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Abstract13

Living cells optimize their fitness against constantly changing environments to sur-14

vive. Goal attainment optimization is a mathematical framework to describe the si-15

multaneous optimization of multiple conflicting objectives that must all reach a perfor-16

mance above a threshold or goal. In this study, we applied goal attainment optimization17

to harness natural modularity of cellular metabolism to design a modular chassis cell for18

optimal production of a diverse class of products, where each goal corresponds to the19

minimum biosynthesis requirements (e.g., yields and rates) of a target product. This20

modular cell design approach enables rapid generation of optimal production strains21

that can be assembled from a modular cell and various exchangeable production mod-22

ules and hence accelerates the prohibitively slow and costly strain design process. We23

formulated the modular cell design problem as a blended or goal attainment mixed24

integer linear program, using mass-balance metabolic models as biological constraints.25

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748350doi: bioRxiv preprint 

https://doi.org/10.1101/748350
http://creativecommons.org/licenses/by-nc-nd/4.0/


By applying the modular cell design framework for a genome-scale metabolic model26

of Escherichia coli, we demonstrated that a library of biochemically diverse products27

could be effectively synthesized at high yields and rates from a modular (chassis) cell28

with only a few genetic manipulations. Flux analysis revealed this broad modular-29

ity phenotype is supported by the natural modularity and flexible flux capacity of core30

metabolic pathways. Overall, we envision the developed modular cell design framework31

provides a powerful tool for synthetic biology and metabolic engineering applications32

such as industrial biocatalysis to effectively produce fuels, chemicals, and therapeutics33

from renewable and sustainable feedstocks, bioremediation, and biosensing.34

Keywords— Biocatalysis, modular cell, ModCell, modular design, metabolic network mod-35

eling, constraint-based modeling, multi-objective optimization, mixed integer linear programming,36

goal programming, Benders decomposition.37

1 Introduction38

Microbial metabolism can be engineered to produce a large space of molecules from renewable39

and sustainable feedstocks.1 Currently, only a handful of fuels and chemicals out of the many40

possible molecules offered by nature are industrially produced by microbial conversion, mainly41

because the strain engineering process is too laborious and expensive.2 Thus, innovative technologies42

enabling rapid and economically-feasible strain engineering are needed to harness a large space of43

industrially-relevant biochemicals.1–3 To tackle this challenge, the principles of modular design that44

have shown great success in traditional engineering disciplines can be adapted to construct modular45

cell biocatalysts in a plug-and-play fashion with minimal strain optimization cycles.446

Multi-objective optimization is a powerful mathematical framework widely applied in engi-47

neering disciplines to tackle the optimal design of a complex system with multiple conflicting48

objectives.5,6 This framework has recently been exploited for not only explaining the modularity of49

natural biological systems that enable cellular robustness and adaptability7–11 but also implement-50

ing modular engineering design.12 Using multi-objective optimization, microbial metabolism can51

be redirected to generate modular production strains that are systematically assembled from an52
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engineered modular cell and exchangeable production modules, each of which synthesizes a target53

molecule.13 This modular cell (ModCell) design approach, known as ModCell2, uses the principles54

of mass balance and thermodynamics of biochemical reaction networks to predict metabolic fluxes55

upon genetic manipulations.13,14 Based on such flux predictions, a multi-objective optimization56

problem is then formulated and solved with a multi-objective evolutionary algorithm (MOEA)15,16
57

to yield a sample of the Pareto front (i.e., the set of optimal solutions to the problem with minimal58

trade-offs among objectives) that a designer can explore genetic manipulation targets for modular59

cell engineering.60

In this study, we developed ModCell2-MILP, a ModCell2-based formulation to be compatible61

with mixed integer linear programming (MILP) algorithms. This framework presents a significant62

advancement from ModCell2 in solving the multi-objective strain design problem for modular cell63

engineering. Specifically, ModCell2-MILP is developed to (i) guarantee optimal solutions, (ii) com-64

pletely enumerate alternative solutions of a target design, and (iii) describe practical engineering65

goals more directly (e.g., design of a modular cell where all production modules lead to a prod-66

uct yield above 50% of the theoretical maximum). By applying ModCell2-MILP to analyze the67

genome-scale metabolic network of Escherichia coli, we could identify a universal modular cell that68

is compatible with a diverse class of production modules. Finally, we shed light on the underlying69

features of the universal modularity phenotype by systematically analyzing feasible flux distribu-70

tions of all modular production strains. We anticipate ModCell2-MILP can provide a powerful tool71

for not only elucidating natural and synthetic metabolic modularity but also rationally designing72

modular production strains for novel synthetic biology and metabolic engineering applications.73

2 Methods74

2.1 Modular cell design75

2.1.1 Design principles76

ModCell design enables rapid assembly of production strains with desirable phenotypes from a77

modular (chassis) cell.4,13,17 More specifically, a modular cell contains core metabolic pathways78
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shared among production modules (Figure 1a). The chassis interfaces with the modules through79

enzymatic and genetic synthesis machinery and precursor metabolites (Figure 1b). Modules con-80

tain auxiliary regulatory and metabolic pathways (Figure 1c) that enable a desired phenotype for81

optimal biosynthesis of a target molecule, for example, weak growth coupled to product formation82

(wGCP), where a positive correlation between growth and product synthesis rates is enforced (Fig-83

ure 1d).13,18,19 The design objective phenotypes are determined from cellular growth and product84

synthesis rates based on steady-state, mass-balance metabolic models.20 A modular cell is said to85

be compatible with a module if the design objective of the resulting production strain is above a86

specified threshold. The different biochemical nature of production modules to synthesize target87

metabolites can make the design objectives compete with each other and also the cellular objec-88

tives (e.g., biomass formation) compete with the engineering objectives (e.g., product formation),89

turning the ModCell design problem into a multi-objective and multi-level optimization problem.90

2.1.2 Multi-objective optimization formulation91

The modular cell design problem is stated as a general multi-objective optimization problem of the

form:

max
x

F (x) = (f1(x), f2(x), . . . , fK(x))> s.t. x ∈ X (1)

where fk is the desirable phenotype for production module k, x are the problem variables including

binary design variables corresponding to genetic manipulations, and X is the set of constraints

including mass balance of metabolism. Optimal solutions for the multi-objective optimization

problem (1) are defined using the concept of domination: A vector a = (a1, . . . , aK)> dominates

another vector b = (b1, . . . , bK)>, denoted as a ≺ b, if and only if ai ≥ bi ∀i ∈ {1, 2, . . . ,K} and

ai 6= bi for at least one i. A feasible solution x∗ ∈ X of the multi-objective optimization problem

is called a Pareto optimal solution if and only if there does not exist a vector x′ ∈ X such that

F (x′) ≺ F (x∗). The set of all Pareto optimal solutions is called Pareto set:

PS := {x ∈ X : @x′ ∈ X,F (x′) ≺ F (x)} (2)
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The projection of the Pareto set in the objective space is denoted as Pareto front:

PF := {F (x) : x ∈ PS} (3)

Different feasible points in PS (i.e., different genetic manipulations) which map to a single point92

in PF (i.e., the same phenotype) are denoted alternative solutions.93

The design variables x in ModCell2 correspond to chassis reaction deletions, that remove un-94

desired metabolic functions, and module reaction insertions, that allow to identify optimal module95

configurations without extensive prior knowledge of the product synthesis pathway. The con-96

straint set X is comprised of two types: (i) flux simulation constraints (e.g., mass balance, reaction97

reversibility, and flux bound) that allow to predict fluxes in the design objectives upon genetic98

manipulations, and (ii) implementation constraints that involve the maximum number of reaction99

deletions in the chassis (denoted by α) and the maximum number of module reaction insertions per100

module (denoted by β). The following sections describe the problem formulation in detail using101

the definitions compiled in Section 5.102

2.1.3 Design objectives103

Design objectives, fk, that correspond to specific metabolic phenotypes within the space of feasible

steady-state reaction fluxes, Πkm, of production network k (i.e., the combination of the chassis

network with the production module k) and metabolic state m, are defined as follows:

Πkm(ejk) := {vjkm ∈ R : (4)∑
j∈Jk

Sijkvjkm = 0 ∀i ∈ Ik (5)

ljkmejk ≤ vjkm ≤ ejkujkm ∀j ∈ Jk (6)

Here, vjkm is the rate (mmol/gCDW/hr) of reaction j in production network k under metabolic state104

m. Constraint (5) enforces mass balance for all metabolites according to reaction stoichiometry105

given by the coefficients Sijk, and constraint (6) imposes bounds, ljkm and ujkm, for the metabolic106

fluxes according to reaction reversibility, experimentally measured values, and specified metabolic107
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state. The binary variable ejk is used in the overall optimization problem to indicate whether108

reaction j in production network k is removed and thus cannot carry any flux. Two metabolic109

states m are considered, growth and non-growth, denoted µ and µ̄, respectively. These states110

are differentiated by their flux bounds ljkm and ujkm. For growth state, the lower bound of the111

biomass formation reaction that represents cell division, vXkm, is set to a minimum value of γ, i.e.,112

lXkµ = γ (∀k ∈ K), while there is no upper limit to growth, i.e., uXkµ =∞ (∀k ∈ K). On the other113

hand, for the non-growth state both bounds are set to 0, i.e., lXkµ̄ = 0 and uXkµ̄ = 0 (∀k ∈ K).114

Given the feasible metabolic flux space, Πkm, the following design objectives, based on the

product synthesis rate reaction, vPkm, are of interest:

fwGCPk =
vPkµ
vmaxPkµ

∈ [0, 1], ∀k ∈ K (7)

f lsGCPk = bµ
vPkµ
vmaxPkµ

+ bµ̄
vPkµ̄
vmaxPkµ̄

∈ [0, bµ + bµ̄], ∀k ∈ K (8)

fNGPk =
vPkµ̄
vmaxPkµ̄

∈ [0, 1], ∀k ∈ K (9)

The product synthesis fluxes, including vPkµ, vmaxPkµ , vPkµ̄, and vmaxPkµ̄ , are computed by solving the

following linear programming problems:

vPkµ∈ arg max{vXkµ − ε vPkµ : vkµ ∈ Πkµ(ejk)} (10)

vmaxPkµ∈ arg max{vPkµ : vkµ ∈ Πkµ(ejk = 1, ∀j ∈ Jk)} (11)

vPkµ̄∈ arg min{vPkµ̄ : vkµ̄ ∈ Πkµ̄(ejk)} (12)

vmaxPkµ̄∈ arg max{vPkµ̄ : vkµ̄ ∈ Πkµ̄(ejk = 1, ∀j ∈ Jk)} (13)

The maximum product synthesis fluxes (11) and (13) used for objective scaling are only calculated115

once by not using any deleted reactions (ejk = 1), while the target phenotype fluxes (10) and (12)116

are functions of the deleted reactions ejk. The design objectives, wGCP (7), lsGCP (8), and NGP117

(9), were previously proposed13 and briefly described here. The weak growth coupled to product118

formation objective (wGCP) (7) seeks to maximize the minimum product rate at the maximum119

cellular growth, which is accomplished by a titled objective function21 (10). The linearized strong120
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growth coupled to product formation (lsGCP) (8) objective seeks to maximize the minimum prod-121

uct synthesis rate at the non-growth state vPkµ̄ in addition to the goal of wGCP. Finally, the122

non-growth production (NGP) (9) objective seeks to optimize the minimum product synthesis rate123

during the non-growth state.124

2.1.4 Design constraints125

All the constraints of the modular cell design problem are gathered as follows:

Ω := {f ′k ∈ R, yj , zjk, djk, wk, ejk ∈ {0, 1} : (14)∑
j∈C

(1− yj) ≤ α (15)

∑
j∈C−Nk

zjk ≤ βk ∀k ∈ K (16)

zjk ≤ 1− yj ∀j ∈ C −Nk, k ∈ K (17)

djk = yj ∨ zjk ∀j ∈ C, k ∈ K (18)

f ′k = fkwk ∀k ∈ K (19)

ejk = (djk ∧ wk) ∨ ¬wk ∀j ∈ C, k ∈ K (20)

wk ≤Mwfk ∀k ∈ K (21)

vPkm ∈ Ψkm(ejk) ∀k ∈ K, m ∈M} (22)

Constraints (15)-(18) are formulated for practical limitations and features of the modular cell.126

Specifically, the two variables that represent design choices for genetic manipulations include: (i)127

yj that takes a value of 0 if reaction j is deleted in the chassis (and consequently in all production128

networks) and 1 otherwise and (ii) zjk that takes a value of 1 if reaction j is inserted in production129

network k. The maximum number of reaction deletions, is limited by α through constraint (15)130

while the maximum number of module reactions in each module βk is imposed by (16). Constraint131

(16) excludes non-candidate reactions Nk (since j ∈ C −Nk) so that endogenous module reactions132

can be fixed (i.e., zjk = 1), according to problem-specific knowledge. Constraint (17) ensures that133

only reactions deleted in the chassis can be inserted back to the modules. Constraint (18) indicates134
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that reaction j is deleted in production network k if the reaction is deleted in the chassis and not135

added as an endogenous module reaction. The designer can gradually increase α and βk to obtain136

solutions with higher performance.137

Constraints (19)-(21) are introduced for modeling purposes. The indicator variable, wk, is138

introduced to allow for certain production networks to be ignored from the final solution. Without139

wk, the whole multi-objective problem becomes infeasible if a set of deletions renders one of the140

production networks infeasible (e.g., its minimum growth rate cannot be accomplished). However,141

in practice it is acceptable for some modules not to work with the chassis cell. If wk = 0, the142

objective value f ′k = 0 (19) and reaction deletions do not apply to network k since ejk = 1 (20); if143

wk = 1, f ′k = fk and ejk = djk, where fk is any of the design objectives presented earlier (7)-(9).144

The use of wk is likely to introduce symmetry (i.e., alternative integer solutions with no practical145

meaning) due to cases where fk = 0 for a given k while the associated production network remains146

feasible, allowing wk to take a value of 0 or 1. This symmetry is removed by enforcing wk to be 0147

if fk = 0 (21).148

Finally, constraint (22) indicates that the fluxes featured in the design objectives, vPkm, are149

contained in the polytope Ψkm. The space of vPkm is originally defined as an optimization problem150

(10)-(13), thus representing a non-linear constraint and turning the ModCell design problem into151

a bilevel optimization problem. These inner optimization problems are linearized, leading to Ψkm152

as described in Section 2.1.6.153

2.1.5 Linearization of logical expressions154

The logical expressions in Ω are replaced by the following linear constraints in the final problem155

formulation:156

djk = yj ∨ zjk corresponds to:

djk ≤ yj + zjk (23)

djk ≥ yj (24)

djk ≥ zjk (25)

0 ≤ djk ≤ 1 (26)
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f ′k = fkwk corresponds to:

f ′k ≤ wkMobj (27)

f ′k ≤ fk − (1− wk)Mobj (28)

f ′k ≤ fk (29)

0 ≤ f ′k ≤Mobj (30)

ejk = (djk ∧ wk) ∨ ¬wk, given rjk = djk ∧ wk, corresponds to:

ejk = rjk + 1− wk (31)

rjk ≤ wk (32)

rjk ≤ djk (33)

rjk ≥ wk + djk − 1 (34)

0 ≤ rjk ≤ 1 (35)

2.1.6 Linearization of inner optimization problems157

Non-linear constraints expressed as linear programming problems can be linearized using basic

mathematical programming theory. Consider the following canonical linear program, with primal

variables x ∈ Rn and its dual variables u ∈ Rm:

max {c>x : Ax ≤ b, x ≥ 0} (36)

min {b>u : A>u ≥ c, u ≥ 0} (37)

the strong duality theorem states that the objective functions of primal (36) and dual (37) are

equal at their optima, c>x∗ = b>y∗. Thus the optimal solution to the primal problem is described

by the following linear constraints:

x∗ ∈ {x ∈ Rn : (38)

Ax ≤ b (39)
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A>u ≥ c (40)

c>x = b>u (41)

x, u ≥ 0 } (42)

Using the strong duality theorem as presented by Maranas and Zomorrodi,22 the inner opti-

mization problems (22) are linearized as follows:

Ψkm(ejk) := {vjkm ∈ R : (43)∑
j∈Jk

Sijkvjkm = 0 ∀i ∈ Ik (44)

ljkmejk ≤ vjkm ≤ ejkujkm ∀j ∈ Jk (45)∑
i∈Ik

λikmSijk − µljkm + µujkm = cjkm ∀j ∈ Jk (46)

λikm ∈ R ∀i ∈ Ik (47)

0 ≤ µljkm ≤M ∀j ∈ Jk (48)

0 ≤ µujkm ≤M ∀j ∈ Jk (49)∑
j∈Jk

cjkmvjkm = −
∑

j∈Jk−C
(ljkmµ

l
jkm) +

∑
j∈Jk−C

(ujkmµ
u
jkm)

−
∑
j∈C

(ljkmp
l
jkm) +

∑
j∈C

(ujkmp
u
jkm) (50)

pljkm ≤ ejkM ∀j ∈ C (51)

µljkm − (1− ejk)M ≤ pljkm ≤ µljkm ∀j ∈ C (52)

0 ≤ pljkm ≤M ∀j ∈ C (53)

pujkm ≤ ejkM ∀j ∈ C (54)

µujkm − (1− ejk)M ≤ pujkm ≤ µujkm ∀j ∈ C (55)

0 ≤ pujkm ≤M ∀j ∈ C } (56)

Constraints (44)-(45) correspond to the primal metabolic network problem and were introduced158

earlier in Πkm. Constraints (46)-(49) correspond to the dual problem. We use the dual variables,159
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λikm, for the primal mass balance constraints (44), together with µljkm and µujkm for the primal flux160

bound inequalities (45) involving lower and upper reaction bounds respectively. Constraints (47)-161

(49) emphasize the domain of the dual variables, with M being a large value above the expected162

value of any dual variable. Constraints (50)-(56) correspond to the strong duality equality. The left163

hand side of the strong duality equality (50) features the objectives presented in (10) for m = µ and164

(12) for m = µ̄. On the right hand side, products of binary and continuous variables appear, thus165

requiring linearization variables pljkm and pujkm. Constraints (51)-(56) ensure that pljkm = ejkµ
l
jkm166

and pujkm = ejkµ
u
jkm.167

2.1.7 Conversion of a multi-objective problem into a single-objective problem168

The multi-objective optimization problem (1) is now described entirely in terms of linear constraints169

through Ω. However, to make the formulation compatible with MILP solver algorithms, the objec-170

tive function vector, f ′, must be expressed as a scalar. To accomplish this without loss of relevant171

information, we employed blended and goal attainment formulations.172

2.1.8 Blended formulation173

In the blended formulation,23 all objectives are summed as follows:

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω (57)

where ak is a scalar weighting factor associated with the design objective of product k. Different174

Pareto optimal solutions can be obtained by varying these weights. The blended formulation always175

provides Pareto optimal solutions as long as ak > 0 (∀k ∈ K). In practice, the product priority,176

ak, can be determined by criteria such as product market value or “pathway readiness level” (i.e.,177

certain pathways are easier to engineer than others).178
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2.1.9 Goal attainment formulation179

In the goal attainment problem,23 a target value is defined for each objective:

min
∑
k∈K

(a+
k δ

+
k + a−k δ

−
k ) (58)

s.t.

f ′k + δ+
k − δ

−
k = gk ∀k ∈ K (59)

δ+
k , δ

−
k ≥ 0 ∀k ∈ K (60)

f ′ ∈ Ω (61)

The problem seeks to minimize the variables δ+
k and δ−k that represent the deficiency and excess of180

the objective f ′k from the target value gk, respectively. Weighting parameters a+
k and a−k correspond181

to different types of discrepancy to be minimized. In general, when it is important to meet the182

target value without exceeding it, we set a+
k = a−k = 1; however, when the design objective is183

required to be greater or equal than the target value, we set a+
k = 1 and a−k = 0, effectively184

converting (59) into f ′k + δ+
k ≥ gk. Solutions to the goal attainment problem are not guaranteed to185

be Pareto optimal, even if all demands gk are met. To address this issue, the blended problem (57)186

can be solved where the objectives are constrained to be equal or greater than the values found187

by solving the goal attainment problem. In practice, the goal attainment formulation corresponds188

to the identification of the modular cell compatible with the largest number of modules. Here, a189

module k is said to be compatible if f ′k ≥ gk.190

2.2 Implementation191

2.2.1 Metabolic models192

We used two parent models from which production networks were built, including: i) a core193

metabolic model of E. coli17 to develop the ModCell2-MILP algorithm and compare with previous194

ModCell2 results,13 and ii) the iML1515 genome-scale metabolic model of E. coli24 for biosynthesis195

of a library of endogenous and heterologous metabolites, including 4 organic acids, 6 alcohols, and196
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10 esters (Table 2).25–34 These models were configured as in the previous ModCell2 study13, briefly:197

Anaerobic conditions were imposed by setting oxygen exchange fluxes to be 0, and the glucose up-198

take rate was constrained to be at most 10 mmol/gCDW/h. When using the genome-scale model199

iML1515 to simulate wGCP designs, only the commonly observed fermentative products (acetate,200

CO2, ethanol, formate, lactate, succinate) were allowed for secretion as described elsewhere.35
201

2.2.2 ModCell2-MILP simulations202

ModCell2-MILP was implemented using Pyomo,36 an algebraic modeling language embedded in the203

Python programming language. All simulations were performed on a computer with an Intel Core204

i7-3770 processor, 32 GB of random access memory, and the Arch Linux operative system. The205

implementation and scripts used to generate the results of this manuscript are available as part of the206

ModCell2 package via Supplementary Material 2 and https://github.com/trinhlab/modcell2.207

2.2.3 Optimization solver configuration208

The Pyomo36 implementation of ModCell2-MILP was solved with IBM Ilog Cplex 12.8.0. To209

avoid incorrect solutions associated with numerical issues the following Cplex parameters were210

changed from their default values: (i) numerical emphasis was set to “true”, (ii) integrality tolerance211

was lowered to 10−7, and (iii) the MIP pool relative gap was increased to 10−4 for enumerating212

alternative solutions. Alternative solutions were enumerated using the Cplex “populate” procedure.213

2.3 Analysis methods214

2.3.1 Reference flux distribution215

The reference flux distribution,
v∗jk
|v∗Sk|

, is determined by solving the following quadratic program

based on the parsimonious enzyme usage hypothesis:37,38

min
vjk

∑
j∈Jk

v2
jk (62)

s.t.
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∑
j∈Jk

Sijkvjkm = 0 ∀i ∈ Ik (63)

ljk ≤ vjk ≤ ujk ∀j ∈ Jk (64)

vXk = MaxDesignBio (65)

Constraint (63) corresponds to mass balance for the metabolic network. Constraint (64) corre-216

sponds to reaction bounds, including reaction deletions found in the modular cell design problem.217

Constraint (65) fixes the biomass formation rate, vXk, to the maximum reachable by the design.218

This value (MaxDesignBio) is obtained by maximizing vXk subject to (63) and (64). The refer-219

ence flux distribution
v∗jk
|v∗Sk|

represents the desired metabolic state of a wGCP designed production220

network. This distribution, if feasible, is unique because the convex optimization problem is for-221

mulated with a positive definite quadratic objective function (see Theorem 16.4 in Nocedal and222

Wright39).223

2.3.2 Flux sampling224

To determine an ensemble of flux distributions for a production network, we used the ACHR225

algorithm40 in the COBRA toolbox.41 Constraints for flux sampling simulation include the reaction226

deletions and module reactions found in the ModCell design problem solution, a fixed substrate227

uptake rate of -10 mmol glucose/gCDW/hr, and a minimum product synthesis flux of 50% of its228

maximum value.229

2.3.3 Metabolic map drawing230

Drawings of metabolic map were performed using the Escher42 tool (https://escher.github.io)231

that produces svg files. Coloring, highlighting candidate reactions, and other systematic adjust-232

ments of metabolic maps were done with the Python-based lxml module. Additional editing for233

visual enhancement was done with the Inkscape software.234
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3 Results235

3.1 Performance and solution time optimization of ModCell2-MILP236

3.1.1 ModCell2-MILP can not only reproduce the results of the original Mod-237

Cell2 formulation but also find more alternative solutions238

To evaluate ModCell2-MILP, we compared its performance with the previously developed Mod-239

Cell2 platform13 that solves the optimization problem with multi-objective evolutionary algorithms240

(MOEAs). As a basis of comparison, we used the same E. coli core metabolic model, maximum241

number of deletion reactions α, and maximum number of module-specific reactions βk for both Mod-242

Cell2 and ModCell2-MILP. Due to fundamental differences in problem formulations for MOEA and243

MILP, we used the lsGCP design objective for ModCell2-MILP with multiple weighting factors, ak,244

specifically selected to reproduce previous results, in the blended formulation and the sGCP design245

objective for ModCell2 (Supplementary Material 1). The results showed that ModCell2-MILP could246

generate the same Pareto optimal designs like ModCell2. In addition, ModCell2-MILP enumerated247

a larger number of alternative solutions than ModCell2. For example, the design named sGCP-5-248

0-6 generated by ModCell2 had 3 alternative solutions while ModCell2-MILP found 8 alternative249

solutions. By increasing α to 8 and β to 2, we could identify a utopia design (i.e., one solution with250

the maximum value for all objectives) with 192 alternative solutions, which significantly expands251

the possibilities for experimental implementation.252

3.1.2 Tuning MILP formulations significantly improves solution times253

We considered three techniques that can improve solution times of ModCell2-MILP, including:254

(i) Fixing the network feasibility indicator wk. If all modules are expected to be compatible255

with a final ModCell design (i.e., fk > 0, ∀k ∈ K), wk is set to be 1 for all k ∈ K in order to avoid256

computational efforts in finding non-optimal feasible solutions.257

(ii) Flux bound tightening. Constraints of the form ejkmljkm ≤ vjkm ≤ ejkmujkm are known to258

result in weak linear relaxations, i.e., feasible values of vjkm are far from their bounds ljkm and259

ujkm. To tighten the formulation by making continuous relaxations closer to the feasible integer260
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solution, smaller values of ujkm and ljkm are determined by solving a series of linear programs that261

maximize and minimize each flux vjkm in the parent production networks Πkm(ejk = 1, ∀j ∈ Jk).262

(iii) Benders decomposition. ModCell2-MILP has a separable structure compatible with Benders263

decomposition43,44 that creates a master problem, using binary variables and associated constraints264

(15)-(21), and sub-problems for each production network Ψkm(ejk) with fixed binary variables. This265

decomposition implementation is automatically done by Cplex 12.8.266

We evaluated these three techniques for tuning MILP formulations and used the core E. coli267

model13 for the benchmark study. The results showed that flux bound tightening, fixed wk, and268

Benders decomposition could reduce the solution time to find solutions by 50%, 80%, and 95%,269

respectively (Table 1). By combining these techniques, the solution time was shortened by 96%270

from 63.3 s to 2.8 s. In subsequent studies, we used these three tuning techniques to solve the271

ModCell design problem unless otherwise noted.272

3.1.3 Choices of design parameters affect solution time273

In designing a modular cell with ModCell2-MILP, the designer needs to specify the formulation274

type (i.e., blended or goal attainment formulation), the target phenotype (e.g., wGCP, lsGCP, and275

NGP), and the limits of deletion reactions (α) and endogenous module-specific reactions (βk). We276

evaluated the impact of these parameters on solution time using the E. coli core model (Figure277

2). Regardless of the formulation type, increasing α and β led to harder problems and hence278

required more solution time due to the exponentially increasing number of feasible solutions as279

expected. The goal attainment formulation took longer time to solve for the lsGCP and NGP280

design objectives, but about the same time for the wGCP design objective. Interestingly, the281

overall difficulty of wGCP is higher than that of lsGCP in both the blended and goal attainment282

formulations, despite lsGCP having approximately twice the number of constraints. Furthermore,283

the NGP design objective could be solved most quickly, likely due to the narrower design space284

associated with the no-growth associated production of target metabolites.285
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3.2 Design of a universal modular cell for a genome-scale metabolic286

model of E. coli287

3.2.1 Reduction of the candidate reaction deletion set enables ModCell2-MILP288

to find modular cell designs for a large-scale metabolic network289

Finding genetic modifications towards a desired phenotype using mathematical optimization for290

large-scale metabolic networks has been known to be a computationally expensive task due to291

the combinatorial search space spanned by a large number of reaction deletion candidates in the292

network.21,45 Preprocessing of metabolic networks to reduce reaction candidates is not only critical293

but also practical for experimental implementation. Previous implementation of ModCell2 for the294

latest genome-scale E. coli model (iML1515)24 showed that the preprocessing step could reduce the295

set of reaction candidates from 2,712 to 276. By using ModCell2 with the wGCP objective, an E.296

coli modular cell was identified to be compatible with 17 out of 20 products with requirement of297

only 4 reaction deletions.13 Since MOEA implemented in ModCell2 does not guarantee optimality,298

here we aimed to evaluate the capability of ModCell2-MILP for handling a large-scale metabolic299

network and identifying the Pareto optimality and potential alternative solutions.300

We applied ModCell2-MILP to analyze the same iML1515 model with a set of 20 products using301

the same design parameters (i.e., α and βk) and the blended formulation with all objective weights302

ak = 1. The simulation shows that ModCell2-MILP could not solve the ModCell design problem to303

optimality over 2 days of run time, likely due to the large number of candidate deletion reactions304

still present in the genome-scale model. To address this problem, the set of candidate reactions305

must be further reduced. Since only a small subset of all metabolic reactions in genome-scale306

models tend to be deleted by strain design algorithms,13,21,46 we used a pool of wGCP designs with307

α = 4, 5, 6 and β = 0, 1 reported with ModCell213 to identify relevant deletion candidates. From a308

set of 601 designs found by ModCell2, only 33 out of 276 candidates reaction deletions were used309

at least once. Hence, these 33 reactions were used to create a new, computationally-tractable set310

of reaction candidates. This new set contains reactions mostly from the well-characterized central311

metabolic pathways (Figure 3a) while the original set includes reactions in peripheral pathways312

that lead to biomass synthesis. Interestingly, within these 33 reaction candidates, only a few are313
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used in most designs (Figure 3b), highlighting the importance of their removal in growth-coupled314

production phenotypes. Reactions with high deletion frequencies mainly occur in high-flux central315

metabolic pathways (Figure 3c), closely associated with cellular energetics and carbon precursors316

that interface with the production modules (Figure 3d).317

Using the reduced candidate reaction deletion set, ModCell2-MILP could find an optimal solu-318

tion in ∼ 30 min and enumerated all optimal solutions in ∼ 8 hours. All the optimal solutions found319

by ModCell2-MILP in this case were in agreement with those previously found in ModCell2.13
320

3.2.2 ModCell2-MILP can identify a universal modular cell compatible with all321

exchangeable production modules322

Based on the computationally-tractable candidate reaction deletion set, we next evaluated whether323

the goal programming formulation could help identify a universal ModCell design that is compatible324

with all modules. By screening for various α and βk, we identified a universal modular cell that is325

compatible with all production networks, corresponding to the defined minimum design objective326

goal of 0.5 (i.e., 50% of the theoretical maximum product yield attained at the maximum growth327

rate), α = 6, and β = 1 (Figure 4a). Remarkably, most products greatly overcame this minimum328

goal with yields above 90% of the theoretical maximum values (Figure 4b). All production networks329

displayed a feasible metabolic space where an increase in product synthesis rate is needed to attain330

faster growth rates (Figure 4c). This designed phenotype is useful for optimal pathway selection331

using adaptive laboratory evolution47,48 and/or pathway libraries.49
332

3.3 Flexible metabolic flux capacity of E. coli core metabolism333

enables the design of a universal modular cell334

3.3.1 Endogenous modules responsible for metabolic flexibility of a universal335

modular cell are identified by comparing flux distributions of production336

networks337

The designed universal modular cell (Section 3.2.2) can theoretically adapt to the contrasting338

metabolic requirements of all production modules (Table 2). To gain further insight into this unique339
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metabolic capability of the modular cell and its potential to be realized in practice, we analyzed340

its reference flux distributions (Section 2.3.1) across the production networks. Reactions with the341

highest flux changes across the production networks are likely critical for the proper operation of342

the universal modular cell and might present potential bottlenecks. Such reactions were identified343

by filtering their reference flux standard deviation (calculated across production networks) with an344

ad hoc threshold of 0.2 (mol/substrate mol). Over 90% of the 535 active reactions, each of which345

carries a non-zero flux in at least one production network, had standard deviation values below346

the threshold, indicating highly conserved metabolic core pathways among production networks.347

Only 9.5% of the active reactions presented a standard deviation magnitude above the threshold348

(Figure 5a).349

In our case study of designing a universal modular cell compatible with all 20 production mod-350

ules, unbiased clustering analysis (Figure 5b) revealed the presence of four endogenous module351

types in the core metabolism of E. coli that are activated to fit specific production modules (Fig-352

ure 5c). In the context of chassis metabolism, an endogenous module corresponds to a reaction353

or group of highly coupled reactions that become active to accomplish a certain metabolic func-354

tion. The endogenous module classification can be understood in terms of location (i.e., proximity355

in the metabolic network) and three metabolic functions. The first function is the direction of356

carbon towards general precursor metabolites including (i) pyruvate and acetyl-CoA captured by357

acetyl-CoA-associated modules and (ii) oxaloacetate, succinate, succinyl-CoA, and α-ketoglutarate358

captured by TCA-associated modules. The second function is the direction of carbon from the pre-359

cursor metabolites towards secretable molecules, captured by the upstream and TCA-associated360

modules. The third function is the use of ATP- and NADP(H)-dependent pathways required361

to maintain homeostasis, captured by the acetyl-CoA-associated and energetic modules. While362

these functions are conceptually separable, their biochemical manifestation overlaps, i.e., specific363

metabolic reactions or pathways can simultaneously fulfill several functions.364

Each endogenous module can be viewed as an interface of the universal modular cell with365

production modules that are exchangeable. The endogenous modules might become potential366

metabolic bottlenecks in practice if they cannot satisfy the predicted fluxes, and thus might be367

critical engineering targets when the associated production modules are used.368
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Acetyl-CoA-associated endogenous modules. This module type contains pyruvate for-369

mate lyase (PFL) and pyruvate dehydrogenase enzyme complex (PDH) reactions that convert370

pyruvate to acetyl-CoA. Intuitively, products derived from pyruvate, such as isobutanol, require371

a low flux through PFL and PDH while those derived from acetyl-CoA require a high flux. Re-372

markably, the redox states of production strains determine the ratios of PFL to PDH fluxes. For373

example, the ethanol production network has a relatively high flux through PDH and a low flux374

through PFL; however, for ethyl acetate that has a lower degree of reduction than ethanol (Table 2),375

PFL with formate secretion is prioritized over PDH with NADH generation. Note that our model376

did not include the regulatory restriction that PDH is inhibited in E. coli anaerobically because the377

function of PDH is equivalent with the coupling of PFL and heterologous NADH-dependent for-378

mate dehydrogenase (FDH) demonstrated experimentally for increased butanol30,50 and pentanol32
379

production.380

Upstream modules. This module type is formed by reactions located directly upstream of381

a secretable metabolite, often associated with the target production module, and thus provides382

the necessary precursor metabolite(s). Such reactions are commonly over-expressed in practice,383

e.g., the ECOAH1-HACD1-ACACT1r endogenous module (comprising of 3-hydroxyacyl-CoA de-384

hydratase, 3-hydroxyacyl-CoA dehydrogenase, and acetyl-CoA acetyl transferase) responsible for385

generating butyryl-CoA and the ACLS-DHAD1-KARA1 endogenous module (comprising of aceto-386

lactate synthase, dihydroxy-acid dehydratase, and keto-acid reductoisomease) responsible for gen-387

erating isobutyryl-CoA. These endogenous modules can also become active to form byproducts in388

certain production networks, e.g., the PTAr-ACKr-ACT2rpp-ACtex endogenous module (compris-389

ing of phosphate acetyl transferase, acetate kinase, and cytosolic and periplasmic acetate transport)390

that not only carries the highest flux in the acetate production network but also becomes active in391

the propanol-associated modules.392

TCA-associated endogenous modules This module type has the same function as the393

upstream endogenous modules but it is localized in the TCA (Krebs) cycle. Several products,394

including adipic acid, 1,4-butanediol, propanol, pentanol, and their associated esters, are derived395

from the TCA intermediates and interface with the universal modular cell via the TCA-derived396
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endogenous modules. The SUCOAS-MMM-MMCD endogenous module (comprising of succinyl-397

CoA synthetase, Methylmalonyl-CoA mutase, methylmalonyl-CoA decarboxylase) must be acti-398

vated to convert succinate into succinyl-CoA and then propanoyl-CoA. Remarkably, two routes are399

present to synthesize fumarate from oxaloacetate, including the conventional MDH-FUM endoge-400

nous module (comprising of malate dehydrogenase and fumarase) that consumes NADH and the401

cyclic ASPTA-GLUDY-ASPT endogenous module (comprising of aspartate transaminase, gluta-402

mate dehydrogenase, and L-aspartase) that consumes NADPH. These NADH/NADPH cofactors403

are not interchangeable due to the deletion of the transhydrogenase THD2pp in the universal mod-404

ular cell, so the isobutyl pentanoate and pentyl pentanoate modules, that are derived from the405

ASPTA-GLUDY-ASPT endogenous module, also have a high NADPH requirement. Some pro-406

duction networks, such as pyruvate and isobutyl acetate that are not based on the TCA-derived407

endogenous modules, secrete succinate instead of ethanol and/or lactate to balance redox by using408

the PPC-MDH-FUM-SUCCtex endogenous module (comprising of phosphoenolpyruvate carboxy-409

lase, malate dehydrogenase, fumarase, and succinate transport).410

Energetic modules This module type primarily involves NAD(P)-dependent transhydroge-411

nase (THD2pp) and ATP synthase (ATPS4rpp). Other reactions that allow coupling of phosphate-412

and electron-transfer cofactors are also included. The reactions in this module help buffer the413

diverse electron and ATP requirements of production networks. THD2pp is deleted in the chassis414

but used as a module reaction in the isobutanol and acetate production networks. In the case of415

isobutanol production, transhydrogenase expression has been demonstrated to increase the synthe-416

sis of NADPH and thus isobutanol.51 Acetate has the smallest degree of reduction after pyruvate,417

which results in redox imbalance that is compensated via formate secretion. In conjunction with418

these mechanisms, ATPsynthase works in the reverse direction by hydrolyzing excess ATP. Other419

production networks also use ATPS4rpp to eliminate excess ATP as observed, for example, in420

the ethyl acetate production network. This strategy is consistent with ATP wasting approaches421

recently demonstrated.52
422
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3.3.2 Comparison between simulated and measured intracellular fluxes reveals423

flexible metabolic flux capacity of E. coli to accommodate the required424

wide flux ranges425

Flux analysis of the production networks suggests that the core metabolic reactions (Figure 5b)426

require a wide range of fluxes. To successfully implement this modular design in practice, we427

need to evaluate whether the metabolism of E. coli has the inherent metabolic flux capacity to428

accommodate the required fluxes of the designed universal modular cell when coupled with various429

exchangeable production modules. We compared the simulated reference flux distributions with a430

recent collection of 45 measured metabolic fluxes53 that are collected from multiple studies across431

various conditions (e.g., growth under aerobic and anaerobic conditions, use of glucose or acetate432

or pyruvate as a carbon source) and genotypes (e.g., wild-type E. coli and mutants with single433

gene deletions).54–57 Note that this dataset provides a baseline for wild-type and relatively small434

deviations from that state (i.e., single gene deletion mutants), thus highly engineered strains (e.g.,435

with three or more gene deletions) are likely to attain wider flux distributions.436

Within the 23 reaction groups that constitute endogenous modules (Figure 5b), 8 reactions437

could be matched to this experimental dataset (Figure 5d). Remarkably, a highly consistent overlap438

of flux ranges was observed between the simulated and measured fluxes for malate dehydrogenase439

(MDH), pyruvate dehydrogenase (PDH), acetaldehyde dehydrogenase (ACALD), fumarase (FUM),440

and 2-dehydro-3-deoxy-phosphogluconate aldolase (EDA). For the cases of D-lactate dehydrogenase441

(LDH D), and pyruvate secretion (EX pyr e) that are directly coupled with the biosynthesis of lac-442

tate and pyruvate, respectively, we observed the maximum simulated fluxes surpass the measured443

values, suggesting that further engineering of wild-type and single-gene deletion E. coli is needed444

to attain the requried fluxes. Indeed, previous studies58,59 have been able to redirect metabolic445

fluxes in E. coli for yields of lactate and pyruvate above 75% of the theoretical maximum values by446

simultaneous elimination of competing fermentative pathways, including acetate (∆ackA), formate447

(∆pflB), and ethanol (∆adhE ). The only remaining discrepancy between the simulated and mea-448

sured fluxes is PPC. Studies, not included in the comparison data set, have reported up to 50% more449

PPC flux observed under aerobic conditions60,61, which is still considerably below several of the450
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simulated fluxes. This result suggests that PPC can be a potential metabolic bottleneck in certain451

production modules. One potential solution is to include in the affected production modules the452

heterologous PPC from Actinobacillus succinogenes which has been successfully over-expressed in453

E. coli for increased succinate production.62 Additionally, bacterial PPC activity can be increased454

by elevating the acetyl-CoA pool.63
455

3.3.3 Random sampling of metabolic fluxes confirms the narrow operation456

range of endogenous modules457

The calculated reference flux distributions represent the ideal metabolic states for each produc-458

tion strain. However, other metabolic states might also exist. To address this uncertainty, we459

performed randomized flux sampling40,41 for each production network under the constraint that460

product synthesis rate has to be above 50% of the maximum value (Section 2.3.2). The results461

show that the metabolic flux distributions for most reactions involved in the endogenous modules462

(Figure 6a-u) are very narrow, except the two alternative pathways for ethanol synthesis, i.e., the463

endogenous PDH-ACALD-ALCD2x route (comprising of pyruvate dehydrogenase, acetaldehyde464

dehydrogenase, and alcohol dehydrogenase) (Figure 6t) route and the heterologous PDC-ALCD2x465

route (comprising of pyruvate decarboxylase and alcohol dehydrogenase). The range of experimen-466

tal and simulated fluxes are comparable, which is consistent with the results in Section 3.3.2. In467

summary, even though reactions in the endogenous modules must have flexible metabolic flux ca-468

pacities to enable a universal modular cell to be compatible with various exchangeable production469

modules, they must also operate within in a narrow flux range when interfacing with a specific470

production module.471

4 Conclusions472

Modular cell design seeks to accelerate strain development towards broader biotechnological appli-473

cation of synthetic biology and metabolic engineering, similar to the proven advantages of modular474

design in conventional engineering disciplines.4 In this study, we adapted the recently proposed13
475

multi-objective modular strain design method to a MILP computational framework that can guar-476
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antee Pareto optimal solutions, exhaustively search the space of alternative solutions, and specify477

design goals such as module prioritization. Remarkably, the proposed method identified a universal478

modular cell that harnesses the inherent modularity and flexibility of native E. coli metabolism64,65
479

to properly interface with a variety of biochemically diverse heterologous pathways. This universal480

design is predicted to display a growth-coupled to product formation phenotype for all pathways,481

enabling its use as a platform for pathway optimization through high-throughput library selec-482

tion or adaptation. The feasibility of this universal design strategy is found to be consistent with483

experimental evidence of isolated metabolic engineering strategies towards target products and484

measured intracellular flux ranges. We anticipate this is the first example of upcoming method-485

ological developments in the multi-objective strain design approach, which will follow a path similar486

to single-phenotype strain design algorithms66 introduced in the early 2000s,18 including the ad-487

dition of heterologous metabolic reactions from large biochemical databases67 and up- and down-488

regulation of genes in addition to knock-outs68, as well as the use of alternative modeling paradigms489

for flux prediction such as kinetic models69 and ME-models.70 Additionally, we anticipate that the490

method developed in this study can be applied to exchangeable metabolic modules whose functions491

can be expanded to bioremediation71 and biosensing72,73.492
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5 Definitions499

Sets500

Ik Metabolites in production network k.501

Jk Reactions in production network k.502
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K Production networks that are derived from a combination of the parent metabolic network503

with the metabolic pathways associated with production modules. The parent metabolic504

network is the network of the host strain that is genetically manipulated to build a modular505

cell chassis.506

M Metabolic states that correspond to the growth phase, denoted µ, and the non-growth or507

stationary phase, denoted µ̄.508

C Candidate deletion reaction set. The removal of these reactions are applied to all production509

networks, C ⊆ J parent ⊆ Jk, ∀k ∈ K.510

Nk Non-targeted deletion reaction set in production network k. This set arises from the use of511

fixed endogenous module reactions zjk in certain production networks.512

Binary variables513

yj Reaction deletion indicator that takes a value of 0 if reaction j is deleted in the chassis and514

1 otherwise.515

zjk Endogenous module reaction indicator that takes a value of 1 if reaction j is added back as516

module reaction in production network k and 0 otherwise.517

djk Reaction activity indicator that takes a value of 0 if reaction j in production network k518

might not carry a flux and 0 otherwise, thus djk = yj ∨ zjk. This variable is declared as519

a continuous and linear constraints enforce the OR relation and thus makes the variable520

binary.521

wk Production network feasibility indicator that takes a value of 0 if reaction deletions are522

ignored and the objective value is set to 0 for production network k, and a value of 1523

otherwise.524

ejk Reaction activity indicator adjusted to wk that takes the value of djk if wk = 1 and a value525

of 1 if wk = 0, thus ejk = (djk ∧ wk) ∨ ¬wk.526

rjk Linearization variable, rjk = djk ∨ wk.527

Continuous variables528

vjkm Flux (mmol/gCDW/hr) of reaction j from network k at metabolic state m.529

vPkm Flux (mmol/gCDW/hr) of product synthesis reaction from network k at metabolic state m.530

vXkm Flux (mmol/gCDW/hr) of biomass synthesis reaction from network k at metabolic state m.531

fk General objective function for production network k that can be represented by fwGCPk ,532

f lsGCPk , or fNGPk .533

f ′k Objective function adjusted by wk such that f ′k = fk if wk = 1 and f ′k = 0 otherwise.534

δ+
k Amount required by the objective value f ′k to attain the target goal gk, i.e.. δ+

k = gk − fk if535

f ′k < gk.536

δ−k Amount that the objective value f ′k surpasses the target goal gk, i.e., δ−k = f ′k−gk if f ′k > gk.537

λikm Dual variable associated with mass balance constraint of metabolite i from production net-538

work k at growth state m.539

µljkm Dual variable associated with the lower bound of reaction j from production network k at540

growth state m.541

µujkm Dual variable associated with the upper bound of reaction j from production network k at542

growth state m.543

pljkm Linearization variable, pljkm = ejkµ
l
jkm.544

pujkm Linearization variable, pujkm = ejkµ
u
jkm.545
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Parameters546

Sijk Stoichiometric coefficient of metabolite i in reaction j of production network k.547

ljkm Lower bound for reaction j of production network k at metabolic state m.548

ujkm Upper bound for reaction j of production network k at metabolic state m.549

γ Minimum biomass synthesis rate required for growth states. Note that in this study a550

conservative value of 20% of the maximum predicted growth rate of the wild-type strain551

was used to generate all results.552

α Maximum number of deleted reactions in the modular cell chassis.553

βk Maximum number of endogenous module reactions in production network k.554

ε Small scalar used for tilting the biomass objective function, leading to the minimum product555

rate available at the maximum growth rate. Note that in our study ε = 0.0001 was used556

to generate all results.557

bµ, bµ̄ Weights on the growth and non-growth objectives of f lsGCPk , respectively. Note that in our558

study bµ = 1 and bµ̄ = 10 were used to generate all results.559

ak Weighting factor applied to the objective function for production network k in the blended560

formulation. Note that in our study ak = 1, ∀k ∈ K was used unless otherwise noted.561

gk Target value for objective f ′k in the goal programming formulation.562

a+
k Weighting factor applied to δ+

k which emphasizes the importance of objective value f ′k to563

avoid falling below the target value gk. Note that in our study a+
k = 1, ∀k ∈ K was used564

in all cases.565

a−k Weighting factor applied to δ−k which emphasizes the importance of the objective f ′k to566

avoid surpassing the target value gk. Note that in our study a−k = 1, ∀k ∈ K was chosen567

everywhere except to determine the universal modular cell design, where a−k = 0, ∀k ∈ K568

was used.569

Mw Determines the minimum value of fk that allows wk to not be 0. A value of 10, corresponding570

to fk ≥ 0.01 for wk 6= 0, was used in all cases.571

Mobj Upper bound for each objective value. Note that in our study a value of 20 was set for all572

cases.573

M Upper bound for dual variables. Note that in our study a value of 100 was set for all cases.574

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748350doi: bioRxiv preprint 

https://doi.org/10.1101/748350
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Reaction abbreviations575

Identifier Name

ACACT1r Acetyl-CoA C-acetyltransferase
ACACT2rpp Acetate reversible transport via proton symport (periplasm)
ACALD Acetaldehyde dehydrogenase (acetylating)
ACKr Acetate kinase
ACLS Acetolactate synthase
ACtex Acetate transport via diffusion (extracellular to periplasm)
ALCD2x Alcohol dehydrogenase (ethanol)
ASPTA Aspartate transaminase
ASPT L-aspartase
ATPS4rpp ATP synthase (four protons for one ATP) (periplasm)
DHAD1 Dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylbutanoate)
ECOAH1 3-hydroxyacyl-CoA dehydratase (3-hydroxybutanoyl-CoA)
EDA 2-dehydro-3-deoxy-phosphogluconate aldolase
FUM Fumarase
HACD1 3-hydroxyacyl-CoA dehydrogenase (acetoacetyl-CoA)
KARA1 Ketol-acid reductoisomerase (2,3-dihydroxy-3-methylbutanoate)
MDH Malate dehydrogenase
MMCD Methylmalonyl-CoA decarboxylase
MMM Methylmalonyl-CoA mutase
PDH Pyruvate dehydrogenase
PFL Pyruvate formate lyase
PPC Phosphoenolpyruvate carboxylase
PTAr Phosphotransacetylase
SUCCtex Succinate transport via diffusion (extracellular to periplasm)
SUCOAS Succinyl-CoA synthetase (ADP-forming)
THD2pp NAD(P) transhydrogenase (periplasm)

576
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Tables759

Table 1: Solution time reduction by tuning the ModCell2-MILP formulation with Benders
decomposition, bound tightening, and/or fixed network indicator (wk = 1 ,∀k ∈ K). The
simulations were performed in triplicates.

Feasibility
indicator
wk fixed

Benders
decompo-

sition

Bounds
tightened

Solution
time (s)

No No No 63.3 ± 16.9
No No Yes 32.5 ± 10.2
No Yes No 3.6 ± 0.1
No Yes Yes 3.4 ± 0.4
Yes No No 13.8 ± 2.7
Yes No Yes 11.9 ± 1.7
Yes Yes No 2.7 ± 0.3
Yes Yes Yes 2.8 ± 0.1
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Table 2: Overall production module stoichiometries, degree of reduction (DoR) of the final
product (mol e− / mol C), and metabolite secretion profiles from simulated reference flux
distributions (mol C / mol C) of the universal modular cell design. Flux (mmol/gCDW/hr)
abbreviations: rp, product; rac, acetate; rco2 , CO2; rfor, formate; rsucc, succinate. Note that
the negative CO2 fluxes in pyruvate and acetate production networks indicate overall CO2

uptake enabled by phosphoenolpyruvate carboxylase (PPC).

Overall reaction DoR rp rac rco2 rfor rsucc

pyr + nadh → ethanol | accoa + 2 nadh → ethanol (native) 7.0 0.58 0.01 0.27 0.04 -
oaa + glu + 2 atp + 2 nadph + nadh → akg + propanol 6.7 0.31 0.36 0.07 0.18 -
2 accoa + 4 nadh → butanol 6.5 0.59 0.01 0.28 0.04 -
2 pyr + nadph + nadh → isobutanol 6.5 0.62 - 0.31 - -
oaa + glu + accoa + 3 nadh + 2 atp + 2 nadph → akg + pentanol 6.4 0.50 0.21 0.24 0.03 -
succ + akg + atp + 4 nadh + accoa → ac + 1,4-butanediol 5.5 0.46 0.33 0.17 - -
→ pyruvate 3.0 0.46 - -0.16 - 0.66
pyr + nadh → D-lactate 3.7 0.91 - - - -
accoa → atp + acetate 3.5 0.60 0.60 -0.30 0.61 -
accoa + succoa + 2 nadh → atp + adipic acid 4.0 0.82 0.05 0.04 0.06 -
accoa + pyr + nadh → ethyl acetate 5.0 0.63 - - 0.32 -
accoa + oaa + glu + 2 atp + 2 nadph + nadh → akg + propyl acetate 5.2 0.41 0.30 - 0.24 -
accoa + 2 pyr + nadph + nadh → isobutyl acetate 5.3 0.36 - 0.02 0.06 0.52
2 accoa + 3 nadh + pyr → ethyl butanoate 5.3 0.61 - 0.09 0.23 -
2 accoa + 3 nadh + oaa + glu + 2 atp + 2 nadph → akg + propyl butanoate 5.4 0.68 0.03 0.23 0.04 -
4 accoa + 6 nadh → butyl butanoate 5.5 0.61 - 0.14 0.18 -
2 accoa + 3 nadh + 2 pyr + nadph → isobutyl butanoate 5.5 0.64 - 0.16 0.16 -
oaa + glu + accoa + 2 nadh + 2 atp + 2 nadph + pyr → akg + ethyl pentanoate 5.4 0.68 0.03 0.23 0.04 -
oaa + glu + accoa + 2 nadh + 2 atp + 3 nadph + 2 pyr → akg + isobutyl pentanoate 5.6 0.67 0.01 0.25 0.03 -
2 oaa + 2 glu + 2 accoa + 4 nadh + 4 atp + 4 nadph → 2 akg + pentyl pentanoate 5.6 0.53 0.22 0.20 0.02 -
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Figures760

Figure 1: Principles of modular cell design. (a) Modular cell chassis. (b) Interfaces. (c)
Production modules. (d) Production strains. A modular cell is designed to provide the
necessary precursors for biosynthesis pathway modules that are independently assembled
with the modular cell to generate production strains exhibiting desirable phenotypes. The
wGCP phenotype, one of the possible design objectives, enforces the coupling between the
desirable product synthesis rate and the maximum cellular growth rate.
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Figure 2: Effect of design parameters, including the target design objective (i.e., wGCP,
lsGCP, and NGP) and the limits of deletion reactions α and endogenous module-specific
reactions βk, on computation time for solving the ModCell2-MILP problem with the blended
(a-c) and goal attainment (d-f) formulations. A time limit of 500 seconds indicated by a red
dashed line was used in all cases, but only reached by certain wGCP and lsGCP cases with
β ≥ 2. The simulations were performed in duplicates.
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Figure 3: Analysis of reaction deletion candidates. (a) Subsystem distribution for the orig-
inal set of 276 candidate reactions in the iML1515 model. Those subsystems that contain
a reaction used in at least one design are colored. (b) Deletion frequency for the reduced
set of 33 candidate reactions. The analysis is based on a pool of 601 wGCP designs from
different α and β parameters whose Pareto fronts were previously determined with Mod-
Cell2.13 Bar colors indicate membership of these reactions to the subsystems. (c) Metabolic
map of core metabolism. Key metabolites, including precursors for the 20 product modules
(i.e., pyruvate, acetyl-CoA, succinyl-CoA, succinate, and α-ketoglutarate), are highlighted in
green. Reactions are colored according to subsytem labels indicated in (a), reactions colored
in light gray do not appear in any of the subsytems of (a), and reactions that are candidates
for deletion, listed in (b), are labeled in red. (d) Link between major precursors and tar-
get products where colors are only used to facilitate visualization. Reaction and metabolite
abbreviations correspond to BiGG74 identifiers (http://bigg.ucsd.edu/).
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Figure 3: (Caption previous page)
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Figure 4: Identification of a universal modular cell compatible with all production modules
using the wGCP design objective. (a) Goal programming solutions with increasing α and β
values. The goal programming objective value (58) in the y-axis measures the difference be-
tween the performance of production strains and the target goal, i.e.,

∑
k∈{k∈K:f ′k<gk}

(f ′k−gk)
where the target goal is set to be gk = 0.5. The parameters α = 6 and β = 1 are sufficient
to identify a universal modular cell design meeting the required goal for all production net-
works. (b) Comparison between the yield performances of the designed modular production
strains and maximum theoretical values. (c) The feasible flux spaces for the wild-type (gray)
and designed modular production strains (crimson). Based on the wGCP design phenotype,
to increase growth rate, each mutant must increase product synthesis rate. The genetic
manipulations of this universal modular cell design are indicated in the metabolic map of
Figure 5c.

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748350doi: bioRxiv preprint 

https://doi.org/10.1101/748350
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Flexible metabolic flux capacity of E. coli metabolism enables the universal mod-
ular cell design. (a) Standard deviation of each reaction flux across production networks.
(b) Scaled fluxes of the 51 reactions with standard deviation magnitude above 0.2, excluding
proton, water transport, and exchange reactions. A scaled flux for a reaction is determined
by the reference flux distribution value divided by the maximum value of that reaction across
all production networks. Thus, a scaled flux of 0 indicates a given reaction does not carry
any flux, and a scaled flux of 1 indicates that this reaction carries the highest flux across
production networks. Several columns have multiple reactions, separated by |, since they
carry exactly the same flux. (c) Endogenous modules of the universal modular cell. The
reactions colored in red are deleted in the chassis, but are used as module reactions in the
production networks shown in the adjacent gray boxes. Metabolites in periplasmic and ex-
tracellular compartments have “ p” and “ e” suffixed to their abbreviations, respectively.
Metabolite and reaction abbreviations follow BiGG74 notation. (d) Comparison between
simulated and measured fluxes. The solid lines within the “violins” correspond to samples.
The simulated fluxes for the reversible reactions, including FUM, LDH, MDH, and ACALD,
were multiplied by -1 to reflect their most common direction.
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Figure 5: (Caption previous page)
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Figure 6: Violin plots of sampled flux distributions of the reactions of interest. Reaction
colors are consistent with Figure 5. The flux of SUCOAS could not be sampled since this
reaction is involved in a thermodynamically infeasible cycle.
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