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SUMMARY: 
Domestication of crops and animals during the Holocene epoch played a critical role in 
shaping human culture, diet and genetic variation. This domestication process took place 
across a span of time and space, especially in Asia. We hypothesize that domestication 
of plants and animals around the world must have influenced the human genome 
differentially among human populations to a far greater degree than has been appreciated 
previously. The range of domesticated foods that were available in different regions can 
be expected to have created regionally distinct nutrient intake profiles and deficiencies. 
To capture this complexity, we used archaeobotanical evidence to construct two models 
of dietary nutrient composition over a 9000 year time span in Asia: one based on Larson 
et al. (2014) and measured through composition of 8 nutrients, and another taking into 
account a wider range of crops, cooking and lifestyle variation, and the dietary variables 
glycemic index and carbohydrate content. We hypothesize that the subtle dietary shifts 
through time and space have also influenced current human genetic variation among 
Asians. We used statistical methods BayeScEnv, BayeScan and Baypass, to examine 
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the impact of our reconstructed long-term dietary habits on genome-wide genetic variation 
in 29 current-day Asian populations (Figure S1, Figure 1, Figure 2). Our results show that 
genetic variation in diet-related pathways is correlated with dietary differences among 
Asian populations. SNPs in five genes, GHR, LAMA1, SEMA3A, CAST and TCF7L2, 
involved in the gene ontologies ‘salivary gland morphogenesis’ and ‘negative regulation 
of type B pancreatic cell apoptotic process’ suggest that metabolism may have been 
primary targets of selection driven by dietary shifts. These shifts may have influenced 
biological pathways in ways that have a lasting impact on health. We present a case that 
archaeobotanical evidence can provide valuable insight for understanding how historical 
human niche construction might have influenced modern human genetic variation. 
  
Results: 
The dietary models were constructed to capture different aspects of long-term nutritional 
information. They incorporate the following unique features: 1) an estimation of a pre-
agricultural diet base, which we term a ‘hunter-gatherer diet’; 2) proportionate variation of 
different dietary components; 3) variation in the length of exposure to dietary components; 
4) inclusion of different food processing techniques to obtain nutritional estimates; 5) the 
use of glycemic index and carbohydrate content to measure nutrition, as both highlight 
the impact of increased carbohydrate consumption through time and may play a role in 
diabetes risk [1–3]. 
The first dietary model we constructed examines relative differences in the change of 
nutrient levels in each of the three ADMIXTURE-defined groups (Figure S1). In the 
second model, unlike the first, we incorporate information on pre-domestication diet by 
including a baseline dietary model for our populations. We assume that the content is the 
same across populations, but that the proportion of this diet in each population for each 
period of time varies. We assume the same nutritional content in each pre-domestication 
diet primarily to measure the changes brought by domestication. Each of the 29 
populations had an individualized reconstruction in Model 2 (Table S9). For example, the 
Dai population, an agricultural population residing at the border of China adjacent to Laos, 
Thailand, Vietnam and Myanmar, had dietary history divided into three time-slices: 9000-
7000 YBP, 7000-5500 YBP, 5500-0 YBP. The first time slice is an estimated hunter-
gatherer diet. In the second time slice, we incorporate millet porridge and diet 
diversification. By the final time slice, more common carbohydrate-based crops are 
apparent in the diet, such as short-grained brown rice (Table S9). 
  
Southwest Asian populations show higher micro- and macro-nutrient abundance 
than East and South Asians 
  
Our primary dietary model (see Methods) infers that the Southwest Asian populations 
(mostly sampled from present-day Pakistan) had a greater increase in carbohydrates, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/747709doi: bioRxiv preprint 

https://doi.org/10.1101/747709
http://creativecommons.org/licenses/by-nc/4.0/


lipids and protein content due to domestication events from 9000 years ago. In contrast, 
South Asian populations showed the latest and at least these three major dietary changes 
in their diets, as domestication started later here. The greatest nutrient increases in all 
populations due to diet changes were carbohydrates, followed by protein, then lipids. 
Separated into segments of 3000 years, consumption of all three components from the 
domesticated diet increased over time, following known increased adoption of 
domestication practices throughout Asia (Figure 2a, Tables S1-8). 
  
Similarly, micronutrients zinc, iron, omega-3 and omega-6 fatty acid content from the diet 
due to domestication were higher in Southwest Asian populations, followed by East Asia 
and South Asia populations. The most dramatic differences were observed for omega-3 
fatty acids, with Southwest Asia showing higher increases in their diet over the 9000 year 
duration compared to the other populations. South Asian populations (excluding the 
Southwest Asian populations, mostly located in present-day Pakistan) showed lower 
amounts of each of these four nutrients compared to the other two populations (Figure 
2b, Tables S1-8). 
  
These results complement evidence suggesting that domestication brought about 
increased abundance of certain nutrients in the diet, such as carbohydrates, although 
without a baseline pre-domestication measurement it is difficult to infer from our data 
alone the magnitude of the increase[4]. Our dietary model does not refute evidence that 
agriculture also brought about micronutrient deficiencies[5]. Those changes may be 
modeled with incorporation of caloric content changes, which were outside the scope of 
this paper. We solely examined changes that occurred in an aspect of agricultural impact 
on the diet over time. Our finding that micronutrient composition increased over time may 
reflect the paucity of domestication events at the beginning of the 9000 year window. 
Furthermore, it is important to note that we did not include a baseline level diet to examine 
changes due to domestication within each population.  It is likely that a forager lifestyle 
provided a substantial part of the diet during this time. The primary purpose of our 
constructed dietary model was to compare the nutritional impact of domestication across 
the populations, through time. The caloric and nutritional content coming from pre-
domestication diet, and species (both native and non-native) that are not included in 
Larson et al. (2014) are not included in Model 1. 
  
Modeling intra – and inter-population variability in carbohydrate consumption 
In the second model, farming communities (agricultural and cattle herding) had a higher 
carbohydrate content in their diet due to domestication, across all ancestry groups. 
However, East Asian agricultural populations had lower levels of carbohydrate content 
compared to South Asian and Southwest Asian populations. We found substantial 
geographic and population-level variability in dietary habits and nutritional outcomes 
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across subsistence groups, as we used fine-scale geographical information to construct 
population diet (Figure 3). Hunter-gatherers’ diet showed lower levels of carbohydrate 
content, but similar levels of glycemic index to agricultural populations, due to higher 
presence of fruit in our models. The pastoralist populations showed very similar glycemic 
index values and carbohydrate content to other populations with both geographic and 
genetic similarity, i.e. ancestry group 2. We saw a similar inverse relationship between 
glycemic index and carbohydrate content, across ancestry groups. For example, ancestry 
groups 2 and 4 show higher carbohydrate content, but lower average glycemic index. 
Stable agriculture and crop husbandry were responsible for those increases in 
carbohydrate content (Figure 3, Tables S9-S11). 
  
The carbohydrate content in the second dietary model will differ from the first because 
the dietary composition in Model 1 referred only to the crops in Larson et al. (2014), and 
carbohydrate consumption were tailored to specific populations in Model 2, incorporating 
pre-agricultural diet as well. 
  
Little overlap between selection tests, but common gene ontology pathways 
across tests and nutrients 
  
We subsequently analyzed the top 1% of variants from the three Bayesian tests (see 
STAR Methods) for variants that have been reported to be associated with dietary 
adaptations, and for overlaps in the results for the three Bayesian tests. Analysis of the 
top 1% of the variants showed no statistically significant overlap between the three tests 
(Figure S2). Genes FADS1/FADS2, OCA2, TYR, LRP2, ADH1B and CYP24A1, 
previously reported to be under diet-mediated selection, appear in one or more of the top 
hits for several dietary variables in both dietary models (Figure S3). 
  
All three scans showed similar breakdown of SNPs in each functional class across 
methods and nutrient variables, except BayeScEnv signals for carbohydrate content 
(Figure S4). Baypass results had the greatest number of SNPs with deleterious PolyPhen 
and SIFT scores, but this is not surprising as there were greater numbers of selection 
results for Baypass compared to BayeScEnv and BayeScan (Figure S5); none of the tests 
showed enrichment for deleterious or damaging variants. 
  
The number of ontology terms that were in common either among multiple dietary 
variables or multiple statistical methods for a single dietary variable also varied (Table 
S12). For example, ‘loop of Henle development’, a gene set involved in kidney 
development, appeared to be the most strongly enriched term in the BayeScan analysis 
(binomial FDR q-value: 4.23 x 10-8). This ontology term also appeared among the top 
twenty pathways for vitamin A in both BayeScEnv and Baypass tests (binomial FDR q-
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value: 1.66 x 10-08 and 7.07 x 10-3, respectively) (Table S12). Retinoic acid, the active 
form of vitamin A, is critical for most organ development, including the kidney - studies in 
rats show that even mild vitamin A deprivation can result in kidney underdevelopment [6].  
  
Three other significantly enriched pathways of note include ‘regulation of type B 
pancreatic cell apoptotic process’, ‘response to food’ and ‘branching involved in salivary 
gland morphogenesis’. Because GREAT takes entire gene regions into account, we 
returned to the list of SNPs in the top 1% of results for each of the three tests to identify 
the individual SNPs located within the genes included in the ontology terms. From these 
analyses, we found that genes CAST, TCF7L2, IL6, GHR, LAMA1 and SEMA3A1 
contained SNPs that were located in the top 1% of hits for all three methods, and across 
multiple dietary variables (Table S12). The genes implicated by ontology terms also play 
a role in dietary response [7,8][9–11][12][13][14,15][16]. Finally, deletions in the gene 
SEMA3A result in impaired olfactory development, as well as pubertal failure [17], and 
mutations in the gene can result in pubertal delay [18]. 
  
We performed an additional enrichment analysis for selection results in genome-wide 
association studies. Analysis using the program traseR [19] showed that Baypass results 
had a greater number and strength of enrichment across disease classes than either 
BayeScEnv or BayeScan (Figure S6). Most of the significant enrichments were found in 
anthropometric, metabolic, cardiac, or nutrient-related traits. However, the nutrient-
related traits did not always correspond to the specific nutrient variable. For example, 
‘Carbs’ (from Model 1) and ‘GI’ showed significant enrichments and larger combined 
“Odds ratio” for the traits Calcium and Magnesium, respectively, in Baypass results. Body 
height was the only trait to show significant enrichment for Baypass results across all 
nutrient variables. 
  
Allele frequencies of genes among geographically dispersed populations 
associated with long-term dietary habits are linked to type 2 diabetes risk 
  
Maps of derived allele frequencies for the SNPs associated with the genes and ontology 
terms in Table S12, Figure 4, Figures S9 and S10 display extensive geographic-region 
specific stratification. The derived alleles of the vitamin A associated variants in CAST 
and GHR genes show higher frequencies in South and West Asia, while the derived and 
protective[20] allele of TCF7L2 variant rs10885409 shows the opposite pattern (Figure 
4). There is a possibility that the derived alleles have a selective advantage in the 
geographic regions with higher allele frequencies. Similarly, the LAMA1 and SEMA3A 
variants show opposite patterns, with the LAMA1 derived allele showing low frequencies 
in East Asia followed by West and South Asia, and the SEMA3A variant showing the 
opposite for each of lipids, omega-6, protein and zinc (Figures S9 and S10). Multiple 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/747709doi: bioRxiv preprint 

https://doi.org/10.1101/747709
http://creativecommons.org/licenses/by-nc/4.0/


dietary factors (lipids, omega-6, protein and zinc) showing the same trends may suggest 
a common underlying dietary component exerting a selective pressure on these 
populations. The opposing directionality of the selective pressure based on the opposite 
derived allele frequency patterns for LAMA1 and SEMA3A variants suggests that the 
same dietary components may be beneficial in different dietary contexts. 
  
Gene expression and allele-specific expression differences in genes associated 
with long-term dietary habits 
  
Analysis of allele-specific expression (ASE) patterns for variants in the genes listed in 
Table S12 revealed that only two genes, GHR and CAST, contained variants that showed 
differences in expression. Allele-specific expression differences for all the individuals 
presented in Martin et al. (2014) as well as Pathan and Cambodia ethnic groups analyzed 
separately (see STAR Methods) showed lower expression in the Pathan than the 
Cambodian population (Figure S7). FPKM values showed differences in transcript levels 
for GHR, SEMA3A and CAST genes, with CAST showing more than two-fold FPKM 
values in Cambodia versus Pathan individuals (Figures S7 and S8). These results are 
indicative of the fact that with the availability of tissue-specific expression values in 
multiple populations, we can gain additional information on the functional attributes of the 
variants that track environmental variation. 
  
Discussion: 
Our findings underscore the importance of dietary transitions, and also provide a potential 
explanation for variation in disease risk which may differentially affect the viability (health 
and longevity) of individuals and families. For example, diet-related selection on genes 
related to olfaction and insulin production and sensitivity may help explain modern 
variation in taste preferences and diabetes etiology. Furthermore, knowing the historical 
availability of nutrients such as vitamin A, iron and zinc and its influence on genetic 
variation may help identify local ethnic groups/populations that are especially vulnerable 
to widespread modern-day deficiencies in the three micronutrients discussed.  These 
results are especially compelling in light of the extensive genomic variation at a global 
and local scales that has been highlighted previously [21–23].  
  
Of the highlighted genes and pathways in the present study, many are associated with 
type 2 diabetes and other metabolic disorders, or play a role in impaired metabolism or 
its dysregulation in relevant gene networks. Varying allele frequency patterns of the 
derived alleles under selection for each diet variable (Figures 4 and S9 and 10) may also 
suggest that each dietary factor had different impacts on fitness. For instance, the higher 
frequency of the derived allele of the TCF7L2 variant (Figure 4) in East Asia, associated 
with protection from type 2 diabetes, may reflect an evolutionary trade-off. Here, vitamin 
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A or a correlated dietary factor not represented in our model, created a selective pressure 
in East Asia that was advantageous in the past and protective against type 2 diabetes 
today. The next challenge will be to fine-map the variants that allow for efficient nutrient 
uptake, and understand the circumstances under which positive selection for each variant 
may have occurred. 
  
It is important to note that any model, including ours, may be prone to systematic biases 
and errors. We failed to include several items of food that were significant components of 
the diets, were not endemic, or had only fragmentary physical evidence. We also did not 
take into account nutrient and genomic variation of ancient crops, or seasonal variability. 
Total caloric intake was also assumed to be constant through time, space and 
subsistence strategy. However, it is widely assumed that hunter-gatherers or those 
following a Paleolithic diet had higher caloric intake [24]. Furthermore, caloric density 
varies widely among the diets [25,26]. Finally, we did not include nutrient bioavailability, 
which is highly influenced by different food combinations, processing techniques, and 
evolving nutrient content [26,27]. 
  
Our study complements a growing body of literature showing that the more predictable 
and static external environmental factors such as elevation, climate and disease affect 
human evolution, by showing that dietary factors also drove genetic adaptations [28–31]. 
We have provided data that suggests regional adaptations to Neolithic diets which varied 
in nutrient profiles. Humans have shaped their own food environment over millennia, 
through a broadening range of food processing techniques and through domestication 
and the construction of agricultural systems [32–34]. These changes have left signatures 
on the genomes of different populations, and may have powerful implications for 
disparities in disease etiology as well as aging and life expectancy among historical and 
contemporary human populations [35]. In order to better understand these processes, it 
is necessary to collect detailed data on spatio-temporal variation in diet and the shift in 
agricultural production over millennia. These efforts would provide insights not only into 
the past human evolutionary genetic processes, but also regarding current problems of 
health and diseases in contemporary human populations. 
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STAR Methods: 
KEY RESOURCES TABLE 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Deposited Data 

Model 1 diet 
crops and 
timeline 

Larson et al. (2014) DOI: 
10.1073/pnas.1323964111 

USDA food 
Composition 
databases 

https://ndb.nal.usda.gov/ndb/	 N/A 

Glycemic 
Index 
database 

http://www.glycemicindex.com	 N/A 

Diogenes 
Glycemic 
Index 
database 

http://www.diogenes-eu.org/GI-
Database/Default.htm	

N/A 

Human 
Genome 
Diversity 
Panel (HGDP) 

Metspalu et al. (2011) DOI: 
10.1016/j.ajhg.2011.11.010 

Genotype	data	
–	South	Asia	

G.	Chaubey	et	al.	(2011)	 DOI:	
10.1093/molbev/msq288	

Genotype	data	
–	South	Asia	

Behar	et	al.	(2010)	 DOI:	10.1038/nature09103	

HapMap	3	 HapMap	Consortium	 doi: 10.1038/nature09298 

HGDP	
genotype	
expression	
results	

Martin	et	al.	2014	 DOI:	
10.1371/journal.pgen.100454
9	

Software and Algorithms 
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ADMIXTURE Alexander et al. (2009) DOI: 10.1101/gr.094052.109 
  

BayeScEnv Villemereuil (2015) DOI: 10.1111/2041-
210X.12418 

BayeScan Fischer et al. (2011), Foll and Gaggiotti (2008) DOI: 10.1111/j.1365-
294X.2011.05015.x, DOI: 
10.1534/genetics.108.09222
1 

Baypass Gautier (2015) DOI: 
10.1534/genetics.115.18145
3 

BEDtools	 Quinlan	and	Hall	(2010)	 DOI:	
10.1093/bioinformatics/btq0
33	

Ensembl	
Variant	Effect	
Predictor	

http://www.ensembl.org/info/docs/tools/vep/in
dex.html	

DOI:	10.1186/s13059-016-
0974-4	

GREAT	 great.stanford.edu	 DOI:	10.1038/nbt.1630	

LiftOver	 https://genome.ucsc.edu/	 N/A	

PLINK	 http://zzz.bwh.harvard.edu/plink/	 DOI:	10.1086/519795	

traseR	 Chen	and	Lin	(2016)	 DOI:	
10.1093/bioinformatics/btv7
41	

Varanto	 http://bioinformatics.uef.fi/varanto/	   
DOI: 
10.1093/bioinformatics/btz046 
	

  
CONTACT FOR REAGENT AND RESOURCE SHARING: 
Further information and request for resources should be directed to the Lead Contact, 
Srilakshmi Raj (smr46@cornell.edu). 
  
METHODS DETAILS 
  
Construction of dietary models from archaeological data: 
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Archaeological data were used in two ways to estimate past dietary habits. First, we used 
the data displayed in Figure 2 in Larson et al. (2014), to account for the major 
domesticated species in Southwest Asia, South Asia and East Asia. Although this 
approach has excluded minor domesticates, it provides an empirically based 
simplification of regional variation in diet through time. We used 9000 years before 
present as a start point to infer dietary changes from agriculture and then added additional 
species diversity to regional diets over time. We assigned equal weights to all the dietary 
components and assumed they added up to 100% of the diet since the time of introduction 
(Table S1-S8). We took the start of the red bar in that figure (Larson et al. (2014) as an 
indicator of the time from which that organism was domesticated and added to the diet in 
that region. 
  
To convert the archaeological data into a diet metric, we took information on the 
composition of micronutrients vitamin A, zinc, iron, omega-3, omega-6 and 
macronutrients protein, carbohydrates, and lipids for the cooked versions of the items in 
Figure 2 of Larson et al. (2014), coupled to the time parameter, and summed the resulting 
numbers to estimate the amount of each macro and micronutrient on the diet[36]. 
  
We constructed a second model to incorporate information on current population lifestyles 
(e.g. pastoralists, foragers and agriculturalists). We included hunter-gatherer diets as a 
proportion of the diet contributed by each item based on inference from archaeological 
evidence, and included hunter-gatherer diets as a proportion of the diet during the 9000 
year time span. The second method of incorporating archaeological data to infer past 
diets differed from the first by: 1) varying the percentages of each item in the diet through 
time; 2) including a portion of hunter-gatherer diet; 3) differentiating diets of agricultural, 
pastoralist and cultivator populations; 4) varying food processing techniques; 5) using 
Glycemic Index (GI) and carbohydrate content as metrics for diet; and 6) using food 
substitutes for portions of the diet that were consumed and had similar glycemic index 
and carbohydrate content. GI and grams of carbohydrate per serving size were obtained 
from http://diogenes.s24.net/ and http://www.glycemicindex.com/[37–39]. These 
archaeology-based models were constructed based on both a literature search, the 
expertise of co-author Dorian Fuller, and knowledge of population habitats from Dr. G. 
Chaubey (pers. comm) (Table S9-S11). 
  
Please see Supplementary Methods for additional details and references. 
  
Genetic Data: 
Genotype data from 506,306 SNPs from 1898 individuals belonging to 94 distinct global 
populations drawn from six published sources were filtered down to 29 populations from 
Asia for diet-based analyses (Tables S2,S3)[40–45]. We used PLINK to filter the data, using 
default settings for missingness, including a minor allele frequency threshold of 0.01[46]. Some 
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of the South Asian populations represent composites of castes and tribes. The geographic 
coordinates were averaged across the samples included in each population (Table S11). 
  
We used the locations of individuals from 29 populations with genome-wide SNP 
genotype data available to provide reference points for our dietary model (Table S10, 
Figure S1). The populations were assumed to have resided within a 500 km radius of the 
site over the millenia, for Baypass analysis. The method ADMIXTURE and information on 
ethnic background were used to group the 29 populations into 4 ethnic categories (Figure 
S1). These populations included six different subsistence strategies, belonged to six 
different countries and 4 ancestral groups (Figure S1, Table S10). For BayeScan and 
BayeScEnv analysis, populations were assumed to have resided within the entire regions 
captured by the ADMIXTURE groupings, over the millenia.  
For the gene expression-based analyses in Figures S7 and S8, we included published 
data on whole transcriptome expression information in blood from the same Cambodia 
and Pathan individuals in this manuscript[47]. 
  
QUANTIFICATION AND STATISTICAL ANALYSIS 
Detecting natural selection based on the dietary models 
Three Bayesian methods, BayeScan, BayeScEnv and Baypass were used to detect 
differences in allele frequencies between populations, and to assess the significance of 
their correlations with environmental factors[48–51]. For the method BayPass, we 
specified an auxiliary model that assumed non-independence between environmental 
factors. All 9 dietary variables from both models were included in the same analysis. 
Further, we used the ADMIXTURE method to specify the population groups for the BayeScan 
analysis, and ascribing populations to archaeological data for the BayeScEnv analysis. 
  
Since BayeScan relies on user-specified population groups, we used the software ADMIXTURE 
to determine genetic relatedness among the 94 populations studied[52].  We randomly sampled 
20% of the genome-wide set of markers in the Asian subset of populations using PLINK, and 
tested a range of K values to determine the optimal number of population groups. We also used 
an option within ADMIXTURE to determine the cross-validation error attributed to each value of 
K. Subsequently, we plotted the estimated ancestry fractions using DISTRUCT software (Figure 
S1)[53]. A combination of the ancestral groupings determined by ADMIXTURE, and geographic 
location of populations were used to make population groupings for BayeScan analysis. 
  
To assess significance for each dietary variable we took the top 1% of BayPass results 
and BayeScEnv results with q-values < 0.01. We also took BayeScan results with q-
values < 1 x 10-5 and the highest Bayes Factor values. We used the Liftover program in the 
UCSC genome browser to convert from NCBI36 (hg18) to NCBI37 (hg19) genomic positions[54]. 
To obtain functional annotations of SNPs, we entered the updated rs numbers into the Ensembl 
Variant Effect Predictor online tool (http://www.ensembl.org/Homo_sapiens/Tools/VEP)[55] to 
obtain genome positions and annotations for these SNPs, including functional class and PolyPhen 
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and SIFT score. All figures were made using the ggplot2 package in R (v. 3.5.1). Significance of 
enrichment within each functional category, PolyPhen and SIFT scores were assessed using 
Varanto (http://bioinformatics.uef.fi/varanto/), against the reference  Ilumina Human660W-Quad 
[56]. 
  
The Gene Ontology program GREAT was used to identify categories under “Biological 
Process” that were significantly enriched in these signals[57]. To provide input regions for 
GREAT we ascribed to each SNP a short segment spanning ±500 bp. Then we used BEDtools 
to merge consecutive regions spaced less than 1000 bp apart into larger regions for GREAT 
input[57,58]. 
  
The program traseR[19] was used to perform enrichment analyses of selection results in genome-
wide association studies, with the latter data extracted from the NIH NHGRI-EBI GWA database 
(https://www.ebi.ac.uk/gwas/). Default settings were used, including a binomial test for 
enrichment. 
  
Analysis of expression data 
Correlations among long-term dietary habits and genetic variation that influence phenotypic 
variation suggests that the expression and function of these genes may vary contextually among 
different parts of Asia. For this analysis, we used published data on whole transcriptome 
expression information in blood taken from the same Human Genome Diversity Panel individuals 
included in this manuscript[47]. Of the populations included in Martin et al. (2014) and the present 
study, only two, Cambodia and Pathan, overlapped. Each of these were considered 
representative of the East Asia and West Asia populations. These data provided the allele-specific 
expression (ASE) and Fragments Per Kilobase of transcript per Million mapped reads (FPKM) 
results in Figures S7 and S8. 
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Figures 
  

Figure 1. Organization of the study and analysis pipeline. The two figures in column 
‘Archaeological data’ refer to the two constructed dietary models, with the boxes beside 
them referring to the dietary variables from each model. 
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Figure 2. Summary of Diet Model 1. a) Levels of nutrients contributed by domestication, 
based on Diet Model 1, as a sum total of values across all three population groups. b) 
Average levels of nutrients across the three time intervals (9000 YBP-present) in each 
region, based on Diet Model 1.  Supplementary Tables 1-8 contain the data used to 
generate these figures. 
Figure 2a. 

 

  

Figure 2b. 
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Figure 3. Summary of Diet Model 2. Summary of glycemic index values and 
carbohydrate content values calculated for each population, based on Diet Model 2. The 
dotted lines represent population groupings made based on the ADMIXTURE plot (Figure 
S1), with the first group corresponding to South Asia, second to Southwest Asia, third to 
East Asia, and fourth an intermediate between Southwest and East Asia (grouped into 
Southwest Asia). Supplementary Table 10 contains the values for this plot, and 
Supplementary Table 9 contains the full Diet Model 2. 
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Figure 4. Derived allele frequency and geographic patterns of dietary vitamin A. 
The pie charts represent the derived allele frequencies in Asian populations, against 
interpolated values of correlated dietary variables from Diet Model 1 for vitamin A status. 
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