Bioinformatics</i> 30 :
997	1486–1487.
998	Gasse, F. and Van Campo, E. 2001. Late quaternary environmental changes from a pollen and
999	diatom record in the southern tropics (lake Tritrivakely, Madagascar). Palaeogeogr.
1000	Palaeoclimatol. Palaeoecol. 167: 287–308.
1001	Gavrilets, S. and Boake, C. R. 1998. On the evolution of premating isolation after a founder
1002	event. Am. Nat. 152: 706–716.

1003	Gonen, S., Bishop, S. C., and Houston, R. D. 2015. Exploring the utility of cross-laboratory rad-
1004	sequencing datasets for phylogenetic analysis. BMC Res. Notes 8: 299.
1005	Goodman, S. M. and Benstead, J. P. 2005. Updated estimates of biotic diversity and endemism
1006	for Madagascar. Oryx 39 : 73–77.
1007	Goodman, S. M. and Ganzhorn, J. U. 2004. Biogeography of lemurs in the humid forests of
1008	Madagascar: the role of elevational distribution and rivers. J. Biogeogr. 31:47–55.
1009	Goudet, J. 2005. Hierfstat, a package for R to compute and test hierarchical f-statistics. Mol.
1010	<i>Ecol. Notes</i> 5 : 184–186.
1011	Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., and Siepel, A. 2011. Bayesian inference of
1012	ancient human demography from individual genome sequences. Nat. Genet. 43: 1031–1034.
1013	Hackel, J., Vorontsova, M. S., Nanjarisoa, O. P., Hall, R. C., Razanatsoa, J., Malakasi, P., and
1014	Besnard, G. 2018. Grass diversification in Madagascar: In situ radiation of two large C3
1015	shade clades and support for a Miocene to Pliocene origin of C4 grassy biomes. J. Biogeogr.
1016	45 : 750–761.
1017	Hafen, T., Neveu, H., Rumpler, Y., Wilden, I., and Zimmermann, E. 1998. Acoustically
1018	dimorphic advertisement calls separate morphologically and genetically homogenous
1019	populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69: 342-356.
1020	Harrison, R. G. and Larson, E. L. 2014. Hybridization, introgression, and the nature of species
1021	boundaries. J. Hered. 105: 795–809.
1022	Heckman, K. L., Mariani, C. L., Rasoloarison, R., and Yoder, A. D. 2007. Multiple nuclear loci
1023	reveal patterns of incomplete lineage sorting and complex species history within western
1024	mouse lemurs (Microcebus). Mol. Phylogenet. Evol. 43: 353-367.
1025	Heller, R., Chikhi, L., and Sigiesmund, H.R. 2013. The confounding effect of population
1026	structure on bayesian skyline plot inferences of demographic history. PLoS ONE 8: e62992.

- Herrera, J. P. and Dávalos, L. M. 2016. Phylogeny and divergence times of lemurs inferred with
 recent and ancient fossils in the tree. *Syst. Biol.*65: 772–791.
- 1029 Hey, J. and Nielsen, R. 2007. Integration within the Felsenstein equation for improved Markov
- 1030 chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. USA 104: 2785–
- 1031 2790.
- Hey, J. and Pinho, C. 2012. Population genetics and objectivity in species diagnosis. *Evolution*66: 1413–1429.
- 1034 Hotaling, S., Foley, M. E., Lawrence, N. M., Bocanegra, J., Blanco, M. B., Rasoloarison, R.,
- 1035 Kappeler, P. M., Barrett, M. A., Yoder, A. D., and Weisrock, D. W. 2016. Species discovery
- and validation in a cryptic radiation of endangered primates: coalescent-based species
 delimitation in Madagascar's mouse lemurs. *Mol. Ecol.* 25: 2029–2045.
- Huang, J.-P., Leavitt, S. D., and Lumbsch, H. T. 2018. Testing the impact of effective population
 size on speciation rates a negative correlation or lack thereof in lichenized fungi. *Sci. Rep.*

1040 **8**: 5729.

- Jackson, N. D., Carstens, B. C., Morales, A. E., and O'Meara, B. C. 2017. Species delimitation
 with gene flow. *Syst. Biol.*66: 799–812.
- Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics* 24: 1403–1405.
- Jombart, T. and Ahmed, I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP
 data. *Bioinformatics* 27: 3070–3071.
- Kappeler, P., Rasoloarison, R., Razafimanantsoa, L., Walter, L., and Roos, C. 2005. Morphology,
 behaviour and molecular evolution of giant mouse lemurs (*Mirza* spp.) Gray, 1870, with
 description of a new species. *Primate Rep.* 71: 3–26.
- 1050 Kass, R. E. and Raftery, A. E. 1995. Bayes factors. J. Am. Stat. Assoc. 90: 773–795.

1051	Khatri, B. S. and Goldstein, R. A. 2015. Simple biophysical model predicts faster accumulation
1052	of hybrid incompatibilities in small populations under stabilizing selection. Genetics 201:
1053	1525–1537.
1054	Khatri, B. S. and Goldstein, R. A. 2018. Biophysics and population size constrains speciation in
1055	an evolutionary model of developmental system drift. <i>BioRxiv</i> . doi: 10.1101/123265.
1056	Kiage, L. M. and Liu, K. B. 2006. Late Quaternary paleo-environmental changes in East Africa:
1057	A review of multiproxy evidence from palynology, lake sediments, and associated records.
1058	Prog. Phys. Geogr. 30: 633–658.
1059	Kim, B. Y., Wei, X., Fitz-Gibbon, S., Lohmueller, K. E., Ortego, J., Gugger, P. F., and Sork,

1061 Californian tree and scrub oak species (*Quercus* sect. *Quercus*: *Fagaceae*). *Mol. Ecol.* 27:
1062 4556–4571.

V. L. 2018. RADseq data reveal ancient, but not pervasive, introgression between

- 1063 Knoop, S., Chikhi, L., and Salmona, J. 2018. Mouse lemur's use of degraded habitat. *Lemur* 1064 *News* 21: 20–31.
- Korneliussen, T. S., Albrechtsen, A., and Nielsen, R. 2014. Angsd: analysis of next generation
 sequencing data. *BMC Bioinformatics* 15: 356.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. 2006. World map of the KöppenGeiger climate classification updated. *Meteorol. Z.*15: 259–263.
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. 2009. Ultrafast and memory-efficient
 alignment of short DNA sequences to the human genome. *Genome Biol.* 10: R25.
- 1071 Leaché, A., Zhu, T., Rannala, B., and Yang, Z. 2019. The spectre of too many species. *Syst.*1072 *Biol.*68: 168–181.
- 1073 Leaché, A. D., Fujita, M. K., Minin, V. N., and Bouckaert, R. R. 2014. Species delimitation using
 1074 genome-wide SNP data. *Syst. Biol.*63: 534–542.

- 1075 Lecompte, E., Crouau-Roy, B., Aujard, F., Holota, H., and Murienne, J. 2015. Complete
- 1076 mitochondrial genome of the gray mouse lemur, *Microcebus murinus* (Primates,
- 1077 *Cheirogaleidae*). *Mitochondrial DNA A* **27**: 3514–3516.
- 1078 Louis, E. E., Coles, M. S., Andriantompohavana, R., Sommer, J. A., Engberg, S. E., Zaonarivelo,
- J. R., Mayor, M. I., and Brenneman, R. A. 2006. Revision of the mouse lemurs (*Microcebus*)
 of eastern Madagascar. *Int. J. Primatol.* 27: 347–389.
- 1081 Louis, E. E., Engberg, S. E., McGuire, S. M., McCormick, M. J., Randriamampionona, R.,
- 1082 Ranaivoarisoa, J. F., Bailey, C.A., Mittermeier, R. A., and Lei, R. 2008. Revision of the
- 1083 mouse lemurs, *Microcebus* (Primates, Lemuriformes), of northern and northwestern
- Madagascar with descriptions of two new species at Montagne d'Ambre National Park and
 Antafondro Classified Forest. *Primate Conserv.* 23: 19–38.
- Louis, E. E. and Lei, R. 2016. Mitogenomics of the family *Cheirogaleidae* and relationships to
- 1087 taxonomy and biogeography in Madagascar. In: S. M. Lehman, U. Radespiel, and E.
- 1088 Zimmermann (Editors), *The Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior*
- 1089 and Conservation Biogeography of the Cheirogaleidae, Chap. 3, Cambridge University
- 1090 Press, pp. 54–93.
- 1091 Lozier, J. D. 2014. Revisiting comparisons of genetic diversity in stable and declining species:

assessing genome-wide polymorphism in North American bumble bees using RAD
sequencing. *Mol. Ecol.* 23: 788–801.

- Luo, A., Ling, C., Ho, S. Y. W., and Zhu, C. D. 2018. Comparison of methods for molecular species delimitation across a range of speciation scenarios. *Syst. Biol.***67**: 830–846.
- 1096 Maddison, W. P. 1997. Gene trees in species trees. *Syst. Biol.***46**: 523–536.
- 1097 Mallet, J., Besansky, N., and Hahn, M. W. 2016. How reticulated are species? *BioEssays* 38:
- 1098 140–149.

- 1099 Martien, K. K., Leslie, M. S., Taylor, B. L., Morin, P. A., Archer, F. I., Hancock-Hanser, B. L.,
- 1100 Brittany, L., Rosel, P. E., Vollmer, N. L. Viricel, A., and Cipriano, F. (2017). Analytical
- approaches to subspecies delimitation with genetic data. *Mar. Mam. Sci.* 33:27-55.
- 1102 Martin, R. 1972. A preliminary field-study of the lesser mouse lemur (Microcebus murinus JF
- 1103 Miller 1777). Z. Tierpsychol. 9: 43–89.
- Matute, D. R. 2013. The role of founder effects on the evolution of reproductive isolation. *J. Evol. Biol.* 26: 2299–2311.
- 1106 Mayr, E. 1959. Isolation as an evolutionary factor. *Proc. Am. Phil. Soc.* 103: 221–230.
- 1107 Mazet, O., Rodriguez, W. V., Grusea, S., Boitard, S., and Chikhi, L. 2016. On the importance of
- being structured: instantaneous coalescence rates and human evolution Lessons for
 inference of ancestral population size? *Heredity* 116: 362–371.
- 1110 McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., and Knowles, L. L. 2011.
- Calibrating divergence times on species trees versus gene trees: implications for speciation
 history of *Aphelocoma jays*. *Evolution* 65: 184–202.
- 1113 Meloro, C., Cáceres, N. C., Carotenuto, F., Sponchiado, J., Melo, G. L., Passaro, F., and Raia, P.
- 1114 2015. Chewing on the trees: Constraints and adaptation in the evolution of the primate1115 mandible. *Evolution* 69: 1690–1700.
- 1116 Miller, A., Mills, H., Ralantoharijaona, T., Volasoa, N. A., Misandeau, C., Chikhi, L., Bencini,
- R., and Salmona, J. 2018. Forest type influences population densities of nocturnal lemurs in
 Manompana, northeastern Madagascar. *Int. J. Primatol.* **39**: 646–669.
- 1119 Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J. 2000.
- 1120 Biodiversity hotspots for conservation priorities. *Nature* **403**: 853–858.

- 1121 Nater, A., Mattle-Greminger, M. P., Nurcahyo, A., Nowak, M. G., De Manuel, M., Desai, T., ...,
- and Lameira, A. R. 2017. Morphometric, behavioral, and genomic evidence for a new
 orangutan species. *Current Biology* 27: 3487-3498.
- 1124 Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y., and Wang, J. 2012. SNP calling, genotype
- calling, and sample allele frequency estimation from new-generation sequencing data. *PLoS One* 7: e37558.
- 1127 O'Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M., and Portnoy, D. S. 2018. These
- aren't the loci you're looking for: Principles of effective SNP filtering for molecular
- 1129 ecologists. *Mol. Ecol.* **27**: 3193–3206.
- 1130 Olivieri, G., Zimmermann, E., Randrianambinina, B., Rasoloharijaona, S., Rakotondravony, D.,
- 1131 Guschanski, K., and Radespiel, U. 2007. The ever-increasing diversity in mouse lemurs:
- three new species in north and northwestern Madagascar. *Mol. Phylogenet. Evol.* **43**: 309–
 327.
- 1134 Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., Karpinski, E.,
- 1135 Ivancevic, A. M., To, T. H., Kortschak, R. D., Raison, J. M., Qu, Z., Chin, T.-J., Alt, K. W.,
- 1136 Claesson, S., Dalén, L., MacPhee, R. D. E., Meller, H., Roca, A. L., Ryder, O. A., Heiman,
- 1137 D., Young, S., Breen, M., Williams, C., Aken, B. L., Ruffier, M., Karlsson, E., Johnson, J.,
- 1138 Di Palma, F., Alfoldi, J., Adelson, D. L., Mailund, T., Munch, K., Lindblad-Toh, K.
- Hofreiter, M., Poinar, H., and Reich, D. 2018. A comprehensive genomic history of extinct
 and living elephants. *Proc. Natl. Acad. Sci. USA* 115: E2566–E2574.
- Pamilo, P., and Nei, M. 1988. Relationships between gene trees and species trees. *Mol. Biol. Evol.* 5: 568–583.
- 1143 Pastorini, J., Thalmann, U., and Martin, R. D. 2003. A molecular approach to comparative
- 1144 phylogeography of extant Malagasy lemurs. *Proc. Natl. Acad. Sci. USA* **100**: 5879–5884.

- 1145 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T.,
- Webster, T., and Reich, D. 2012. Ancient admixture in human history. *Genetics* 192: 1065–
 1093.
- 1148 Payseur, B. A. and Rieseberg, L. H. 2016. A genomic perspective on hybridization and
- 1149 speciation. *Mol. Ecol.* **25**: 2337–2360.
- 1150 Pedersen, C. E. T., Albrechtsen, A., Etter, P. D., Johnson, E. A., Orlando, L., Chikhi, L.,
- Siegismund, H. R., and Heller, R. 2018. A southern African origin and cryptic structure in
 the highly mobile plains zebra. *Nat. Ecol. Evol.* 2: 491–498.
- Quéméré, E., Amelot, X., Pierson, J., Crouau-Roy, B., and Chikhi, L. 2012. Genetic data suggest
 a natural pre-human origin of open habitats in northern Madagascar and question the
 deforestation narrative in this region. *Proc. Natl. Acad. Sci. USA* 109: 13028–13033.
- 1156 Radespiel, U. 2016. Can behavioral ecology help us to understand the divergent geographic range
- 1157 sizes of mouse lemurs? In: S. M. Lehman, U. Radespiel, and E. Zimmermann (Editors), *The*
- 1158 Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation
- 1159 *Biogeography of the Cheirogaleidae*, Chap. 26, Cambridge University Press, pp. 498-519.
- Radespiel, U., Lutermann, H., Schmelting, B., and Zimmermann, E. (in revision): An empirical
 estimate of the generation time of mouse lemurs. *Am. J. Primatol.*
- 1162 Radespiel, U., Olivieri, G., Rasolofoson, D. W., Rakotondratsimba, G., Rakotonirainy, O.,
- 1163 Rasoloharijaona, S., Randrianambinina, B., Ratsimbazafy, J. H., Ratelolahy, F.,
- 1164 Randriamboavonjy, T., Rasolofoharivelo, T., Craul, M., Rakotozafy, L., and Randrianarison,
- 1165 R. M. 2008. Exceptional diversity of mouse lemurs (*Microcebus* spp.) in the Makira region
- 1166 with the description of one new species. *Am. J. Primatol.* **70**: 1033–1046.
- 1167 Radespiel, U., Ratsimbazafy, J. H., Rasoloharijaona, S., Raveloson, H., Andriaholinirina, N.,
- 1168 Rakotondravony, R., Randrianarison, R. M., and Randrianambinina, B. 2012. First

- indications of a highland specialist among mouse lemurs (*Microcebus* spp.) and evidence for
 a new mouse lemur species from eastern Madagascar. *Primates* 53: 157–170.
- 1171 Radespiel, U., Sarikaya, Z., Zimmermann, E., and Bruford M.W. (2001) Sociogenetic structure in
- a free-living nocturnal primate population: sex-specific differences in the grey mouse lemur
- 1173 (*Microcebus murinus*). Behav. Ecol. Sociobio. 50: 493-502.
- 1174 Rannala, B. and Yang, Z. 2003. Bayes estimation of species divergence times and ancestral
- 1175 population sizes using DNA sequences from multiple loci. *Genetics* **164**: 1645–1656.
- 1176 Rannala, B. and Yang, Z. 2013. Improved reversible jump algorithms for Bayesian species
 1177 delimitation. *Genetics* 194: 245–253.
- Rasoloarison, R. M., Goodman, S. M., and Ganzhorn, J. U. 2000. Taxonomic revision of mouse
 lemurs (*Microcebus*) in the western portions of Madagascar. *Int. J. Primatol.* 21: 963–1019.
- 1180 Rasoloarison, R. M., Weisrock, D. W., Yoder, A. D., Rakotondravony, D., and Kappeler, P. M.
- 1181 2013. Two new species of mouse lemurs (*Cheirogaleidae*: *Microcebus*) from eastern
 1182 Madagascar. *Int. J. Primatol.* 34: 455–469.
- Rice, W. R. and Hostert, E. E. 1993. Laboratory experiments on speciation: What have we
 learned in 40 years? *Evolution* 47: 1637–1653.
- 1185 Rodríguez, W., Mazet, O., Grusea, S., Arredondo, A., Corujo, J. M., Boitard. S., and Chikhi. L.
- 2018. The IICR and the non-stationary structured coalescent: towards demographic inference
 with arbitrary changes in population structure. *Heredity* 121: 663-678.
- Schiffels, S. and Durbin, R. 2014. Inferring human population size and separation history from
 multiple genome sequences. *Nat. Genet.* 46: 919–925.
- 1190 Schüßler, D., Mantilla-Contreras, J., Stadtmann, R., Ratsimbazafy, J. H., and Radespiel, U.
- 1191 (under review) Determinants of deforestation and prediction of future forest loss in remote
- and rural north-eastern Madagascar. *Biodiv. Conserv.*

- 1193 Schüßler, D., Radespiel, U., Ratsimbazafy, J.H., and Mantilla-Contreras, J. 2018. Lemurs in a
- 1194 dying forest: Factors influencing lemur diversity and distribution in forest remnants of north-
- eastern Madagascar. *Biol. Conserv.* **228**: 17–26.
- 1196 Schwitzer, C., Mittermeier, R.A., Johnson, S.E., Donati, G., Irwin, M., Peacock, H.,
- 1197 Ratsimbazafy, J., Razafindramanana, J., Louis Jr., E. E., Chikhi, L., Colquhoun, I.C.,
- 1198 Tinsman, J., Dolch, R., LaFleur, M., Nash, S., Patel, E., Randrianambinina, B.,
- 1199 Rasolofoharivelo, T., Wright, P.C. 2014. Averting lemur extinctions amidst Madagascar's
 1200 political crisis. *Science* 343: 842-43.
- 1201 Skotte, L., Korneliussen, T. S., and Albrechtsen, A. 2013. Estimating individual admixture
- 1202 proportions from next generation sequencing data. *Genetics* **195**: 693–702.
- Solís-Lemus, C., Knowles, L. L., and Ané, C. (2015). Bayesian species delimitation combining
 multiple genes and traits in a unified framework. *Evol.* 69:492-507.
- Stamatakis, A. 2014. Raxml version 8: a tool for phylogenetic analysis and post-analysis of large
 phylogenies. *Bioinformatics* 30: 1312–1313.
- Sukumaran, J. and Knowles, L. L. 2017. Multispecies coalescent delimits structure, not species.
 Proc. Natl. Acad. Sci. USA 114: 1607–1612.
- Uyeda, J. C., Arnold, S. J., Hohenlohe, P. A., and Mead, L. S. 2009. Drift promotes speciation by
 sexual selection. *Evolution* 63: 583–594.
- 1211 Venables, W. N. and Ripley, B. D. 2002. *Modern Applied Statistics with S.* Fourth Edition.
- 1212 Springer, New York. ISBN 0-387-95457-0. URL http://www.stats.ox.ac.uk/pub/MASS4
- 1213 Viguier, B. 2004. Functional adaptations in the craniofacial morphology of Malagasy primates:
- 1214 shape variations associated with gummivory in the family *Cheirogaleidae*. *Ann. Anat.* **186**:
- 1215 495–501.

- 1216 Vorontsova, M. S., Besnard, G., Forest, F., Malakasi, P., Moat, J., Clayton, W. D., Ficinski, P.,
- 1217 Savva, G. M., Nanjarisoa, O. P., Razanatsoa, J., Randriatsara, F. O., Kimeu, J. M., Luke,
- 1218 W. R. Q., Kayombo, C., and Linder, H. P. 2016. Madagascar's grasses and grasslands:
- 1219 Anthropogenic or natural? *Proc. Roy. Soc. B* 283: 20152262.
- 1220 Waeber, P. O., Wilmé, L., Mercier, J. R., Camara, C., and Lowry II, P. P. 2016. How effective
- have thirty years of internationally driven conservation and development efforts been in
 Madagascar? *PLoS One* 11: e0161115.
- Warmuth, V. M., and Ellegren, H. 2019. Genotype-free estimation of allele frequencies reduces
 bias and improves demographic inference from RADSeq data. *Mol. Ecol. Resour.* 19: 586–
- 1225 596.
- Weisrock, D. W., Rasoloarison, R. M., Fiorentino, I., Ralison, J. M., Goodman, S. M., Kappeler,
 P. M., and Yoder, A. D. 2010. Delimiting species without nuclear monophyly in

1228 Madagascar's mouse lemurs. *PLoS One* **5**: e9883.

- Wen, D., Yu, Y., Zhu, J., and Nakhleh, L. 2018. Inferring phylogenetic networks using PhyloNet. *Syst. Biol.* 67: 735–740.
- Wilmé, L., Goodman, S. M., and Ganzhorn, J. U. 2006. Biogeographic evolution of
 Madagascar's microendemic biota. *Science* 312: 1063–1065.
- 1233 Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M. H. 2011. Improving marginal likelihood
 1234 estimation for Bayesian phylogenetic model selection. *Syst. Biol.* 60: 150–160.
- 1235 Yang, Z., and Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data.
- 1236 Proc. Natl. Acad. Sci. USA 107:9264–9269.
- 1237 Yang, Z., and Yoder, A. D. 2003. Comparison of likelihood and Bayesian methods for estimating
- divergence times using multiple gene loci and calibration points, with application to a
- radiation of cute-looking mouse lemur species. *Syst. Biol.* **52**: 705–716.

1240	Yoder, A. I	Campbel	I. C. R.	. Blanco	. M. B.	dos Reis. M	М.,	Ganzhorn.	J. U.,	Goodman	S. M.,

- 1241 Hunnicutt, K. E., Larsen, P. A., Kappeler, P. M., Rasoloarison, R. M., Ralison, J. M.,
- 1242 Swofford, D. L., and Weisrock, D. W. 2016. Geogenetic patterns in mouse lemurs (genus
- 1243 *Microcebus*) reveal the ghosts of Madagascar's forests past. *Proc. Natl. Acad. Sci. USA* **113**:
- 1244 8049–8056.
- 1245 Yoder, A. D., Rasoloarison, R. M., Goodman, S. M., Irwin, J. A., Atsalis, S., Ravosa, M. J., and
- 1246 Ganzhorn, J. U. 2000. Remarkable species diversity in Malagasy mouse lemurs (*Primates*,
- 1247 *Microcebus*). *Proc. Natl. Acad. Sci. USA* **97**: 11325–11330.
- 1248 Zhang, C., Ogilvie, H. A., Drummond, A. J., and Stadler, T. 2017. Bayesian inference of species
 1249 networks from multilocus sequence data. *Mol. Biol. Evol.* 35: 504–517.
- 1250 Zhang, C., Zhang, D.X., Zhu, T., and Yang, Z. 2011. Evaluation of a bayesian coalescent method
 1251 of species delimitation. *Syst. Biol.* 60: 747–761.
- Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A. 2013. The
 MaSuRCA genome assembler. *Bioinformatics* 29: 2669–2677.
- 1254 Zimmermann, E., Cepok, S., Rakotoarison, N., Zietemann, V., and Radespiel, U. 1998.
- 1255 Sympatric mouse lemurs in north-west Madagascar: A new rufous mouse lemur species
- 1256 (*Microcebus ravelobensis*). Folia Primatol. **69**: 106–114.
- 1257 Zimmermann, E., and Radespiel, U. 2014. Species concepts, diversity, and evolution in primates:
- 1258 lessons to be learned from mouse lemurs. *Evol. Anthropol.* 23: 11–14.