Robust characterization of two distinct glutarate sensing transcription factors of *Pseudomonas* putida L-lysine metabolism Mitchell G. Thompson^{1,2,3}, Zak Costello^{1,2,4}, Niklas F. C. Hummel^{1,7}, Pablo Cruz-Morales^{1,2,5}, Jacquelyn M. Blake-Hedges^{1,2,6},Rohith N. Krishna^{1,2,6}, Will Skyrud⁶, Allison N. Pearson^{1,2}, Matthew R. Incha^{1,2,3}, Patrick M. Shih^{1,7}, Hector Garcia-Martin^{1,2,4,8}, Jay D. Keasling^{1,2,9,10,11,12,*} ¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA. ²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ³Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA ⁴DOE Agile BioFoundry, Emeryville, CA, USA ⁵Centro de Biotecnologia FEMSA, Instituto Tecnologico y de Estudios superiores de Monterrey, Mexico ⁶Department of Chemistry, University of California, Berkeley, CA 94720, USA ⁷Department of Plant Biology, University of California, Davis, Davis, CA, United States ⁸BCAM, Basque Center for Applied Mathematics, Bilbao, Spain ⁹Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA 94720, USA ¹⁰Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA ¹¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark ¹²Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China *To whom correspondence may be addressed. Email: JDKeasling@lbl.gov ## **Supporting Information** ## **Supplementary Figures** Figure S1. SDS-PAGE gels showing the purification of GcdR (A), and CsiR (B) via affinity purification. S = Soluble I = Insoluble F = Flowthrough W = Wash E = Elution Figure S2. Induction of the CsiR (A), or GcdR (B) biosensor vectors by succinate, adipate, and pimelate. Error bars represent 95% CI, n=4. Figures S3. Application of MCMC methodology to characterized BglBrick vectors. (A) Raw RFP expression data from SC101 and ColE1 arabinose inducible BglBrick vectors with increasing concentrations of arabinose (%w/v). (B) OD600 normalized and basal-expression zeroed fluorescence data fit to the Hill equation. Points show individual experimental measurements. n=4 (C) MCMC predicted resolution of SC101 or ColE1 biosensor systems over a select range of arabinose concentrations %w/v. Figures S4. Growth and fluorescence of *csiR* and *gcdR* vectors in P. putida KT2440 (A) Growth of strains harboring *gcdR* vector (left), RFP fluorescence (right) on MOPS minimal media supplemented with 10mM of glucose, L-lysine, D-lysine, 5-aminovalerate, or 2-aminoadipate as a sole carbon source. Shaded region represents 95% CI, n=3. (B) Growth of strains harboring *csiR* vector (left), RFP fluorescence (right) on MOPS minimal medium supplemented with 10mM of glucose, L-lysine, D-lysine, 5-aminovalerate, or 2-aminoadipate as a sole carbon source. Shaded region represents 95% CI, n=3.