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Abstract 20 
Pathogen genomic data are increasingly used to characterize global and local transmission patterns of important 21 
human pathogens and to inform public health interventions. Yet there is no current consensus on how to measure 22 
genomic variation. We investigated the effects of variant identification approaches on transmission inferences for 23 
M. tuberculosis by comparing variants identified by five different groups in the same sequence data from a clonal 24 
outbreak. We then measured the performance of commonly used variant calling approaches in recovering 25 
variation in a simulated tuberculosis outbreak and tested the effect of applying increasingly stringent filters on 26 
transmission inferences and phylogenies. We found that variant calling approaches used by different groups do 27 
not recover consistent sets of variants, often leading to conflicting transmission inferences. Further, performance 28 
in recovering true outbreak variation varied widely across approaches. Finally, stringent filters rapidly eroded the 29 
accuracy of transmission inferences and quality of phylogenies reconstructed from outbreak variation. We 30 
conclude that measurements of genetic distance and phylogenetic structure are dependent on variant calling 31 
approach. Variant calling algorithms trained upon true sequence data outperform other approaches and enable 32 
inclusion of repetitive regions typically excluded from genomic epidemiology studies, maximizing the 33 
information gleaned from outbreak genomes. 34 
 35 
Introduction 36 

The continuous evolution of human pathogens creates a powerful epidemiological record. Patterns of 37 
variation within and between populations of pathogens can be used to infer substitution rates, phylogenetic and 38 
phylogeographic relationships, such as geographic origins and routes of spatial spread, population size dynamics, 39 
and – if pathogen evolution occurs over the same timescale as transmission – transmission patterns1.  40 

Tuberculosis (TB) kills more people than any other infectious disease and halting transmission of 41 
Mycobacterium tuberculosis is essential to reducing the global burden of disease. However, in high-incidence 42 
settings, it is unknown where and between whom the majority of transmission occurs2–4 and therefore where to 43 
focus interventions. Patterns of M. tuberculosis genetic and genomic variation are frequently used to identify 44 
potential recent transmission events. M. tuberculosis isolates that share a genotype (RFLP, spoligotype, or MIRU-45 
VNTR)5–7, or whose whole genome sequences are within a given genetic distance8–11, are considered clustered and 46 
potentially epidemiologically linked. Phylogenies inferred from outbreak variation may reveal patterns of 47 
relatedness within and between clusters11–13. Finally, transmission trees integrate epidemiological and phylogenetic 48 
information to capture probable transmission histories, chains of who infected whom14,15. Predicted transmission 49 
links have been used to infer the likely location and/or timing16,17 of transmission, to identify risk factors for 50 
transmission and high risk populations18, to distinguish between acquired (primary) and transmitted drug 51 
resistance19, and to declare an outbreak over20.  52 
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Transmission inferences in molecular epidemiology for M. tuberculosis and other pathogens rely on the 53 
high-quality measurement of genetic variation from sequence data. However, there is no consensus on how to 54 
measure pathogen genomic variation, and studies frequently employ different sequence quality control measures, 55 
mapping algorithms, variant callers, and variant filters21. Further, the performance of variant calling methods for 56 
different pathogen species is not well described, meaning that uncertainty in the underlying genotypic or sequence 57 
data used to inform transmission inferences is unmeasured. The ad hoc nature of genomic variant calling makes it 58 
difficult to interpret pathogen variation identified within a study and to compare variation across studies. Whether 59 
variant calling methods affect transmission inferences and the accuracy of different methods in measuring 60 
variation within outbreaks has not been assessed.  61 

The lack of standardized approaches for pathogen genomic epidemiology results in part from the fact that 62 
many genomic tools and approaches have been designed and validated for the measurement of human genomic 63 
variation21. Commonly used variant callers may call diploid genotypes (i.e. VarScan22, DeepVariant23), be trained on 64 
human sequence data (i.e. DeepVariant23) or require truth sets of known segregating mutations to train models (i.e. 65 
GATK’s VQSR24) and variant truth sets are required to measure performance of variant calling pipelines. Variant 66 
calling pipelines optimized for human genomes likely perform differently on pathogen genomes, which differ 67 
significantly in within-species diversity and genomic characteristics including ploidy, G-C content, genomic 68 
architecture, and repetitive content. A recent study found that commonly used variant calling pipelines have poor 69 
accuracy25 when applied to bacterial genomes, highlighting the importance of benchmarking variant callers for 70 
bacterial species. 71 

Variant calling methods may perform differently upon different species and, additionally, for different 72 
applications. Standard workflows for M. tuberculosis genomic epidemiology generate short-read sequence data 73 
from cultured isolates and then filter variants both by region and variant annotations26. While many pipelines 74 
widely used in M. tuberculosis molecular epidemiology were designed or validated for antibiotic resistance 75 
prediction27–32, their performance in recovering true pairwise differences and the underlying phylogenetic structure 76 
of outbreak genomes, the metrics used for transmission inference, has not been reported.  77 
 Here, we investigate the effects of variant calling approaches on transmission inference of M. 78 
tuberculosis. First, to assess variability of commonly used and published pipelines in the tuberculosis genomic 79 
epidemiology field, we collected and compared variant calls from five research groups for the same sequence data 80 
from a clonal outbreak in Germany33. Second, we measured the performance of variant calling tool combinations 81 
in recovering genome-wide variants and pairwise differences between outbreak genomes in a simulated 82 
tuberculosis outbreak for which we knew the underlying genomic truth. Finally, we identify general aspects of 83 
variant identification approaches that can improve transmission inference.  84 
 85 
Methods A. Reanalyzing a clonal M. tuberculosis outbreak.  86 
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Molecular epidemiology studies harness genetic and genomic variation to understand patterns of 87 
transmission and are premised on the idea that the M. tuberculosis is constantly evolving as it spreads from person 88 
to person. Currently, the standard approach in M. tuberculosis genomic epidemiology studies is to sequence 89 
whole genomes directly from bacterial cultures, generating short-read Illumina sequence data26,34. Sequence data are 90 
mapped to a reference genome with one of several widely used mapping algorithms (including BWA, Bowtie2, 91 
and SMALT), variants are identified with respect to the reference genome using a variant calling algorithm 92 
(including GATK and Samtools), and variants are filtered, often by applying hard filters that specify thresholds 93 
for variant annotations, such as variant quality score or depth.  94 

We tested the effect of variant calling approaches on phylogenetic and transmission inference by 95 
collecting variants from four molecular epidemiology groups (A-D) for previously published sequence data. We 96 
invited two groups with published variant calling pipelines specific for M. tuberculosis (B and C), using the 97 
variant caller GATK, and two groups using Samtools, another widely used variant caller, in order to explore the 98 
effects of applying different variant pipelines recently published in the M. tuberculosis genomic epidemiology 99 
literature. We sought to test the effect of applying different pipelines to the same genomic data; this comparison 100 
was not intended to be an exhaustive comparison of published pipelines. We additionally included the original set 101 
of published variant calls (E)33, for a total of five pipelines for comparison. Pipeline characteristics are in Table S1.  102 

Each group submitted variants they identified in sequence data from a clonal M. tuberculosis outbreak in 103 
Germany from 1997 – 200633. The outbreak was identified during routine population-based surveillance and 86 104 
isolates were cultured on Lowenstein Jensen Media and sequenced on an Illumina platform (ENA Study 105 
Accession: PRJEB6945). These published sequencing data are of varying quality; we used these data for 106 
comparison because, uniquely, they are accompanied by a partial “truth set” of Sanger-confirmed SNPs and 107 
because this dataset has been used for other transmission studies14.  108 
 109 
Pipelines. Groups submitted filtered variant calls as single-sample or multi-sample VCFs in addition to a multiple 110 
sequence alignment of concatenated single nucleotide polymorphisms (SNPs). We used LiftoverVcf 111 
(http://broadinstitute.github.io/picard/) to convert variant coordinates for pipelines A and B to coordinates on the 112 
H37Rv reference genome so that variant positions could be compared.  113 

Pipeline C made diploid calls and did not provide a multiple sequence alignment. To create a multiple-114 
sequence alignment of consensus sequences, we converted diploid calls to haploid by setting homozygous 115 
genotypes (0/0 or 1/1) to the corresponding haploid genotype (0 or 1) and heterozygous genotypes to the genotype 116 
with greater allele depth. We used bcftools35 to generate consensus sequences, setting genotypes that were absent 117 
in single-sample VCFs to the reference allele, as recommended by the authors. We then used snp-sites36 to select 118 
variants internal to the outbreak. This conservatively excludes minority variants. Transmission inferences using 119 
pairwise differences are most frequently made with the consensus genomes of individual isolates (although some 120 
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studies use minority variants for transmission inferences37), and comparing minority variants was outside the scope 121 
of this study.  122 

Pipeline A additionally included diploid calls, however, also provided a FASTA used for pairwise 123 
differences and phylogenies in addition to a list of variant sites internal to the outbreak. We used the list of variant 124 
sites internal to the outbreak to compare variant sites with other pipelines.   125 
 126 
Sensitivity.  The true outbreak sequences are unknown and therefore the performance of variant calling pipelines 127 
in recovering true variants cannot be measured; however, the original study confirmed 85 single nucleotide 128 
polymorphisms with Sanger sequencing. We report pipelines’ sensitivity in recovering these high-confidence 129 
previously identified SNPs as a partial measure of sensitivity. Specificity could not be measured.  130 
 131 
Phylogenetic inference. We calculated raw pairwise differences between isolates with the R package ape v.5.2 132 
(model = ‘N’). We constructed maximum likelihood phylogenies with RAxML-ng38 with a GTR substitution 133 
model. We used a Stamatakis ascertainment bias correction to correct for invariant sites and specified nucleotide 134 
stationary frequencies present in the H37Rv genome. We measured phylogenetic distances between a random 135 
selection of 100 bootstrap replicate trees derived from SNPs from each pipeline using the Robinson-Foulds 136 
metric39. We reduced the dimensionality of tree distances with principal components analysis using the R package 137 
treespace40. We performed hierarchical clustering of trees using Ward’s method also in treespace40.  138 
 139 
Methods B. Measuring performance of variant calling tool combinations on simulated genomic data. 140 

Because the genomic truth for a true outbreak can never be known, we next simulated a tuberculosis 141 
outbreak and generated sequence data in silico (Fig. S1). We applied commonly used mapping and variant calling 142 
algorithms to simulated data and measured the performance of these variant calling tool combinations in 143 
recovering (1) true M. tuberculosis genomic variants and (2) true pairwise differences between closely related M. 144 
tuberculosis sequences. Here, our aim was to explore characteristics of the most accurate variant calling 145 
approaches rather than to compare pipelines of specific groups. We additionally tested how choice of reference 146 
genome effects performance by mapping variants against 12 different reference genomes of varying distance to 147 
the CDC1551 query genome (Table S2). Software versions are in Table S3. 148 

 149 
Simulated sequence data. We generated 20 independent Illumina readsets (2 x 151-bp) from the CDC1551 150 
genome in silico, with the next generation sequence read simulator ART v. 2.5.841, which simulates reads from a 151 
given genome with read lengths and error profiles from commonly used sequence platforms (Fig. S1). We 152 
simulated reads using a built-in quality profile for a HiSeqX v2.5 TruSeq sequencing machine. Before 153 
simulations, we set ambiguous sites in the CDC1551 genome to N. We simulated reads with a mean of 100X 154 
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coverage, with a mean and standard deviation fragment length of 650-bp and 150-bp, respectively (consistent with 155 
Illumina recommended insert sizes of 350-bp 156 
(https://support.illumina.com/sequencing/sequencing_instruments/hiseq-x/questions.html; standard deviation 157 
from empirical data). 158 

Measuring performance requires a truth VCF of true variant sites in the query genome with respect to a 159 
given reference genome (Fig. S1). To generate truth VCFs for the CDC1551 query genome with respect to 12 M. 160 
tuberculosis reference genomes (Table S2), we pairwise aligned the query genome (CDC1551) to each reference 161 
genome with MUMmer42 (nucmer with the maxmatch option). We identified SNP variants from the pairwise 162 
alignments using MUMmer show-snps, excluding SNPs with ambiguous mapping and indels.  163 
 164 
Mapping and variant calling. We mapped simulated reads with commonly used mapping algorithms (BWA, 165 
Bowtie 2, and SMALT), with default settings, to 12 reference genomes spanning described M. tuberculosis 166 
diversity and a distance of 1037 to 2901 SNPs from CDC1551 (Table S4). We called variants with commonly 167 
used variant callers (GATK and Samtools), setting ploidy to 1. We called variants for each sample independently 168 
rather than jointly calling genotypes because joint variant calling approaches are designed for human cohort 169 
studies and were found to be less sensitive in detecting singleton and low-frequency variants in a previous study43. 170 
Variant calling tools and versions are listed in Table S5.   171 

We additionally called variants for each sample independently with DeepVariant v.0.7.0, a convolutional 172 
neural network trained upon human genomic truth sets to identify variants in short-read sequence data23. 173 
Specifically, DeepVariant v.0.7.0 was trained upon labeled genotypes from a total of 16 sets of human genomic 174 
data, including 10 PCR-free sequence replicates of HG001, 2 PCR-free replicates of HG005 PCR-free, and 4 PCR 175 
replicates of HG001. The genomic “truth” which the model is trained on includes variants that have been 176 
identified by several pipelines and occur within “high confidence” regions of the human genome44.  The model 177 
was frozen after training and then can be applied to unseen genomic data in the form of aligned reads (BAM 178 
files). DeepVariant does not have an option to infer haploid genotypes; therefore, we assigned homozygous 179 
genotype predictions to the corresponding haploid call (i.e. assigning 0/0 to 0 and 1/1 to 1). For heterozygous 180 
calls, we used allele depth to assign genotype as the allele with greater coverage. If two alleles at a heterozygous 181 
site had equal depth, we randomly selected a haploid genotype. We set DeepVariant SNPs filtered as “RefCall” to 182 
missing. For all callers, we output all-sites VCF files (i.e. both variant and invariant sites) in order to distinguish 183 
between reference allele calls and missing or “no-call.”  184 
 185 
Quality filtering. We excluded indels and applied two independent filters to SNP variant calls to samples 186 
individually: (1) a single hard variant quality score filter, QUAL < 40 and (2) VQSR (variant quality score 187 
recalibration)24. VQSR fits Gaussian mixture models to annotations characterizing a truth set of high-quality 188 
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variants and then applies this model to all candidate variants to recalibrate variant quality scores. Because a high-189 
quality truth set does not exist for M. tuberculosis, we defined our truth set internally, including all candidate 190 
SNPs with a QUAL score greater than the mean QUAL score for a given set of variants. We set a phred-scaled 191 
prior likelihood of 15 and used the annotations DP, QD, MQRankSum, ReadPosRankSum, FS, SOR, and MQ in 192 
the model. We set the recalibrated variant quality score (VQSLOD) threshold so that our caller would have 99% 193 
sensitivity for recovering variants within our truth set. We did not apply VQSR to DeepVariant calls to avoid 194 
overfitting.  195 
 We filtered per site and per sample so that when making pairwise comparisons, a site that did not pass 196 
filters for a single sample was considered missing for that sample alone and could be included in comparisons 197 
between other samples.  198 
 199 
Performance benchmarking. We used hap.py45, software widely used to measure performance of variant calling 200 
pipelines upon human genomic variation23, to assess the performance of each pipeline in recovering true SNPs 201 
across the genome, within the 168 PE/PPE genes46, and outside of the PE/PPE genes.  202 
 203 
Outbreak simulations. To measure the performance of pipelines in recovering true pairwise differences between 204 
closely related samples, such as those sampled in an outbreak setting, we simulated a short, relatively densely-205 
sampled tuberculosis outbreak with TransPhylo14,47. We simulated an outbreak that began in 2013 and was observed 206 
until 2018 with a basic reproduction number, R0, of 3 (Fig. S3). We set generation time, the time between 207 
subsequent infections, and sampling time, time between infection and diagnosis, as Gamma distributed, with 208 
shape = 10 and scale = 0.1, corresponding to a mean of one year. We set the product of the within-host population 209 
size and generation time (Neg) to 100/365 and the probability of observing cases, π, to 0.25.  210 

TransPhylo simulates transmission trees, graphs of who infected whom and when in an outbreak. We 211 
extracted the underlying phylogeny from the simulated transmission tree. Using a substitution rate estimate of 2 212 
substitutions/ site/ year, which falls within the range reported by a recent meta-analysis of the M. tuberculosis 213 
molecular clock48,  we rescaled the simulated phylogeny, where branch lengths were in units of years, to a 214 
phylogeny with branch lengths in units of substitutions per site. We chose a rate on the higher end of published 215 
clock rates for M. tuberculosis to ensure that we would obtain sufficient numbers of “true” simulated SNPs on 216 
which to test both pipelines and downstream inference. 217 

To generate a set whole genome sequences related by the simulated genealogy, we then simulated 218 
evolution along the simulated phylogeny with Pyvolve49. Pyvolve takes a phylogeny, a root sequence, and a 219 
nucleotide substitution model and simulates evolution along the branches of a phylogeny. We simulated 220 
nucleotide evolution from the CDC1551 reference genome with an F81 model of nucleotide evolution50 with 221 
empirically-derived nucleotide frequencies. We used snp-sites36 to generate a VCF file of variant sites in the tip 222 
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genomes. Pyvolve introduces variants randomly along the root sequence; to simulate variation at sites known to 223 
be polymorphic in M. tuberculosis, we replaced the sites simulated with Pyvolve with randomly selected sites that 224 
varied between CDC1551 and H37Rv, allowing us to preserve the simulated phylogenetic structure while 225 
including variants that are segregating in natural M. tuberculosis populations. We applied this set of SNPs to the 226 
CDC1551 reference genome, generating 44 simulated outbreak sequences. We used LiftOver to generate a “truth” 227 
outbreak VCF with respect to the H37rV genome.  228 

From each tip genome, we simulated Illumina short-read sequence data, mapped reads, and called 229 
variants as described above. We called variants for each sample individually and applied filters described above to 230 
individual sample variant files. We measured precision and recall in variant calling pipelines in detecting true 231 
pairwise SNP differences between simulated genomic sequences and measured the true and measured raw 232 
pairwise genetic distances (number of nucleotide differences between sequences) between samples with the R 233 
package ape51, using the dist.dna function.  234 
 235 
Phylogenetic inference. To determine the effect of filtering on phylogenetic inference, we focused on variants 236 
identified by a single tool combination, BWA/GATK. We then selected variant quality thresholds that 237 
corresponded to variant deciles, generated multiple alignments of SNPs meeting quality thresholds, and inferred 238 
maximum likelihood phylogenies for each multiple alignment. We fit maximum likelihood trees with RAxML-ng, 239 
with a GTR substitution model. We applied a Stamatakis ascertainment bias correction to correct for invariant 240 
sites and specified nucleotide stationary frequencies present in the CDC1551 outbreak root genome. We measured 241 
phylogenetic distances from the best supported trees to the true tree using the Robinson-Foulds distance39 and the 242 
Kendall-Colijn metric52, with lambda equal to 0. 243 
   244 
Results A.  245 

To measure the effect of variant calling pipeline on transmission inference, four groups (A-D) contributed 246 
filtered variant calls for previously published sequence data from a clonal M. tuberculosis outbreak in Hamburg 247 
and Schleswig-Holstein, Germany from 1997 – 200633. The outbreak was identified during routine population-248 
based surveillance and 86 isolates were cultured and fully sequenced on an Illumina platform (ENA Study 249 
Accession: PRJEB6945). The original study identified 85 SNPs that were validated with Sanger sequencing33.  250 
 Variant calling pipelines varied in quality control, choice of reference genome, mapper, caller, variant 251 
filters, and genomic regions excluded (Table S1). In this section, we aim to highlight the effect of applying 252 
different pipelines to the same data rather than to isolate the effect of any single component of a pipeline on 253 
variants identified (Results B).  254 
 255 
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Variant calling pipelines identify different sets of M. tuberculosis genomic variants when applied to the 256 
same sequence data. After filtering, pipelines identified 63 to 416 SNPs between outbreak strains (i.e. internal 257 
SNPs) compared to 85 SNPs identified in the initial study (Fig. 1a, Table S2). The five pipelines identified a 258 
common set of 55 SNPs (Fig. 1b); however, there was significant discordance in SNPs identified and each 259 
pipeline identified 1-190 unique SNPs. Sensitivity in recovering SNPs confirmed by Sanger sequencing in the 260 
original study ranged from 72.9 – 92.9% (Fig. 1c, Table 1). Two variants identified by pipeline B fell in locations 261 
on the pipeline B’s reference genome (one of the outbreak genomes) that did not correspond to references used by 262 
other groups and therefore were unique due to reference choice. Pipeline C excluded 20% (17/86) of samples that 263 
did not meet thresholds for contamination (minimum of 90% of reads taxonomically classified as M. tuberculosis 264 
complex)29.   265 

Importantly, the high number of variants identified by pipelines C and D is likely in part a result of 266 
pipelines generating VCF files that include only variant sites. This results in no information about non-variant 267 
sites in the final variant files, making it difficult to distinguish between sites with a confident reference allele call 268 
and sites with no confident allele call (i.e. at positions of low coverage or quality). Often, the assumption is made 269 
that non-variant sites are indeed the reference allele, resulting in inflated measures of pairwise differences.  270 
 271 
Differing variant calls result in different transmission inferences. Pairwise genetic distances between outbreak 272 
sequences, a proxy of the evolutionary distance between genomes, are frequently used to identify M. tuberculosis 273 
isolates potentially linked by recent transmission53. Two isolates separated by a large evolutionary distance are 274 
considered unlikely to be the result of recent transmission, while isolates within a threshold genetic distance8–11 are 275 
considered clustered and potentially epidemiologically linked. Public Health England, for example, prioritizes 276 
clusters for further “targeted public health investigation and action.”8 While distance thresholds vary across 277 
studies53,54, 59- or 12-SNP8 thresholds are frequently used to distinguish between “clustered” and “non-clustered” 278 
isolates26. To test the effect of variant calling pipeline on predicted transmission, we applied these two distance 279 
thresholds.  280 

The five pipelines identified different distributions of pairwise SNP distances (Fig. 2a), corresponding to 281 
widely different epidemiological interpretations (Fig. 2a,b). Median pairwise distances ranged from 1 to 42 SNPs 282 
among pipelines (Table S2). 0 – 29.7% of isolate pairs were identical (0 SNP differences). After applying 283 
commonly used transmission thresholds of pairwise distances less than or equal to 5 or 12 SNPs8,28,55, the number of 284 
potential transmission links varied dramatically across pipelines (Fig. 2b, Table S2). For example, by pipeline A, 285 
80.7% of sample comparisons fell below a 5-SNP threshold of potential recent transmission whereas by pipelines 286 
C and D, less than 0.5% of comparisons did. 287 

Even pipelines that identify similar total numbers of internal SNPs (A and B) and that identify pairwise 288 
differences that are closely correlated (Fig. 2c, r = 0.89, p < 0.001) may still identify different distances between 289 
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isolate pairs (Fig. 2c), resulting in conflicting transmission inferences. After applying a 5-SNP threshold for 290 
transmission, Pipeline A identifies 413 potential clustered pairs not identified by pipeline B. Conversely, pipeline 291 
B identifies 14 potential clustered pairs not identified by pipeline A. Cumulatively, for the two most similar 292 
pipelines, 11.7% (427/ 3655) of transmission inferences are discordant (Fig. 2c, blue shading). For all other 293 
pipeline comparisons, discordance was substantially greater.  294 

 295 
Differing variant calls result in different phylogenetic inferences. To test the effect of pipelines on 296 
phylogenies, we fit maximum likelihood phylogenies with alignments of concatenated SNPs identified by each 297 
pipeline. We assessed the similarity of bootstrapped trees with Robinson Foulds distance and used Ward’s method 298 
to assign trees into clusters (Fig. 2d). Trees inferred from variants identified by different pipelines are largely 299 
assigned to distinct clusters (Fig. 2d). However, 4% (4/100) bootstrap replicate trees constructed with Pipeline A 300 
variants cluster with Pipeline E trees and 2% (2/100) bootstrap replicate trees constructed with Pipeline E variants 301 
cluster with Pipeline B trees. (Pipeline C cannot be compared and is therefore not shown because tree distances 302 
cannot be computed between trees with different sets of tips.) 303 
 304 
Results B. 305 
 For the outbreak described above, as for any outbreak, the true genomic sequence of M. tuberculosis 306 
isolates is unknown. Performance of pipelines in recovering true outbreak SNPs cannot be measured. Variant 307 
calling pipelines for human genomes are often benchmarked upon diploid human genomic “truth sets,” variants 308 
identified and confirmed by several sequencing and bioinformatic pipelines and/or validated by family 309 
pedigrees56,57. However, such genomic variant truth sets do not exist for M. tuberculosis or other human pathogens.  310 

To measure the performance of commonly used variant calling tool combinations in identifying (a) M. 311 
tuberculosis SNPs and (b) identifying pairwise distances between closely related isolates, we simulated M. 312 
tuberculosis short-read sequence data from complete, published M. tuberculosis genomes (Fig. S1). We applied 313 
commonly used mapping algorithms (BWA, Bowtie 2, and SMALT), variant callers (GATK, Samtools, and 314 
DeepVariant), and filters (a hard quality score filter, QUAL, and Variant Quality Score Recalibration, VQSR) to 315 
simulated data (Methods) and measured performance in recovering true SNP variants (Methods). Approaches 316 
used in genomic epidemiology studies vary widely in choice of mapper, caller, and filters. We explore only a 317 
subset of possible tool combinations here.  318 
 319 
Performance in recovering true M. tuberculosis SNPs varies across tool combinations and reference 320 
genomes. To measure performance of variant calling tools in recovering genome-wide M. tuberculosis variants, 321 
we generated 20 sets of Illumina short-read data in silico from the CDC1551 query genome and evaluated the 322 
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performance of nine variant calling tool combinations in recovering the true 1107 SNPs between the query and 323 
the frequently used H37Rv reference genome (Fig. S1).  324 

Performance in recovering true genome-wide M. tuberculosis SNPs varies widely across tool 325 
combinations (Fig. 3) using H37Rv as the mapping reference. Prior to filtering, variation in precision exceeds that 326 
of recall; maximum precision is 83.7% (BWA/GATK) while maximum recall is 94.7% (SMALT/DeepVariant) 327 
(Table S3). The F1 score, the harmonic mean of precision (positive predictive value) and recall (sensitivity), 328 
commonly used to rank genomic pipelines23, varies from 0.791 (Bowtie2/DeepVariant) to 0.886 (BWA/GATK) 329 
(Table S3) before filtering.  330 

We examined the genomic location of errors and tested if standard filters could reduce FP errors. Variant 331 
calling performance varies across the genome and is worse in the 168 repetitive PE/PPE genes46, which are often 332 
excluded from M. tuberculosis molecular epidemiology studies (Fig. 3). Before filtering, 53.6 – 68.2% (identified 333 
by Bowtie 2/DeepVariant and Bowtie 2/Samtools, respectively) of FPs occur in PE/PPE genes, which comprise 334 
6.37% of the genome (Fig. 3a). FN errors are also disproportionately located in the PE/PPE genes, though to a 335 
lesser extent (Fig. 3b). Before filtering, 20.5 – 27.4% (identified by (SMALT/Samtools and 336 
SMALT/DeepVariant, respectively) of FNs occur in PE/PPE genes.  337 

Filtering by excluding the PE/PPE genes or by filtering by quality score or VQSR reduces but does not 338 
eliminate FP errors, while increasing FN errors. FP errors are minimized by BWA/GATK with VQSR and 339 
excluding the PE/PPE genes (mean FP = 16.8 SNPs, mean FN = 65.6 SNPs). Even when PE/PPE genes are 340 
included, GATK/VQSR tool combinations identify fewer FP errors than all other tool combinations (Fig. 3). FN 341 
errors are minimized by SMALT/DeepVariant excluding the PE/PPE genes (mean FP = 114 SNPs, mean FN 342 
=42.4 SNPs).  343 

All tool combinations are characterized by a trade-off between recall and precision visible in the inverse 344 
relationship between false positive (FP) and false negative (FN) errors. While the maximum F1 score was 95.5% 345 
(BWA/GATK/VQSR, excluding PE/PPE genes), no tool combination consistently outperforms other tool 346 
combinations in minimizing both types of errors (Fig. 3), indicating that optimal approach may depend on the 347 
relative costs of different error types for specific applications. No combination of mapper, variant caller, and filter 348 
were able to achieve >99.9% precision and recall reported for human genomes and which won the PrecisionFDA 349 
Truth Challenge23. 350 
 351 
Performance in recovering true M. tuberculosis SNPs improves with closely related reference genomes. To 352 
assess how choice of reference genome effects variant calling performance, we mapped 20 replicate sequence sets 353 
to 12 different reference genomes spanning global M. tuberculosis diversity and ranging from 1037 (Lineage 4, 354 
strain F11) to 2901 (Lineage 2, strain Beijing_NITR203) SNPs distant from the CDC1551 query genome 355 
(Lineage 4, Table S4). In a general linear model, log-transformed distance to the reference genome, mapper, and 356 
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caller are significant predictors of FP errors and log-transformed distance to the reference genome and caller are 357 
significant predictors of FN errors prior to filtering.  358 

Both FP and FN errors increase with increasing log-transformed distance between the query and reference 359 
genomes, when controlling for mapper and caller (FP errors: r = 0.47, p-value < 0.001; FN errors: r = 0.43, p-360 
value < 0.001) (Fig. S2). However, errors vary widely between reference genomes, possibly reflecting individual 361 
genomes’ repetitive content, extent of synteny with the query genome, or reference assembly quality. 362 
Interestingly, the F1 score was slightly positively correlated with distance to the reference genome (Fig. S2). This 363 
results from the negative correlation between recall and log-transformed distance from the reference genome (r = 364 
-0.16, p-value < 0.001) and the positive correlation between precision and distance from the reference genome (r 365 
= 0.36, p-value < 0.001). 366 
 367 
Performance in recovering true pairwise differences between outbreak strains varies across tool 368 
combinations. The goal of genome wide variant calling – used to identify genomic correlates of antibiotic 369 
resistance or virulence, for example – is to identify mutations between a single query genome and a reference 370 
genome. In contrast, variant calling for transmission inference seeks to measure small amounts of variation 371 
between multiple closely related outbreak genomes. Identifying variants between query genomes and a known 372 
reference genome is intermediate to the true goal: identifying variants between the outbreak genomes. If errors 373 
with respect to the reference genome are consistent within a single pipeline, then inference about relatedness 374 
between outbreak samples should not be affected.  375 

To measure the performance of tool combinations in identifying pairwise differences between closely 376 
related sequences, we simulated a five-year tuberculosis outbreak (Methods). We simulated evolution of M. 377 
tuberculosis from a common ancestral genome (CDC1551) over the outbreak phylogeny (Fig. S3), resulting in a 378 
total of 147 SNPs internal to the outbreak, and generated sequence data in silico from the 44 outbreak sequences. 379 
True pairwise differences between outbreak genomes ranged from 0-27 SNPs and mean pairwise distances 380 
between isolates was 13.4 SNPs. 381 
 Performance in recovering true pairwise differences between outbreak strains varied across tool 382 
combinations using H37Rv as the mapping reference. Prior to filtering, mean recall ranges from 91.0% 383 
(BWA/Samtools) to 93.5% (Bowtie2/DeepVariant) and mean precision ranges from 14.7% (Bowtie 2/Samtools) 384 
to 64.5% (SMALT/GATK). As seen for genome-wide performance, performance in measuring pairwise 385 
differences is worse in the 168 repetitive PE/PPE genes compared to the rest of the genome. Before filtering, 386 
40.8% (BWA/DeepVariant) – 97.0% (BWA/GATK) of FPs occur in PE/PPE genes (Fig. 4).  387 

We then tested whether filters could improve performance in recovering pairwise differences. Quality 388 
score or VQSR filters reduce but do not eliminate pairwise errors. Even after filtering, the range of mean FP 389 
errors is more than 26 times that of FN errors across tool combinations (Fig. 4). Several tool combinations result 390 
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in mean FP pairwise errors above 5 SNPs if PE/PPE genes are not excluded (i.e. approaches with Samtools and 391 
with GATK/QUAL). If a pairwise difference threshold of 5 SNPs was applied, the effect of variant calling errors 392 
alone would exclude the possibility of recent transmission.  393 

Because 23 of the 147 randomly introduced outbreak SNPs occur within PE/PPE genes, approaches 394 
which exclude PE/PPE genes have a maximum total sensitivity of only 84.4% (124/147) of the total outbreak 395 
variation. Tool combinations including GATK/VQSR or DeepVariant/QUAL allow PE/PPE gene variation to be 396 
retained while keeping mean FP errors below 5 SNPs. Among tool combinations which include PE/PPE gene 397 
variation and with mean FP errors below 5 SNPs, maximum recall was 91.6% (BWA/GATK/VQSR) and 398 
maximum precision was 96.3% (Bowtie2/DeepVariant/QUAL).  399 

We investigated the source of persistent FP errors – errors outside PE/PPE genes that were not eliminated 400 
by filters – in two of the best-performing tool combinations, BWA/GATK/VQSR and BWA/DeepVariant/QUAL. 401 
Five of 7 positions with persistent FP errors after VQSR occurred at positions that had failed a VQSR filter for 402 
other samples, though not the query samples, indicating that sites which fail VQSR for a single sample are 403 
potentially problematic sites that should be excluded for all samples. For BWA/DeepVariant/QUAL calls, 2 of 3 404 
persistent FP pairwise SNPs were at positions that were initially called as heterozygous by the diploid variant 405 
caller and the third was due to lack of coverage at a site in resulting in erroneous reference allele calls. This 406 
suggests that haploid variant calling algorithms and further training of variant calling algorithms on M. 407 
tuberculosis genomic variation could further improve variant calling accuracy.  408 

 409 
Increased variant filtering may hinder transmission inferences. Variant filters vary widely between studies 410 
and can contribute more to variation between tool combinations than either mapping or variant calling (Figs. 3 411 
and 4). However, filters are frequently not justified empirically, and the effect of filtering on transmission and 412 
phylogenetic inference is unknown. To test the effect of variant filtering on downstream inferences, we generated 413 
ten sets of Illumina sequence data in silico for the outbreak samples described above and applied a series of 414 
increasingly stringent quality score filters to variant calls identified by a single tool combination, BWA/GATK. 415 
We used the distribution of all variant quality scores to identify quality score thresholds that demarcated deciles of 416 
variants so that we would exclude an additional 10% of identified variants with each increase of the quality score 417 
filter. For each set of increasingly filtered variants, we measured the accuracy of identifying isolate pairs falling 418 
within a 5-SNP threshold and fit maximum likelihood trees to SNP alignments. We measured distance of inferred 419 
trees to the underlying true outbreak tree using both the Kendall-Colijn metric (KC)52 and the Robinson-Foulds 420 
distance (RF)39. 421 
 As expected, applying increasingly strict variant quality score filters reduces observed pairwise 422 
differences between outbreak samples, resulting in a trade-off between FP and FN errors (Fig. 5a). Mean genome-423 
wide FP pairwise errors are 10.5 SNPs before quality filtering and 0.29 SNPs after excluding the PE/PPE genes. 424 
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Mean genome-wide FP errors fall rapidly to 0.14 after excluding variants in the lowest quality decile and 0.045 425 
SNPs after excluding PE/PPE genes. Mean genome-wide FN errors are 0.95 before filtering and increase after 426 
excluding the lowest two deciles of variants. FN errors are consistently higher in variant sets excluding PE/PPE 427 
genes, reflecting the fact that 15.6% (23/147) of true variants occur in these genes.  428 

Before quality filtering, 95.2% of isolate pairs were correctly assigned as falling above or below a 5-SNP 429 
threshold when considering genome-wide variants; 95.4% pairs were correctly assigned after exclusion of the 430 
PE/PPE genes (Fig. 5b). Accuracy in distinguishing pairs falling above or below a 5-SNP threshold improves 431 
slightly after excluding variants in the lowest quality decile to a maximum of 97.7% for genome-wide variants 432 
and 94.2% after excluding PE/PPE genes, after which accuracy rapidly declines. Excluding the PE/PPE genes 433 
generally results in lower accuracy in identifying isolate pairs falling under a 5-SNP threshold (Fig. 5b). 434 
  Distances of reconstructed trees to the true underlying phylogeny fall rapidly after initial filtering and 435 
then steadily increase with more stringent quality score filters, resulting in a U-shaped relationship between 436 
quality score filter and distance to the true tree, measured by KC distance, and a hockey-stick shaped relationship 437 
for RF distance (Fig. 5c). When no quality filtering is applied, the inclusion of variants within PE/PPE genes 438 
results in large distances  of inferred phylogenies to the true tree (149.0, KC distance and 70.0, RF distance). 439 
Mean KC tree distances fall to a minimum of 22.4 after filtering 30% of variants, when genome-wide variants are 440 
included. Mean RF distances fall to a minimum of 35.8 after filtering of 10% of variants, when genome-wide 441 
variants are included. These observations suggest that some filtering is necessary to remove the lowest quality 442 
variants, either by exclusion of problematic regions or by exclusion of the lowest quality variants, but additional 443 
filtering may rapidly erode the quality of inferred phylogenies. Further, regional filters and quality score filters 444 
interact to determine overall accuracy of inferences based on pairwise differences and phylogenies.  445 
 446 
Discussion 447 

While many applications of M. tuberculosis whole-genome sequencing for transmission inference use 448 
hard filters to minimize false positive SNPs26 and then apply pairwise SNP distance thresholds to infer potential 449 
transmission linkages26,34, here we show that a) such approaches do not recover consistent sets of SNPs; b) pairwise 450 
distance thresholds are not robust to differences between pipelines; and c) strict filtering does not always improve 451 
transmission inferences made using pairwise differences or phylogenies. 452 

As shown in part A, methodological differences between different M. tuberculosis molecular 453 
epidemiology groups can lead to differing epidemiological conclusions made from the same sequence data. This 454 
suggests that results from genomic epidemiology studies need to be interpreted in the context of study 455 
methodology. The degree of diversity or clonality reported within a single outbreak, for example, may reflect 456 
methodology rather than true outbreak diversity. Additionally, pairwise distance thresholds for recent 457 
transmission developed using one variant calling pipeline55 cannot be easily adapted by studies using different 458 
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pipelines. Similarly, estimates of M. tuberculosis substitution rate are contingent on variant calling pipeline. For 459 
example, excluding variants within the PE/PPE genes discards the most variant-dense regions of the M. 460 
tuberculosis genome and will likely decrease the observed molecular clock rate of M. tuberculosis. For genomic 461 
information to be pooled across studies, a standardized variant calling approach needs to be applied as was 462 
recently done in a meta-analysis estimating M. tuberculosis substitution rates48. Further, differences in filters 463 
represent an important source of difference in variants identified.  464 

Sequencing technologies and variant calling algorithms are rapidly changing, and our aim was not to 465 
identify a single best pipeline. However, we found that performance varies widely among approaches and 466 
identified several characteristics of variant calling approaches that may improve the accuracy of variant calling for 467 
transmission inference (Box 1). We found that variant calling performance metrics do not translate across species; 468 
tools developed and tested on human data perform measurably worse on M. tuberculosis compared to human 469 
genomes. The best performing pipelines included either DeepVariant with a quality score filter or GATK with 470 
VQSR, highlighting the benefit of variant caller calibration upon labeled sequence data, either through the 471 
training of a neural network or fitting of Gaussian mixture models to variant annotations.  472 

As expected, variant errors increased with increased distances between the reference and query genomes. 473 
This contrasts with a previous study that found choice of reference genome did not affect M. tuberculosis 474 
epidemiological inferences58. Our study differs from the previous study in that we used simulated genomic data for 475 
which underlying true variation is known to measure performance in identifying variants in individual genomes. 476 
The earlier study measured how reference choice affects performance in classifying isolate pairs as linked or 477 
unlinked using transmission links identified using the CDC1551 reference genome as truth.  478 

M. tuberculosis genomic epidemiology studies routinely use the H37Rv or CDC1551 reference genomes, 479 
both of which belong to Lineage 4. Studies investigating variation in other lineages will particularly benefit from 480 
using local reference genomes, either a full-length genome from the outbreak being studied or another closely 481 
related genome. Gene content differs between M. tuberculosis lineages26,59, constraining sensitivity in a reference-482 
based genome approach. Any variation within regions inserted in the query genomes relative to the reference will 483 
be missed even by a perfectly sensitive variant caller. The use of a local reference genome by one of the pipelines 484 
in Part A, for example, enabled the identification of two variants unobserved by other groups because they 485 
occurred within regions inserted relative to the standard H37Rv reference. Generating longer reads and/or 486 
assembly of full-length pathogen genomes will further reduce the errors intrinsic to mapping-based approaches. 487 
The effect of reference choice is likely to be even more pronounced for other bacterial species with greater 488 
diversity.  489 

Our finding that the cumulative effect of false positive and false negative errors in pairwise SNP 490 
differences frequently exceeds commonly used thresholds for recent transmission events suggests that molecular 491 
epidemiology studies need to be interpreted with caution. Subtle differences between outbreak genomes can be 492 
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readily overwhelmed by variant errors. However, appropriate filtering greatly reduced both false positive and 493 
false negative errors while retaining variation in PE/PPE genes, indicating that errors are largely predictable and 494 
can be minimized with appropriate error models.  495 

Many genomic epidemiology studies employ some type of hard filtering, whether based on annotation or 496 
genomic region. Transmission inferences based on pairwise differences as well as phylogenies are sensitive to 497 
variant filtering strategy and optimal filters may depend on specific downstream application. While minimal 498 
filtering improves the accuracy of transmission linkages predicted by pairwise differences and tree reconstruction, 499 
extensive filtering results in poorer accuracy of predicted transmission linkages and phylogenies that are 500 
increasingly distant from the underlying true phylogeny. After limited quality filtering, including the PE/PPE 501 
genes does not negatively affect transmission or phylogenetic inferences. The PE/PPE genes are the most variant 502 
dense regions of the M. tuberculosis genome and are known antigens and virulence determinants46. Routine 503 
exclusion of these genes reduces the information potential of M. tuberculosis genomes and limits our ability to 504 
study the functional consequences of M. tuberculosis variation. Further, we found that more sophisticated error 505 
models outperform hard annotation-based filters and identified tool combinations that minimize error while 506 
retaining the  PE/PPE genes. 507 

While our focus is on M. tuberculosis, a bacterium that is considered to be slow-evolving48,55,60, the issues 508 
we identify here generalize to other pathogens61. Our results suggest that pathogen genomic epidemiology, for M. 509 
tuberculosis and other species, will benefit from genomic resources similar to those that exist for human genomes. 510 
First, pathogen genomic truth sets, experimental (not simulated) sequence data accompanied by validated 511 
variants, would enable training of machine learning approaches upon labeled pathogen variant data and would 512 
serve as a gold standard for performance benchmarking of variant calling approaches. Secondly, further work is 513 
needed to optimize variant callers for pathogens and for particular applications (i.e. prediction of antibiotic 514 
resistance versus transmission inference). For example, variant callers could output quality scores for reference 515 
allele calls in addition to alternative allele calls, enabling comparisons between all sites (as GATK already does). 516 
Finally, variant uncertainty represents an important and unreported source of potential error in genomic 517 
epidemiology studies. How to incorporate uncertainty in underlying measures of genomic variants or sequences in 518 
phylogenetic inference remains an open and important question for genomic epidemiology and population 519 
genomics more broadly.   520 

Here, we focused on the measurement of SNPs from short-read sequence data for transmission inference. 521 
Indels and other structural variants are an important additional source of M. tuberculosis variation that contain 522 
important phylogenetic information, which we did not examine here62. Nor do we examine within-host variation, 523 
which is clinically and epidemiologically important63,64 and can provide additional information for transmission 524 
inference37. Further, we measured performance on simulated sequence data, that generates sequences with 525 
platform-specific error profiles41, but which likely does not capture the full spectrum of sequence errors from 526 
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epidemiological studies. In addition, we generated genomic “truth sets” by pairwise aligning query and reference 527 
genomes. The genomic truth therefore depends on the accuracy of this pairwise alignment. Additionally, we did 528 
not investigate the performance of variant calling tools in recovering variants associated with antibiotic resistance 529 
or other clinically and epidemiologically important phenotypes. Transmission inference is one of many potential 530 
applications of WGS data and the characteristics of variant callers optimal for transmission inference are not 531 
necessarily those optimal for resistance predictions.  532 

Our findings demonstrate that current measures of pathogen genomic variation are susceptible to errors 533 
that may be propagated through all downstream analyses. Developing genomic resources and methods for specific 534 
pathogen species and harnessing the power of long-read sequence data will improve accuracy of transmission 535 
inferences and enable measurement of uncertainty in molecular epidemiology studies.  536 
 537 

Box 1. General considerations for pathogen variant calling for transmission inference.  538 

• Apply a taxonomic filter and select reads corresponding to the taxa of interest or exclude reads mapping to 539 
other taxa65.  540 

• Generate long sequence reads or paired-end reads, if using short-read data.  541 

• Map reads to a closely related reference genome or assemble reads de novo to generate an outbreak reference 542 
genome.  543 

• Output invariant and variant sites to distinguish between reference allele calls and positions without a 544 
confident allele call (potentially corresponding to deletions or regions with low- or poor-quality sequence 545 
coverage).  546 

• Call variants for samples independently rather than with a joint variant calling approach43. (Joint variant 547 
calling approaches are designed for human cohort studies and previous studies found them less sensitive in 548 
detecting singleton and low-frequency variants43, classes of variants valuable for transmission inferences.) 549 

• Apply variant callers calibrated upon sequence data, such as neural networks or callers with sophisticated 550 
error models fit to variant annotations. 551 

• Conduct filtering on site and sample-specific annotations (i.e. many variant calling programs “merge” sample-552 
specific annotations into a maximum or mean annotation for a site).  553 

• Apply filters to both reference allele calls and alternate allele calls (i.e. reference allele calls might have poor 554 
coverage and/or quality just as alternate alleles might). 555 

• Retain the greatest extent of the genome possible.  556 

• Use a haploid-specific caller or convert genotypes to correct ploidy.  557 

• Publish pipeline scripts and software, including versions. 558 

 559 
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 703 
 704 

 705 
 706 
Figure 1. Different pipelines call different variants when applied to the same sequence data. (a) Total 707 
internal SNPs identified by each pipeline (A-D) compared with the 85 SNPs detected in the original study (E). (b) 708 
Venn diagram of the intersection of SNPs identified by each pipeline. (c) Sensitivity of each pipeline (A-D) in 709 
recovering the set of Sanger sequence-verified SNPs from the original study (E). 710 
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 713 
 714 
Figure 2. Pairwise SNP distances and phylogenies differ across variant calling pipelines. (a) Violin plot of 715 
the distribution of pairwise genetic distances identified by each pipeline on a log-scale. The width of the violin 716 
represents the frequency of a given pairwise genetic distance. The dotted lines at 5 and 12 SNPs represent 717 
commonly used thresholds for recent transmission, above which, the possibility of recent transmission is 718 
excluded. Pipelines A, B, D, and E include 86 sequences (3655 comparisons). Pipeline C includes 69 sequences 719 
passing quality filters (2346 comparisons). (b) The percentage of sequence pairs with potential transmission links 720 
when applying 5 and 12 SNP thresholds for transmission. (c) Pairwise distances between isolates identified by 721 
pipelines A and B. Each point corresponds to a unique pair of sequences. Dotted lines indicate 5 and 12 SNP 722 
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distance thresholds, commonly used for inferring recent transmission. Blue and red shading indicates regions in 723 
which callers make conflicting transmission inferences after applying a 5 or 12 SNP threshold respectively. (d) 724 
Maximum likelihood trees inferred from the variation identified by each pipeline largely cluster separately. Tree 725 
distances between 100 bootstrap replicate trees from each pipeline were measured with the Robinson-Foulds (RF) 726 
metric and summarized by principal components analysis. The first three axes are shown; color indicates variant 727 
calling pipeline and shape indicates the tree cluster assigned with Ward’s method. Because RF distances require 728 
trees to have identical tips, trees from pipeline C, which only included calls for 68 samples, are not included.  729 
	  730 
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 731 
Figure 3. False positive and false negative errors in M. tuberculosis SNPs vary across tool combinations. 732 
Mean false positive (a) and false negative (b) errors identified by the nine tool combinations of read mapper and 733 
variant caller and three filters. Filters include Raw, no filtering; Qual, excluding variants with low quality score 734 
(QUAL < 40); and VQSR, variant quality score recalibration (VQSR only applied to GATK and Samtools calls) 735 
(Methods). Bar color indicates mapper and bar shading indicates genomic region: light shading indicates errors 736 
falling within the 168 PE/PPE genes and dark shading indicates errors falling outside that region. Bars and error 737 
bars indicate the mean and standard deviation of 20 replicates. Panels have different y-axes.  738 
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Figure 739 
4. False positive and false negative errors in pairwise differences between M. tuberculosis genomes vary 740 
across tool combinations. Mean false positive (a) and false negative (b) SNP differences for each pairwise 741 
comparison of the 44 outbreak sequences (946 pairwise comparisons) identified by the nine tool combinations of 742 
read mapper and variant caller and three filters. Filters include Raw, no filtering; Qual, excluding variants with 743 
low quality score (QUAL < 40); and VQSR, variant quality score recalibration (VQSR only applied to GATK and 744 
Samtools calls) (Methods). Bar color indicates mapper and shading indicates genomic region: light shading 745 
indicates errors falling within the 168 PE/PPE genes and dark shading indicates errors falling outside that region. 746 
Bars indicate the mean across pairwise comparisons; error bars extend to one standard deviation above the mean. 747 
Dotted lines in (a) indicate 5 and 12 SNP distance thresholds, commonly used for inferring recent transmission. 748 
Panels have different y-axes.  749 
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 750 
Figure 5. Increased filtering does not always improve transmission inference and phylogenetic 751 
reconstruction. Ten replicate Illumina sequence sets for the simulated tuberculosis outbreak were generated in 752 
silico and variants identified with BWA/GATK and filtered with increasing stringency (Methods). X-axes 753 
indicate the percentage of total variants excluded as an increasingly strict filtering approach was applied. Genomic 754 
region is indicated by color and points corresponding to each genomic region are staggered along the x-axis to 755 
improve clarity. (a) False positive pairwise errors decrease and false negative pairwise errors increase with 756 
increasingly strict variant filtering. Errors were identified by comparing the recovered variants with the 757 
underlying true variants. Error type is indicated by point shape and genomic region is indicated by color. Points 758 
represent mean FN and FP SNP errors and error bars indicate the partially pooled errors across ten replicate 759 
sequence sets. (b) Accuracy in distinguishing pairs falling above or below a 5-SNP threshold decreases with 760 
increasingly stringent filters. Error bars indicate the partially pooled errors across ten replicate sequence sets. (c) 761 
Distance of phylogenies inferred with increasingly filtered sets of variants to the true outbreak phylogeny. Panels 762 
indicate tree distance metric: KC, Kendall-Colijn metric52 and RF, Robinson-Fould’s distance39. Error bars indicate 763 
standard deviation distances for ten replicate sets of sequence data generated in silico for the simulated outbreak.  764 
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