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ABSTRACT 
 
Despite collectively accounting for 25% of tumors in U.S. adults, rare cancers have 

significant unmet clinical needs as they are difficult to study due to low incidence and 

geographically dispersed patient populations. We sought to assess whether a patient-

partnered research approach using online engagement can overcome these challenges 

and accelerate scientific discovery in rare cancers, focusing on angiosarcoma (AS), an 

exceedingly rare sarcoma with a dismal prognosis and an annual U.S. incidence of 300 

cases. Here, we describe the development of the Angiosarcoma Project (ASCproject), an 

initiative enabling patients across the U.S. and Canada to remotely share their clinical 

information and biospecimens for research. The project generates and publicly releases 

clinically annotated genomic data on tumor and germline specimens on an ongoing 

basis. Over 18 months, 338 AS patients registered for the ASCproject, comprising a 

significant fraction of all patients. Whole exome sequencing of 47 AS tumors revealed 

several recurrently mutated genes, including KDR, TP53, and PIK3CA. Activating 

mutations in PIK3CA were observed nearly exclusively in primary breast AS, suggesting 

a therapeutic rationale in these patients.  AS of the head, neck, face, and scalp (HNFS) 

was associated with high tumor mutation burden and a dominant mutational signature of 

UV light exposure, suggesting that UV damage may be a causative factor in HNFS AS 

and that this AS subset might be amenable to immune checkpoint inhibitor therapy. 

Medical record review revealed two patients with HNFS AS received off-label treatment 

with anti-PD-1 therapy and experienced exceptional responses, highlighting immune 

checkpoint inhibition as a therapeutic avenue for HNFS AS. This patient-partnered 

approach has catalyzed an opportunity to discover the etiology and potential therapies 

for AS patients. Collectively, this proof of concept study demonstrates that empowering 

patients to directly participate in research can overcome barriers in rare diseases and 

enable biological and clinical discoveries. 
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Due to low incidence, rare cancer patients are often treated at disparate institutions distributed 

across the country, ranging from tertiary medical centers to community hospitals. This poses 

barriers to large-scale scientific studies urgently needed to understand the biology of rare 

cancers and develop better treatments1. We hypothesized that the challenges of rare cancer 

research could be addressed by engaging patients directly and empowering them to share their 

samples, their data, and their experiences. In principle, a patient-partnered approach that 

harnesses the power of social media and patient networks and enables patients to remotely 

participate irrespective of geography could overcome the barriers of low patient numbers seen 

at any single institution and aggregate a significant number of rare cancer patients from 

numerous institutions in a unified clinicogenomic study, thereby rapidly yielding discoveries. 

 

We aimed to test this hypothesis in angiosarcoma, a disease that represents just 1-2% of soft 

tissue sarcomas, which in turn, comprise less than 1% of adult malignancies2,3. The prognosis 

for AS is poor, with a reported 5-year disease-specific survival of 38%2.  Although there have 

been small genomic studies of AS to date4-10, the majority of AS have no known genomic, 

environmental, or iatrogenic etiology, and effective therapies for most AS patients are lacking. 

 

Working closely with patients and patient advocates, we developed a website (ASCproject.org), 

which allows AS patients living anywhere in the United States and Canada to register for the 

ASCproject (Figure 1A). Patients in the angiosarcoma community were deeply involved in all 

aspects of the project design, implementation, testing, and refinement, including all elements of 

the study website from images to consent language. AS patients joined the ASCproject rapidly 

after launch, with 120 patients registering in the first month and a total of 338 patients 

registering within 18 months (Figure 1B). This represents not only a significant proportion of 

people living with this disease in the U.S., but also a substantially increased pace of enrollment 

compared to previous efforts (with the largest previous AS study having collected clinical data 
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from 222 patients treated over 14 years2). Online consent for the ASCproject allowed for 

acquisition of medical records and biological samples (tumor, saliva, and blood), analysis of 

whole exome sequencing (WES) on tumor and germline DNA, and sharing of de-identified 

patient-reported, clinical, and genomic data via public databases (Figure 1C-D). Patients 

continued to be engaged throughout the ASCproject and were regularly provided study updates 

(Figure 1C).   

 

Although the study is ongoing, the following analyses were conducted with the 227 patients who 

had fully consented as of September 30, 2018 (Figure 1D). These 227 patients received care for 

AS at 340 different clinical institutions, including 289 institutions that were reported only once by 

any given participant (Supplemental Figure 1) - demonstrating the importance of online 

platforms to overcome the geographic isolation that has traditionally inhibited large-scale studies 

in rare cancer patients.  

 

Patients self-reported demographic information, sites of primary AS, as well as other AS and 

prior cancer information through an intake survey (Figure 2; Supplemental Figures 2 and 3; 

Supplemental Tables 1 and 2). Patients joining the ASCproject spanned newly diagnosed 

patients to long-term survivors, with the elapsed time between primary AS diagnosis and 

ASCproject enrollment ranging from 5 days to 41 years (Figure 2B).  

 

We were able to rapidly acquire medical records and tumor samples from geographically 

dispersed patients and institutions (Supplemental Figure 4). We performed WES on 70 obtained 

tumor samples. Forty-seven samples from 36 patients were used for subsequent genomic 

analysis after assessment of sufficient tumor purity (³10%) and confirmation as angiosarcoma 

by centralized pathology review (Supplemental Figure 4). Apart from these considerations, there 

were no additional selection criteria for these 47 samples. Characteristics of the 36 sequenced 
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patients are shown in Supplemental Figure 5. Abstraction of medical record data (Supplemental 

Table 3) and histological evaluation were used to classify these tumors into 8 subclassifications 

of AS (see Supplemental Methods). To our knowledge, this is the largest reported cohort of AS 

samples that have undergone WES. 

   

We found 30 genes recurrently altered in these 47 samples (determined by somatic alteration 

frequency, see Methods). This includes genes previously reported as altered in AS6,7,10-12, as 

well as several genes that have not been previously reported to be mutated in AS, such as 

PIK3CA, GRIN2A, and NOTCH2 (Figure 3A). Two genes were mutated at a rate significantly 

higher than expected by chance given background mutational processes (as identified by 

MutSig2CV13; see Supplemental Methods): TP53 (25%; 9/36 patients) and KDR (22%; 8/36 

patients) (Supplemental Figure 6). Moreover, mutations in these two genes were also mutually 

exclusive (p-value=0.02), with 89% (8/9) of KDR missense mutations being observed in primary 

breast AS samples and 82% (9/11) of TP53 missense mutations detected in AS samples that 

were not primary breast (Figure 3A; Supplemental Figure 6). 

  

PIK3CA was one of the most frequently mutated genes in this cohort (21%; 10/47 samples) 

(Figure 3A). Although alterations in the PI3K pathway have been identified in a previous AS 

study14, mutations in the PIK3CA gene itself have not been previously reported in AS to our 

knowledge. Nine out of the ten PIK3CA alterations were found in primary breast AS samples, 

and this AS subclassification was significantly enriched for PIK3CA mutations compared to 

other subclassifications (9/18 primary breast AS samples versus 1/29 AS samples that were not 

primary breast; p-value=0.0003) (Figure 3A).  

 

Intriguingly, none of the 8 unique PIK3CA mutations we observed were at the canonical PIK3CA 

hotspot residues E545 or H104715 (Figure 3B). Instead, these PIK3CA mutations were located 
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in two distinct clusters on the protein structure (Figure 3C), corresponding to regions enriched 

with activating somatic mutations16.  Indeed, most of the PIK3CA mutations in our AS cohort 

have been previously described as hotspot mutations in other cancers, and have been shown to 

be activating in vitro17-19 (Supplemental Table 4). Moreover, CRISPR experiments in cancer cell 

lines (depmap.org) demonstrated that lines harboring some of these PIK3CA mutations (R88Q, 

P124L, and G914R) were significantly more dependent on PIK3CA than lines with wild-type 

PIK3CA (Supplemental Figure 7). Collectively, these data strongly suggest that the PIK3CA 

mutations detected in this AS cohort are likely to be activating and therefore sensitive to PI3K𝝰 

inhibition20-22.  

 

PIK3CA alterations occur more frequently in breast adenocarcinoma (34.5%) than in other 

cancer types (>10%)23,24. The fact that different types of activating PI3K mutations are found in 

breast malignancies with different lineages (angiosarcoma and adenocarcinoma), raises the 

intriguing possibility that the site of tumor origin (breast), independent of tumor lineage, may be 

permissive for PI3K pathway activation and aid tumor formation within breast tissue, perhaps 

due to interaction with the breast microenvironment. Of clinical importance, these observations 

suggest that PI3K𝝰 inhibitors, one of which was recently approved for the treatment of PIK3CA-

mutant advanced breast adenocarcinoma20, may be useful as a novel targeted therapeutic 

intervention for these patients with primary breast AS. 

 

We next quantified tumor mutation burden (TMB) for all 47 AS samples. While the median TMB 

in the full cohort was 3.3 mutations per megabase (muts/Mb), HNFS AS samples showed a 

significantly higher median TMB than all other AS subclassifications (20.7 muts/Mb for HNFS 

versus 2.8 muts/Mb for non-HNFS; Wilcoxon’s rank sum test, p-value=0.095; Figure 3D). 

Moreover, 9 of the 10 samples with high TMB (≥10 muts/Mb) were HNFS AS (Figure 3D). Using 

mutational signature analysis to understand the possible origins of tumor hypermutation, we 
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found that all 9 of these HNFS samples with high TMB had a dominant mutational signature 

representing damage from ultraviolet (UV) light (COSMIC Signature 7)25 (Figure 3E, 

Supplemental Figure 6D). The single sample with high TMB that did not have a dominant UV 

light exposure mutational signature was from a patient with cutaneous radiation-associated AS 

(C-RAAS) of the breast who also has Lynch syndrome (Figure 3D-E; Supplemental Figure 6D). 

Our findings suggest that these HNFS AS tumors may have resulted from high TMB caused by 

UV damage due to sun exposure (Figure 3E, Supplemental Figure 6D).  Indeed, 10 out of the 

12 HNFS AS tumor samples in this study showed a dominant UV light exposure mutational 

signature, while none of the other 35 non-HNFS tumor samples harbored this as a dominant 

mutational signature (p-value=1.27x10-8) (Figure 3E, Supplemental Figure 6D). The fact that 

high TMB and a concomitant dominant mutational signature of UV light exposure occurs 

uniquely in HNFS AS suggest a common etiologic and genomic basis for HNFS AS, which is an 

AS subtype accounting for nearly 60% of AS cases26,27. 

 

Since high TMB has been reported as a possible biomarker for response to immune checkpoint 

inhibition28-34, we hypothesized that HNFS AS patients with high TMB might respond particularly 

well to immune checkpoint inhibitors (ICI). Medical record abstraction of radiation and all 

systemic treatments for AS received by the sequenced cohort (Figure 4A; Supplemental Figure 

8) revealed that 3 of 10 HNFS AS patients had received off-label anti-PD-1 therapy (Figure 4; 

Supplemental Table 5). Two of those HNFS patients had metastatic AS refractory to standard 

therapies and demonstrated an exceptional and durable response to pembrolizumab. After 

receiving several prior therapies for AS that failed, each of these patients has remained 

disease-free for more than two years after discontinuation of pembrolizumab without receiving 

any subsequent therapy for AS (Figure 4B, Supplemental Table 6). Of note, these two patients’ 

tumors had a high TMB (78.5 and 138.9 muts/Mb, respectively; Figure 3D and 4B) and a 

dominant UV light exposure mutational signature (Figure 3E). The third HNFS AS patient 
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received a single dose of anti-PD-1 treatment, which was stopped due to side effects; this 

patient went on to take other therapies, none of which resulted in any durable response 

(Supplemental Table 5). 

 

In contrast, 3 of the 26 non-HNFS AS patients (primary breast, cardiac, lung) received off-label 

use of an anti-PD-1 ICI treatment without clinical benefit (Supplemental Table 5). Tumor 

samples from these three non-HNFS AS patients had a TMB of less than 5 muts/Mb and did not 

demonstrate a dominant UV light exposure mutational signature (Supplemental Table 5). These 

data support the hypothesis that, as in melanoma35-38, nearly all HNFS angiosarcoma patients 

have UV damage-mediated high TMB and might benefit from ICI-directed immunotherapy.  

Public release of these early results from the ASCproject have helped catalyze the sarcoma 

community to design clinical trials focused on studying the impact of ICI-immunotherapy in 

HNFS AS. 

 

In summary, we illustrate that a patient-partnered approach that leverages social media 

(Supplemental Figure 9) can circumvent the challenges in studying a rare cancer normally 

encountered through traditional research models and can enable research in the extremely rare 

cancer angiosarcoma. Within only 18 months of the Angiosarcoma Project launch, we accrued 

the largest prospective AS cohort that has been reported to date and whose care for AS 

spanned 340 different institutions. This underscores how this unique research approach can 

more fully capture and integrate new kinds of valuable data, including off-label use of therapies, 

that better reflects the varied treatment protocols across different parts of the country, ranging 

from community hospitals to larger academic medical institutions. The use of online 

engagement and patient-driven registration may be predicted to skew the demographics of 

study subjects toward younger39 or less sick patients; however, we found that the average age 

at AS diagnosis in our cohort was just slightly lower than that of a single institution AS study2 (53 
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and 62 years, respectively) and that more than a third of patients (86/227) enrolled within one 

year of their primary AS diagnosis. 

 

This research approach allowed us to rapidly provide a more detailed clinically annotated-

genomic landscape of a rare cancer, AS, which identified significant recurrent genomic 

alterations. While angiosarcomas have been traditionally classified by site of origin or an 

environmental or iatrogenic exposure such as prior therapeutic radiation4-10, utilizing WES on 

this sized cohort allowed us to observe additional forms of AS subset stratification that correlate 

well on a molecular level. Importantly in a malignancy with few effective treatment options, we 

identified new potential therapeutic strategies for patients with particular AS subclassifications, 

including primary breast and HNFS AS, which has allowed the sarcoma community to explore 

developing new clinical trials. To ensure that the ASCproject data can be widely utilized by all 

researchers, it has been publicly released on cBioPortal.org at regular intervals on a pre-

publication basis, with additional data continuing to be released.  

 

The results of the ASCproject suggest that patient-partnered projects may offer a powerful 

approach for studying cancers. Indeed, the ASCproject is just one of a growing number of 

patient-partnered projects in different cancers that are part of the Count Me In initiative. The 

ability to rapidly acquire and analyze samples from geographically dispersed patients using the 

powerful patient-driven approach democratizes research, couples genomic and molecular data 

to real world patient outcomes, and should be explored in other patient populations that are 

currently challenging to study through traditional mechanisms.   
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Methods: 

 

Website: 

The ASCproject.org website was developed in collaboration with patients.  The website enables 

angiosarcoma patients across the United States and Canada to learn about the project, register 

for participation in this research study, sign an electronic informed consent, and provide 

information about themselves and their disease.   

 

Informed Consent: 

Upon completion of online study registration and an intake survey, patients provided informed 

consent and completed a medical release form in order to be enrolled in the study 

(Supplemental Table 6). Informed consent was provided by all patients via a web-based 

consent form as approved by the Dana-Farber/Harvard Cancer Center Institutional Review 

Board (DF/HCC Protocol 15-057B).  

 

Patient consent allowed the research study team to acquire copies of medical records for 

abstraction, to send a kit for saliva sample acquisition, to perform sequencing analysis, and to 

publicly share de-identified linked, clinical, genomic, and patient-reported data. Patients could 

also opt in to consent to provide a blood sample and/or allow procurement of archived tumor 

samples for sequencing of germline and tumor DNA. 

 

The analyses conducted for this manuscript were performed with information and samples from 

patients who consented between January 1, 2017 and September 30, 2018. 

 

Patient-Reported Data: 
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The patient-reported data for this study consisted of patient responses to the intake survey that 

accompanied the initial online project registration (Supplemental Tables 1, 7). All 17 questions 

in this intake survey were optional. Any survey question left blank was categorized as “Not 

Reported”. Information on format standardization and categorization of patient-reported data is 

described in the Supplemental Methods. 

 

Acquisition of Medical Records: 

For each enrolled patient who completed the medical release form, the study team requested 

medical records (MR) from all institutions and physician offices from which the patient indicated 

that they received clinical care. Study staff electronically faxed a detailed MR request form to 

each facility (Supplemental Table 7). Medical records that had not been received after several 

months were requested again in the same manner. Medical records were received by fax, mail, 

or secure electronic message. All medical records were saved to a secure drive. 

 

Acquisition of Patient Samples: 

Enrolled patients were mailed separate kits to provide saliva and blood samples. 

 

For saliva samples, patients were asked to provide 2 mL of saliva in the included DNA Genotek 

(Ottawa, Canada) Oragene Discover (OGR-600) tube40 and mail these kits that contain saliva 

samples in prepaid envelopes to the Broad Institute Genomics Platform (Cambridge, MA). 

 

If the enrolled participant consented to blood samples, patients were sent an empty 10 mL 

Streck (La Vista, NE) Cell-Free DNA BCT tube41,42 and were asked to bring the tube to their 

next regularly scheduled clinical appointment and request a courtesy draw. If a courtesy draw 

was not possible, patients were given the option to go to any Quest DiagnosticsTM facility in the 

U.S. with a voucher for a complimentary blood draw. Kits containing blood samples were mailed 
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back in prepaid envelopes to the Broad Institute Genomics Platform (Cambridge, MA). Blood 

samples received at the Broad Institute were logged by their unique barcodes and fractionated 

into plasma and buffy coats. Buffy coats were used to extract germline DNA for WES if no saliva 

sample was available. 

 

If the participant consented to the acquisition of tumor tissue, portions of stored clinical tumor 

tissue were requested. A form was faxed to each pathology department requesting one 

Hematoxylin and Eosin stain (H&E) slide as well as either 5-micron unstained slides (between 

8-20 slides) or one Formalin-Fixed Paraffin-Embedded tissue block. Requests explicitly stated 

that no sample should be exhausted in order to fulfill the request. Tissue samples were received 

at the Broad Institute by mail. Tissue samples received as blocks were labeled with unique 

numerical identifiers and cut into three 30-micron scrolls per block, which were then labeled with 

unique barcode identifiers. Tissue samples received as unstained slides were logged and 

labeled with unique barcode identifiers. Samples were submitted to the Broad Institute 

Genomics Platform for sequencing.  

 

Histological Evaluation: 

An H&E slide and three additional unstained slides of each tumor sample were sent for 

centralized expert pathology re-review (JLH) to confirm the diagnosis of angiosarcoma in each 

sample. Downstream analysis was performed only for samples confirmed to be angiosarcoma.  

 

Whole Exome Sequencing and Data Analysis: 

Samples were submitted to the Broad Institute Genomics Platform for processing and 

sequencing. DNA was extracted from primary and metastatic tumors (for somatic DNA), as well 

as saliva or blood plasma samples (for germline DNA), and WES was performed, as detailed in 

the Supplemental Methods. Sequencing data was processed and analyzed to identify somatic 
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single nucleotide variants, small insertions/deletions and copy number alterations using 

established cancer genomics pipelines at the Broad Institute (see Supplemental Methods).  

Recurrently altered genes were determined based on frequency of somatic alteration 

abundance in approximately 680 cancer related genes 

(https://cancer.sanger.ac.uk/census,https://pathcards.genecards.org/). Mutsig2CV was used to 

infer significantly recurrent mutated genes in the cohort13. Tumor mutation burden (TMB; 

mutation per megabase) was calculated as the total number of mutations (non-synonymous + 

synonymous) detected for a given sample divided by the length of the total genomic target 

region captured with whole exome sequencing43. SignatureAnalyzer44 was used to identify 

mutational signatures (as defined by COSMIC) within the cohort, which were further validated 

using DeconstructSig45 for individual tumor samples (see Supplemental Methods). All statistical 

analysis was performed using R.  

 

PIK3CA Analysis: 

To assess PIK3CA dependency, CRISPR gene knockout dependency data (Avana dataset), 

cancer cell line mutation calls, and associated cell line and mutation annotations were taken 

from the DepMap 19Q1 data release (https://depmap.org/portal/download/). CRISPR knockout 

gene dependency scores were compared for cell lines with wild-type PIK3CA to cell lines 

harboring hotspot PIK3CA mutations and to cell lines with PIK3CA mutations observed in this 

angiosarcoma cohort (see Supplemental Methods). Structural analysis to map PIK3CA 

mutations was performed using PyMOL and the p110alpha protein structure (PDB ID: 3HHM). 

The GENIE version 5 dataset was used to identify PIK3CA mutations across all cancer types 

(http://genie.cbioportal.org/)46. 

 

Medical Record Abstraction of Clinical Data: 
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Abstraction of each medical record was performed across 40 pre-determined clinical fields 

independently by two study staff abstractors (see Supplemental Methods). Quality control for 

concordance was performed by a third abstractor. If required, fields may have received 

additional review from physicians with expertise in the care of patients with angiosarcoma. 

Dates were abstracted to the greatest level of detail available in the record, and all dates 

reported publicly are based on time elapsed relative to the date of primary diagnosis, as 

described in Supplemental Methods. 

 

Data Sharing: 

The clinically annotated genomic dataset of the Angiosarcoma Project is shared publicly on 

cBioPortal on an ongoing and regular basis as the data is generated. To protect patient 

confidentiality, the study dataset is de-identified before it is shared, including the masking of 

patient IDs and the reclassification of unique patient-reported demographic responses as “other” 

(see Supplemental Methods).  
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Angiosarcoma Project Patient Partner Engagement Over Time

Figure 1.  Building a 
patient-partnered project in 
Angiosarcoma. (a) Homepage of 
the ASCproject.org website, 
which shows images and text 
designed with AS patients. To 
begin the project enrollment 
process, patients click the ‘count 
me in’ button seen in the upper 
right corner. (b) Map of the U.S. 
and Canada showing 
geographical locations of 
patients (solid orange circles) 
and loved ones (open blue 
circles) who registered for the 
ASCproject between January 1, 
2017 and September 30, 2018. 
(c) Schematic detailing the 
process of the Angiosarcoma 
Project (orange boxes indicate 
patient steps; green boxes 
indicate steps taken by study 
team members). (d) Plot 
depicting the cumulative totals of 
patient-driven aspects of the 
ASCproject between March 2017 
and September 2018, which 
includes numbers of patients 
registering for the ASCproject 
(purple), patient intake surveys 
completed (green), patient 
consent forms signed (orange), 
and receipt at the Broad Institute 
of saliva kits (red), AS tumor 
tissue samples (blue), and blood 
kits (brown). 15 AS patients 
served as beta-testers of the 
website before the public launch 
of the ASCproject in March 2017, 
resulting in non-zero values at 
March 1, 2017. 
AS, Angiosarcoma; ASCproject, 
The Angiosarcoma Project.
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Figure 2. Patient-reported data in the 
Angiosarcoma Project. Patients first complete 
an intake survey during the Angiosarcoma 
Project registration process. Surveys completed 
by the 227 patients from the U.S. and Canada 
who consented for the ASCproject as of 
September 30, 2018 were analyzed. (a) A 
histogram showing the age in years of patients 
at initial diagnosis with AS (mean from 222 
patients: 53.1 years). These values were 
calculated from patient-provided date of birth 
and date of initial AS diagnosis. If insufficient 
information was provided to calculate this value, 
patient age was classified as ‘Unknown’ (5 
patients). (b) A histogram showing the years 
elapsed between patients’ initial diagnosis with 
AS and patients’ registration in the ASCproject 
(mean from 223 patients: 3.6 years). These 
values were calculated from the date of project 
registration and the patient-provided date of 
initial AS diagnosis. If insufficient information 
was provided to calculate this value, it was 
classified as ‘Unknown’ (4 patients). (c) A 
histogram showing the patient-reported location 
of angiosarcoma at the time of last intake 
survey completion. An option was provided for 
patients to report no evidence of disease. 
Patients with more than one location of AS were 
able to provide more than one site. 9 patients 
responded ‘Don’t Know’, and 6 patients did not 
respond to this question (‘Not Reported’).
ASCproject, The Angiosarcoma Project; AS, 
Angiosarcoma.
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Figure 3. Genomic landscape of angiosarcoma reveals distinct molecular patterns. (a) A co-mutation plot showing somatic alterations and copy number changes
in frequently altered genes and other AS associated genes across the cohort of 47 samples from 36 AS patients. Information for each sample is shown in the 
upper panels including age at AS diagnosis of the patient from whom the sample is derived (top), categorization of each sample to the 8 subclassification of AS 
(middle), and the tumor mutation burden (TMB) in mutations per megabase (bottom). Patient’s sex is indicated in the lower panel of the plot. (b) Diagram 
indicating the location and count of mutations occurring in PIK3CA in this AS cohort. (c) Crystal structure of p110alpha protein (PDB ID: 3HHM) in wheat cartoon, 
with red spheres demarcating residues found to be mutated in angiosarcoma tumor samples and the H1047 canonical mutation (yellow spheres). A closer view 
of the structure with mutations labeled in the regulatory arch region shows a cluster of mutations proximal to H1047 (right hand side box). A 90 degree rotation of 
this structure is shown in the lower panel. (d) Plot showing the distribution of TMB in mutations per megabase (y-axis; range:0.4-138.9) across tumor samples 
stratified by the 8 different subclassifications of AS (x-axis). Tumors from the HNFS subclassification exhibit the highest median tumor mutation burden of 20.7 
muts/Mbs, which is significantly higher than the median TMB of cutaneous RAAS (3.7 muts/Mbs) and primary breast AS (1.7 muts/Mbs), (P value = 6.20 x 10-3 
and P value = 1.50 x 10-4, respectively). (e) Plot depicting the mutational signature activities across all 47 AS tumor samples. The top panel of counts indicates 
the total number of mutations (y-axis) attributed to each mutational signature activity within each AS tumor sample (x-axis).The middle panel displays the 
normalized distribution of signature activities for each sample. The bottom panel shows the associated AS subclassification of each sample. UV light exposure 
mutational signature (COSMIC Signature 7; indicated in yellow) is dominant in HNFS tumor samples, which also exhibit high tumor mutation counts. 
AS, Angiosarcoma; HNFS, head, neck, face, scalp; RAAS, radiation-associated angiosarcoma AS; TMB, tumor mutation burden.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/741744doi: bioRxiv preprint 

https://doi.org/10.1101/741744


PA
C

LI
TA

XE
L

D
O

XO
R

U
BI

C
IN

G
EM

C
IT

AB
IN

E

D
O

C
ET

AX
EL

IF
O

SF
AM

ID
E

C
LI

N
IC

AL
 T

R
IA

L

O
LA

R
AT

U
M

AB

PE
M

BR
O

LI
ZU

M
AB

PA
ZO

PA
N

IB

BE
VA

C
IZ

U
M

AB

N
O

 M
ED

S

C
AP

EC
IT

AB
IN

E

LI
PO

SO
M

AL
D

O
XO

R
U

BI
C

IN

PR
O

PR
AN

O
LO

L

SO
R

AF
EN

IB

C
R

IZ
O

TI
N

IB

C
YC

LO
PH

O
SP

H
AM

ID
E

D
AC

AR
BA

ZI
N

E

N
IV

O
LU

M
AB

R
EG

O
R

AF
EN

IB

SI
R

O
LI

M
U

S

TE
M

O
ZO

LI
M

ID
E

0

5

10

15

20

25

N
um

be
r o

f P
at

ie
nt

s
Number of Patients on Different Therapies

Clinical 
Trials
(85 days)

Crizotinib
(27 days)

Cyclophosphamide
(63 days)

Clinical Trial
(41 days) 

451 days
after 1º Dx

Ongoing 
complete 
response 
with NED

Pembrolizumab
(219 days)

No treatment for angiosarcoma 
(767 days, at time of last record)

601 days
after 1º Dx

Paclitaxel
Protein Bound
(60 days)

Pembrolizumab
(249 days)

No treatment for angiosarcoma 
(836 days, at time of last record)Pembrolizumab

(30 days)
No treatment for 
angiosarcoma 
(213 days)

Clinical 
Trial
(120 days)

Paclitaxel
Protein Bound
(216 days)

Patient: ASCProject_KxFGsofW

Patient gender: Male
Site of primary AS: Scalp
Age at primary AS diagnosis: 62 years
Diagnosis of metastatic AS: 574 days after 1º Dx
Biopsy sequenced: local recurrence on scalp (450 days after 1º Dx)
Tumor Mutation Burden: 78.5 Mut/Mb
Dominant mutational signature: UV light exposure

Patient: ASCProject_dyhLT8sG

Patient gender: Male
Site of primary AS: Nose
Age at primary AS diagnosis: 58 years
Diagnosis of metastatic AS: 414 days after 1º Dx
Biopsy sequenced: mandibular node metastasis (414 days after 1º Dx)
Tumor Mutation Burden: 138.9 Mut/Mb
Dominant mutational signature: UV light exposure
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Figure 4: Treatments received by the sequenced AS patient cohort. (a) A histogram showing the number of patients for whom abstracted 
medical records indicate they received the given treatment for AS listed on the x-axis. This graph depicts the treatments taken by 32 AS 
patients, as well as 3 patients who received no medications (’No Meds’) per their medical records. There was 1 patient with insufficient 
medical records to abstract treatment data, who is not included in this chart. (b) Timeline of treatments received by two HNFS AS patients 
(ASCProject_KxFGsofWAS and ASCProject_dyhLT8sG) in the metastatic setting who each had a complete response to pembrolizumab, as 
determined by obtained medical record notes. Any time period greater than 200 days in which these patients received no therapy for AS is 
depicted. These two patients also exhibited high tumor mutational burden and dominant UV light exposure mutational signature. 
No Meds, No Medications; NED, No Evidence of Disease; AS, Angiosarcoma; 1º Dx, Primary Diagnosis; HNFS, head, neck, face, scalp.
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