828 Supplemental information

829 Supplemental methods

830 Quantification of immunoglobulins by ELISA

831 Like the quantification of total fecal IgA, serum immunoglobulin isotypes (IgA, IgG1, IgG2a, 832 IgG2b, IgG3, IgM and IgE) were also detected using sandwich ELISA following the same 833 procedures as the quantification of fecal IgA except for using different capture and detection 834 antibody pairs (all following antibodies were purchased from Southern Biotechnology 835 Associates, Inc. if not indicated otherwise): goat anti-mouse IgA, goat anti-mouse IgG1, goat 836 anti-mouse IgG2a, goat anti-mouse IgG2b, goat anti-mouse IgG3, rat anti-mouse IgE, rat anti-837 mouse IgM, goat anti-mouse IgG-HRP, goat anti-mouse IgE-HRP, goat anti-mouse IgM-HRP 838 and goat anti-mouse IgA-HRP (Sigma-Aldrich). Corresponding mouse immunoglobulin isotypes 839 were used as standards after serial dilutions.

840

841 **RNA isolation**

Excised small intestine and colon from gnotobiotic mice that were colonized for three weeks with *B. ovatus* E or Q strains were kept in RNA*later* RNA Stabilization Reagent (Qiagen, 76104) and stored at -20°C freezer until future processing. Total RNA was extracted with the RNeasy Mini Kit (Qiagen, 74104) according to manufacture's protocol. The concentration and quality of RNA was analyzed with a NanoDrop[™] 8000 Spectrophotometer (Thermo Fisher Scientific, USA).

848

849 Quantification of mRNA by quantitative RT-PCR

The cDNA for each sample was synthesized with High-Capacity cDNA Reverse Transcription
Kits (Applied Biosystems, 4368813). The StepOne Real-Time PCR System (Applied
Biosystems, USA) was used for PCR amplification of the cDNAs with Applied Biosystems[™]
Power SYBR[™] Green Master Mix and oligonucleotide primer pairs specific for plgR, Muc2 and

854 alyceraldehydes-3-phosphate dehydrogenase (GAPDH) mRNAs. The primer sequences were 855 as follows: GAPDH forward primer, 5'-TGAACGGGAAGCTCACTGG-3'; GAPDH reverse 856 primer. 5'-TCCACCACCCTGTTGCTGTA-3'; plgR forward 5'primer. 857 AGGCAATGACAACATGGGGG-3'; plgR reverse primer, 5'-ATGTCAGCTTCCTCCTTGG-3' 858 (Nakamura et al., 2012); Muc2 forward primer, 5'-GCTGACGAGTGGTTGGTGAATG-3'; Muc2 859 reverse primer, 5'-GATGAGGTGGCAGACAGGAGAC-3' (Wlodarska et al., 2011). The following 860 parameters were set for cDNA amplification and quantification: 30 seconds at 95°C, and then 40 861 cycles of denaturation at 95°C for 15 seconds and annealing at 60°C for 1 minutes. The mRNA level of test gene was normalized to GAPDH according to the formula: $(2^{-(C_T \text{test} - C_T \text{GAPDH})}) \times 100\%$. 862 863

864 Scanning electron microscopy

The morphology of *B. ovatus* in mouse colonic tissue was observed under scanning electron microscopy (SEM). Colon tissues were excised from gnotobiotic mice colonized for three weeks with either *B. ovatus* strain E or Q and fixed in 3% glutaraldehyde buffer overnight at 4°C. Samples were then washed gently in 0.2 M sodium cacodylate buffer to remove residual fixative and re-fixed with 1% osmium tetraoxide/0.2 M cacodylate buffer for one hour. After complete drying, samples were first coated with gold particles and observed with a HITACHI S-4300 SEM (HITACHI, Japan).

872

873 Treatment of gnotobiotic mice with FTY720

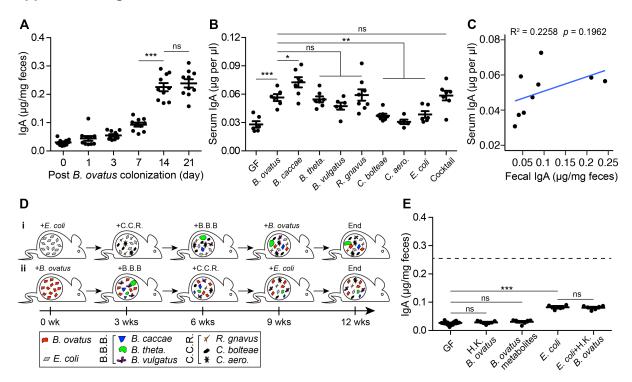
Germ-free mice were administered 2-Amino-2-[2-(4-octyl-phenyl)-ethyl]-propane-1,3-diol
hydrochloride (FTY720) (Sigma-Aldrich, SML0700) by i.p. at 1 μg/g body weight, as previously
described (Kunisawa et al., 2007; Ruane et al., 2013). Three days after the initial treatment,
mice were colonized with *B. ovatus* strain E and injected FTY720 by i.p. followed by treatment
with FTY720 every three days for a period of three weeks. PBS was used in control mice. At the

879 end of the experiment, content from different regions of the intestinal tract was harvested and880 subject to IgA quantification by ELISA.

881

882 Supplemental results

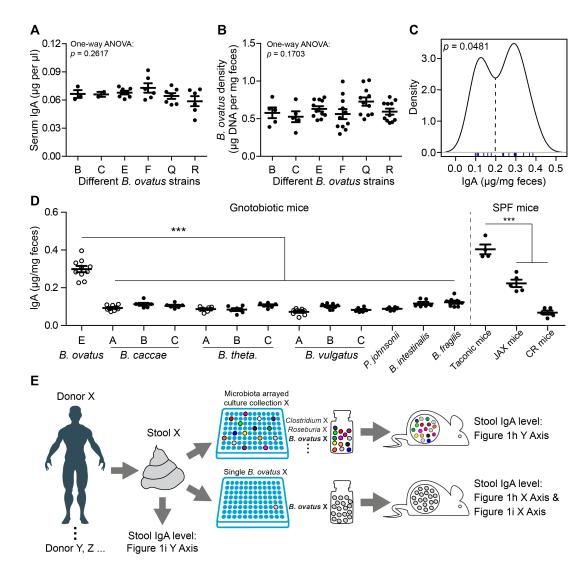
883 IgA^{high} *B. ovatus* strains induce comparable level of fecal IgA to Taconic SPF microbiota

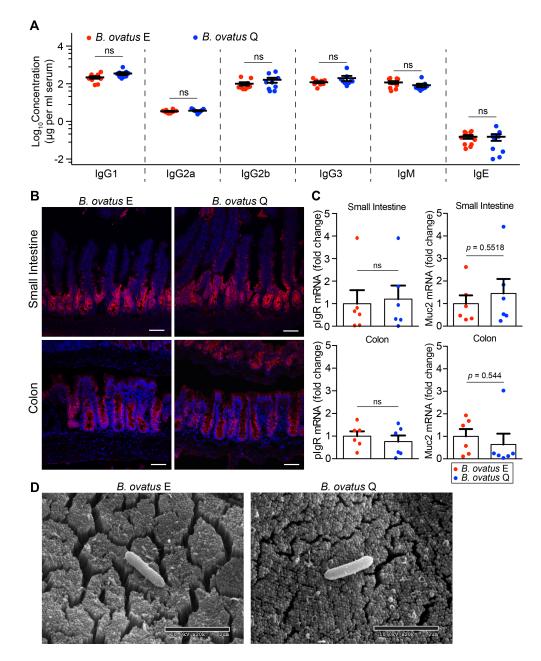

884 Segmented filamentous bacterium (SFB) has been described as a potent fecal IgA inducer 885 (Talham et al., 1999). As a reference to compare with IgA levels induced by diverse human gut 886 microbial strains, we measured fecal IgA in C57BI/6 mice from three mouse vendors. Taconic 887 SPF mice, that are known to be colonized by SFB (Ivanov et al., 2009), produced more IgA in 888 their stool than other mice (i.e. JAX SPF mice and Charles River SPF mice) (Figure S2D). 889 However, the concentration of stool IgA in Taconic mice was comparable to that of gnotobiotic mice colonized with a single IgA^{high} B. ovatus strain (Figure 1F and S2D) suggesting that B. 890 ovatus IgA^{high} stains are as efficient as SFB in fecal IgA induction in mice. 891

892

893 **B.** ovatus induce development of IgA-secreting cells locally in the large intestine

Well-organized follicular structures such as Peyer's patches (PPs) in the small intestine are the 894 most prominent IgA inductive sites. We determined whether IgA^{high} B. ovatus-induced IgA-895 896 secreting cells residing in the LP of the large intestine had emerged from the small intestinal IgA 897 inductive sites (e.g. PPs). To address this question, we took advantage of FTY720, an S1PR1 898 agonist, which blocks the cellular egress from secondary lymphoid tissues (Kunisawa et al., 899 2007). We found that, in general, FTY720-treated and untreated control mice generated 900 comparable fecal IgA after three weeks of colonization (Figure S12A). However, the treated 901 mice, compared to controls, had significantly less luminal IgA in the distal small intestine but not 902 in the large intestinal regions (Figure S12B). These results suggest local development of IgA-903 secreting B cells in the colon might be the mechanism driving elevated colonic IgA induced by


IgA^{high} strains or that IgA^{high} *B. ovatus* strains promote the survival of IgA-secreting cells in the
colon (Fagarasan et al., 2010; Masahata et al., 2014).


909 Figure S1. B. ovatus species do not induce more serum IgA production than other 910 bacterial species, related to Figure 1. (A) Fecal IgA dynamics in gnotobiotic mice after 911 colonization with *B. ovatus* strain E. (B) Total serum IgA concentration in gnotobiotic mice that 912 were colonized with individual or a cocktail of eight bacterial species for three weeks. (C) 913 Correlation of IgA concentration in stool and serum in mice inoculated with different bacterial 914 species. The average concentrations of stool IgA in Figure 1A and serum IgA in Figure S1B 915 were used for plotting. (D) Gnotobiotic mice were serially colonized with different bacteria every 916 three weeks. Before each new bacteria addition, stool samples were collected for further 917 analysis. (E) Fecal IgA concentration in mice treated with either heat-killed (H.K.) B. ovatus or B. 918 ovatus metabolites (i.e. filtered, conditioned growth medium from stationary phase of B. ovatus 919 cultures). The right side of this plot shows fecal IgA concentration in E. coli-precolonized 920 gnotobiotic mice, which were then treated with H.K.-B. ovatus. Either metabolites of B. ovatus in 921 culture medium or H.K.-B. ovatus was used to feed mice, accordingly, for the duration of the 922 experiments. Dotted line indicates the average level of stool IgA induced by viable B. ovatus

- 923 strain E. Data shown are mean ± standard error of the mean. Each dot represents a biological
- 924 replicate. Detailed strain information is listed in Table S1. *p*-values with statistical significance
- 925 (assessed by two-tailed Student's *t* test) are indicated: ***p < 0.001; ns, not significant.

928 Figure S2. Strain-level variation in fecal IgA induction was not observed in other tested 929 bacterial species, related to Figure 1. (A) Total serum IgA level in gnotobiotic mice harboring 930 different strains of *B. ovatus*. (B) *B. ovatus* density in the stool of gnotobiotic mice colonized with 931 different B. ovatus strains. (C) Binomial distribution of B. ovatus strains in IgA induction. (D) 932 Fecal IgA concentration in mice colonized with different strains of B. caccae, B. theta., B. 933 vulgatus and other Bacteroidales, such as P. johnsonii, B. intestinalis and B. fragilis and in SPF 934 B6 mice purchased from different vendors. Taconic mice were purchased from Taconic Biosciences; JAX mice were purchased from The Jackson Laboratory and CR mice were 935 936 purchased from Charles River Laboratories. Data with open circle were replotted from Figure 1A

to facilitate comparison. (**E**) Experiment schema of the Figures 1H and 1I. Data shown are mean \pm standard error of the mean. Each dot represents a biological replicate. Detailed strain information is listed in Tables S2 and S7. *p*-values with statistical significance (assessed by twotailed Student's *t* test or one-way ANOVA) are indicated: ****p* < 0.001; ns, not significant. 941

942

Figure S3. *B. ovatus* strains E and Q induced comparable levels of different serum immunoglobulin isotypes, plgR and Muc2 expression in both small intestine and the colon, related to Figure 2. (A) Total serum lgG1, lgG2a, lgG2b, lgG3, lgM and lgE in gnotobiotic mice colonized with either *B. ovatus* strain E or Q. (B) Colonic and ileal sections from *B. ovatus* strain E or Q colonized mice were stained with anti-plgR (Red) and DAPI (4',6diamidino-2-phenylindole) (Blue). Representative images are shown (n = 4-6 mice per group). Scale Bars = 50 µm. Data shown are mean ± standard error of the mean. (C) The fold change

of pIgR mRNA level (left) and Muc2 mRNA level (right) in the small intestine and colon of mice colonized for three weeks with *B. ovatus* strain E or Q. (**D**) The morphology of *B. ovatus* strain E or Q in gnotobiotic mice colon. Scale Bars = 2 μ m. Each dot represents a biological replicate. *p*values with statistical significance (assessed by unpaired two-tailed Student's *t* test) are indicated: **p* < 0.05; ns, not significant.

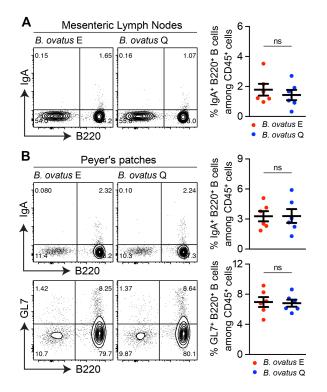


Figure S4. Quantification of IgA^*B220^*B cells in MLNs, PPs in *B. ovatus* strain E or Q harboring gnotobiotic mice, related to Figure 2. (A) Representative flow cytometry plot and quantification of IgA^*B cells in mesenteric lymph nodes. (B) Representative flow cytometry plot and quantification of IgA^*B cell and germinal center B cells ($GL7^*B220^*$) in PPS. Number adjacent to gate represents percentage. Data shown are mean ± standard error of the mean. Each dot represents an individual mouse. *p*-values with statistical significance (assessed by unpaired two-tailed Student's *t* test) are indicated: **p* < 0.05; ns, not significant.

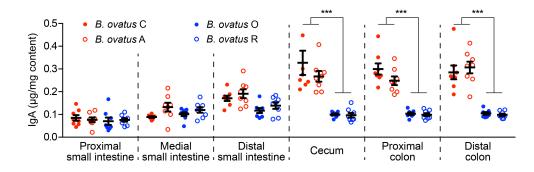
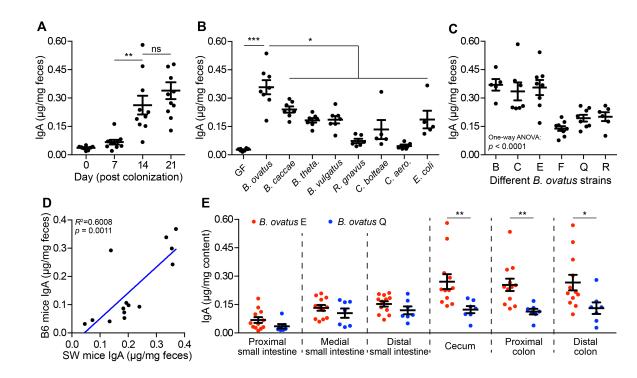
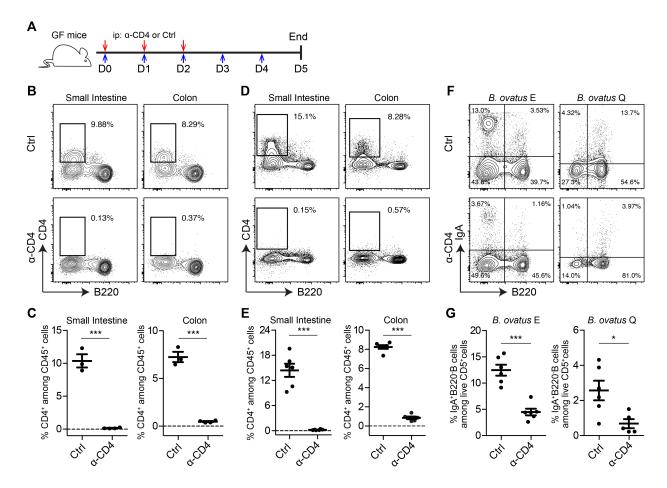
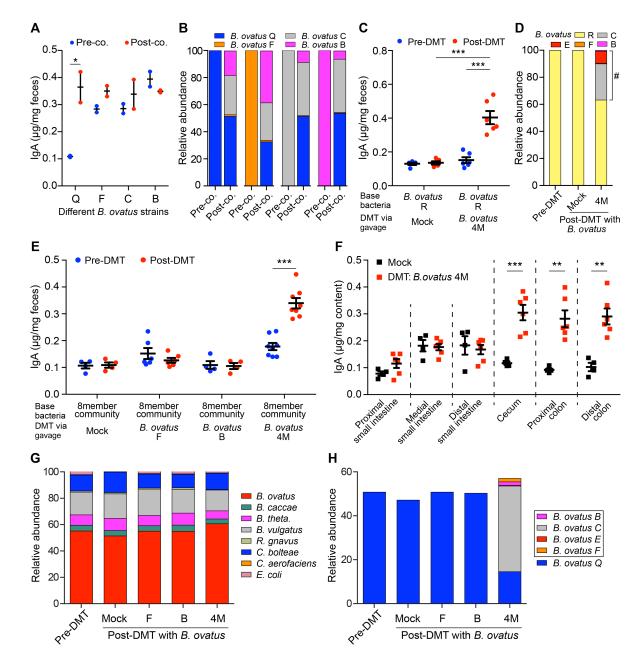
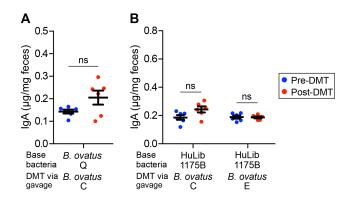




Figure S5. IgA^{high} *B. ovatus* strains specifically induced more fecal IgA production in the 966 large intestinal regions than IgA^{low} B. ovatus strains, related to Figure 2. Free IgA 967 968 concentration in different regions along the whole intestinal tract of mice that were colonized with individual *B. ovatus* strains (IgA^{high} *B. ovatus* strains *A* and *C*; IgA^{low} *B. ovatus* strains *O* and 969 970 *R*) for three weeks. Data shown are mean ± standard error of the mean. Each dot represents a 971 biological replicate. Detailed strain information is listed in Table S2. p-values with statistical 972 significance (assessed by unpaired two-tailed Student's t test) are indicated: ***p < 0.001; ns, 973 not significant.


976 Figure S6. Host genetic background has little influence on human gut bacteria induced 977 fecal IgA production in mice. (A) Dynamics of fecal IgA concentration in gnotobiotic Swiss 978 Webster mice colonized with B. ovatus strain E. (B and C) Fecal IqA concentration in 979 gnotobiotic Swiss Webster mice colonized with different bacterial species (B) or various strains 980 of B. ovatus (C). (D) Correlation of fecal IgA produced by B6 mice and Swiss Webster mice after 981 the same bacteria colonization. The average fecal IgA level of Swiss Webster mice in (B) and 982 (C) were plotted against the average fecal IgA level in C57BL6/J mice that were colonized with 983 the same bacterial species or strain from Figure 1A and Figure 1F. (E) Luminal IgA 984 concentration along the whole intestine in Swiss Webster mice colonized with either B. ovatus 985 strains E or Q. Data shown are mean ± standard error of the mean. Each dot represents a 986 biological replicate in A, B, C and E. Detailed strain information is listed in Tables S1 and S2. p-987 values with statistical significance (assessed by two-tailed Student's t test or one-way ANOVA) are indicated: **p* < 0.05, ***p* < 0.01, ****p* < 0.001; ns, not significant. 988

990

991 Figure 7. Anti-CD4 antibody promptly and robustly depleted CD4⁺ T cells in multiple organs of germ-free and gnotobiotic mice, related to Figure 3. (A) Schematic 992 993 representation of anti-CD4 antibody injection. GF mice were injected intraperitoneally with anti-994 CD4 antibody or isotype control for three consecutive days (0.5 mg/mouse/day). Three days 995 after the last injection, tissues were collected and processed. Red arrows indicate antibody 996 injection and blue arrows represent time. (B and C) Representative flow cytometry plot (B) and 997 quantification (C) of CD4⁺ T cells in the LP of small intestine and colon in germ-free mice. (D 998 and E) Representative flow cytometry plot (D) and quantification (E) of CD4⁺ T cells in LP of 999 small intestine and colon of gnotobiotic mice colonized with B. ovatus strain E with or without 1000 anti-CD4 antibody treatment. (F and G) Representative flow cytometry plot (F) and 1001 quantification (G) of IgA⁺B220⁻ cells in the LP of small intestine of gnotobiotic mice colonized 1002 with B. ovatus strain E or Q w/o anti-CD4 antibody treatment. Number adjacent to gate


1003represents percentage. Data shown are mean \pm standard error of the mean. Each dot1004represents a biological replicate. *p*-values with statistical significance (assessed by unpaired1005two-tailed Student's *t* test) are indicated: **p* < 0.05, ****p* < 0.001; ns, not significant.</td>

1007

Figure S8. Multiplex cocktail of microbial strains overcome phenotype transfer resistance in gnotobiotic mice that were pre-colonized with simple bacterial community, related to Figure 4. (A and B) Fecal IgA concentration (A) and relative abundance of each *B. ovatus* strain (B) in pre- and post-cohoused gnotobiotic mice. Before cohousing, four groups of mice were pre-colonized with four individual *B. ovatus* strains, respectively, for three weeks. Then, all mice were cohoused together at a ratio of 1:1:1:1 for another three weeks. (C and D) Fecal IgA concentration (C) and relative abundance of each *B. ovatus* strain (D) in mice pre- and post-

1015 DMT. Mice were first colonized with *B. ovatus* strain *R* for three weeks. Then the microbial 1016 cocktail B. ovatus 4M was administered. (E) Fecal IgA concentration in mice pre- and post-1017 DMT, which were pre-colonized with eight-member bacterial community for three weeks. The microbial cocktail consisted of either an individual IgA^{high} B. ovatus strain or B. ovatus 4M. (F) 1018 1019 Luminal IgA concentration along the intestinal tract of mice after gavage with Mock (PBS) or B. 1020 ovatus 4M. (G) Relative abundance of each bacterial species in mice pre- and post-DMT. (H) 1021 Relative abundance of different B. ovatus strains in mice pre- and post-DMT. Data shown are 1022 mean ± standard error of the mean. Sequencing plots display the average abundance from five 1023 mice. Each dot represents a biological replicate. Detailed bacteria information is listed in Tables 1024 S2, S4 and S5. p-values with statistical significance (assessed by two-tailed Student's t test) are 1025 indicated: **p* < 0.05, ***p* < 0.01, ****p* < 0.001; ns, not significant.

1028 Figure S9. B. ovatus strain C and E individually do not convert low-lgA to high-lgA 1029 producing mice, related to Figure 4. (A) Fecal IgA concentration in gnotobiotic mice pre-DMT 1030 and post-DMT. Before DMT, mice were pre-colonized with *B. ovatus* strain Q for three weeks. 1031 (B) Fecal IgA concentration in gnotobiotic mice pre-DMT and post-DMT. Mice were pre-1032 colonized with microbiota arrayed culture collections (i.e. HuLib1175B) for three weeks. Data 1033 shown are mean ± standard error of the mean. Each dot represents a biological replicate. p-1034 values with statistical significance (assessed by unpaired two-tailed Student's t test) are 1035 indicated: **p* < 0.05; ns, not significant.

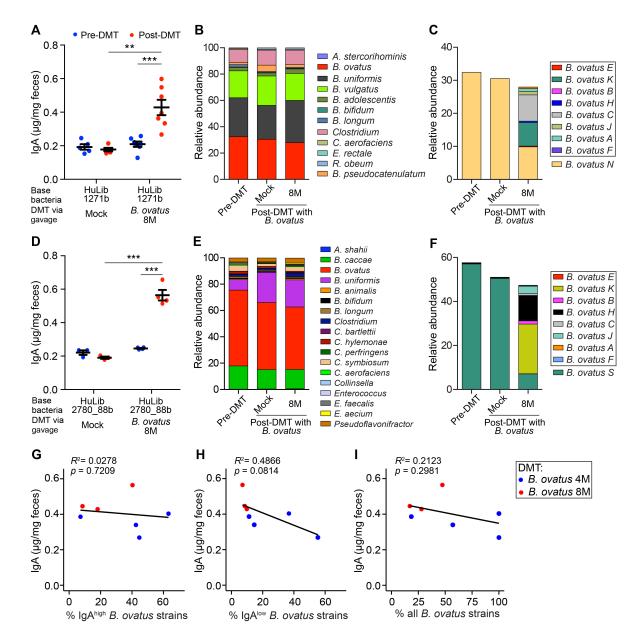


Figure S10. Robust modification of fecal IgA level with *B. ovatus* cocktails in gnotobiotic mice that were pre-colonized with microbiota arrayed culture collections, related to Figure 4. (A-F) Fecal IgA concentration (A and D), relative abundance of each bacterial species (B and E) and relative abundance of different *B. ovatus* strains (C and F) in gnotobiotic mice pre- and post-DMT. Mice were pre-colonized with microbiota arrayed culture collections (A: HuLib1271b; D: HuLib2780_88b) for three weeks. Mice were then gavaged with *B. ovatus* 8M. (G-I) Correlation between fecal IgA level and relative abundance of IgA^{high} (G), IgA^{low} (H) and

1045 total B. ovatus strains (I). The averages of fecal IgA level and bacteria relative abundance were 1046 used. All mice, being pre-colonized with either single bacterial strain or complex bacterial 1047 community for three weeks, were gavaged with either B. ovatus 4M or B. ovatus 8M. In A and D 1048 plots, data shown are mean ± standard error of the mean and each dot represents a biological 1049 replicate. Sequencing plots display the average abundance from three to five mice. Detailed 1050 strain information is listed in Tables S4 and S6. p-values with statistical significance (assessed 1051 by two-tailed Student's t test) are indicated: p < 0.05, p < 0.01, p < 0.001; ns, not 1052 significant.

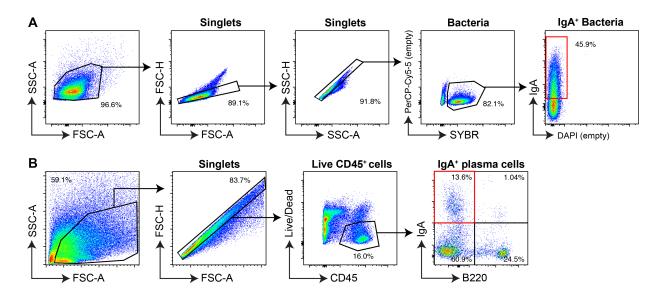
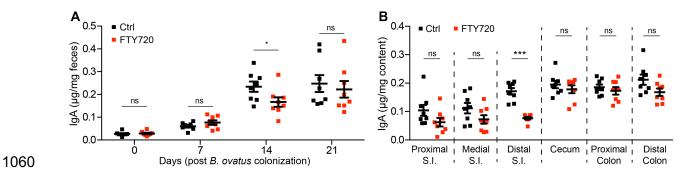



Figure S11. Representative flow cytometry gating strategies for IgA-coated bacteria and
IgA-secreting cells. (A) IgA-coated bacteria in stool were defined as SYBR⁺IgA⁺. (B) IgAsecreting B cells in the LP of small intestine and colon were defined as Zombie Aqua⁻
CD45⁺IgA⁺B220⁻.

1061 Figure S12. FTY720 influences luminal IgA production in the distal small intestine but not 1062 other regions in mice colonized with B. ovatus strain E. (A) Dynamics of fecal IgA 1063 concentration in *B. ovatus* strain E colonized gnotobiotic B6 mice treated with or without 1064 FTY720. (B) Free IgA concentration in different regions along the whole intestinal tract of 1065 gnotobiotic mice, which were colonized with *B. ovatus* strains E for three weeks, with or without 1066 FTY720 treatment. Data shown are mean ± standard error of the mean. Each dot represents a 1067 biological replicate. p-values with statistical significance (assessed by unpaired two-tailed Student's *t* test) are indicated: p < 0.05, p < 0.001; ns, not significant. 1068

1070 Supplemental tables

Table S1. Information for each bacterial strain.

Phylum	Species	Strain
Bacteroidetes	Bacteroides ovatus	ATCC®8483
Bacteroidetes	Bacteroides caccae	ATCC®43185
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482
Bacteroidetes	Bacteroides vulgatus	ATCC®8482
Firmicutes	Ruminococcus gnavus	ATCC®29149
Firmicutes	Clostridium bolteae	ATCC®BAA-613
Actinobacteria	Collinsella aerofaciens	ATCC® 25986
Proteobacteria	Escherichia coli	ATCC®K-12 MG1655

1074 Table 52. Details for different <i>B. ovatus</i> strains.	1074	Table S2. Details for different <i>B. ovatus</i> strains.
--	------	---

Phylum	Species	Strain	Strain Abbreviation
Bacteroidetes	Bacteroides ovatus	BSD2780_12_0875_150380_E1	B. ovatus A
Bacteroidetes	Bacteroides ovatus	1001095IJ_161003_A6	B. ovatus B
Bacteroidetes	Bacteroides ovatus	1001283B150210_160208_F9	B. ovatus C
Bacteroidetes	Bacteroides ovatus	1001217B_150727_E1	B. ovatus D
Bacteroidetes	Bacteroides ovatus	ATCC_8483	B. ovatus E
Bacteroidetes	Bacteroides ovatus	BSD3178_07_1175_160815_A10	B. ovatus F
Bacteroidetes	Bacteroides ovatus	BSD3448_08_0949_C3	B. ovatus G
Bacteroidetes	Bacteroides ovatus	1001099B_141217_E5	B. ovatus H
Bacteroidetes	Bacteroides ovatus	1001275B_160808_G11	B. ovatus I
Bacteroidetes	Bacteroides ovatus	1001713B_170207_170306_D4	B. ovatus J
Bacteroidetes	Bacteroides ovatus	J1101437_171009_F12	B. ovatus K
Bacteroidetes	Bacteroides ovatus	1001302B_F3	B. ovatus L
Bacteroidetes	Bacteroides ovatus	1001136B_E5	B. ovatus M
Bacteroidetes	Bacteroides ovatus	1001271B_150615_H2	B. ovatus N
Bacteroidetes	Bacteroides ovatus	1001262B_160229_F6	B. ovatus O
Bacteroidetes	Bacteroides ovatus	1001175B_160314_D1	B. ovatus P
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1687_150420_H2	B. ovatus Q
Bacteroidetes	Bacteroides ovatus	1001254J_160919_B1	B. ovatus R
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1688b_171218_A7	B. ovatus S

		Different <i>B. ovatus</i> strains																		
		D	в	L	К	А	R	0	J	N N	. 072 Р	Q	E	S	F	М		С	G	н
I I	D	0.00	0.83		0.73	0.72	0.72	0.73	0.73	0.74	0.74	0.74	0.74	0.74	0.70	0.73	0.73	0.73	0.74	0.74
	B	0.83	0.00		0.61	0.62	0.62	0.61	0.72	0.69	0.68		0.71	0.71	0.73	0.73	0.70	0.72	0.73	0.73
	L	0.85	0.00	0.00	0.67	0.67	0.62	0.64	0.68		0.70	0.70	0.71	0.71	0.73	0.73	0.71	0.72	0.73	0.73
	ĸ	0.73	0.47		0.07	0.07	0.39	0.38	0.52	0.09	0.45		0.46	0.47	0.47	0.49	0.72	0.47	0.47	0.72
				0.67																
	A	0.72	0.62	0.67	0.40	0.00	0.33	0.33	0.52	0.48	0.47	0.48	0.50	0.49	0.48	0.52	0.49	0.49	0.49	0.49
	R	0.72	0.62	0.63	0.39	0.33	0.00	0.03	0.50	0.46	0.47	0.47	0.50	0.48	0.48		0.50	0.51	0.51	0.52
ovatus strains	0	0.73	0.61	0.64	0.38	0.33	0.03	0.00	0.51	0.46	0.46	0.46	0.49	0.49	0.47	0.51	0.49	0.50	0.51	0.51
str	J	0.73	0.72	0.68	0.52	0.52	0.50	0.51	0.00	0.32	0.31	0.32	0.30	0.30	0.49	0.49	0.48	0.49	0.47	0.48
atus	N	0.74	0.69	0.69	0.46	0.48	0.46	0.46	0.32	0.00	0.09	0.09	0.27	0.29	0.46	0.42	0.40	0.43	0.43	0.44
	Ρ	0.74	0.68	0.70	0.45	0.47	0.47	0.46	0.31	0.09	0.00	0.05	0.25	0.26	0.46	0.43	0.41	0.42	0.42	0.42
Different B.	q	0.74	0.68	0.70	0.45	0.48	0.47	0.46	0.32	0.09	0.05	0.00	0.25	0.27	0.46	0.43	0.41	0.42	0.42	0.43
erei	Е	0.74	0.71	0.71	0.46	0.50	0.50	0.49	0.30	0.27	0.25	0.25	0.00	0.12	0.44	0.43	0.42	0.42	0.42	0.43
Diff	S	0.74	0.71	0.70	0.47	0.49	0.48	0.49	0.30	0.29	0.26	0.27	0.12	0.00	0.46	0.45	0.45	0.44	0.43	0.43
	F	0.70	0.73	0.73	0.47	0.48	0.48	0.47	0.49	0.46	0.46	0.46	0.44	0.46	0.00	0.40	0.41	0.41	0.40	0.41
	М	0.73	0.73	0.71	0.49	0.52	0.52	0.51	0.49	0.42	0.43	0.43	0.43	0.45	0.40	0.00	0.19	0.21	0.20	0.20
	I	0.73	0.71	0.72	0.47	0.49	0.50	0.49	0.48	0.40	0.41	0.41	0.42	0.45	0.41	0.19	0.00	0.11	0.11	0.11
	С	0.73	0.72	0.73	0.47	0.49	0.51	0.50	0.49	0.43	0.42	0.42	0.42	0.44	0.41	0.21	0.11	0.00	0.11	0.10
	G	0.74	0.73	0.73	0.47	0.49	0.51	0.51	0.47	0.43	0.42	0.42	0.42	0.43	0.40	0.20	0.11	0.11	0.00	0.07
	н	0.74	0.73	0.72	0.48	0.49	0.52	0.51	0.48	0.44	0.42	0.43	0.43	0.43	0.41	0.20	0.11	0.10	0.07	0.00

1077 Table S3. % dissimilarity of genomic DNA sequences amongst various *B. ovatus* strains.

Table S4. Multiplex cocktails of *B. ovatus* **strains used in DMT**.

Cocktail name	Strain
	B. ovatus B
B. ovatus 4M	B. ovatus C
D. Ovalus 410	B. ovatus E
	B. ovatus F
	B. ovatus B
	B. ovatus C
	B. ovatus E
B. ovatus 8M	B. ovatus F
D. Ovalus ow	B. ovatus A
	B. ovatus H
	B. ovatus J
	B. ovatus K

1083 Table S5. Bacterial strains in synthetic cocktail of diverse bacterial species (8member

1084 community).

Phylum	Species	Strain	Strain Abbreviation
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1687_150420_H2	B. ovatus Q
Bacteroidetes	Bacteroides caccae	ATCC®43185	B. caccae
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482	B. theta.
Bacteroidetes	Bacteroides vulgatus	ATCC®8482	B. vulgatus
Firmicutes	Ruminococcus gnavus	ATCC®29149	R. gnavus
Firmicutes	Clostridium bolteae	ATCC®BAA-613	C. bolteae
Actinobacteria	Collinsella aerofaciens	ATCC® 25986	C. aero.
Proteobacteria	Escherichia coli	ATCC®K-12 MG1655	E. coli

1085 1086

Library Name	Phylum	Species	Strain	Strain Abbreviation
	Bacteroidetes	Bacteroides eggerthii	1001175st1_B5_1001175B_160314	B. eggerthii
	Bacteroidetes	Bacteroides fragilis	1001175st1_C3_1001175B_160314	B. fragilis
	Bacteroidetes	Bacteroides intestinalis	1001175st1_A4_1001175B_160314	B. intestinalis
	Bacteroidetes	Bacteroides ovatus	1001175st1_E11_1001175B_160314	B. ovatus
	Bacteroidetes	Bacteroides thetaiotaomicron	1001175st1_E5_1001175B_160314	B. theta.
	Bacteroidetes	Bacteroides uniformis	1001175st1_F6_1001175B_160314	B. uniformis
	Bacteroidetes	Bacteroides vulgatus	1001175st1_C6_1001175B_160314	B. vulgatus
	Actinobacteria	Bifidobacterium longum	1001175st1 G10 1001175B 160314	B. longum
	Firmicutes	Clostridium 1001175sp1	1001175st1 A10 1001175B 160314	Clostridium
	Firmicutes	Clostridium clostridioforme	1001175st1 C5 1001175B 160314	C. clostridioforme
	Firmicutes	Clostridium perfringens	1001175st1 F9 1001175B 160314	C. perfringens
	Firmicutes	Dorea longicatena	1001175st1_H1_1001175B_160314	D. longicatena
HuLib1175B	Firmicutes	Enterococcus avium	1001175st1 D6 1001175B 160314	E. avium
	Proteobacteria	Escherichia coli	1001175st1 F3 1001175B 160314	E. coli F3
	Proteobacteria	Escherichia coli	1001175st2_F4_1001175B_160314	E. coli F4
	Proteobacteria	Escherichia coli	1001175st3 A2 1001175B 160314	E. coli A2
	Firmicutes	Lachnospiraceae 1001136sp1	1001175st1_C9_1001175B_160314	Lachnospiraceae
	Firmicutes	Lactobacillus 1001175sp1	1001175st1_08_1001175B_160314	Lactobacillus
	Bacteroidetes	Parabacteroides merdae	1001175st1_D8_1001175B_160314	P. merdae
	Firmicutes	Roseburia 1001271sp1	1001175st1_A1_1001175B_160314	Roseburia
	Firmicutes	Ruminococcus 1001175sp1	1001175st1_E1_1001175B_160314	Ruminococcus
	Firmicutes	Streptococcus 1001175sp1	1001175st1_H6_1001175B_160314	Streptococcus H6
	Firmicutes	Streptococcus 1001283sp2	1001175st1_H3_1001175B_160314	Streptococcus H3
	Firmicutes	Streptococcus anginosus	1001175st1_H11_1001175B_160314	S. anginosus
	Firmicutes	Anaerofustis stercorihominis	1001271st1_D3_1001271B_150615	A. stercorihominis
	Bacteroidetes	Bacteroides ovatus	1001271st1_H2_1001271B_150615	B. ovatus
	Bacteroidetes	Bacteroides uniformis	1001271st1_A10_1001271B_150615	B. uniformis
	Bacteroidetes	Bacteroides vulgatus	1001271st1_G7_1001271B_150615	B. vulgatus
	Actinobacteria	Bifidobacterium adolescentis	1001271st1_A4_1001271B_150615	B. adolescentis
HuLib1271b	Actinobacteria	Bifidobacterium bifidum	1001271st1_H11_1001271B_150615	B. bifidum
	Actinobacteria	Bifidobacterium longum	1001271st1_B4_1001271B_150615	B. longum
	Actinobacteria	Bifidobacterium pseudocatenulatum	1001271st1_F3_1001271B_150615	B. pseudocatenulatun
	Firmicutes	Clostridium 1001271sp1	1001271st1_H5_1001271B_150615	Clostridium
	Actinobacteria	Collinsella aerofaciens	1001271st1_C3_1001271B_150615	C. aerofaciens
	Firmicutes	Eubacterium rectale	1001271st1_F12_1001271B_150615	E. rectale
	Firmicutes	Ruminococcus obeum	1001271st1_E5_1001271B_150615	R. obeum
	Bacteroidetes	Alistipes shahii	BSD2780061688st1_A10_BSD2780061688b_171218	A. shahii
	Bacteroidetes	Bacteroides caccae	BSD2780061689st1_A4_BSD2780061688b_171218	B. caccae
	Bacteroidetes	Bacteroides ovatus	BSD2780061688st1_C6_BSD2780061688b_171218	B. ovatus
	Bacteroidetes	Bacteroides uniformis	BSD2780061689st1_G7_BSD2780061688b_171218	B. uniformis
	Actinobacteria	Bifidobacterium animalis	BSD2780061688st1_E5_BSD2780061688b_171218	B. animalis
	Actinobacteria	Bifidobacterium bifidum	BSD2780061688st1 G1 BSD2780061688b 171218	B. bifidum
	Actinobacteria	Bifidobacterium longum	BSD2780061688st2 H1 BSD2780061688b 171218	B. longum
	Firmicutes	Clostridium BSD2780061688sp2	BSD2780061688st1_H5_BSD2780061688b_171218	Clostridium E5
	Firmicutes	Clostridium BSD2780061688sp3	BSD2780061688st1_E8_BSD2780061688b_171218	Clostridium E8
HuLib2780 88b	Firmicutes	Clostridium bartlettii	BSD2780061688st1 A9 BSD2780061688b 171218	C. bartlettii
	Firmicutes	Clostridium hylemonae	BSD2780061688st1 A6 BSD2780061688b 171218	C. hylemonae
	Firmicutes	Clostridium perfringens	BSD2780061688st3 G3 BSD2780061688b 171218	C. perfringens
	Firmicutes	Clostridium symbiosum	BSD2780061688st1 G6 BSD2780061688b 171218	C. symbiosum
	Actinobacteria	Collinsella aerofaciens	BSD2780061688st1 F5 BSD2780061688b 171218	C. aerofaciens
	Actinobacteria	Collinsella species	BSD2780061688st1 H8 BSD2780061688b 171218	C. species
	Firmicutes	Enterococcus 1001136sp1	BSD2780061688st2 D3 BSD2780061688b 171218	Enterococcus
	Firmicutes	Enterococcus 1001136sp1 Enterococcus faecalis	BSD2780061688st2_D3_BSD2780061688b_171218 BSD2780061688st3 G10 BSD2780061688b_171218	Enterococcus E. faecalis
	Firmicutes	Enterococcus faecium	BSD2780061688st2_C8_BSD2780061688b_171218	E. faecium
	Firmicutes	Pseudoflavonifractor BSD2780061688sp1	BSD2780061688st1_E11_BSD2780061688b_171218	Pseudoflavonifractor

Table S6. Bacterial composition in different microbiota arrayed culture collections.

1090	Table S7. Detailed information about various bacterial strains.

Phylum	Species	Strain	Strain Abbreviation
Bacteroidetes	Bacteroides ovatus	ATCC®8483	B. ovatus E
Bacteroidetes	Bacteroides caccae	ATCC®43185	B. caccae A
Bacteroidetes	Bacteroides caccae	1001285I_161205_F12	B. caccae B
Bacteroidetes	Bacteroides caccae	BSD3178_07_1176_160815_A7	B. caccae C
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482	B. theta. A
Bacteroidetes	Bacteroides thetaiotaomicron	BSD2780_12_0875b_A6	B. theta. B
Bacteroidetes	Bacteroides thetaiotaomicron	BSD2780_06_1689_150309_F9	B. theta. C
Bacteroidetes	Bacteroides vulgatus	ATCC®8482	B. vulgatus A
Bacteroidetes	Bacteroides vulgatus	BSD2780_12_0874b_170522_A7	B. vulgatus B
Bacteroidetes	Bacteroides vulgatus	1001271B_150615_G7	B. vulgatus C
Bacteroidetes	Parabacteroides johnsonii	DSMZ_18315	P. johnsonii
Bacteroidetes	Bacteroides intestinalis	DSMZ_17393	B. intestinalis
Bacteroidetes	Bacteroides fragilis	J1001437_171009_C3	B. fragilis