Supplementary Materials for

Enzyme-free synthesis of natural phospholipids in water
Luping Liu, Yike Zou, Ahanjit Bhattacharya, Dongyang Zhang, Susan Q. Lang, K. N. Houk, and Neal K.
Devaraj*
Correspondence to: ndevaraj@ucsd.edu

This PDF file includes:

Materials and methods
Supplementary Text
Fig. S1-S17
Table S1
Copies of HPLC and NMR Spectra
Reference (20)

Table of Contents

General Information S3

1. Catalyst Screening for The Transacylation Reaction S4
2. Synthesis of Acyl Thioester 2b-2e S5
3. Critical Micelle Concentration of Reactants S9
4. General Procedure for Transacylation Reaction S10
5. Substrate Exploration S12
6. In Situ Formation of Liposomes S16
7. In Situ Encapsulation of HPTS and Proton Gradient Exploration S18
8. HPLC/ELSD Spectra S19
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S21
10. Theoretical Study S33
11. Full Reference List S46

General information

Chemicals were purchased as reagent grade and used without further purification except as indicated below. Lysophospholipids were purchased from Avanti Polar Lipids, Inc. Solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{MeOH}, \mathrm{DMF}, \mathrm{THF}\right.$, $\mathrm{H}_{2} \mathrm{O}$) were purchased from commercial suppliers. Solvents were removed under reduced pressure using a rotary evaporator and drying under high vacuum if appropriate ($10^{-3} \mathrm{mbar}$). Thin-layer chromatography (TLC) was performed using silica gel pre-coated plastic sheets (Polygram SIL G/UV $254,0.2 \mathrm{~mm}$, with fluorescent indicator; Macherey-Nagel) plastic sheets, which were visualized with a UV lamp (254), or Potassium Permanganate stain (1.5 g of $\mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $1.25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ in 200 mL water). Column chromatography (CC) was carried out using Merck silica gel ($60 \AA, 230-400$ mesh, particle size $0.040-0.063 \mathrm{~mm}$) using technical grade solvents. Elution was accelerated using compressed air. All reported yields, unless otherwise specified, refer to spectroscopically and chromatographically pure compounds. Nomenclature follows the suggestions proposed by the computer program ChemBioDraw of CBD/CambridgeSoft. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ECA-500 or VX-500 spectrometer in a suitable deuterated solvent. The solvent employed and respective measuring frequency are indicated for each experiment. Chemical shifts are reported with tetramethylsilane (TMS) serving as a universal reference for all nuclides. The resonance multiplicity is described as s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), and br (broad). All spectra were recorded at 298 K unless otherwise noted, processed with MestReNova 12.0.0 suite, and coupling constants are reported as observed. The residual deuterated solvent signal relative to tetramethylsilane was used as the internal reference in ${ }^{1} \mathrm{H}$ NMR spectra (e.g. $\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}$), and is reported as follows: chemical shift in ppm (multiplicity, coupling constant J in Hz , number of protons). ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$ NMR spectra were referenced according to Ξ-values (IUPAC recommendations 2008) relative to the internal references set in ${ }^{1} \mathrm{H}$ NMR spectra (e.g. ${ }^{13} \mathrm{C}$: Me4Si 0.00 ppm). An Agilent 6230 time-of-flight mass spectrometer (TOF-MS) with Jet Stream electrospray ionization source (ESI) was used for high resolution mass spectrometry (HR-MS) analysis. The Jet Stream ESI source was operated under positive ion mode with the following parameters: VCap: 3500 V ; fragmentor voltage: 160 V ; nozzle voltage: 500 V ; drying gas temperature: $325^{\circ} \mathrm{C}$, sheath gas temperature: $325^{\circ} \mathrm{C}$, drying gas flow rate: $7.0 \mathrm{~L} / \mathrm{min}$; sheath gas flow rate: $10 \mathrm{~L} / \mathrm{min}$; nebulizer pressure: 40 psi . High performance liquid chromatography (HPLC) was performed on ZORBAX SB-C18 liquid chromatograph. Liquid chromatography-mass spectrometry (LC-MS) was performed on Eclipse Plus C8 analytical chromatograph. All solvents used were HPLC-grade solvents purchased from Fisher Scientific. Transmission electron microscopy (TEM) images were recorded on a FEI Tecnai ${ }^{\text {TM }}$ Spirit G2 BioTWIN 120 kV microscope equipped with a 4 k (16 megapixel) Eagle camera. Spinning-disk confocal microscopy images were acquired on a Yokagawa spinning-disk system (Yokagawa, Japan) built around an Axio Observer Z1motorized inverted microscope (Carl Zeiss S-3 Microscopy GmbH, Germany) with a 63x, 1.40 NA oil immersion objective to an Evolve 512×512 EMCCD camera (Photometrics, Canada) using ZEN imaging software (Carl Zeiss Microscopy GmbH, Germany). A condenser/objective with a phase stop of Ph 2 was used to obtain the phase-contrast images. Fluorescence measurements were performed on a Tecan infinite F200 plate reader instrument.

1. Catalyst Screening for The Transacylation Reaction

1-Oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a and sodium 2-(oleoylthio)ethane-1-sulfonate 2a were added to the catalyst in water $(100 \mu \mathrm{~L})$. The reaction mixture was stirred at $37^{\circ} \mathrm{C}$ for 24 hours.

Table S1. Catalyst screening for the transacylation reaction.

Entry	${\text { Catalyst } / \mu \mathrm{mol}^{\text {a }}}^{\mathbf{1 a} / \mu \mathrm{mol}}$	$\mathbf{2 a} / \mu \mathrm{mol}$	time $/ \mathrm{hour}$	Yield $^{\mathrm{b}}$	
1	$\mathrm{DBSA} / 0.6$	4	6	24	N.D.
2	$\mathrm{ZnCl}_{2} / 0.6$	4	6	24	N.D.
3	$\mathrm{DMAP}^{2} / 0.6$	4	6	24	N.D.
4	Imidazole/0.6	4	6	24	N.D.
5	$\mathrm{DBSA} / 60$	4	6	24	N.D.
6	$\mathrm{ZnCl}_{2} / 60$	4	6	24	$<5 \%$
7	$\mathrm{DMAP}^{2} / 60$	4	6	24	$<10 \%$
8	Imidazole/60 5	4	6	24	12%

${ }^{\text {a }}$ DMAP, 4-dimethylaminopyridine; DBSA, p-dodecylbenzene-sulfonic acid. ${ }^{\text {b Y Yields of product 3a were determined by LC-MS of reaction }}$ mixtures on the basis of the calibration curve of pure 3a.

2. Synthesis of Acyl Thioester 2b-2e

2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride (2b)

4-Dimethylaminopyridine (15 mg, 0.12 mmol) and N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride $(\mathrm{EDC} \cdot \mathrm{HCl})(248 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added to a solution of oleic acid $(367 \mathrm{mg}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The solution was added dropwise to thiocholine chloride ($188 \mathrm{mg}, 1.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under argon. The reaction was warmed to room temperature and stirred for 4 hours. The reaction solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using $10 \%-50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent yielding the title compound as a colorless solid ($490 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 5.35(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 9 \mathrm{H})$, $2.65(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 20 \mathrm{H}), 0.91(\mathrm{t}, J=5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 199.29,130.82,130.69,65.99,53.63,44.75,44.64,33.03,30.82,30.76,30.61$, $30.44,30.34,30.26,30.13,29.94,28.18,28.13,28.08,26.57,26.44,26.30,23.72,22.65,14.62$.

HRMS $m / z(E S I)$: calcd. for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NOS}[\mathrm{M}-\mathrm{Cl}]^{+}: 384.3295$; found: 384.3293.

Prebiotically plausible route to thioester 2b

Figure S1. Prebiotically plausible route to thioester 2b. A. Reaction scheme for dicyandiamide (DCDA) mediated condensation of oleic acid and thiocholine chloride to form thioester 2b. B. Comparison of Extracted Ion Chromatogram (EIC) corresponding to $\mathrm{m} / \mathrm{z} 384$ (positive ion mode) for an analytical standard sample of $\mathbf{2 b}$ (top) and that of $\mathbf{2 b}$ generated in the reaction (bottom).

Method: A turbid dispersion of oleic acid (15.5 mg) and dicyandiamide (32.7 mg) was prepared in 0.1 mL aqueous $\mathrm{HCl}(\mathrm{pH} \sim 1)$ by stirring at room temperature. Into this, choline thiol chloride (18.8 mg , dissolved in $0.1 \mathrm{~mL}_{2} \mathrm{O}$) is added and the dispersion was tumbled at $37{ }^{\circ} \mathrm{C}$ overnight. A small volume of the dispersion is analyzed on HPLC-MS and the compound $\mathbf{2 b}$ could be detected.

S-propyl (Z)-octadec-9-enethioate (2c)

4-Dimethylaminopyridine $(15 \mathrm{mg}, \quad 0.12 \mathrm{mmol})$ and N-(3-Dimethylaminopropyl)- $N^{\prime \prime}$-ethylcarbodiimide hydrochloride $(\mathrm{EDC} \cdot \mathrm{HCl})(248 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added to a solution of oleic acid ($367 \mathrm{mg}, 1.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. Propane-1-thiol ($91 \mathrm{mg}, 1.2$ mmol) was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$ under argon. The reaction was warmed to room temperature and stirred for 4 hours. The reaction solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using $30 \%-50 \%$ Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent yielding the title compound as a colorless oil ($395 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.43(\mathrm{dt}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.00(\mathrm{q}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 20 \mathrm{H}), 0.96(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta 199.96,130.16,129.88,44.31,32.06,30.83,29.92,29.81,29.67,29.47,29.32$, 29.30, 29.20, 29.07, 27.37, 27.30, 25.86, 23.15, 22.83, 14.27, 13.48.

HRMS $m / z(E S I):$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 341.2873$; found: 341.2877.

2-(palmitoylthio)- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylethan-1-aminium chloride (2d)

4-Dimethylaminopyridine ($15 \mathrm{mg}, \quad 0.12 \mathrm{mmol}$) and N-(3-Dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride $(E D C \cdot H C l)(248 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added to a solution of palmitic acid ($333 \mathrm{mg}, 1.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. Then thiocholine
chloride ($188 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to the solution at $0^{\circ} \mathrm{C}$ under argon. The reaction was warmed to room temperature and stirred for 4 hours. Then the reaction solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using $10 \%-50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent yielding the title compound as a colorless solid ($150 \mathrm{mg}, 32 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 9 \mathrm{H}), 2.65(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.67(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 24 \mathrm{H}), 0.90(\mathrm{t}, J=5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 199.55,66.10,53.67,53.64,53.61,44.64,33.04,30.77,30.74,30.69,30.52$, $30.45,30.35,29.94,26.47,23.71,22.61,14.50$.
HRMS m / z (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NOS}[\mathrm{M}-\mathrm{Cl}]^{+}: 358.3138$; found: 358.3139 .

2-(decanoylthio)- N, N, N-trimethylethan-1-aminium chloride (2e)

4-Dimethylaminopyridine $(15 \mathrm{mg}, \quad 0.12 \mathrm{mmol})$ and N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride $(E D C \cdot H C l)(248 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added to a solution of decanoic acid $(224 \mathrm{mg}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Then thiocholine chloride ($188 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to the solution at $0^{\circ} \mathrm{C}$ under argon. The reaction was warmed to room temperature and stirred for 4 hours. Then the reaction solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using $10 \%-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent yielding the title compound as a colorless solid ($120 \mathrm{mg}, 33 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.40-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 9 \mathrm{H}), 2.58(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.60(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 12 \mathrm{H}), 0.84(\mathrm{t}, J=5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 199.60,66.10,53.54,53.51,53.48,44.64,33.05,30.54,30.41,29.95,26.53$, 23.75, 22.53, 14.48.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NOS}[\mathrm{M}-\mathrm{Cl}]^{+}: 274.2199$; found: 274.2197.

3. Critical Micelle Concentration of Reactants

Figure S2. Critical micelle concentration (cmc) of reactants. The cmc values of reactants were estimated using a method based on the fluorescence properties of the dye Laurdan in water at $37^{\circ} \mathrm{C}$. Representative plots are shown.

The cmc's of the various amphiphiles (thioesters and lysolipids) described in this study were estimated using a method based on the solvatochromic fluorescent dye Laurdan. Laurdan shows a sharp change in the value of generalized polarization at or near the cmc [or critical aggregation concentration (cac)] of an amphiphile. Initially, a concentrated solution of the amphiphile was prepared in Milli-Q $\mathrm{H}_{2} \mathrm{O}$ by hydration of a thin film. Afterwards, various dilutions were prepared by adding requisite volumes of Milli-Q $\mathrm{H}_{2} \mathrm{O}$. The volumes of various dilutions prepared ranged between $0.25-1.0 \mathrm{~mL}$ for the amphiphiles in this study. The samples were allowed to equilibrate at $37^{\circ} \mathrm{C}$ for 0.5 h , following which $0.4 \mu \mathrm{~L}$ of Laurdan (2.5 mM in EtOH) were added to each and mixed by gentle tapping. Then, $20 \mu \mathrm{~L}$ of each dilution was transferred to a 384 well plate and analyzed on a Tecan Infinite Plate Reader maintained at $37^{\circ} \mathrm{C}$. The samples were excited at 364 nm and emission spectra acquired over 430-500 nm. Generalized polarization (GP) was calculated as follows: GP $=\left(\mathrm{I}_{440}-\mathrm{I}_{490}\right) /\left(\mathrm{I}_{440}+\mathrm{I}_{490}\right)$.

4. General Procedure for Transacylation Reaction

Unless specified otherwise, to a mixture of lysophospholipid $\mathbf{1}(4 \mu \mathrm{~mol})$ and acylation reagent $\mathbf{2}(6 \mu \mathrm{~mol})$, freshly prepared $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added at $37^{\circ} \mathrm{C}$. The reaction mixture was tumbled at $37{ }^{\circ} \mathrm{C}$ for 5 hours. Purification was performed by column chromatography or preparative thin layer chromatography on silica gel.

1,2-Dioleoyl-sn-glycero-3-phosphocholine (3a)

A white powder was obtained. An isolated yield of 88% was obtained using $60 / 40 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36-5.29(\mathrm{~m}, 4 \mathrm{H}), 5.18(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=10.0 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{q}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{q}, J=5.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.33-$ $1.25(\mathrm{~m}, 38 \mathrm{H}), 0.86(\mathrm{t}, J=5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.66,173.30,130.12,129.79,70.63,66.46,63.45,63.41,63.12,59.42,59.38$, $54.51,34.43,34.23,32.03,29.89,29.66,29.45,29.40,29.38,29.31,29.27,29.24,27.34,27.32,25.08,25.00$, 22.82, 14.27.

HRMS $m / z(E S I)$: calcd. for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 808.5827$; found: 808.5826.

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (3b)

A white powder was obtained. An isolated yield of 85% was obtained using $60 / 40 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.37-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (s, 9 H), $3.12-3.02$ (m, 2 H), 2.27 (dq, $J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00$ (q, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}$), $1.60-1.53$ (m, 2 H), $1.29-1.24$ (m, 44 H), 0.87 (t, $J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta 173.74,173.36,130.17,130.13,129.81,70.73,70.66,70.59,66.54,63.51,63.29$, $63.21,63.09,59.41,59.37,54.84,54.70,54.54,34.62,34.45,34.43,34.26,34.10,32.06,29.90,29.87,29.82$, $29.70,29.68,29.52,29.49,29.47,29.43,29.33,29.26,27.36,27.33,25.10,25.03,22.96,22.84,22.69,14.45$, 14.34, 14.29, 14.23, 14.12.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{42} \mathrm{H}_{82} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 782.5670$; found: 782.5671.

1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (3c)

A white powder was obtained. An isolated yield of 78% was obtained using $60 / 40 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, ~ J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ $(\mathrm{s}, 9 \mathrm{H}), 3.06-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{q}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.24(\mathrm{~m}$, $46 \mathrm{H}), 0.87$ (t, $J=5.0 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.73,173.34,130.16,130.15,130.13,129.83,129.81,70.66,66.56,63.48$, $63.43,63.13,59.41,59.37,54.62,34.45,34.27,32.07,32.04,29.90,29.89,29.86,29.82,29.81,29.76,29.69$, 29.68, 29.51, 29.48, 29.47, 29.41, 29.38, 29.32, 29.28, 29.24, 27.36, 27.33, 25.09, 25.02, 22.84, 22.83, 14.28.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{44} \mathrm{H}_{86} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 810.5983$; found: 810.5972.

1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (3d)

A white powder was obtained. An isolated yield of 87% was obtained using $60 / 40 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.37-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (s, 9 H), $2.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{q}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 42$ H), 0.87 (t, $J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.69,173.38,130.15,130.14,130.13,129.84,129.83,129.82,70.69,70.63$, $66.58,63.49,63.13,59.40,59.36,54.64,34.47,34.25,32.07,32.04,29.96,29.90,29.88,29.86,29.85,29.83$, 29.81, 29.69, 29.67, 29.52, 29.50, 29.47, 29.41, 29.38, 29.31, 29.28, 29.24, 27.35, 27.32, 25.11, 25.01, 22.84, 22.83, 14.28.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{42} \mathrm{H}_{82} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 782.5670$; found: 782.5673.

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (3e)

A white powder was obtained. An isolated yield of 87% was obtained using 60/40/2-80/20/2 MeOH $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.18(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.37$ (s, 9 H$), 2.26(\mathrm{q}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 46 \mathrm{H}), 0.86(\mathrm{t}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.70,173.34,70.65,66.45,63.46,63.41,63.12,59.42,59.38,54.52,34.46$, 34.26, 32.06, 29.86, 29.84, 29.83, 29.81, 29.75, 29.69, 29.68, 29.51, 29.47, 29.31, 29.28, 25.10, 25.02, 22.83, 14.27.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{40} \mathrm{H}_{80} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 756.5514$; found: 756.5515.

1-Stearoyl-2-palmitoyl-sn-glycero-3-phosphocholine (3f)

A white powder was obtained. An isolated yield of 77% was obtained using $60 / 40 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.20(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 9 \mathrm{H}), 2.83(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 50 \mathrm{H}), 0.87(\mathrm{t}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.74,173.38,70.70,70.64,66.58,63.49,63.45,63.14,59.40,59.36,54.65$, $34.48,34.28,32.07,29.87,29.86,29.83,29.82,29.78,29.70,29.52,29.51,29.48,29.32,29.29,25.11,25.03$, 22.84, 14.28.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{42} \mathrm{H}_{84} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 784.5827; found: 784.5816.

1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (3g)

A white powder was obtained. An isolated yield of 55% was obtained using $20 / 80-50 / 50 \mathrm{MeOH} / \mathrm{CHCl}_{3}$ as the eluents.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36-5.29(\mathrm{~m}, 4 \mathrm{H}), 5.27-5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}, 1$ H), $3.88-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.36(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{dt}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{q}, J=5.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.58-$ $1.55(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 38 \mathrm{H}), 0.88(\mathrm{t}, J=5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.98,130.07,129.76,71.11,63.29,62.93,34.49,34.30,32.08,30.06,30.04$, 29.95, 29.74, 29.58, 29.52, 29.50, 27.44, 27.40, 25.13, 25.05, 22.85, 14.27.

HRMS m / z (ESI): calcd. for $\mathrm{C}_{39} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{P}[\mathrm{M}-\mathrm{Na}]^{-}$: 699.4970; found: 699.4667.

5. Substrate Tolerance

Figure S3. Oleoylation reaction of $\boldsymbol{s} \boldsymbol{n}$-glycero-3-phosphocholine. To a mixture of sn-Glycero-3-phosphocholine ($4 \mu \mathrm{~mol}$) and oleoylation reagent $\mathbf{2 b}(6 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=$ $10.6(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. Acylated products 1a, 3a, $\mathbf{3 h}$ were not detected.

Figure S4. Oleoylation reaction of L-serine. To a mixture of L-serine ($4 \mu \mathrm{~mol}$) and oleoylation reagent $\mathbf{2 b}$ (6 $\mu \mathrm{mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.57(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. Acylated products $\mathbf{3 i}, \mathbf{3 j}$, $\mathbf{3 k}$ were not detected.

Figure S5. Oleoylation reaction of L-threonine. To a mixture of L-threonine ($4 \mu \mathrm{~mol}$) and oleoylation reagent 2b $(6 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added. The reaction was rolled at $37{ }^{\circ} \mathrm{C}$ for 5 hours. Acylated products 31, 3m, 3n were not detected.

Figure S6. Acetylation reaction of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a. To a mixture of 1-Oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a ($4 \mu \mathrm{~mol}$) and acetylthiocholine chloride ($6 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37{ }^{\circ} \mathrm{C}$ for 5 hours. Less than 1% yield of acylated product $\mathbf{3 o}$ was detected (HPLC yield).

Figure S7. Oleoylation reaction of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1 a in the presence of L-serine. To a mixture of lysophosphatidylcholine $\mathbf{1 a}(4 \mu \mathrm{~mol})$, L-serine ($4 \mu \mathrm{~mol}$) and oleoylation reagent $\mathbf{2 b}$ (6 $\mu \mathrm{mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. Acylated products $\mathbf{3 i}, \mathbf{3 j}$, $\mathbf{3 k}$ were not detected but an 88% yield of $\mathbf{3 a}$ was obtained (HPLC yield).

Figure S8. Oleoylation reaction of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a in the presence of sodium dodecyl sulfate. To a mixture of lysophosphatidylcholine $\mathbf{1 a}(4 \mu \mathrm{~mol})$, sodium dodecyl sulfate ($6 \mu \mathrm{~mol}$) and oleoylation reagent $\mathbf{2 b}(6 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. Less than 10% yield of $\mathbf{3 a}$ was detected (HPLC yield).

Figure S9. Decanoylation reaction of 1-decanoyl-2-hydroxy-sn-glycero-3-phosphocholine 1e. Condition A: To a mixture of lysophosphatidylcholine $\mathbf{1 e}(4 \mu \mathrm{~mol})$ and decanoylation reagent $\mathbf{2 e}(6 \mu \mathrm{~mol})$, carbonate-bicarbonate buffer of $\mathrm{pH}=10.6(8 \mathrm{~mL})$ was added. The reaction was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. No obvious $\mathbf{3 p}$ was obtained (LC-MC). Condition B: To a mixture of lysophosphatidylcholine $\mathbf{1 e}(20 \mu \mathrm{~mol})$ and decanoylation reagent $\mathbf{2 e}(30 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer of $\mathrm{pH}=10.6(4 \mathrm{~mL})$ was added. The reaction was tumbled at $37{ }^{\circ} \mathrm{C}$ for 5 hours. An isolated yield of 83% of $\mathbf{3 p}$ was obtained using $40 / 60 / 2-80 / 20 / 2 \mathrm{MeOH}$ $/ \mathrm{CHCl}_{3} / \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ as the eluents.

1,2-Didecanoyl -sn-glycero-3-phosphocholine (3p)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.20(\mathrm{dq}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.37-4.34 (m, 2 H), $4.12(\mathrm{q}, ~ J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{p}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 9 \mathrm{H}), 2.28(\mathrm{dq}$, $J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.57(\mathrm{dt}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 24 \mathrm{H}), 0.87(\mathrm{t}, J=5.0 \mathrm{~Hz}, 6$ H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.73,173.37,71.02,70.96,70.24,70.17,69.85,69.79,66.41,63.81,59.70$, 59.66, 55.13, 54.69, 54.05, 34.44, 34.25, 32.02, 29.61, 29.46, 29.29, 25.08, 25.01, 22.82, 14.31, 14.25.

HRMS $m / z(E S I)$: calcd. for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{NO}_{8} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 588.3636$; found: 588.3636.
6. In Situ Formation of Liposomes

Figure S10. Microscopy images of in vesicles formed during the reaction between 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a and 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride 2 b in $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer $(\mathbf{p H}=8.8)$. A. Brightfield micrographs are presented. B. Fluorescence micrographs are presented. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1 a (0.5 mM) with
2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride $\mathbf{2 b}\left(0.75 \mathrm{mM}\right.$) in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer $(\mathrm{pH}=8.8)$ at $37^{\circ} \mathrm{C}$. The samples of the reaction mixture were taken at different times and were stained by using $0.1 \mathrm{~mol} \%$ Nile red dye. Scale bar: $10 \mu \mathrm{~m}$.

Figure S11. Microscopy images of vesicles formed during the reaction between 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a and 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride 2b in Lost City vent fluid ($\mathbf{p H}=\mathbf{9 . 1}$). A. Brightfield micrographs are presented. B. Fluorescence micrographs are presented. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine \quad 1a $\quad(0.5 \quad \mathrm{mM}) \quad$ with 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride $\mathbf{2 b}(0.75 \mathrm{mM})$ in the presence of Lost City vent fluid
$(\mathrm{pH}=9.1)$ at $37^{\circ} \mathrm{C}$. The sample of the reaction mixture was taken after 48 hours and stained by using $0.1 \mathrm{~mol} \%$ Nile red dye. Scale bar: $5 \mu \mathrm{~m}$. Water samples from Lost City Hydrothermal Field ($30^{\circ} \mathrm{N}$, Mid-Atlantic Ridge) were taken by the Susan. Q. Lang group with the ROV Jason on September 22nd, 2018.

Figure S12. TEM image vesicles formed during the reaction between 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1 a and 2-(oleoylthio)- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylethan-1-aminium chloride $\mathbf{2 b}$ in Mono Lake water $(\mathbf{p H}=\mathbf{1 0})$. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine \quad 1a $\quad(0.5 \quad \mathrm{mM}) \quad$ with 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride $\mathbf{2 b}(0.75 \mathrm{mM})$ in the presence of Mono Lake water (pH $=10)$ at $37{ }^{\circ} \mathrm{C}$. The samples of the reaction mixture were taken after 5 hours. After this, $4.8 \mu \mathrm{~L}$ of a reaction mixture was added to the formvar-coated Cu grid surface and allowed to sit for $\sim 10 \mathrm{~s}$ and the excess solution was blotted into a filter paper. The grid was washed with $4.8 \mu \mathrm{~L}$ drops of $\mathrm{H}_{2} \mathrm{O}$ and subsequently stained with $4.8 \mu \mathrm{~L}$ drops of 2% uranyl acetate. The staining was carried out for $\sim 30 \mathrm{~s}$ following which excess stain was blotted with filter paper. The grids were dried in air. After this, samples were imaged by transmission electron microscopy (TEM) using an FEI Tecnai Spirit G2 BioTWIN microscope operating at 80 kV and equipped with a bottom mount Eagle 4 k (16 megapixel) camera. Negative staining transmission electron micrograph is presented. Scale bar: 200 nm . Water samples from Mono Lake, California were taken by Luping Liu and Ahanjit Bhattacharya on March 17th, 2019.

7. In Situ Encapsulation of HPTS And Proton Gradient Formation

Figure S13. A. Emission spectra of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). Blue line. 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) $(0.25 \mathrm{mM})$ in the presence of citrate buffer ($\mathrm{pH}=4.6$). Orange line:8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) (0.25 mM) in the presence of Mono Lake water (pH $=10$). B. Fluorescence intensity of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). 1. 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) $(0.25 \mathrm{mM})$ in the presence of citrate buffer $(\mathrm{pH}=4.6) .2$. 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) $(0.25 \mathrm{mM})$ in the presence of Mono Lake water $(\mathrm{pH}=10)$. Excitation wavelength: 488 nm ; emission wavelength: 514 nm .

Figure S14. pH gradient decay in the de novo formed vesicles. A. The reaction was carried out by adding 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) (0.25 mM$)$ prior to the reaction of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine \quad 1a $\quad(0.5 \quad \mathrm{mM}) \quad$ with 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride $\mathbf{2 b}(0.75 \mathrm{mM}$) in the presence of Mono Lake water (pH $=10)$. The reaction mixture was tumbled at $37^{\circ} \mathrm{C}$ for 5 hours. B. The media of vesicles was exchanged to citrate buffer ($\mathrm{pH}=4.64$, in the same osmolarity as Mono Lake water) and a transmembrane pH gradient is spontaneously generated. Samples of the reaction mixture were taken at different time to monitor the maintenance of pH gradient of the de novo formed vesicles. Scale bar: $10 \mu \mathrm{~m}$. Top Panels: Brightfield micrographs are presented. Bottom Panels: Fluorescence micrographs are presented. C. Fluorescence intensity of encapsulated HPTS. The average fluorescence intensity was measured from 4 replicates. Error bars indicate SEM.

8. HPLC/ELSD Spectra

Figure S15. HPLC/ELSD spectrum of the oleoylation of $\mathbf{1 a}$ using acylating reagent 2a. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine $\mathbf{1 a}(0.5 \mathrm{mM})$ with sodium 2-(oleoylthio)ethane-1-sulfonate $\mathbf{2 a}(0.75 \mathrm{mM})$ in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer $(\mathrm{pH}=10.57)$ at $37{ }^{\circ} \mathrm{C}$. The sample of the reaction mixture was taken after 5 hours and was examined by HPLC/ELSD and LC-MS. Less than 1% of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a was converted to the desired product 1,2-dioleoyl-sn-glycero-3-phosphocholine 3a.
A. HPLC analysis was carried out on an Eclipse Plus C8 analytical column with Phase A/Phase B gradients [Phase A: MeOH with 0.1% formic acid, Phase B: $\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid;]. $50 \%-95 \%$ Phase A in Phase B, 1 minute, and $95 \%-100 \%$ Phase A in Phase B, 5.5 minutes, then 100% Phase A, 0.5 minute. B. HPLC analysis was carried out on an Eclipse Plus C8 analytical column with Phase A/Phase B gradients [Phase A: MeOH with 0.1% trifluoroacetic acid, Phase B: $\mathrm{H}_{2} \mathrm{O}$ with 0.1% trifluoroacetic acid;]. $50 \%-70 \%$ Phase A in Phase B, 1 minute, and $70 \%-90 \%$ Phase A in Phase B, 8 minutes, then $90 \%-95 \%$ Phase A in Phase B, 3 minutes, 100% Phase A, 4 minutes.

Figure S16. HPLC/ELSD spectrum of the oleoylation of $\mathbf{1 a}$ using acylating reagent $\mathbf{2 b}$. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine $\mathbf{1 a} \quad\left(\begin{array}{lll}0.5 & \mathrm{mM}\end{array}\right)$ with 2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride $\mathbf{2 b}(0.75 \mathrm{mM})$ in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer $(\mathrm{pH}=10.57)$ at $37^{\circ} \mathrm{C}$. The sample of the reaction mixture was taken after 5 hours and was examined by HPLC/ELSD and LC-MS. 88\% yield of the desired product 1,2-dioleoyl-sn-glycero-3-phosphocholine 3a was obtained.
HPLC analysis was carried out on an Eclipse Plus C8 analytical column with Phase A/Phase B gradients [Phase A: MeOH with 0.1% formic acid, Phase B: $\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid;]. $50 \%-95 \%$ Phase A in Phase B, 1 minute, and $95 \%-100 \%$ Phase A in Phase B, 5.5 minutes, then 100% Phase A, 0.5 minute.

Figure S17. HPLC/ELSD spectrum of the oleoylation of 1 a using acylating reagent 2c. The reaction was carried out by mixing 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine $\mathbf{1 a}(0.5 \mathrm{mM})$ with S-propyl (Z)-octadec-9-enethioate $\mathbf{2 c}(0.75 \mathrm{mM})$ in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{HCO}_{3}$ buffer $(\mathrm{pH}=10.57)$ at $337{ }^{\circ} \mathrm{C}$. The sample of the reaction mixture was taken after 5 hours and was examined by HPLC/ELSD and LC-MS. Less than 1% of 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 1a was converted to the desired product 1,2-dioleoyl-sn-glycero-3-phosphocholine 3a. More than 70\% yield of 2c was recovered, even though the ELSD signal of $\mathbf{2 c}$ is poor.
HPLC analysis was carried out on an Eclipse Plus C8 analytical column with Phase A/Phase B gradients [Phase A: MeOH with 0.1% formic acid, Phase B: $\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid;]. $50 \%-95 \%$ Phase A in Phase B, 1 minute, and $95 \%-100 \%$ Phase A in Phase B, 5.5 minutes, then 100% Phase A, 0.5 minute.
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

2-(oleoylthio)- N, N, N-trimethylethan-1-aminium chloride (2b)

S-propyl (Z)-octadec-9-enethioate (2c)

[^0]
2-(palmitoylthio)- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylethan-1-aminium chloride (2d)

2-(decanoylthio)- N, N, N-trimethylethan-1-aminium chloride (2e)

\circ
$\stackrel{\circ}{8}$
$\stackrel{\circ}{1}$
$\stackrel{1}{1}$

1,2-Dioleoyl-sn-glycero-3-phosphocholine (3a)

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (3b)

1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (3c)

1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (3d)

$\left.\begin{array}{llllllllllllllllllllllll}\hline 90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (3e)

No

\rightarrow Cl

1-Stearoyl-2-palmitoyl-sn-glycero-3-phosphocholine (3f)

1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (3g)

1,2- Didecanoyl -sn-glycero-3-phosphocholine (3p)

N্লু

10. Theoretical Study

General computation procedure

All calculations were performed using Gaussian $09 .{ }^{20}$ The initial structure of each species was built in such a way that the chain was in an anti-periplanar conformation to minimize steric interactions. For each species of INT(1~4), the initial structure was generated by rotating O2-C1' bond in such a way that an internal hydrogen bond was formed between C 1 '- OH and $\mathrm{C} 1-\mathrm{O}$, while the chain was in an anti-periplanar conformation. We assumed these structures to be the representative low energy conformations. The representative low energy conformation of each species was then used for geometry optimization at the B3LYP/6-31G(d,p)/SMD(water) level. A frequency calculation was performed on each optimized structure at the same theoretical level to verify that an energy minimum was obtained and to determine frequencies for the free energy calculations. Single point energy calculations were then conducted at D3-B3LYP/6-311++G(2d,p)/SMD(water) level. All reported Gibbs free energies are for 298 K .
The optimized representative low energy conformations and relative Gibbs free energies

A

B

INT1

PC1

Cartesian Coordinates

A			
N	-6.107100	0.867500	-0.180200
C	-4.720400	0.434700	-0.619100
C	-3.583000	0.773400	0.348200
O	-2.366200	0.296300	-0.243900
O	-1.799300	-1.379100	1.638700
P	-1.831900	-1.230000	0.136400
O	-0.323500	-1.071500	-0.491200
O	4.331900	-0.083300	-0.179300
C	0.594500	-0.117100	0.076900
C	3.035900	0.351100	0.298800
C	1.999500	-0.598100	-0.267400
C	-7.062800	0.524900	-1.292400
C	-6.534800	0.135000	1.063100
C	-6.161200	2.350900	0.064600
O	-2.526000	-2.260400	-0.718800
O	2.234500	-1.895300	0.280000
O	5.277900	1.680900	0.864900
C	5.389000	0.672800	0.184800
C	6.683600	0.102800	-0.339800
C	7.895600	0.997800	-0.077900
C	9.193100	0.378200	-0.598000
H	-4.768200	-0.644300	-0.772000
H	-4.536100	0.920700	-1.578800
H	-3.468200	1.852100	0.470200
H	-3.726500	0.323900	1.334100
H	0.404600	0.872800	-0.350300
H	0.466000	-0.074000	1.163400
H	3.030500	0.329400	1.392300
H	2.847800	1.373300	-0.039100
H	2.100700	-0.624100	-1.362600
H	-8.067700	0.812000	-0.984100
H	-6.769000	1.074800	-2.186100
H	-7.014200	-0.548700	-1.473800
H	-6.460800	-0.936000	0.875600
H	-5.891300	0.421900	1.892800
H	-7.566400	0.410100	1.282200
H	-5.545000	2.598100	0.927300
H	-5.796300	2.863300	-0.825400

H	-7.197200	2.625200	0.261900
H	1.504600	-2.453900	-0.029900
H	6.815200	-0.881700	0.128100
H	6.556200	-0.091900	-1.411400
H	7.732900	1.973200	-0.551200
H	7.978000	1.186300	0.998400
H	10.047100	1.034600	-0.402300
H	9.395400	-0.585500	-0.117000
H	9.146800	0.205400	-1.679300

B			
C	6.056600	-0.008600	-0.032000
C	4.659500	0.598600	-0.163900
C	3.560600	-0.417800	0.161200
C	2.163800	0.158700	0.069000
S	0.864600	-1.084900	-0.036800
O	1.909900	1.351300	0.087200
C	-0.619300	0.003700	-0.003200
C	-1.874800	-0.856400	-0.023400
S	-3.384200	0.155700	-0.005700
O	-4.505700	-0.832200	-0.013100
O	-3.321400	0.967300	1.250200
O	-3.330500	0.995700	-1.243400
H	6.828800	0.731100	-0.266700
H	6.238500	-0.369600	0.986600
H	6.188900	-0.856500	-0.713500
H	4.561600	1.459300	0.506100
H	4.511900	0.976700	-1.182200
H	3.630400	-1.298000	-0.488700
H	3.678400	-0.790600	1.188500
H	-0.576400	0.610800	0.902400
H	-0.582700	0.661100	-0.873100
H	-1.931000	-1.473200	-0.924200
H	-1.932000	-1.510700	0.850400

INT1			
N	6.927300	-0.266400	0.178900
C	5.432600	-0.462700	0.360900
C	4.552300	0.133400	-0.740700
O	3.186300	-0.155100	-0.405600

O	2.817900	-1.727200	-2.420600
P	2.499500	-1.563400	-0.955800
O	0.927200	-1.110300	-0.742900
O	-1.467200	3.052200	-0.617700
C	0.342000	-0.082400	-1.568000
C	-0.923400	2.067500	-1.526200
C	-0.386500	0.923100	-0.682200
C	7.612500	-0.819600	1.400500
C	7.429900	-1.011400	-1.028500
C	7.273300	1.192200	0.050800
O	2.731900	-2.682400	0.025200
O	-2.003300	4.349900	-2.385100
C	-1.992500	4.162000	-1.178800
C	-2.549100	5.098300	-0.135400
C	-3.114800	6.394400	-0.716800
C	-3.678000	7.312700	0.368300
H	5.269500	-1.539600	0.429100
H	5.176200	-0.004800	1.317900
H	4.637400	1.221000	-0.776300
H	4.789300	-0.272100	-1.727300
H	1.115600	0.430200	-2.145300
H	-0.358800	-0.556600	-2.261600
H	-1.711500	1.723000	-2.201300
H	-0.121600	2.520000	-2.114700
H	0.313000	1.326600	0.053100
H	8.688300	-0.704500	1.271900
H	7.272500	-0.262900	2.273500
H	7.353200	-1.873500	1.497700
H	7.155700	-2.061300	-0.927200
H	6.988900	-0.587300	-1.928700
H	8.513800	-0.904800	-1.064200
H	6.861700	1.582400	-0.878300
H	6.859400	1.724000	0.907300
H	8.359200	1.283700	0.038100
H	-3.317700	4.547800	0.421800
H	-1.748900	5.304200	0.586200
H	-2.326300	6.914700	-1.272800
H	-3.898300	6.151500	-1.443500
H	-4.071900	8.237600	-0.065000
H	-4.493300	6.827500	0.916800
H	-2.906100	7.587700	1.095900

C	1.328600	1.460100	3.593300
C	0.744000	0.456900	2.595800
C	-0.734100	0.757800	2.299600
C	-1.440500	-0.190300	1.296300
S	-3.208800	-0.323200	1.876700
C	-3.967800	-1.356500	0.558200
C	-3.874800	-2.854100	0.827700
S	-4.650000	-3.846100	-0.479500
O	-4.511200	-5.265600	-0.024500
O	-6.077100	-3.396000	-0.557800
O	-3.881800	-3.557100	-1.732300
H	2.373700	1.225500	3.820900
H	1.295100	2.481900	3.198200
H	0.771500	1.452300	4.537200
H	1.342800	0.464300	1.679400
H	0.823800	-0.556500	3.003200
H	-1.272400	0.697400	3.253000
H	-0.860900	1.785300	1.943200
H	-5.012900	-1.042600	0.505100
H	-3.488800	-1.091900	-0.385700
H	-2.835200	-3.179900	0.887700
H	-4.379300	-3.123600	1.759100
O	-0.898800	-1.491500	1.292000
	-0.136400	-1.487200	0.673700
	-1.522300	0.320300	-0.030300

INT2			
N	6.776960	0.138483	0.234804
C	5.386211	-0.469126	0.285463
C	4.370541	0.128922	-0.691471
O	3.097706	-0.481943	-0.434163
O	3.061176	-1.796446	-2.658138
P	2.717749	-1.915826	-1.192391
O	1.095527	-1.867743	-0.951188
O	-1.362061	2.281989	-0.750903
C	0.278693	-0.953952	-1.703805
C	-1.029497	1.171084	-1.622620
C	-0.272317	0.141187	-0.795428
C	7.615890	-0.567649	1.267077
C	7.407152	-0.057398	-1.116716
C	6.745182	1.606188	0.565552

3.220912	-3.078973	-0.375509
-2.353736	3.333688	-2.482275
-2.059905	3.30776	-1
-2.397989	4.358644	-0.275129
-3.196508	5.53	-0.847302
-3.540308	6.568943	0.220753
5.510815	-1.53578	0.093300
5.031877	-0.333606	1.308801
4.235503	1.198899	-0.523879
4.658205	-0.033165	-1.732952
0.84980	-0.511378	-2.524076
-0.546602	-1.531920	-2.130820
-1.95052	0.74	80
-0.406621	1.540450	-2.440581
0.56475	0.624	-0.288664
8.624576	-0.156960	1.230331
7.172339	-0.39956	2.248358
7.63039	-1.6321	1.034405
7.39801	-1.12128	-1.353308
6.84823	0.50481	-1.862819
8.431643	0.310798	-1.069757
6.24373	2.1	-0.233723
6.217031	1.738701	1.509443
7.77366	1.	334
-2.948995	3.861685	0.533705
-1.456011	4.699894	0.172244
-2.620590	5.999776	-1.652924
-4.115762	5.148098	-1.305388
-4.111729	7.398161	-0.208159
-4.141763	6.129084	1.024329
-2.635132	6.987165	0.67547
2.181405	1.489811	2.851191
0.754116	1.46787	2.299578
0.224317	0.030655	2.172093
-1.177134	-0.119251	1.527138
-2.023129	-1.516136	2.424202
-3.660529	-1.555087	1.589393
-3.728111	-2.510858	0.403778
-5.366579	-2.531071	-0.376131
-5.259116	-3.528647	-1.486171
-6.331973	-2.946991	0.691310

O	-5.610154	-1.136419	-0.866680
H	2.544489	2.516044	2.969730
H	2.237312	1.000838	3.830549
H	2.870104	0.965697	2.178884
H	0.091239	2.034410	2.961921
H	0.728367	1.981925	1.332444
H	0.924458	-0.593063	1.608161
H	0.182517	-0.393223	3.182119
H	-4.378814	-1.850361	2.357633
H	-3.890486	-0.530987	1.289192
H	-3.018394	-2.225201	-0.374061
H	-3.518069	-3.539989	0.706155
O	-1.147723	-0.503722	0.155067
O	-1.988665	1.021324	1.702813
H	-1.781625	1.641008	0.976719

P			
C	-3.643400	6.401000	0.229100
C	-3.813900	4.981100	-0.312300
C	-2.887000	2.614100	-0.268400
O	-3.597200	2.260900	-1.194700
C	-2.801800	4.009600	0.295800
N	6.248200	-0.868200	-0.004900
C	4.829700	-0.630800	-0.491900
C	3.730800	-0.767800	0.565800
O	2.477100	-0.515100	-0.086300
O	2.554500	1.816700	-1.246800
P	1.903600	1.045000	-0.126300
O	0.391300	0.691900	-0.650500
O	-2.965200	-1.726600	-0.072100
C	-0.511900	-0.038200	0.194700
C	-2.984800	-0.438500	0.582000
C	-1.926600	0.415000	-0.111800
C	7.163700	-0.733300	-1.193300
C	6.646200	0.154600	1.025500
C	6.402500	-2.249500	0.570600
O	1.892300	1.596800	1.279200
C	-2.042800	1.773800	0.380400
	-4.612100	-2.425100	1.304400
	-3.843100	-2.648300	0.384100
	-3.738000	-3.936600	-0.392300

C	-4.688600	-5.028500	0.098900
C	-4.565700	-6.309200	-0.727500
H	-4.375900	7.081700	-0.216500
H	-3.777400	6.432800	1.316300
H	-2.644600	6.792600	0.005700
H	-4.829200	4.622300	-0.107000
H	-3.699800	4.983900	-1.402100
H	-1.774400	4.358200	0.127400
H	-2.917400	3.940100	1.384000
H	4.813100	0.376400	-0.910200
H	4.655000	-1.350500	-1.293400
H	3.676600	-1.784300	0.960200
H	3.868300	-0.074800	1.400000
H	-0.421200	-1.109100	-0.011100
H	-0.285300	0.142200	1.250300
H	-3.971700	0.014800	0.467500
H	-2.767900	-0.559000	1.647100
H	-2.101900	0.411700	-1.189900
H	8.188000	-0.893200	-0.857900
H	6.885500	-1.483100	-1.933400
H	7.050900	0.268900	-1.606300
H	7.701100	0.010200	1.257100
H	6.482300	1.148500	0.609700
H	6.050200	0.013100	1.925300
H	5.804900	-2.331700	1.476600
H	6.072900	-2.974900	-0.173000
H	7.455200	-2.402500	0.807500
H	-3.925800	-3.697400	-1.446800
H	-2.693700	-4.268900	-0.344600
H	-4.479100	-5.243400	1.153200
H	-5.718300	-4.656000	0.056600
H	-5.256200	-7.077600	-0.365500
H	-4.795100	-6.124500	-1.783200
H	-3.551300	-6.720700	-0.675900

PB1			
S	-3.029700	0.210400	0.000000
C	-1.326500	-0.516500	0.000000
C	-0.307700	0.614600	0.000000
S	1.401200	-0.000400	0.000000
O	2.250700	1.230500	0.000000

O	1.548700	-0.815600	1.246600
O	1.548700	-0.815600	-1.246600
H	-3.699400	-0.960700	0.000000
H	-1.206200	-1.136700	0.889400
H	-1.206200	-1.136700	-0.889400
H	-0.406300	1.245500	-0.887400
H	-0.406300	1.245600	0.887400
C			
C	-5.335000	-0.809000	0.364000
C	-3.842000	-0.980900	0.082800
C	-3.118700	0.367600	-0.012800
C	-1.643000	0.232000	-0.311400
S	-0.660000	1.658900	0.208100
O	-1.136700	-0.724500	-0.870300
C	0.990400	1.149000	-0.407600
C	1.626000	0.167600	0.573500
N	2.952900	-0.426500	0.114900
C	3.452100	-1.316700	1.222600
C	2.775500	-1.259300	-1.125300
C	3.970500	0.650200	-0.142200
H	-5.833500	-1.781300	0.432200
H	-5.504300	-0.281000	1.309000
H	-5.826200	-0.236300	-0.430600
H	-3.379400	-1.580700	0.875300
H	-3.697600	-1.532300	-0.852000
H	-3.545400	0.971300	-0.826700
H	-3.252300	0.954000	0.903300
H	0.845400	0.719100	-1.399100
H	1.563200	2.073000	-0.497700
H	1.829600	0.659000	1.526400
H	0.967600	-0.684500	0.744200
H	4.401900	-1.751400	0.913100
H	3.585600	-0.713600	2.120100
H	2.715900	-2.100900	1.397700
H	3.722300	-1.756200	-1.336200
H	1.992100	-1.994400	-0.943100
H	2.507200	-0.615800	-1.960900
H	3.652000	1.254100	-0.990400
H	4.061500	1.264700	0.753400
H	4.922400	0.170700	-0.370300

INT3			
C	-5.508662	-0.605902	3.314422
C	-4.433354	-0.550474	2.226523
C	-3.327266	0.456335	2.572861
C	-2.233426	0.601042	1.503281
S	-0.972136	1.861954	2.179036
C	-0.846410	3.186170	0.911606
C	0.175831	2.822623	-0.159119
N	0.517718	3.941388	-1.143076
C	1.500314	3.377886	-2.136431
C	-0.706716	4.408613	-1.877894
C	1.162298	5.106735	-0.443106
H	-6.296412	-1.320984	3.055506
H	-5.083926	-0.912274	4.277198
H	-5.981039	0.372674	3.457416
H	-3.997487	-1.545130	2.084792
H	-4.895888	-0.268865	1.272760
H	-3.762860	1.448743	2.724380
H	-2.848528	0.170225	3.516979
H	-1.836784	3.369970	0.497305
H	-0.542354	4.066462	1.482373
H	1.124369	2.531758	0.292538
H	-0.191694	2.000222	-0.772795
H	1.762902	4.164479	-2.843433
H	2.384014	3.040857	-1.595296
H	1.034506	2.540572	-2.654421
H	-0.396943	5.133112	-2.631164
H	-1.177296	3.547544	-2.352493
H	-1.393024	4.877462	-1.174530
H	0.446227	5.564552	0.236844
H	2.031543	4.743087	0.104806
H	1.466974	5.829392	-1.199727
N	6.566301	-1.447018	0.027311
C	5.543122	-2.540069	0.318094
C	4.130849	-2.105932	0.661786
O	3.414175	-1.665582	-0.504263
O	3.245158	0.836392	0.148305
P	2.449967	-0.330876	-0.390810
O	1.421864	-0.749244	0.828414
O	-3.006252	-1.368001	-1.014619

C	0.391243	-1.715975	0.562599
C	-1.792473	-2.042548	-0.596744
C	-0.932892	-1.050475	0.180508
C	7.895973	-2.127083	-0.162668
C	6.236003	-0.685252	-1.228776
C	6.678227	-0.481025	1.176395
O	1.726456	-0.249687	-1.711698
O	-2.710950	1.107710	0.289451
O	-4.075987	-3.350312	-1.194845
C	-4.085611	-2.136915	-1.303689
C	-5.240011	-1.305331	-1.801598
C	-6.587580	-2.025498	-1.716078
C	-7.726722	-1.189147	-2.300524
H	5.537145	-3.191317	-0.558014
H	5.944308	-3.097418	1.167242
H	3.630348	-2.995514	1.058889
H	4.120204	-1.344700	1.444901
H	0.707484	-2.401284	-0.229330
H	0.252999	-2.296023	1.478686
H	-2.050740	-2.904136	0.021627
H	-1.266953	-2.383200	-1.492573
H	-0.732124	-0.173206	-0.436051
H	8.638941	-1.367799	-0.404778
H	8.165108	-2.637842	0.761916
H	7.807826	-2.843096	-0.979576
H	6.111432	-1.395504	-2.045813
H	5.323143	-0.117562	-1.068757
H	7.065640	-0.010169	-1.439471
H	5.766111	0.109177	1.242935
H	6.840614	-1.046659	2.093831
H	7.526023	0.175717	0.982971
H	-5.253553	-0.358004	-1.251968
H	-5.007771	-1.048273	-2.844735
H	-6.517301	-2.981696	-2.245646
H	-6.800569	-2.265370	-0.667618
H	-8.681312	-1.718837	-2.220730
H	-7.830531	-0.233122	-1.775179
H	-7.554007	-0.969308	-3.360147
O	-1.637937	-0.674582	1.381458
H	-3.140861	0.372362	-0.190037

INT4			
C	-3.900500	-0.244100	4.337000
C	-2.842600	-0.457400	3.252600
C	-3.045400	0.489400	2.061200
C	-1.925000	0.433800	1.018300
S	-2.524400	1.499700	-0.466600
C	-1.038500	2.468100	-0.939700
C	-0.955800	3.748600	-0.114400
N	0.231400	4.654600	-0.441400
C	0.208100	5.800700	0.534100
C	1.530900	3.913200	-0.287700
C	0.129300	5.204800	-1.836500
H	-3.752400	-0.935700	5.173100
H	-3.860700	0.775600	4.736800
H	-4.911100	-0.407600	3.945600
H	-1.843800	-0.298500	3.675500
H	-2.877900	-1.494600	2.902800
H	-3.993600	0.259000	1.561600
H	-3.108600	1.524700	2.410500
H	-0.156400	1.840900	-0.820100
H	-1.165300	2.677100	-2.004300
H	-1.845800	4.362800	-0.260900
H	-0.858000	3.505400	0.943500
H	1.029200	6.475600	0.293400
H	-0.746500	6.318600	0.441900
H	0.328500	5.402800	1.541500
H	2.344200	4.634500	-0.369200
H	1.546500	3.434200	0.690100
H	1.618700	3.170700	-1.078200
H	0.168700	4.385600	-2.552300
H	-0.810900	5.748100	-1.929100
H	0.971400	5.877400	-1.999100
N	6.464300	-1.706500	0.023200
C	5.284500	-2.626000	0.326200
C	3.950600	-1.968600	0.616900
O	3.400800	-1.347100	-0.557500
O	3.032300	0.979100	0.546600
P	2.416000	-0.040800	-0.376600
O	1.163700	-0.691800	0.506400
O	-3.014200	-2.087200	-1.628200
C	0.392400	-1.786900	-0.032900

C	-1.723900	-2.501200	-1.131900
C	-0.995200	-1.330700	-0.476500
C	7.713800	-2.542600	0.105900
C	6.370300	-1.134200	-1.367300
C	6.567200	-0.585100	1.019400
O	1.956100	0.312300	-1.766300
O	-1.795400	-0.918700	0.645100
O	-4.074100	-2.960500	0.181400
C	-4.110900	-2.365600	-0.882700
C	-5.361400	-1.852500	-1.553500
C	-6.650300	-2.296900	-0.861000
C	-7.898800	-1.764300	-1.566000
H	5.209400	-3.309600	-0.521500
H	5.567700	-3.195500	1.213900
H	3.281600	-2.772600	0.943500
H	4.028000	-1.247300	1.433500
H	0.916000	-2.240500	-0.878600
H	0.303700	-2.531900	0.762500
H	-1.847900	-3.326200	-0.428400
H	-1.165800	-2.842800	-2.005300
H	-0.905800	-0.508600	-1.192900
H	8.562900	-1.923100	-0.181300
H	7.831700	-2.896400	1.129900
H	7.613600	-3.384600	-0.579000
H	6.342700	-1.959900	-2.078000
H	5.466900	-0.535600	-1.444800
H	7.254400	-0.519800	-1.537500
H	5.729100	0.097200	0.886700
H	6.563300	-1.006900	2.024600
H	7.504100	-0.058400	0.837700
H	-5.288800	-0.757300	-1.580500
H	-5.339000	-2.178400	-2.599900
H	-6.680500	-3.392200	-0.827000
H	-6.636000	-1.955800	0.180200
H	-8.808600	-2.094300	-1.054500
H	-7.906900	-0.668600	-1.587300
H	-7.952200	-2.116900	-2.602200
O	-0.751000	0.958400	1.560600
H	0.022700	0.479200	1.188000

PC1

S	-2.871000	0.129000	-0.097800
C	-1.180200	-0.570500	0.110700
C	-0.128800	0.512900	-0.104600
N	1.319600	0.038100	-0.007300
C	2.200000	1.241600	-0.215300
C	1.612700	-0.544500	1.347800
C	1.633400	-0.975300	-1.073200
H	-2.852900	0.930400	0.988300
H	-1.110800	-1.029200	1.096900
H	-1.113700	-1.356400	-0.643800
H	-0.230700	0.953800	-1.097300
H	-0.229000	1.300300	0.645100
H	3.239900	0.920400	-0.162300
H	1.984200	1.665100	-1.196000
H	1.987600	1.968700	0.568100
H	1.059400	-1.473900	1.470200
H	2.682500	-0.743200	1.407200
H	1.320300	0.179600	2.108000
H	1.384100	-0.547900	-2.044300
H	2.698000	-1.202500	-1.022200
H	1.057700	-1.881600	-0.894400

11. Full reference list

(20) Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

