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ABSTRACT 32 

 A significant bottleneck in synthetic biology involves screening large genetically encoded 33 

libraries for desirable phenotypes such as chemical production. However, transcription factor-34 

based biosensors can be leveraged to screen thousands of genetic designs for optimal chemical 35 

production in engineered microbes. In this study we characterize two glutarate sensing 36 

transcription factors (CsiR and GcdR) from Pseudomonas putida. The genomic contexts of csiR 37 

homologs were analyzed and their DNA binding sites were bioinformatically predicted. Both 38 

CsiR and GcdR were purified and shown to bind upstream of their coding sequencing in vitro. 39 

CsiR was shown to dissociate from DNA in vitro when exogenous glutarate was added, 40 

confirming that it acts as a genetic repressor. Both transcription factors and cognate promoters 41 

were then cloned into broad host range vectors to create two glutarate biosensors. Their 42 

respective sensing performance features were characterized, and more sensitive derivatives of the 43 

GcdR biosensor were created by manipulating the expression of the transcription factor. Sensor 44 

vectors were then reintroduced into P. putida and evaluated for their ability to respond to 45 

glutarate and various lysine metabolites. Additionally, we developed a novel mathematical 46 

approach to describe the usable range of detection for genetically encoded biosensors, which 47 

may be broadly useful in  future efforts to better characterize biosensor performance. 48 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/557751doi: bioRxiv preprint 

https://doi.org/10.1101/557751
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 49 

KEYWORDS 50 

Biosensor, Transcription Factor, Pseudmonas putida, Glutarate, Monte Carlo Markov Chain 51 

 52 

INTRODUCTION 53 

A rate limiting step in the design-build-test-learn cycle is often the test phase, wherein 54 

hundreds or thousands of genetic designs need to be evaluated for their productivity 1,2. Though 55 

recent advances in analytical chemistry have dramatically increased sample throughput 3, 56 

transcription factor-based biosensors still offer multiple advantages over traditional 57 

chromatographic and mass-spectrometry based detection methods 4,5. One of the most attractive 58 

benefits is the ability to rapidly screen constructs for the production of the target compounds via 59 

either plate-based or flow-cytometry-based assays 1–3, which increases throughput by orders of 60 

magnitude compared to mass-spectrometry based methods. Additionally, biosensors may offer 61 

unmatched sensitivity towards specific ligands, with some sensors having picomolar affinity 3. 62 

The evolution of diverse microbial metabolism has provided researchers with the ability to sense 63 

a wide array of ligands, ranging from complex natural products 6,7 to small central metabolites 64 

1,8.     65 

Diacids, polyamines, and lactams are petrochemical derivatives  used to produce various 66 

polyester and nylon fibers  9,10. In an effort to make production of these chemicals sustainable, 67 

many groups have developed engineered microbes to synthesize these precursors 11–14. The L-68 

lysine metabolism of Pseudomonas putida has been leveraged both in the native host and 69 

heterologously to produce valerolactam 15 the diacid glutarate 16,17. Recently, this utility has 70 

inspired much work to uncover missing steps in the lysine catabolism of P. putida. These 71 
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missing steps included the discovery that glutarate is not only catabolized through the previously 72 

known coA-dependent route to acetyl-coA, but is also catabolized through a coA-independent 73 

route to succinate 16,18 (Figure 1). Recent work has also demonstrated that both glutarate 74 

catabolic pathways are highly upregulated in the presence of glutarate 18. The Pseudomonas 75 

aeruginosa homolog of the ketogenic pathway regulator (GcdR) 19and  the Escherichia coli 76 

homolog of the  glucogenic pathway regulator (CsiR) have both been characterized. Furthermore 77 

a rigorous investigation of the P. putida homologs has now been reported 20.. 78 

 79 
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Figure 1: A) The known lysine catabolism of P. putida. Dashed box shows the two known 80 

pathways of glutarate catabolism in P. putida. Highlighted in red is the CoA-independent 81 

route of glutarate catabolism, in blue the CoA-dependent route. Enzymes in the 82 

metabolism are DavB - L-lysine monooxygenase, DavA - 5-aminopentanamidase, DavT - 5-83 

aminovalerate aminotransferase, DavD - glutaric semialdehyde dehydrogenase, CsiD - 84 

glutarate hydroxylase, LghO - L-2-hydroxyglutarate oxidase, GcdG glutaryl-coA 85 

transferase, GcdH -  glutaryl-CoA dehydrogenase, Alr - alanine racemase, AmaD - D-lysine 86 

oxidase, DpkA - Δ1-piperideine-2-carboxylate reductase, AmaB - pipecolate oxidase, AmaA 87 

- L-aminoadipate-semialdehyde dehydrogenase, PP_4108 - L-2-aminoadipate 88 

aminotransferase, HglS - D-2-hydroxyglutarate synthase, PP_4493 - D-2-hydroxyglutarate 89 

dehydrogenase. B) Operonic structure of the two routes of glutarate metabolism in P. 90 

putida. 91 

In this work we sought to also characterize the two putative local regulators of glutarate 92 

catabolism in P. putida, csiR and gcdR. First, we compared the genomic context of csiR 93 

homologs across bacteria to bioinformatically predict a conserved DNA binding site. We then 94 

biochemically and genetically characterized both regulators. Secondly, we developed a novel 95 

mathematical approach to rigorously determine the detection ranges for genetically encoded 96 

biosensors that can be used to systematically compare biosensors. .  Finally, we introduced RFP 97 

transcriptional-fusions of the promoter for both catabolic pathways into P. putida and evaluated 98 

their induction upon the addition of various lysine metabolites.  99 

RESULTS 100 

Genomic contexts of csiR and gcdR homologs and prediction of P. putida binding sites 101 
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Work in Pseudomonas aeruginosa has characterized the GcdR regulation of ketogenic 102 

glutarate metabolism, and shown that the binding site is conserved across multiple bacterial 103 

species 19. While binding sites for CsiR in E. coli have been identified, it was yet to be 104 

investigated whether there is a conserved binding site for homologs across bacterial species 21. In 105 

order to identify conserved binding sites of CsiR homologs, we compared the syntenic genomic 106 

contexts of 12 selected genomes that contained neighboring csiD and csiR homologs. Genes 107 

encoding csiR were found in two distinct genomic contexts, either transcribed divergently from 108 

csiD as found in P. putida, or transcribed as the last gene in the csiD operon as in E. coli (Figure 109 

2).   The genomic regions upstream of the csiD homolog were extracted and Multiple EM for 110 

Motif Elicitation (MEME) was used to identify a conserved CsiR binding motif 22. A consensus 111 

A(A/G)AAATCTAGA(C/T)ATTTT motif was identified upstream of each csiD homolog. 112 

Previously, footprinting assays in E. coli BW25113 revealed two primary and two secondary 113 

bindings sites with the sequences TTGTN5TTTT and ATGTN5TTTT respectively 21. While this 114 

manuscript was under review Zhang et al. demonstrated via DNase I footprinting that CsiR does 115 

indeed binding at two locations upstream of csiD, including the conserved  116 

A(A/G)AAATCTAGA(C/T)ATTTT motif 20. Our consensus motif agrees closely with the 117 

secondary binding site identified, and highly suggests that the binding site of CsiR is conserved 118 

across the bacteria where homologs are present. 119 
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 120 

 Figure 2: Genomic contexts of csiR homologs and predicted binding regions: Phylogeny of 121 

assorted gammaproteobacteria and the location of their csiD operons. MEME analysis of 122 

the intergenic regions upstream of the csiD operon resulted in the sequence motifs depicted 123 

below the tree.  124 

Biochemical characterization of CsiR and GcdR 125 

 To determine if the P. putida CsiR also acts as a regulator and to identify its putative 126 

binding sites, we biochemically characterized this protein using electrophoretic mobility shift 127 

assays (EMSAs). The CsiR protein was purified (Figure S1) and incubated with DNA probes 128 

consisting of the intergenic region between csiR and csiD. The assay showed multiple binding 129 
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sites in this intergenic region, as four distinct bands appeared. These results appear to confirm 130 

previous work in E. coli in which four binding sites of the E. coli CsiR homolog were observed 131 

21. CsiR had a high affinity for the DNA probe, with a calculated Kd of approximately 30 nM 132 

(Figure 3Aa), which is similar to the 10 nM CsiR/DNA Kd of the E. coli CsiR homolog, and 133 

nearly identical to the results of Zhang et al. which showed complete probe shift at 6-fold molar 134 

excess CsiR 20,21. Purified GcdR (Figure S1) also bound to its cognate probe with a single 135 

distinct shift and had an an estimated Kd of approximately 62.5 nM (Figure 3A)  19.  Again, these 136 

results were consistent with Zhang et al., who showed near complete probe shifts at 8-fold molar 137 

excess GcdR 20. As CsiR is a GntR family transcriptional regulator, many of which act as 138 

repressors 23, we evaluated whether glutarate would decrease the DNA binding affinity of CsiR. 139 

EMSA assays were repeated in the presence of increasing glutarate concentrations. Analysis by 140 

gel electrophoresis revealed increasing quantities of free probe as glutarate concentrations 141 

increased (Figure 3B). These results suggest that the P. putida CsiR is a glutarate-responsive 142 

repressor of the csiDlhgO operon21. Zhang et al. also showed that in addition to dissociating from 143 

the DNA probe at high concentrations of glutarate, CsiR was also responsive to 2-144 

hydroxyglutarate (2HG) 20.  145 
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 146 

Figure 3: Biochemical characterization of CsiR and GcdR. (A) EMSA of either purified 147 

CsiR (left) or GcdR (right) incubated with 10 nM fluorescent probe of intergenic region 148 

between csiR and csiD. Concentrations of CsiR protein range from 0 nM to 250 nM. FP 149 

denotes free probe (B) EMSA showing 100 nM CsiR and 10 nM fluorescent probe 150 

incubated with glutarate from concentrations of 0 mM to 5 mM. Far left lane shows free 151 

probe with no CsiR. FP denotes free probe. 152 

Development of two glutarate biosensor vectors  153 
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In order to evaluate CsiR and GcdR as biosensors, we cloned both the regulator and 154 

intergenic region of both the coA-independent and coA-dependent glutarate catabolism pathways 155 

upstream of RFP on the broad host range vector pBADT. E. coli DH10B harboring either vector 156 

were grown for 24 hours in EZ-Rich medium supplemented with concentrations of glutarate 157 

ranging from 0.00015 mM to 2.5 mM, after which both OD600 and RFP fluorescence were 158 

measured.  At 2.5 mM glutarate, the GcdR and CsiR vectors demonstrated a maximal induction 159 

over background of 55.5 and 1.5 times over uninduced cells, respectively; however, the CsiR 160 

system showed considerable background signal (Table 1). Normalized RFP expression for each 161 

sensor was fitted to the Hill equation to derive biosensor performance. The GcdR system was 162 

found to have a Hill coefficient of 1.33, a Kd of 0.32 mM, and a maximum predicted normalized 163 

RFP expression of 5403, while the CsiR system was shown to have a Hill coefficient of 1.61, a 164 

Kd of 0.016 mM, and a maximum predicted normalized RFP expression of 3223  (Figure 4A). To 165 

test for the ability of CsiR or GcdR to sense other diacids, E. coli harboring either vector were 166 

grown in LB medium with 5 mM to 0.00015 mM of either succinate, adipate, or pimelate. While 167 

pimelate and succinate were unable to induce either system, 2.5 mM adipate induced the CsiR 168 

biosensor ~0.2x, and induced the GcdR system ~4x over background (Figure S2). 169 

 Given that GcdR showed a greater dynamic and substrate range with no response to 2-170 

HG, we tested whether the performance characteristics of these GcdR system could be altered.  171 

The promoter region 50 bp upstream sequence of gcdR in the GcdR-sensing vector was replaced 172 

by three different previously characterized constitutive promoters from the Anderson collection 173 

(J23101, J23110, and J23113), representing a high (1791 RFP AU), medium (844 RFP AU) , and 174 

low (21 RFP AU) strengths 24. All of the engineered GcdR systems showed reduced limits of 175 

detection and increased sensitivity to glutarate compared  to natively regulated GcdR, with each 176 
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new vector showing a decreased Kd (J23113 : 0.008 mM, J23110 : 0.01 mM, J23101 : 0.01 mM) 177 

(Figure 4B).All engineered GcdR vectors showed ~4x the maximal expression compared to the 178 

native system (Figure 4B), but also had nearly 30x greater basal RFP expression (Table 1).  179 

While all three engineered GcdR vectors performed similarly, the limit of detection of J23110 180 

was 5x less than the other two vectors, likely due to the lower basal expression of the vector 181 

(Table 1). 182 

 183 

Figure 4: Development of glutarate responsive reporter vectors for E. coli. (A) 184 

Fluorescence data fit to the Hill equation to derive biosensor performance characteristics 185 

for native CsiR and GcdR systems. Points show individual experimental measurements. 186 
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Shaded area represents (+/-) one standard deviation, n=4. (B) Fluorescence data fit to the 187 

Hill equation to derive biosensor performance characteristics for the engineered GcdR 188 

systems. Points show individual experimental measurements. Relative promoter strength is 189 

shown to the right. Shaded area represents (+/-) one standard deviation, n=4. 190 

Table 1: Biosensor performance parameters with standard deviations. Sensitivity: Hill 191 

coefficient of fitted data. Kd: Concentration of ligand to achieve half predicted maximal 192 

RFP expression. Max (Normalized RFP): Predicted maximal RFP expression after OD 193 

normalization and subtraction of uninduced expression. Dynamic range: Minimal and 194 

maximal experimental range of OD normalized RFP. Induction: Ratio of maximal 195 

experimental induction over basal expression. Inducer Range: Experimentally determined 196 

range of glutarate that can detected with biosensor.  197 

Report

er 

Sensitivi

ty 

Kd (mM) Max 
  (Normalized 
RFP) 

Dynamic Range 
(RFP/OD600) 

Induct
ion 

Inducer 
  Range 
(mM) 

CsiR-
Native 

1.61 (+/- 
0.16) 

0.016 (+/-
0.002) 

3223 (+/- 72) 5704-8357 1.5 0.005-0.0195 

GcdR-
Native 

1.33 (+/- 
  0.03) 

0.32 (+/- 
0.006) 

5353 (+/- 38.5) 97-5403 55.5 0.01-2.5 

GcdR-
J23113 

1.64  
(+/- 
0.09) 

0.008 (+/- 
0.0003) 

20896 (+/- 
184) 

3272-24027 7.3 0.001-0.0195 

GcdR-
J23101 

1.74 (+/- 
0.07) 

0.01 (+/- 
0.0003) 

18881 (+/- 
131) 

2428-20099 8.3 0.001-0.0195 
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GcdR-
J23110 

1.42 (+/- 
0.09) 

0.01 (+/- 
0.0004) 

20113 (+/- 
214) 

2113-20690 9.8 0.0002-
0.0195 

 198 

  Developing metrics to quantify biosensor performance 199 

In previously published work the mathematical basis for determining linear range or limit 200 

of detection has often been obscure and non-systematic 1,8,25. Furthermore, a linear range may not 201 

be able to adequately capture the performance characteristics of a biosensor over the range of 202 

ligand concentrations where the sensor can still resolve differences. To address these 203 

deficiencies, we sought to develop a mathematical method for evaluating the sensing 204 

performances of genetically encoded transcription factors fitted to the Hill equation. Our 205 

approach uses a probabilistic model to relate inducer concentration and corresponding 206 

fluorescence measurements fit to the Hill equation assuming: (1) fluorescence measurements at a 207 

particular concentration are normally distributed, (2) the variance of fluorescence measurements 208 

is roughly constant over the range of measured values, and (3) the relationship between ligand 209 

concentrations and fluorescence can be well modeled using the Hill function. This model allows 210 

us to estimate the concentration of  ligand compatible with our observed fluorescence data given 211 

the variance of the data as determined via Markov Chain Monte Carlo (MCMC) sampling 26. A 212 

detailed methodological description can be found in the supplemental Jupyter notebook, which 213 

can be used to analyze other biosensor data. 214 

 By applying MCMC sampling to the model of our native GcdR biosensor, we can readily 215 

produce the probability density functions (i.e. the probability that the ligand produces the 216 

observed fluorescent response) of specific ligand concentrations (Figure 5A). At glutarate 217 

concentrations of 0.25 mM, 0.68 mM, and 1.125 mM associated fluorescence values can be 218 
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resolved from one another (no overlap), however the biosensor is less able to resolve ligand 219 

concentrations between 1.5 mM and 2 mM (Figure 5A). When we apply MCMC sampling to the 220 

GcdR sensor being driven by the J23101 promoter, we observe that this system possesses the 221 

resolution to distinguish between 0.004 mM and 0.011 mM, but is less able to distinguish 222 

between higher concentrations (Figure 5B). A biosensor’s resolution window, defined as the 223 

width of the 95% prediction interval of inducer concentrations derived from a set of fluorescence 224 

measurements, can then be expressed as a continuous function across a range of ligand 225 

concentrations for a given biosensor (Figure 5C). Below concentrations of ~0.01 mM glutarate 226 

the J23101 GcdR biosensor has greater resolution, while at higher concentrations the native 227 

GcdR sensor system has greater resolution(Figure 5C). Another important aspect of our approach 228 

is that it allows for the resolution window to be calculated as a function of the number of 229 

replicates in a biosensor experiment. If either variance decreases or sample size increases, the 230 

resolution of a biosensor also increases. By simulating sample sizes of 1 through 100 via MCMC 231 

sampling, the theoretical resolution of the native GcdR dramatically increases (Figure 4D). This 232 

“power” analysis may serve as a guide for experimental design when a certain biosensor 233 

resolution is required for a given application. We believe this approach may be generally useful 234 

to any dataset derived from fluorescent transcription factor based biosensors. To demonstrate this 235 

we also applied our MCMC methodology to two well characterized BglBrick vectors, pBbBSk-236 

rfp and pBbBEk-rfp, which express RFP from arabinose-inducible vectors from SC101 or ColE1 237 

origins respectively (Figure S3). Fluorescence data from each vector (Figure S3A), was fit to the 238 

Hill question (Figure S3B), and demonstrated that both vectors had the highest resolution at an 239 

arabinose concentration of ~0.1% w/v (Figure S3C).    240 

   241 
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 242 

Figure 5: Development of analytics for biosensor performance. Probability density 243 

functions of fluorescence values compatible with concentrations of glutarate for selected 244 

ligand concentrations modelled to the Hill equation of the native GcdR system (A) or the 245 

GcdR J23101 system (B). (C) Resolution of native GcdR or GcdR J23101 biosensor systems 246 

over a select range of glutarate concentrations. (D) Theoretical resolution of the GcdR 247 

native biosensor with differing number of replicates. 248 

Responsiveness of glutarate biosensors to lysine metabolites in P. putida 249 

To assess the ability of these vectors to function in P. putida both plasmids were 250 

introduced into either wild type P. putida or a strain with both known pathways of glutarate 251 

catabolism deleted (ΔcsiDΔgcdH - referred to as Δglutarate ). The resulting strains were grown 252 
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in MOPS minimal medium supplemented with 10 mM glucose and glutarate ranging from 5 mM 253 

to 0.01 mM for 24 hours. Both vectors responded to increased concentrations of exogenously 254 

applied glutarate, though the GcdR vector had ~10x greater fluorescence than the CsiR vector 255 

(Figure 6A). The Δglutarate strain showed increased levels of RFP induction using both the CsiR 256 

and GcdR systems, suggesting both vectors are able to sense increased levels of glutarate (Figure 257 

6A). To further examine the ability of these vectors to probe P. putida lysine metabolism, both 258 

were also introduced into a ΔdavT strain, which is unable to metabolize 5-aminovalerate to 259 

glutarate semialdehyde (Figure 1A) and therefore precludes glutarate production. When wild 260 

type, ΔdavT, and Δglutarate strains harboring either the CsiR or GcdR systems were grown on 261 

minimal medium supplemented with 10 mM glucose and 10 mM 5-aminovalerate, both vectors 262 

in the ΔdavT strain showed decreased fluorescence compared to wild type, while vectors in the 263 

Δglutarate strains showed increased fluorescence (Figure 6B). Measurement of intracellular 5-264 

aminovalerate showed significant pools of the metabolite in the ΔdavT strains (~1500 265 

uM/OD600) with no detectable 5-aminovalerate in the other genetic backgrounds (Figure 6C). 266 

These results highly suggest that both GcdR and CsiR are insensitive to 5-aminovalerate, an 267 

essential feature of these sensors if they are to be used in organisms that derive glutarate from a 268 

5-aminovalerate precursor. 269 

To evaluate the ability of both reporter vectors to monitor the catabolism of other lysine 270 

metabolites, wild-type P. putida harboring either GcdR or CsiR were grown in minimal media 271 

supplemented with either 10 mM glucose, L-lysine, D-lysine, 5-aminovalerate, or 2-272 

aminoadipate for 48 hours with OD600 and RFP fluorescence being measured continuously 273 

(Figure S4A and Figure S4B ). Neither vector was induced when the bacterium was grown on 274 

glucose (Figure S4). The GcdR vector was strongly induced when grown on  5-aminovalerate, 275 
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and to a lesser extent 2-aminoadipate, D-lysine, and L-lysine (Figure S4A).  Conversely, the 276 

strain harboring the CsiR vector only displayed induction of RFP above background when grown 277 

on 5-aminovalerate (Figure S4B). While 5-aminovalerate was able to induce RFP induction in 278 

the strain harboring the CsiR vector, induction was extremely limited compared to induction of 279 

RFP from the GcdR vector (Figure S4). 280 

 281 
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Figure 6: Performance of CsiR and GcdR biosensors in P. putida. (A) RFP expression of 282 

either wild type P. putida or P. putida with the ability to metabolize glutarate knocked out, 283 

measured with either the CsiR or GcdR biosensor under different external glutarate 284 

concentrations. Error bars represent 95% CI, n=4 (B) RFP expression of wild type, ΔdavT, 285 

or Δglutarate strains of P. putida harboring either the CsiR or GcdR biosensor when grown 286 

on 10 mM glucose and 10 mM 5-aminovalerate (5AVA). Error bars represent 95% CI, 287 

n=3. (C) Intracellular concentration of 5-aminovalerate of wild type, ΔdavT, or Δglutarate 288 

strains of P. putida harboring either the CsiR or GcdR biosensor when grown on 10 mM 289 

glucose and 10 mM 5-aminovalerate (5AVA). Error bars represent 95% CI, n=3. 290 

DISCUSSION 291 

Recent advances in high-throughput functional genomics have allowed researchers to 292 

rapidly identify novel metabolic pathways, and in turn infer the function of novel transcription 293 

factors 27,28. Rigorous characterization of these regulators is a critical step to developing novel 294 

parts for synthetic biology as well as useful tools for metabolic engineering. The discovery of 295 

two distinct pathways for glutarate catabolism within P. putida, regulated by independent 296 

transcription factors, presents an interesting opportunity to compare and contrast the relative 297 

sensing properties of each system. 298 

CsiR and GcdR homologs have now been characterized thoroughly in multiple bacteria, 299 

and have demonstrated that CsiR acts as a repressor of csiD whereas GcdR acts as a positive 300 

regulator of gcdHG 19–21. Our bioinformatic analyses suggest that the binding site of CsiR is 301 

highly conserved amongst bacteria that possess the regulator (Figure 2). While our CsiR 302 

biosensor was shown to have a lower limit of detection of glutarate than the unengineered GcdR 303 

biosensor (Table 1), Zhang et al. demonstrated that CsiR is also responsive to 2-HG 20. Given 304 
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that the GcdR biosensor can readily be engineered to have lower limits of detections, it is likely 305 

the better choice to detect glutarate via a genetically encoded transcription factor.  306 

 307 

Multiple works have demonstrated that engineering changes to the expression of a 308 

transcription factor, the responsiveness of the transcriptional output can also be changed 31,32. . 309 

By engineering the promoter of the gcdR transcription factor, the sensitivity of all the vectors 310 

were increased from ~1.3 to ~1.7, while the Kd was lowered from 0.32 mM to ~0.01 mM (Figure 311 

4B). This sensitivity to glutarate may make this vector useful in prototyping novel routes to 312 

biological production of the C5 diacid. However at high concentrations of adipate (>1.25 mM) 313 

GcdR is also activated, which may confound results (Figure S2).  314 

While our preliminary work with exogenously applied ligand is promising, further work 315 

remains to be done to evaluate the ability of these sensors to detect flux of glutarate in living 316 

cells.  Multiple recent publications have shown that glutarate metabolism is widespread in 317 

bacteria, and evaluating the ability of the CsiR and GcdR sensors to measure this flux will 318 

require careful experimentation with C13 labelled substrates. Another possible confounding 319 

factor in utilizing these vectors is the presence of CsiR or GcdR binding sites in the host 320 

organism. The overexpression of either transcription factor may misregulate host metabolism. 321 

This hypothesis is supported by the differences in growth observed between GcdR and CsiR 322 

biosensor containing P. putida when grown on lysine metabolites (Figure S4).   323 

The overarching goal of synthetic biology is to apply engineering principles to biological 324 

systems so that outcomes of genetic manipulation can become more predictable and repeatable 325 

33,34. While there has been a large body of work devoted to the characterization and application 326 

of biosensors, there has been conspicuously few attempts to rigorously describe at which ligand 327 
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concentrations a biosensor is useful. Often the analysis merely states limit of detection, and a 328 

‘linear range’ with little in terms of a mathematical justification. Here we present an alternative 329 

metric that allows for the calculation of ligand resolution across the entire range of detection for 330 

a biosensor. By leveraging a MCMC approach to predicting ligand ranges compatible with 331 

fluorescence values, researchers can more precisely describe a biosensors performance and 332 

identify whether a given biosensing system is potentially useful for a given engineering task. The 333 

MCMC approach also allows for the simulation of an increasing number of replicates, which 334 

could inform the researcher of the replicates that may be required in an experimental design to 335 

achieve a desired level of resolution. We hope that this initial work to better characterize 336 

biosensor performance inspires other groups to develop even more sophisticated methods of 337 

analysis.           338 

In addition to their utility as biosensors for metabolic engineering, these sensors may be a 339 

valuable tool in studying the carbon utilization in the native host P. putida. Work conducted here 340 

demonstrates the ability of both CsiR and GcdR sensors to distinguish between glutarate 341 

accumulating and mutants blocked in their ability to metabolize 5-aminovalerate to glutarate 342 

(Figure 6). Lysine metabolism in P. putida is isomer specific, with each isomer being degraded 343 

by a separate catabolic pathway 18. While cross-feeding between the pathways has been proposed 344 

previously 35, recent work by our group has proposed a molecular mechanism for metabolite 345 

exchange between the D- and L- catabolic pathways 18. The exchange relies on the 2-oxoacid 346 

promiscuity of the non-heme Fe(II) oxidase CsiD, which normally catalyzes the hydroxylation of 347 

glutarate using 2-ketoglutarate as a cosubstrate to yield 2-hydroxyglutarate and succinate. CsiD 348 

can also use 2-oxoadipate, a D-lysine catabolic intermediate, as a 2-oxoacid cosubstrate to yield 349 

2-hydroxyglutarate and glutarate as products. The glutarate from this reaction could then proceed 350 
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down the L-lysine catabolic pathway. When 2-aminoadipate was fed into P. putida harboring the 351 

GcdR vector, fluorescence was observed in stationary phase. As 2-aminoadipate immediately 352 

precedes 2-oxoadipate in the D-lysine catabolic pathway, these results support the hypothesis 353 

that CsiD could act as a bridge between the two catabolic pathways. There has been substantial 354 

interest in developing microbes to produce glutarate, with strains of E. coli, P. putida, and 355 

Corynebacterium glutamicum all engineered to produce high titers 16,36,37. Further engineering of 356 

the GcdR system may be able to extend the resolvable range to higher concentrations, furthering 357 

its utility as a tool to achieve even higher titers of glutarate. Though glutarate is a valuable 358 

commodity chemical, the C6 diacid adipate is used in much greater quantities primarily as a 359 

monomer used to make nylons 33.  This slight sensitivity of GcdR toward adipic acid is 360 

especially interesting, as recent work has demonstrated the effectiveness of evolving 361 

transcription factors to sense non-native ligands 6. Such methods could be applied to GcdR in 362 

order to expand its utility in sensing other industrially important diacids.  363 

METHODS 364 

Media, chemicals, and culture conditions 365 

E. coli cultures were grown in Luria-Bertani (LB) Miller medium (BD Biosciences, 366 

USA) at 37 °C while P. putida was grown at  30 °C. When indicated, P. putida and E. coli were 367 

grown on modified MOPS minimal medium 39. Cultures were supplemented with kanamycin 368 

(50 mg/L, Sigma Aldrich, USA), gentamicin (30 mg/L, Fisher Scientific, USA), or carbenicillin 369 

(100 mg/L, Sigma Aldrich, USA), when indicated. All other compounds were purchased through 370 

Sigma Aldrich (Sigma Aldrich, USA) . 371 

Strains and plasmids 372 
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All bacterial strains and plasmids used in this work are listed in Table 3. All strains and 373 

plasmids created in this work are available through the public instance of the JBEI registry. 374 

(https://public-registry.jbei.org/folders/390). All plasmids were designed using DeviceEditor and 375 

VectorEditor software, while all primers used for the construction of plasmids were designed 376 

using j5 software 40–42. Plasmids were assembled via Gibson Assembly using standard protocols 377 

43, or Golden Gate Assembly using standard protocols 44. Plasmids were routinely isolated using 378 

the Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were purchased from Integrated 379 

DNA Technologies (IDT, Coralville, IA). Construction of P. putida deletion mutants was 380 

performed as described previously 18.  381 

Expression and purification of proteins 382 

Proteins were purified as described previously 45. Briefly, 500 mL cultures of E. coli 383 

BL21 (DE3) harboring expression plasmids were grown in LB medium at 37 oC to an OD of 0.6 384 

then induced with 1mM isopropyl β-D-1-thiogalactopyranoside. Cells were allowed to express 385 

for 18 hours at 30 oC before being harvested via centrifugation. Cell pellets were stored at -80 oC 386 

until purification. Cell pellets were then resuspended in lysis buffer (50 mM sodium phosphate, 387 

300 mM sodium chloride, 10 mM imidazole, 8% glycerol, pH 7.5) and sonicated to lyse cells. 388 

Insolubles were pelleted via centrifugation (30 minutes at 40,000 x g). The supernatant was 389 

applied to a fritted column containing Ni-NTA resin (Qiagen, USA) which had been pre-390 

equilibrated with several column volumes of lysis buffer. The resin was washed with lysis buffer 391 

containing 50 mM imidazole, then the protein was eluted using a stepwise gradient of lysis 392 

buffer containing increasing imidazole concentrations (100 mM, 200 mM, and 400 mM). 393 

Fractions were collected and analyzed via SDS-PAGE. Purified proteins were concentrated using 394 
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Spin-X UF 20 (10 kDa MWCO) spin concentrators (Corning, Inc.). Concentrated protein was 395 

stored at 4 oC until in vitro analysis.  396 

Plate based growth and fluorescence assays in P. putida 397 

Growth studies of bacterial strains were conducted via microplate reader kinetic assays. 398 

Overnight cultures were inoculated into 10 mL of LB medium from single colonies, and grown 399 

at 30 °C. These cultures were then washed twice with MOPS minimal medium without any 400 

added carbon and diluted 1:100 into 500 uL of MOPS medium with 10 mM of a carbon source in 401 

48-well plates (Falcon, 353072). Plates were sealed with a gas-permeable microplate adhesive 402 

film (VWR, USA), and then optical density and fluorescence were monitored for 48 hours in a 403 

Biotek Synergy 4 plate reader (BioTek, USA) at 30 °C with fast continuous shaking. Optical 404 

density was measured at 600 nm, while fluorescence was measured using an excitation 405 

wavelength of 485 nm and an emission wavelength of 620 nm with a manually set gain of 100.  406 

Transcriptional fusion fluorescence assays 407 

To measure RFP production inE. coli, fluorescence measurements were obtained from 408 

single time points of cells grown in deep-well 96-well plates as described previously with minor 409 

changes46. Briefly, cells were grown in 500 µL of EZ-Rich medium supplemented with 410 

kanamycin and a range of glutarate concentrations from 5 mM to 0 mM. Plates were sealed with 411 

AeraSeal film (Excel Scientific, AC1201-02) and grown for 22 hours at 37 °C on a 200 rpm 412 

shaker rack. After incubation, 100 µL from each well was aliquoted into a black, clear-bottom 413 

96-well plate and fluorescence was measured with a Tecan Infinite F200 plate reader (Tecan, 414 

USA). Optical density was measured at 600 nm, while fluorescence was measured using an 415 

excitation wavelength of 535 nm and an emission wavelength of 620 nm with a manually set 416 
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gain of 60. Endpoint fluorescence assays in P. putida were carried out in LB media, and 417 

measured by the same method.   418 

Electrophoretic mobility shift assays 419 

Electrophoretic mobility shift assays were performed as previously described 7. 6-420 

Carboxyfluorescein labelled PCR products for CsiR probes were generated from the intergenic 421 

region between PP_2908 and PP_2909 using primers csiRprobeFOR 5’-6-422 

FAM/AGTTCGATCTGCGTAAAG-3’ and csiRprobeREV 5’-CCCGCTGAATGCTGAGTT-423 

3’), while probes for GcdR were generated from the intergenic region between PP_0157 and 424 

PP_0158 with primers gcdRprobeFOR 5’-6-FAM/CGGGTCGATCCAGTTGAAA-3’ and 425 

gcdRprobeREV 5’-GCATGTACGTCAACCTCACT-3’. Primers were purchased from IDT 426 

Technologies (IDT, Coralville, IA). PCR product was then purified with a QIAquick PCR 427 

Purification Kit (Qiagen, USA), and the amount of DNA was quantified via a NanoDrop 2000C 428 

(Thermo Fisher Scientific). Binding reactions were conducted with 10 ng of labelled probe, 429 

which was added to 10 mM Tris–HCl (pH 8.0), 25 mM KCl, 2.5 mM MgCl2, 1.0 mM DTT and 430 

2 ug salmon sperm DNA in 20 uL reactions. CsiR was added to reactions in concentrations 431 

ranging from 250 nM to ~4 nM, in addition to a control reaction without CsiR, and then allowed 432 

to incubate at 22 oC for 20 minutes. Reactions were then loaded into 10% native polyacrylamide 433 

gels buffered with 0.5x TBE. Afterwards, electrophoresis gels were imaged on an Alpha 434 

Innotech MultiImage III (Alpha Innotech). Adobe Photoshop was used to average pixel intensity 435 

over the entire band on EMSA gels in order to  estimate the Kd. 436 

Measurement of 5-aminovalerate 437 

To measure intracellular concentrations of 5-aminovalerate, cells were quenched as 438 

previously described 47. LC/MS analysis was performed on an Agilent 6120 single quadrupole 439 
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LC/MS equipped with a Waters Atlantis Hilic 5 µM Silica column (4.6 x 150 mm). A linear 440 

gradient of 100-30% 90:10 CH3CN:H20 with 10 mM ammonium formate and 0.1% formic acid 441 

(v/v) over 20 min in 90:10 H2O:CH3CN with 10 mM ammonium formate and 0.1% formic acid 442 

(v/v) at a flow rate of 1.0 mL/min was used. Extracted ion chromatograms were integrated and 443 

peak area was used to construct a standard curve using an authentic 5-aminovalerate standard. 444 

Concentrations of 5-aminovalerate within samples were interpolated from this curve.  445 

Analysis of biosensor parameters 446 

A model relating inducer concentrations and fluorescence measurements to characterize 447 

the performance of a biosensor was generated under the following assumptions 1) the 448 

relationship between analyte concentrations and fluorescence can be well modeled using the Hill 449 

equation 2) fluorescence measurements at a particular concentration are normally distributed 3) 450 

the variance of fluorescence measurements is roughly constant over the range of measured 451 

values. 452 

Under these assumptions we can phrase the following probabilistic model via equation 1 453 

(Figure 7). Using the probabilistic model which captures our constraints on the problem the log 454 

likelihood function is expressed as equation 2 (Figure 7).The log likelihood is used to express the 455 

maximum likelihood estimation (MLE) problem as equation 3 (Figure 7),which when solved 456 

results in the optimal parameters of the model given the characterization data. In order to 457 

estimate the distribution of ligand concentrations that are compatible with experimental 458 

fluorescence data, MCMC sampling was used to solve the MLE problem equation 4 (Figure 7). 459 

We determined biosensor resolution by solving the above maximum likelihood estimation 460 

problem iteratively over the range of observed fluorescences during the biosensor 461 

characterization process. This can determine the relationship between an inducer concentration 462 
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estimate and the estimated standard deviation. The standard deviation of the estimate of inducer 463 

concentration can be interpreted as the resolution window. In the case of this work, two standard 464 

deviations is considered the resolution window of the sensor, as 95% of the compatible inducer 465 

concentration estimates fall within the interval. 466 

To determine minimal and maximal levels of ligand detection of a given biosensor, the 467 

minimal detection limit was defined as the minimal concentration of inducer that resulted in a 468 

OD600 normalized RFP value significantly (t-test pval <0.05) greater than that of uninduced 469 

cultures, while the maximal detection limit was defined as the greatest concentration of inducer 470 

that resulted in a OD600 normalized RFP value significantly (t-test pval <0.05) less than that of 471 

cultures induced with the highest concentration of ligand experimentally tested (2.5 mM).   472 

A comprehensive methodological description of calculating biosensor performance 473 

parameters, as well as usable Jupyter notebooks can be found at 474 

https://github.com/JBEI/biosensor_characterization_public.  475 

 476 

Figure 7: Equations used in this study for MCMC analysis of biosensor data. 477 
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Bioinformatic analysis 478 

For the phylogenetic reconstructions, the best amino acid substitution model was selected 479 

using ModelFinder as implemented on IQ-tree 48 , phylogenetic trees were constructed using IQ-480 

tree, and nodes were supported with 10,000 bootstrap replicates. The final tree figures were 481 

edited using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). Orthologous syntenic 482 

regions  of CsiR were identified with  CORASON-BGC 49 and manually colored and annotated. 483 

DNA-binding sites were predicted with MEME 22. 484 

SUPPORTING INFORMATION 485 

The Supporting Information is available free of charge on the ACS Publications website. 486 

S1.pdf contains supplementary figures.  487 

 488 
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Strain JBEI Part ID Reference 

E. coli DH10B    50 

E. coli BL21(DE3)    Novagen 

E.coli S17  ATCC 47055 

P. putida KT2440    ATCC 47054 

P. putida ΔdavT JPUB_013544 This work 

P. putida ΔgcdHΔcsiD  18 

Plasmids     

pET21b    Novagen 

pBADT   51 

pMQ30  52 

pBADT-gcdR-PgcdH::RFP JPUB_010960 This work 

pBADT-csiR-PcsiD::RFP JPUB_010962 This work 

pBADT-gcdR-J23101 JPUB_013546 This work 

pBADT-gcdR-J23110 JPUB_013548 This work 

pBADT-gcdR-J23113 JPUB_013550 This work 

pMQ30 davT JPUB_013544 This work 

pET21b-CsiR_Pput  JPUB_010964 This work 
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pET21b-GcdR_Pput  JPUB_010966 This work 

pBbS8k-rfp  53 

pBbE8k-rfp  53 

 520 
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