bioRxiv preprint doi: https://doi.org/10.1101/748350; this version posted August 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

. Harnessing natural modularity of cellular metabolism to

2 design a modular chassis cell for a diverse class of
: products by using goal attainment optimization

4 Sergio Garcial? and Cong T. Trinh"?"

s 1 Department of Chemical and Biomolecular Engineering, The University of
6 Tennessee, Knozuville, TN, United States

7 2Center for Bioenergy Innovation, Oak Ridge National Laboratory Oak
8 Ridge, TN, United States

5 " Corresponding author: 1512 Middle Drive, DO432, Department of
10 Chemical and Biomolecular Engineering, University of Tennessee,
1 Knoxuville, TN 37996, United States. Tel: 865-97/-2181. Emaal:

1 ctrinh@Qutk. edu.

13 Abstract

14 Living cells optimize their fitness against constantly changing environments to sur-
15 vive. Goal attainment optimization is a mathematical framework to describe the si-
16 multaneous optimization of multiple conflicting objectives that must all reach a perfor-
17 mance above a threshold or goal. In this study, we applied goal attainment optimization
18 to harness natural modularity of cellular metabolism to design a modular chassis cell for
19 optimal production of a diverse class of products, where each goal corresponds to the
20 minimum biosynthesis requirements (e.g., yields and rates) of a target product. This
21 modular cell design approach enables rapid generation of optimal production strains
2 that can be assembled from a modular cell and various exchangeable production mod-
23 ules and hence accelerates the prohibitively slow and costly strain design process. We
2% formulated the modular cell design problem as a blended or goal attainment mixed
25 integer linear program, using mass-balance metabolic models as biological constraints.
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2 By applying the modular cell design framework for a genome-scale metabolic model

27 of Escherichia coli, we demonstrated that a library of biochemically diverse products

28 could be effectively synthesized at high yields and rates from a modular (chassis) cell

20 with only a few genetic manipulations. Flux analysis revealed this broad modular-

30 ity phenotype is supported by the natural modularity and flexible flux capacity of core

31 metabolic pathways. Overall, we envision the developed modular cell design framework

32 provides a powerful tool for synthetic biology and metabolic engineering applications

33 such as industrial biocatalysis to effectively produce fuels, chemicals, and therapeutics

34 from renewable and sustainable feedstocks, bioremediation, and biosensing.

35 Keywords— Biocatalysis, modular cell, ModCell, modular design, metabolic network mod-

36 eling, constraint-based modeling, multi-objective optimization, mixed integer linear programming,

37 goal programming, Benders decomposition.

+ 1 Introduction

39 Microbial metabolism can be engineered to produce a large space of molecules from renewable
w0 and sustainable feedstocks.! Currently, only a handful of fuels and chemicals out of the many
a1 possible molecules offered by nature are industrially produced by microbial conversion, mainly
22 because the strain engineering process is too laborious and expensive.? Thus, innovative technologies
a3 enabling rapid and economically-feasible strain engineering are needed to harness a large space of
s industrially-relevant biochemicals.' To tackle this challenge, the principles of modular design that
45 have shown great success in traditional engineering disciplines can be adapted to construct modular
s cell biocatalysts in a plug-and-play fashion with minimal strain optimization cycles.*

a7 Multi-objective optimization is a powerful mathematical framework widely applied in engi-
a8 neering disciplines to tackle the optimal design of a complex system with multiple conflicting
s objectives.®8 This framework has recently been exploited for not only explaining the modularity of
5o natural biological systems that enable cellular robustness and adaptability” ! but also implement-
51 ing modular engineering design.'? Using multi-objective optimization, microbial metabolism can

52 be redirected to generate modular production strains that are systematically assembled from an
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53 engineered modular cell and exchangeable production modules, each of which synthesizes a target
s« molecule.!® This modular cell (ModCell) design approach, known as ModCell2, uses the principles
55 of mass balance and thermodynamics of biochemical reaction networks to predict metabolic fluxes
ss upon genetic manipulations.'®!4 Based on such flux predictions, a multi-objective optimization
57 problem is then formulated and solved with a multi-objective evolutionary algorithm (MOEA)!%-16
ss  to yield a sample of the Pareto front (i.e., the set of optimal solutions to the problem with minimal
so trade-offs among objectives) that a designer can explore genetic manipulation targets for modular
60 cell engineering.

61 In this study, we developed ModCell2-MILP, a ModCell2-based formulation to be compatible
2 with mixed integer linear programming (MILP) algorithms. This framework presents a significant
63 advancement from ModCell2 in solving the multi-objective strain design problem for modular cell
¢« engineering. Specifically, ModCell2-MILP is developed to (i) guarantee optimal solutions, (ii) com-
s pletely enumerate alternative solutions of a target design, and (iii) describe practical engineering
6o goals more directly (e.g., design of a modular cell where all production modules lead to a prod-
e7 uct yield above 50% of the theoretical maximum). By applying ModCell2-MILP to analyze the
68 genome-scale metabolic network of Escherichia coli, we could identify a universal modular cell that
60 is compatible with a diverse class of production modules. Finally, we shed light on the underlying
70 features of the universal modularity phenotype by systematically analyzing feasible flux distribu-
71 tions of all modular production strains. We anticipate ModCell2-MILP can provide a powerful tool
72 for not only elucidating natural and synthetic metabolic modularity but also rationally designing

73 modular production strains for novel synthetic biology and metabolic engineering applications.

« 2  Methods

s 2.1 Modular cell design

s 2.1.1 Design principles

77 ModCell design enables rapid assembly of production strains with desirable phenotypes from a

72 modular (chassis) cell.*!317 More specifically, a modular cell contains core metabolic pathways
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70 shared among production modules (Figure 1la). The chassis interfaces with the modules through
so enzymatic and genetic synthesis machinery and precursor metabolites (Figure 1b). Modules con-
1 tain auxiliary regulatory and metabolic pathways (Figure 1c) that enable a desired phenotype for
g2 optimal biosynthesis of a target molecule, for example, weak growth coupled to product formation
83 (wGCP), where a positive correlation between growth and product synthesis rates is enforced (Fig-
s« ure 1d).!31819 The design objective phenotypes are determined from cellular growth and product
ss synthesis rates based on steady-state, mass-balance metabolic models.?? A modular cell is said to
s be compatible with a module if the design objective of the resulting production strain is above a
g7 specified threshold. The different biochemical nature of production modules to synthesize target
ss metabolites can make the design objectives compete with each other and also the cellular objec-
s tives (e.g., biomass formation) compete with the engineering objectives (e.g., product formation),

o0 turning the ModCell design problem into a multi-objective and multi-level optimization problem.

a 2.1.2 Multi-objective optimization formulation

The modular cell design problem is stated as a general multi-objective optimization problem of the

form:

max F(z) = (fi(x), fo(2),..., fx(@)| st.zeX (1)

where fy is the desirable phenotype for production module &, x are the problem variables including
binary design variables corresponding to genetic manipulations, and X is the set of constraints
including mass balance of metabolism. Optimal solutions for the multi-objective optimization
problem (1) are defined using the concept of domination: A vector a = (a1,...,ax)' dominates
another vector b = (by,...,bx)", denoted as a < b, if and only if a; > b; Vi € {1,2,..., K} and
a; # b; for at least one i. A feasible solution z* € X of the multi-objective optimization problem
is called a Pareto optimal solution if and only if there does not exist a vector ' € X such that

F(2') < F(z*). The set of all Pareto optimal solutions is called Pareto set:

PS:={reX: P2 € X,F(z') < F(x)} (2)
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The projection of the Pareto set in the objective space is denoted as Pareto front:

PF :={F(z):z € PS} (3)

Different feasible points in PS (i.e., different genetic manipulations) which map to a single point
in PF (i.e., the same phenotype) are denoted alternative solutions.

The design variables z in ModCell2 correspond to chassis reaction deletions, that remove un-
desired metabolic functions, and module reaction insertions, that allow to identify optimal module
configurations without extensive prior knowledge of the product synthesis pathway. The con-
straint set X is comprised of two types: (i) flux simulation constraints (e.g., mass balance, reaction
reversibility, and flux bound) that allow to predict fluxes in the design objectives upon genetic
manipulations, and (ii) implementation constraints that involve the maximum number of reaction
deletions in the chassis (denoted by «) and the maximum number of module reaction insertions per
module (denoted by ). The following sections describe the problem formulation in detail using

the definitions compiled in Section 5.

2.1.3 Design objectives

Design objectives, f, that correspond to specific metabolic phenotypes within the space of feasible
steady-state reaction fluxes, Ilg,, of production network k (i.e., the combination of the chassis

network with the production module k) and metabolic state m, are defined as follows:

Hkm(ejk) = {'Ujk:m ceR: (4)
Z Sijkvjkm =0 Vi € Iy, (5)
JE€ETk

Likmejk < Vjkm < €jptjkm Vj € Tk (6)

Here, vj, is the rate (mmol/gCDW /hr) of reaction j in production network & under metabolic state
m. Constraint (5) enforces mass balance for all metabolites according to reaction stoichiometry
given by the coefficients S;;i, and constraint (6) imposes bounds, ljxn, and g, for the metabolic

fluxes according to reaction reversibility, experimentally measured values, and specified metabolic
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ws state. The binary variable ej; is used in the overall optimization problem to indicate whether
100 reaction j in production network k is removed and thus cannot carry any flux. Two metabolic
10 states m are considered, growth and non-growth, denoted p and [, respectively. These states
m  are differentiated by their flux bounds Iz, and u;k,,. For growth state, the lower bound of the
112 biomass formation reaction that represents cell division, vxgm, is set to a minimum value of v, i.e.,
us  Ixp, =7 (Vk € K), while there is no upper limit to growth, i.e., uxy, = oo (Vk € K). On the other
14 hand, for the non-growth state both bounds are set to 0, i.e., Ix;z = 0 and uxgz = 0 (Vk € K).

Given the feasible metabolic flux space, Ilg,,, the following design objectives, based on the

product synthesis rate reaction, vpg,,, are of interest:

115

116

117

118

119

120

fliuGC’P _ “Z’Zl; e [0,1], Vk e K (7)
Pku
flsGCP g, UZIZI; ﬂvi’zfi €[0,b, +bz], VkeKk (8)
UPku ka’ﬂ

NGP _ VPkj
fk = Umax 6 [0’ ]']7
Pk

Vk e K (9)

The product synthesis fluxes, including vpy,,, vggﬁ , Vpkp, and v}@gg, are computed by solving the

following linear programming problems:
ka,ue arg max{vX;w — €VUPky * Vkp S Hku(ejk)} (10)

vl@,?;fe arg max{vpk, : Vg € Mypp(ejn =1, Vj € Ti)}

(11)

vprp € arg min{vpgg : vep € Hip(ejn)} (12)
vpgy € arg max{vpkg : vkg € Mig(ejr = 1, Vj € Ji)} (13)

The maximum product synthesis fluxes (11) and (13) used for objective scaling are only calculated
once by not using any deleted reactions (ej; = 1), while the target phenotype fluxes (10) and (12)
are functions of the deleted reactions ej;. The design objectives, wGCP (7), IsGCP (8), and NGP
(9), were previously proposed!® and briefly described here. The weak growth coupled to product
formation objective (wGCP) (7) seeks to maximize the minimum product rate at the maximum

cellular growth, which is accomplished by a titled objective function?! (10). The linearized strong
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121 growth coupled to product formation (IsGCP) (8) objective seeks to maximize the minimum prod-
12 uct synthesis rate at the non-growth state vpg; in addition to the goal of wG'CP. Finally, the
123 non-growth production (NGP) (9) objective seeks to optimize the minimum product synthesis rate

124 during the non-growth state.

s 2.1.4 Design constraints

All the constraints of the modular cell design problem are gathered as follows:

Q:={f; €R, yj, zjk, dji, wg, €5 € {0,1}: (14)
Y (1-y)<a (15)
jec

> zin < B Vk e K (16)
JEC—Ny
zik <1 —y; VieC—N, kek (17)
dir = yj V Zjk VieC, kek (18)
fr. = frwk Vk e K (19)
ejk = (djp AN wg) V ~wy Viel, kek (20)
wy < MY fi Vk e K (21)
VPkm € Yim(€jk) VEe K, me M} (22)

126 Constraints (15)-(18) are formulated for practical limitations and features of the modular cell.
127 Specifically, the two variables that represent design choices for genetic manipulations include: (i)
128 y; that takes a value of 0 if reaction j is deleted in the chassis (and consequently in all production
120 networks) and 1 otherwise and (ii) z; that takes a value of 1 if reaction j is inserted in production
130 network k. The maximum number of reaction deletions, is limited by « through constraint (15)
131 while the maximum number of module reactions in each module (3 is imposed by (16). Constraint
132 (16) excludes non-candidate reactions N, (since j € C — Nj) so that endogenous module reactions
133 can be fixed (i.e., zj; = 1), according to problem-specific knowledge. Constraint (17) ensures that

134 only reactions deleted in the chassis can be inserted back to the modules. Constraint (18) indicates
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135 that reaction j is deleted in production network k if the reaction is deleted in the chassis and not
136 added as an endogenous module reaction. The designer can gradually increase o and S to obtain
137 solutions with higher performance.

138 Constraints (19)-(21) are introduced for modeling purposes. The indicator variable, wy, is
130 introduced to allow for certain production networks to be ignored from the final solution. Without
190wy, the whole multi-objective problem becomes infeasible if a set of deletions renders one of the
11 production networks infeasible (e.g., its minimum growth rate cannot be accomplished). However,
142 in practice it is acceptable for some modules not to work with the chassis cell. If wy = 0, the
13 objective value f; =0 (19) and reaction deletions do not apply to network k since ej; = 1 (20); if
e wy =1, fi = fi and ejr, = dji, where fi is any of the design objectives presented earlier (7)-(9).
us  The use of wy, is likely to introduce symmetry (i.e., alternative integer solutions with no practical
us meaning) due to cases where fi, = 0 for a given k while the associated production network remains
147 feasible, allowing wj to take a value of 0 or 1. This symmetry is removed by enforcing wy to be 0
us if fr, =0 (21).

149 Finally, constraint (22) indicates that the fluxes featured in the design objectives, vpg,, are
150 contained in the polytope Wg,,. The space of vpg,, is originally defined as an optimization problem
151 (10)-(13), thus representing a non-linear constraint and turning the ModCell design problem into
152 a bilevel optimization problem. These inner optimization problems are linearized, leading to Wy,

153 as described in Section 2.1.6.

s« 2.1.5 Linearization of logical expressions

155 The logical expressions in {2 are replaced by the following linear constraints in the final problem
156 formulation:

d;r = y;j V zj) corresponds to:

djk < yj + zjk (23)
djr > yj (24)
djk = Zjk (25)
0<dy<1 (26)
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f1. = frwy corresponds to:

fi < wpM® (27)
fi < o= (1 —wp) MY (28)
fr. < f (29)
0< fi <MY (30)

ejr = (djr N wg) V —wg, given ik = dj A wg, corresponds to:

ejk = ik + 1 —wg (31)
ik < Wy (32)
rik < djk (33)
Tik > W+ dj — 1 (34)
0<rj;<1 (35)

157 2.1.6 Linearization of inner optimization problems

Non-linear constraints expressed as linear programming problems can be linearized using basic
mathematical programming theory. Consider the following canonical linear program, with primal

variables € R™ and its dual variables v € R™:

max {c'z: Az <b, x>0} (36)

min  {b'wu:ATu>c, u>0} (37)

the strong duality theorem states that the objective functions of primal (36) and dual (37) are
equal at their optima, ¢' 2* = b"Ty*. Thus the optimal solution to the primal problem is described

by the following linear constraints:
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ATu> ¢ (40)
clz=b"u (41)
x,u >0} (42)

Using the strong duality theorem as presented by Maranas and Zomorrodi,?? the inner opti-

mization problems (22) are linearized as follows:

Uim(ejk) == {vjkm € R: (43)
> Sijktjkm =0 Vi€ I, (44)
JETk
Likmejk < Vjkm < €jkUjkm Vi e Tk (45)
Z XikmSijk — Wik + M = Cikm Vi€ Jk (46)
€Ty
Aiem € R Vi € Iy, (47)
0 < g <M Vj € Tk (48)
0 < Wjpm <M Vje Tk (49)
Z CikmUjkm = — Z (ljkm:ué‘km) + Z (Wjkm M5 rm)
JETk jET—C jeT—C
= ikmPim) + D (UWjkm DY) (50)
jec jec
Pl < €M Vjec (51)
Mé‘km — (L —ejp)M < Pé'km < Mé’km vjec (52)
0 < Phpgn <M Vjec (53)
Pl < €M Vjec (54)
Hirm — (1 = €6) M < Dl < M vjeC (55)
0 < plpm <M Vjecl} (56)

155 Constraints (44)-(45) correspond to the primal metabolic network problem and were introduced

19 earlier in Ily,,. Constraints (46)-(49) correspond to the dual problem. We use the dual variables,

10
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160 Aikm, for the primal mass balance constraints (44), together with ué. gm and pfy, for the primal flux
11 bound inequalities (45) involving lower and upper reaction bounds respectively. Constraints (47)-
12 (49) emphasize the domain of the dual variables, with M being a large value above the expected
163 value of any dual variable. Constraints (50)-(56) correspond to the strong duality equality. The left
16« hand side of the strong duality equality (50) features the objectives presented in (10) for m = pu and
165 (12) for m = . On the right hand side, products of binary and continuous variables appear, thus
166 requiring linearization variables pzkm and pi,. Constraints (51)-(56) ensure that pé.km = €jkﬂékm

w7 and ply = €k,

s 2.1.7 Conversion of a multi-objective problem into a single-objective problem

160 The multi-objective optimization problem (1) is now described entirely in terms of linear constraints
170 through 2. However, to make the formulation compatible with MILP solver algorithms, the objec-
11 tive function vector, f’, must be expressed as a scalar. To accomplish this without loss of relevant

172 information, we employed blended and goal attainment formulations.

173 2.1.8 Blended formulation

In the blended formulation,?? all objectives are summed as follows:

max Y apfi st f €9 (57)

kel

174 where a; is a scalar weighting factor associated with the design objective of product k. Different
175 Pareto optimal solutions can be obtained by varying these weights. The blended formulation always
176 provides Pareto optimal solutions as long as a; > 0 (Vk € K). In practice, the product priority,
177 ag, can be determined by criteria such as product market value or “pathway readiness level” (i.e.,

78 certain pathways are easier to engineer than others).

11
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1w 2.1.9 Goal attainment formulation

In the goal attainment problem,?? a target value is defined for each objective:

min > (af & +a;0;) (58)
kel
s.t.
fr+0 =0, =gr VkeK (59)
65,6, >0 Vk e K (60)
fleq (61)

180 The problem seeks to minimize the variables 5: and ¢, that represent the deficiency and excess of
181 the objective f; from the target value g, respectively. Weighting parameters az and a;; correspond
12 to different types of discrepancy to be minimized. In general, when it is important to meet the
183 target value without exceeding it, we set ag = a; = 1; however, when the design objective is
18¢ required to be greater or equal than the target value, we set a: = 1 and a;, = 0, effectively
185 converting (59) into f; + 5: > gi. Solutions to the goal attainment problem are not guaranteed to
18 be Pareto optimal, even if all demands g are met. To address this issue, the blended problem (57)
187 can be solved where the objectives are constrained to be equal or greater than the values found
188 by solving the goal attainment problem. In practice, the goal attainment formulation corresponds
180 to the identification of the modular cell compatible with the largest number of modules. Here, a

10 module k is said to be compatible if f; > gy.

w 2.2 Implementation

12 2.2.1 Metabolic models

113 We used two parent models from which production networks were built, including: i) a core
104 metabolic model of E. coli'” to develop the ModCell2-MILP algorithm and compare with previous
105 ModCell2 results,' and ii) the iML1515 genome-scale metabolic model of E. coli?* for biosynthesis

106 of a library of endogenous and heterologous metabolites, including 4 organic acids, 6 alcohols, and

12
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107 10 esters (Table 2).2°3* These models were configured as in the previous ModCell2 study!3, briefly:
108 Anaerobic conditions were imposed by setting oxygen exchange fluxes to be 0, and the glucose up-
199 take rate was constrained to be at most 10 mmol/gCDW /h. When using the genome-scale model
200 1IML1515 to simulate wGCP designs, only the commonly observed fermentative products (acetate,

21 COg, ethanol, formate, lactate, succinate) were allowed for secretion as described elsewhere.®

200 2.2.2 ModCell2-MILP simulations

6 an algebraic modeling language embedded in the

203 ModCell2-MILP was implemented using Pyomo,3
204 Python programming language. All simulations were performed on a computer with an Intel Core
205 17-3770 processor, 32 GB of random access memory, and the Arch Linux operative system. The

206 implementation and scripts used to generate the results of this manuscript are available as part of the

207 ModCell2 package via Supplementary Material 2 and https://github.com/trinhlab/modcell2.

208 2.2.3 Optimization solver configuration

200 The Pyomo?% implementation of ModCell2-MILP was solved with IBM Ilog Cplex 12.8.0. To
210 avoid incorrect solutions associated with numerical issues the following Cplex parameters were
o changed from their default values: (i) numerical emphasis was set to “true”, (ii) integrality tolerance
212 was lowered to 1077, and (iii) the MIP pool relative gap was increased to 10~* for enumerating

213 alternative solutions. Alternative solutions were enumerated using the Cplex “populate” procedure.

a4 2.3 Analysis methods

x5 2.3.1 Reference flux distribution

The reference flux distribution, ‘Uvi—'k‘, is determined by solving the following quadratic program
Sk

based on the parsimonious enzyme usage hypothesis:37:38

min Z ’U?k (62)

Vik 4
J VN,

s.t.

13
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> Sijkvjgm =0 Vi€ (63)
JE€ETk

Lik < vjp < ujp Vi€ Jk (64)
vxkr = MaxDesignBio (65)

216 Constraint (63) corresponds to mass balance for the metabolic network. Constraint (64) corre-
217 sponds to reaction bounds, including reaction deletions found in the modular cell design problem.
218 Constraint (65) fixes the biomass formation rate, vxy, to the maximum reachable by the design.

219 This value (MaxDesignBio) is obtained by maximizing vxj subject to (63) and (64). The refer-

20 ence flux distribution ‘:})1'“ | represents the desired metabolic state of a wGCP designed production
Sk

a1 network. This distribution, if feasible, is unique because the convex optimization problem is for-
22 mulated with a positive definite quadratic objective function (see Theorem 16.4 in Nocedal and

223 Wright39) .

240 2.3.2 Flux sampling

25 To determine an ensemble of flux distributions for a production network, we used the ACHR
26 algorithm?®® in the COBRA toolbox.*! Constraints for flux sampling simulation include the reaction
27 deletions and module reactions found in the ModCell design problem solution, a fixed substrate
228 uptake rate of -10 mmol glucose/gCDW /hr, and a minimum product synthesis flux of 50% of its

20 maximum value.

20 2.3.3 Metabolic map drawing

1 Drawings of metabolic map were performed using the Escher?? tool (https://escher.github.io)
232 that produces svg files. Coloring, highlighting candidate reactions, and other systematic adjust-
233 ments of metabolic maps were done with the Python-based lzml module. Additional editing for

234 visual enhancement was done with the Inkscape software.
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» 3 Results

x= 3.1 Performance and solution time optimization of ModCell2-MILP

27 3.1.1 ModCell2-MILP can not only reproduce the results of the original Mod-

238 Cell2 formulation but also find more alternative solutions

230 To evaluate ModCell2-MILP, we compared its performance with the previously developed Mod-
20 Cell2 platform!? that solves the optimization problem with multi-objective evolutionary algorithms
21 (MOEASs). As a basis of comparison, we used the same E. coli core metabolic model, maximum
22 number of deletion reactions «, and maximum number of module-specific reactions [3j, for both Mod-
23 Cell2 and ModCell2-MILP. Due to fundamental differences in problem formulations for MOEA and
24 MILP, we used the IsGCP design objective for ModCell2-MILP with multiple weighting factors, ag,
s specifically selected to reproduce previous results, in the blended formulation and the sGCP design
216 objective for ModCell2 (Supplementary Material 1). The results showed that ModCell2-MILP could
27 generate the same Pareto optimal designs like ModCell2. In addition, ModCell2-MILP enumerated
2 a larger number of alternative solutions than ModCell2. For example, the design named sGCP-5-
29 0-6 generated by ModCell2 had 3 alternative solutions while ModCell2-MILP found 8 alternative
250 solutions. By increasing « to 8 and 3 to 2, we could identify a utopia design (i.e., one solution with
251 the maximum value for all objectives) with 192 alternative solutions, which significantly expands

252 the possibilities for experimental implementation.

3 3.1.2 Tuning MILP formulations significantly improves solution times

24 We considered three techniques that can improve solution times of ModCell2-MILP, including:

255 (i) Fizing the network feasibility indicator wy. If all modules are expected to be compatible
26 with a final ModCell design (i.e., fr > 0, Vk € K), wy, is set to be 1 for all £k € K in order to avoid
257 computational efforts in finding non-optimal feasible solutions.

258 (ii) Fluz bound tightening. Constraints of the form €jumljkm < Vjkm < €jkmUjkm are known to

250 result in weak linear relaxations, i.e., feasible values of vy, are far from their bounds l;,, and

260 Ujkm- Lo tighten the formulation by making continuous relaxations closer to the feasible integer
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261 solution, smaller values of u;y, and I, are determined by solving a series of linear programs that
262 maximize and minimize each flux v, in the parent production networks Iy, (e;r = 1, Vj € Jj).
263 (iii) Benders decomposition. ModCell2-MILP has a separable structure compatible with Benders
24 decomposition?®44 that creates a master problem, using binary variables and associated constraints
265 (15)-(21), and sub-problems for each production network Wy, (e;;) with fixed binary variables. This
266 decomposition implementation is automatically done by Cplex 12.8.

267 We evaluated these three techniques for tuning MILP formulations and used the core E. coli
s model'? for the benchmark study. The results showed that flux bound tightening, fixed wy,, and
»0  Benders decomposition could reduce the solution time to find solutions by 50%, 80%, and 95%,
270 respectively (Table 1). By combining these techniques, the solution time was shortened by 96%
onn from 63.3 s to 2.8 s. In subsequent studies, we used these three tuning techniques to solve the

o2 ModCell design problem unless otherwise noted.

a3 3.1.3 Choices of design parameters affect solution time

o In designing a modular cell with ModCell2-MILP, the designer needs to specify the formulation
215 type (i.e., blended or goal attainment formulation), the target phenotype (e.g., wGCP, IsGCP, and
276 NGP), and the limits of deletion reactions («) and endogenous module-specific reactions (8x). We
277 evaluated the impact of these parameters on solution time using the E. coli core model (Figure
s 2). Regardless of the formulation type, increasing o and § led to harder problems and hence
279 required more solution time due to the exponentially increasing number of feasible solutions as
230 expected. The goal attainment formulation took longer time to solve for the [sGCP and NGP
251 design objectives, but about the same time for the wGCP design objective. Interestingly, the
232 overall difficulty of wGCP is higher than that of IsGCP in both the blended and goal attainment
283 formulations, despite IsGCP having approximately twice the number of constraints. Furthermore,
28¢  the NGP design objective could be solved most quickly, likely due to the narrower design space

255 associated with the no-growth associated production of target metabolites.
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x» 3.2 Design of a universal modular cell for a genome-scale metabolic

287 model of E. colz

28 3.2.1 Reduction of the candidate reaction deletion set enables ModCell2-MILP

289 to find modular cell designs for a large-scale metabolic network

200 Finding genetic modifications towards a desired phenotype using mathematical optimization for
201 large-scale metabolic networks has been known to be a computationally expensive task due to
202 the combinatorial search space spanned by a large number of reaction deletion candidates in the

k.2145 Preprocessing of metabolic networks to reduce reaction candidates is not only critical

203 networ
204 but also practical for experimental implementation. Previous implementation of ModCell2 for the
205 latest genome-scale E. coli model (iML1515)?* showed that the preprocessing step could reduce the
26 set of reaction candidates from 2,712 to 276. By using ModCell2 with the wGCP objective, an E.
207 coli modular cell was identified to be compatible with 17 out of 20 products with requirement of
208 only 4 reaction deletions.'® Since MOEA implemented in ModCell2 does not guarantee optimality,
200 here we aimed to evaluate the capability of ModCell2-MILP for handling a large-scale metabolic
s0 network and identifying the Pareto optimality and potential alternative solutions.

301 We applied ModCell2-MILP to analyze the same iML1515 model with a set of 20 products using
502 the same design parameters (i.e., « and [;) and the blended formulation with all objective weights
303 ap = 1. The simulation shows that ModCell2-MILP could not solve the ModCell design problem to
s+ optimality over 2 days of run time, likely due to the large number of candidate deletion reactions
305 still present in the genome-scale model. To address this problem, the set of candidate reactions
s.s must be further reduced. Since only a small subset of all metabolic reactions in genome-scale

13,2146 we used a pool of wGCP designs with

s7 models tend to be deleted by strain design algorithms,
28 o =4,56and 8 =0,1 reported with ModCell2" to identify relevant deletion candidates. From a
300 set of 601 designs found by ModCell2, only 33 out of 276 candidates reaction deletions were used
si0  at least once. Hence, these 33 reactions were used to create a new, computationally-tractable set
s of reaction candidates. This new set contains reactions mostly from the well-characterized central

sz metabolic pathways (Figure 3a) while the original set includes reactions in peripheral pathways

s13 that lead to biomass synthesis. Interestingly, within these 33 reaction candidates, only a few are

17


https://doi.org/10.1101/748350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/748350; this version posted August 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

siu used in most designs (Figure 3b), highlighting the importance of their removal in growth-coupled
a5 production phenotypes. Reactions with high deletion frequencies mainly occur in high-flux central
sie  metabolic pathways (Figure 3c), closely associated with cellular energetics and carbon precursors
s1i7  that interface with the production modules (Figure 3d).

318 Using the reduced candidate reaction deletion set, ModCell2-MILP could find an optimal solu-
310 tion in ~ 30 min and enumerated all optimal solutions in ~ 8 hours. All the optimal solutions found

320 by ModCell2-MILP in this case were in agreement with those previously found in ModCell2.'3

21 3.2.2 ModCell2-MILP can identify a universal modular cell compatible with all

322 exchangeable production modules

323 Based on the computationally-tractable candidate reaction deletion set, we next evaluated whether
324 the goal programming formulation could help identify a universal ModCell design that is compatible
325 with all modules. By screening for various « and [j, we identified a universal modular cell that is
326 compatible with all production networks, corresponding to the defined minimum design objective
s27 goal of 0.5 (i.e., 50% of the theoretical maximum product yield attained at the maximum growth
w8 rate), a = 6, and 8 = 1 (Figure 4a). Remarkably, most products greatly overcame this minimum
320 goal with yields above 90% of the theoretical maximum values (Figure 4b). All production networks
330 displayed a feasible metabolic space where an increase in product synthesis rate is needed to attain

31 faster growth rates (Figure 4c¢). This designed phenotype is useful for optimal pathway selection

47,48 49

332 using adaptive laboratory evolution and/or pathway libraries.

= 3.3 Flexible metabolic flux capacity of E. coli core metabolism
334 enables the design of a universal modular cell

s 3.3.1 Endogenous modules responsible for metabolic flexibility of a universal
336 modular cell are identified by comparing flux distributions of production

337 networks

38 The designed universal modular cell (Section 3.2.2) can theoretically adapt to the contrasting

330 metabolic requirements of all production modules (Table 2). To gain further insight into this unique
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30 metabolic capability of the modular cell and its potential to be realized in practice, we analyzed
san its reference fluz distributions (Section 2.3.1) across the production networks. Reactions with the
32 highest flux changes across the production networks are likely critical for the proper operation of
33 the universal modular cell and might present potential bottlenecks. Such reactions were identified
sas by filtering their reference flux standard deviation (calculated across production networks) with an
ss  ad hoc threshold of 0.2 (mol/substrate mol). Over 90% of the 535 active reactions, each of which
36 carries a non-zero flux in at least one production network, had standard deviation values below
347 the threshold, indicating highly conserved metabolic core pathways among production networks.
us Only 9.5% of the active reactions presented a standard deviation magnitude above the threshold
s (Figure 5a).

350 In our case study of designing a universal modular cell compatible with all 20 production mod-
351 ules, unbiased clustering analysis (Figure 5b) revealed the presence of four endogenous module
32 types in the core metabolism of E. coli that are activated to fit specific production modules (Fig-
353 ure 5e). In the context of chassis metabolism, an endogenous module corresponds to a reaction
3¢ or group of highly coupled reactions that become active to accomplish a certain metabolic func-
35 tion. The endogenous module classification can be understood in terms of location (i.e., proximity
36 in the metabolic network) and three metabolic functions. The first function is the direction of
ss7 - carbon towards general precursor metabolites including (i) pyruvate and acetyl-CoA captured by
38 acetyl-CoA-associated modules and (ii) oxaloacetate, succinate, succinyl-CoA, and a-ketoglutarate
359 captured by TCA-associated modules. The second function is the direction of carbon from the pre-
0 cursor metabolites towards secretable molecules, captured by the upstream and TCA-associated
ss1 modules. The third function is the use of ATP- and NADP(H)-dependent pathways required
32 to maintain homeostasis, captured by the acetyl-CoA-associated and energetic modules. While
363 these functions are conceptually separable, their biochemical manifestation overlaps, i.e., specific
364 metabolic reactions or pathways can simultaneously fulfill several functions.

365 Each endogenous module can be viewed as an interface of the universal modular cell with
366 production modules that are exchangeable. The endogenous modules might become potential
37 metabolic bottlenecks in practice if they cannot satisfy the predicted fluxes, and thus might be

s6s critical engineering targets when the associated production modules are used.
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w0  Acetyl-CoA-associated endogenous modules. This module type contains pyruvate for-
s mate lyase (PFL) and pyruvate dehydrogenase enzyme complex (PDH) reactions that convert
s pyruvate to acetyl-CoA. Intuitively, products derived from pyruvate, such as isobutanol, require
s a low flux through PFL and PDH while those derived from acetyl-CoA require a high flux. Re-
373 markably, the redox states of production strains determine the ratios of PFL to PDH fluxes. For
sra  example, the ethanol production network has a relatively high flux through PDH and a low flux
srs - through PFL; however, for ethyl acetate that has a lower degree of reduction than ethanol (Table 2),
376 PFL with formate secretion is prioritized over PDH with NADH generation. Note that our model
377 did not include the regulatory restriction that PDH is inhibited in E. coli anaerobically because the

ss function of PDH is equivalent with the coupling of PFL and heterologous NADH-dependent for-

130,50 132

s79  mate dehydrogenase (FDH) demonstrated experimentally for increased butano and pentano

30 production.

;31 Upstream modules. This module type is formed by reactions located directly upstream of
32 a secretable metabolite, often associated with the target production module, and thus provides
3 the necessary precursor metabolite(s). Such reactions are commonly over-expressed in practice,
s e.g., the ECOAH1-HACD1-ACACT1r endogenous module (comprising of 3-hydroxyacyl-CoA de-
s hydratase, 3-hydroxyacyl-CoA dehydrogenase, and acetyl-CoA acetyl transferase) responsible for
6 generating butyryl-CoA and the ACLS-DHAD1-KARA1 endogenous module (comprising of aceto-
ss7  lactate synthase, dihydroxy-acid dehydratase, and keto-acid reductoisomease) responsible for gen-
sss  erating isobutyryl-CoA. These endogenous modules can also become active to form byproducts in
30 certain production networks, e.g., the PTAr-ACKr-ACT2rpp-ACtex endogenous module (compris-
s0 ing of phosphate acetyl transferase, acetate kinase, and cytosolic and periplasmic acetate transport)
301 that not only carries the highest flux in the acetate production network but also becomes active in

32 the propanol-associated modules.

33 TCA-associated endogenous modules This module type has the same function as the
s upstream endogenous modules but it is localized in the TCA (Krebs) cycle. Several products,
305 including adipic acid, 1,4-butanediol, propanol, pentanol, and their associated esters, are derived

306 from the TCA intermediates and interface with the universal modular cell via the TCA-derived
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307 endogenous modules. The SUCOAS-MMM-MMCD endogenous module (comprising of succinyl-
ss  CoA synthetase, Methylmalonyl-CoA mutase, methylmalonyl-CoA decarboxylase) must be acti-
390 vated to convert succinate into succinyl-CoA and then propanoyl-CoA. Remarkably, two routes are
200 present to synthesize fumarate from oxaloacetate, including the conventional MDH-FUM endoge-
st nous module (comprising of malate dehydrogenase and fumarase) that consumes NADH and the
a2 cyclic ASPTA-GLUDY-ASPT endogenous module (comprising of aspartate transaminase, gluta-
w03 mate dehydrogenase, and L-aspartase) that consumes NADPH. These NADH/NADPH cofactors
204 are not interchangeable due to the deletion of the transhydrogenase THD2pp in the universal mod-
a5 ular cell, so the isobutyl pentanoate and pentyl pentanoate modules, that are derived from the
w06 ASPTA-GLUDY-ASPT endogenous module, also have a high NADPH requirement. Some pro-
a7 duction networks, such as pyruvate and isobutyl acetate that are not based on the TCA-derived
a8 endogenous modules, secrete succinate instead of ethanol and/or lactate to balance redox by using
a0 the PPC-MDH-FUM-SUCCtex endogenous module (comprising of phosphoenolpyruvate carboxy-

a0 lase, malate dehydrogenase, fumarase, and succinate transport).

au  Emnergetic modules This module type primarily involves NAD(P)-dependent transhydroge-
a2 nase (THD2pp) and ATP synthase (ATPS4rpp). Other reactions that allow coupling of phosphate-
a3 and electron-transfer cofactors are also included. The reactions in this module help buffer the
a4 diverse electron and ATP requirements of production networks. THD2pp is deleted in the chassis
a5 but used as a module reaction in the isobutanol and acetate production networks. In the case of
416 isobutanol production, transhydrogenase expression has been demonstrated to increase the synthe-
n7  sis of NADPH and thus isobutanol.?! Acetate has the smallest degree of reduction after pyruvate,
as  which results in redox imbalance that is compensated via formate secretion. In conjunction with
410 these mechanisms, ATPsynthase works in the reverse direction by hydrolyzing excess ATP. Other
420 production networks also use ATPS4rpp to eliminate excess ATP as observed, for example, in
4 the ethyl acetate production network. This strategy is consistent with ATP wasting approaches

w22 recently demonstrated.?
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23 3.3.2 Comparison between simulated and measured intracellular fluxes reveals
a2 flexible metabolic flux capacity of E. coli to accommodate the required

425 wide flux ranges

226 Flux analysis of the production networks suggests that the core metabolic reactions (Figure 5b)
427 require a wide range of fluxes. To successfully implement this modular design in practice, we
28 need to evaluate whether the metabolism of E. coli has the inherent metabolic flux capacity to
129 accommodate the required fluxes of the designed universal modular cell when coupled with various
430 exchangeable production modules. We compared the simulated reference flux distributions with a
s recent collection of 45 measured metabolic fluxes®® that are collected from multiple studies across
432 various conditions (e.g., growth under aerobic and anaerobic conditions, use of glucose or acetate
433 or pyruvate as a carbon source) and genotypes (e.g., wild-type E. coli and mutants with single
s gene deletions).?* " Note that this dataset provides a baseline for wild-type and relatively small
35 deviations from that state (i.e., single gene deletion mutants), thus highly engineered strains (e.g.,
a6 with three or more gene deletions) are likely to attain wider flux distributions.

437 Within the 23 reaction groups that constitute endogenous modules (Figure 5b), 8 reactions
a3 could be matched to this experimental dataset (Figure 5d). Remarkably, a highly consistent overlap
439 of flux ranges was observed between the simulated and measured fluxes for malate dehydrogenase
w0 (MDH), pyruvate dehydrogenase (PDH), acetaldehyde dehydrogenase (ACALD), fumarase (FUM),
a1 and 2-dehydro-3-deoxy-phosphogluconate aldolase (EDA). For the cases of D-lactate dehydrogenase
a2 (LDH_D), and pyruvate secretion (EX_pyr_e) that are directly coupled with the biosynthesis of lac-
43 tate and pyruvate, respectively, we observed the maximum simulated fluxes surpass the measured
a4 values, suggesting that further engineering of wild-type and single-gene deletion E. coli is needed
ws  to attain the requried fluxes. Indeed, previous studies®®®? have been able to redirect metabolic
ws  fluxes in E. coli for yields of lactate and pyruvate above 75% of the theoretical maximum values by
a7 simultaneous elimination of competing fermentative pathways, including acetate (AackA), formate
us  (ApfiB), and ethanol (AadhE). The only remaining discrepancy between the simulated and mea-
a0 sured fluxes is PPC. Studies, not included in the comparison data set, have reported up to 50% more

60,61

0 PPC flux observed under aerobic conditions , which is still considerably below several of the
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451 simulated fluxes. This result suggests that PPC can be a potential metabolic bottleneck in certain
a2 production modules. One potential solution is to include in the affected production modules the
453 heterologous PPC from Actinobacillus succinogenes which has been successfully over-expressed in
sa  E. coli for increased succinate production.®? Additionally, bacterial PPC activity can be increased

s5 by elevating the acetyl-CoA pool.%3

s 3.3.3 Random sampling of metabolic fluxes confirms the narrow operation

457 range of endogenous modules

s The calculated reference flux distributions represent the ideal metabolic states for each produc-
450 tion strain. However, other metabolic states might also exist. To address this uncertainty, we
w0 performed randomized flux sampling?®4! for each production network under the constraint that
a1 product synthesis rate has to be above 50% of the maximum value (Section 2.3.2). The results
462 show that the metabolic flux distributions for most reactions involved in the endogenous modules
w63 (Figure 6a-u) are very narrow, except the two alternative pathways for ethanol synthesis, i.e., the
s6s  endogenous PDH-ACALD-ALCD2x route (comprising of pyruvate dehydrogenase, acetaldehyde
w5 dehydrogenase, and alcohol dehydrogenase) (Figure 6t) route and the heterologous PDC-ALCD2x
w6 route (comprising of pyruvate decarboxylase and alcohol dehydrogenase). The range of experimen-
467 tal and simulated fluxes are comparable, which is consistent with the results in Section 3.3.2. In
468 summary, even though reactions in the endogenous modules must have flexible metabolic flux ca-
469 pacities to enable a universal modular cell to be compatible with various exchangeable production
470 modules, they must also operate within in a narrow flux range when interfacing with a specific

411 production module.

~ 4 Conclusions

473 Modular cell design seeks to accelerate strain development towards broader biotechnological appli-
474 cation of synthetic biology and metabolic engineering, similar to the proven advantages of modular
a5 design in conventional engineering disciplines.* In this study, we adapted the recently proposed!'3

476 multi-objective modular strain design method to a MILP computational framework that can guar-
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477 antee Pareto optimal solutions, exhaustively search the space of alternative solutions, and specify
478 design goals such as module prioritization. Remarkably, the proposed method identified a universal
sre - modular cell that harnesses the inherent modularity and flexibility of native E. coli metabolism%465
480 to properly interface with a variety of biochemically diverse heterologous pathways. This universal
41 design is predicted to display a growth-coupled to product formation phenotype for all pathways,
42 enabling its use as a platform for pathway optimization through high-throughput library selec-
43 tion or adaptation. The feasibility of this universal design strategy is found to be consistent with
4sa  experimental evidence of isolated metabolic engineering strategies towards target products and
45 measured intracellular flux ranges. We anticipate this is the first example of upcoming method-
486 ological developments in the multi-objective strain design approach, which will follow a path similar
w7 to single-phenotype strain design algorithms®® introduced in the early 2000s,'® including the ad-
s dition of heterologous metabolic reactions from large biochemical databases’” and up- and down-
a0 regulation of genes in addition to knock-outs®®, as well as the use of alternative modeling paradigms
a0 for flux prediction such as kinetic models® and ME-models.”® Additionally, we anticipate that the
491 method developed in this study can be applied to exchangeable metabolic modules whose functions

w2 can be expanded to bioremediation™ and biosensing”?73.
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w 9 Definitions

s0 Sets

so0 L Metabolites in production network k.

502 Jk Reactions in production network k.
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s3 JC Production networks that are derived from a combination of the parent metabolic network
504 with the metabolic pathways associated with production modules. The parent metabolic
505 network is the network of the host strain that is genetically manipulated to build a modular
506 cell chassis.

sor M Metabolic states that correspond to the growth phase, denoted i, and the non-growth or
508 stationary phase, denoted .

s0 C Candidate deletion reaction set. The removal of these reactions are applied to all production
510 networks, C C JP¥ent C 7., Vk € K.

su N Non-targeted deletion reaction set in production network k. This set arises from the use of
512 fixed endogenous module reactions zj;, in certain production networks.

s13 Binary variables

514 Y Reaction deletion indicator that takes a value of 0 if reaction j is deleted in the chassis and
515 1 otherwise.

si6 2j;  Bndogenous module reaction indicator that takes a value of 1 if reaction j is added back as

517 module reaction in production network k and 0 otherwise.

sis djp  Reaction activity indicator that takes a value of 0 if reaction j in production network k
519 might not carry a flux and 0 otherwise, thus dj; = y; V 2. This variable is declared as
520 a continuous and linear constraints enforce the OR relation and thus makes the variable
521 binary.

52 Wk Production network feasibility indicator that takes a value of 0 if reaction deletions are
523 ignored and the objective value is set to 0 for production network k, and a value of 1
524 otherwise.

525 €k Reaction activity indicator adjusted to wy that takes the value of dj;, if wy = 1 and a value
526 of 1if wy, = 0, thus eji = (djr AN wg) V ~wy.
527 T, Linearization variable, rj; = dji V wy.

522 Continuous variables

520 VUjm,  Flux (mmol/gCDW /hr) of reaction j from network k at metabolic state m.
530 Upkm Flux (mmol/gCDW/hr) of product synthesis reaction from network k at metabolic state m.
531 Uxgm Flux (mmol/gCDW /hr) of biomass synthesis reaction from network k at metabolic state m.

52 fi General objective function for production network k that can be represented by f,;“GCP ,

533 f]iSGCP7 or fj;VGP.

s [ Objective function adjusted by wy such that f; = fi if wy =1 and f] = 0 otherwise.

535 (5,': Amount required by the objective value f; to attain the target goal gy, i.e.. 5,‘: =g — fr if
536 fl/c < Gk-

537 0 Amount that the objective value f; surpasses the target goal gy, i.e., , = fi —gi if f. > gk

53 Ajkm Dual variable associated with mass balance constraint of metabolite ¢ from production net-
539 work k at growth state m.

540 [k, Dual variable associated with the lower bound of reaction j from production network k at
541 growth state m.

s [k Dual variable associated with the upper bound of reaction j from production network k at
543 growth state m.

1 . . . . 1 . l
54 Dikm Linearization variable, Pikm = €jkHikm-
545 Py, Linearization variable, Pikm = €jkMSkm-
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s  Parameters

sar Si5  Stoichiometric coefficient of metabolite 7 in reaction j of production network k.
sas  Ljrm  Lower bound for reaction j of production network £ at metabolic state m.

549 Ujkm  Upper bound for reaction j of production network £ at metabolic state m.

550 Y Minimum biomass synthesis rate required for growth states. Note that in this study a
551 conservative value of 20% of the maximum predicted growth rate of the wild-type strain
552 was used to generate all results.

553 QU Maximum number of deleted reactions in the modular cell chassis.

554 Ok Maximum number of endogenous module reactions in production network k.

555 € Small scalar used for tilting the biomass objective function, leading to the minimum product
556 rate available at the maximum growth rate. Note that in our study ¢ = 0.0001 was used
557 to generate all results.

ss8 by, by Weights on the growth and non-growth objectives of f,leCP , respectively. Note that in our
550 study b, = 1 and b; = 10 were used to generate all results.

560 QA Weighting factor applied to the objective function for production network &k in the blended
561 formulation. Note that in our study a; = 1, Vk € K was used unless otherwise noted.

562 gk Target value for objective f; in the goal programming formulation.

563 az Weighting factor applied to 5,‘; which emphasizes the importance of objective value f; to
564 avoid falling below the target value g. Note that in our study a; =1, Vk € K was used
565 in all cases.

566 () Weighting factor applied to ¢, which emphasizes the importance of the objective f; to
567 avoid surpassing the target value g;. Note that in our study a, = 1, Yk € K was chosen
568 everywhere except to determine the universal modular cell design, where a, =0, Vk € K
560 was used.

so M™  Determines the minimum value of fj that allows wy to not be 0. A value of 10, corresponding

571 to fr > 0.01 for wy # 0, was used in all cases.

s2 M°J  Upper bound for each objective value. Note that in our study a value of 20 was set for all
573 cases.

sta M Upper bound for dual variables. Note that in our study a value of 100 was set for all cases.
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« 0 Reaction abbreviations

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

Identifier Name
ACACT1r Acetyl-CoA C-acetyltransferase
ACACT2rpp Acetate reversible transport via proton symport (periplasm)
ACALD Acetaldehyde dehydrogenase (acetylating)
ACKr Acetate kinase
ACLS Acetolactate synthase
ACtex Acetate transport via diffusion (extracellular to periplasm)
ALCD2x Alcohol dehydrogenase (ethanol)
ASPTA Aspartate transaminase
ASPT L-aspartase
ATPS4rpp ATP synthase (four protons for one ATP) (periplasm)
DHAD1 Dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylbutanoate)
ECOAH1 3-hydroxyacyl-CoA dehydratase (3-hydroxybutanoyl-CoA)
EDA 2-dehydro-3-deoxy-phosphogluconate aldolase
FUM Fumarase
HACD1 3-hydroxyacyl-CoA dehydrogenase (acetoacetyl-CoA)
KARA1 Ketol-acid reductoisomerase (2,3-dihydroxy-3-methylbutanoate)
MDH Malate dehydrogenase
MMCD Methylmalonyl-CoA decarboxylase
MMM Methylmalonyl-CoA mutase
PDH Pyruvate dehydrogenase
PFL Pyruvate formate lyase
PPC Phosphoenolpyruvate carboxylase
PTAr Phosphotransacetylase
SUCCtex Succinate transport via diffusion (extracellular to periplasm)
SUCOAS Succinyl-CoA synthetase (ADP-forming)
THD2pp NAD(P) transhydrogenase (periplasm)
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= lables

Table 1: Solution time reduction by tuning the ModCell2-MILP formulation with Benders
decomposition, bound tightening, and/or fixed network indicator (w, = 1 ,Vk € K). The
simulations were performed in triplicates.

Feasibility Benders

indicator  decompo- ounds Solution

tightened time (s)

wy, fixed sition
No No No 63.3 =+ 16.9
No No Yes 32.5 £ 10.2
No Yes No 3.6 £0.1
No Yes Yes 34 +04
Yes No No 13.8 £ 2.7
Yes No Yes 11.9 £ 1.7
Yes Yes No 2.7+ 0.3
Yes Yes Yes 2.8 £ 0.1
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Table 2: Overall production module stoichiometries, degree of reduction (DoR) of the final
product (mol e~ / mol C), and metabolite secretion profiles from simulated reference flux
distributions (mol C / mol C) of the universal modular cell design. Flux (mmol/gCDW /hr)
abbreviations: r,, product; .., acetate; r.o,, COg; 740, formate; rg,ec, succinate. Note that
the negative CO, fluxes in pyruvate and acetate production networks indicate overall COq
uptake enabled by phosphoenolpyruvate carboxylase (PPC).

Overall reaction DoR 7, Tac  Teos Tfor Tsuce
pyr + nadh — ethanol | accoa + 2 nadh — ethanol (native) 7.0 058 001 0.27 004 -
oaa + glu + 2 atp + 2 nadph + nadh — akg + propanol 6.7 031 036 0.07 0.18 -
2 accoa + 4 nadh — butanol 6.5 059 0.01 028 0.04 -
2 pyr + nadph + nadh — isobutanol 6.5 062 - 0.31 - -
oaa + glu + accoa + 3 nadh + 2 atp + 2 nadph — akg + pentanol 6.4 050 0.21 024 0.03 -
succ + akg + atp + 4 nadh + accoa — ac + 1,4-butanediol 5.5 046 0.33 0.17 - -
— pyruvate 3.0 046 - -0.16 - 0.66
pyr + nadh — D-lactate 3.7 091 - - - -
accoa — atp + acetate 3.5 0.60 0.60 -0.30 0.61 -
accoa + succoa + 2 nadh — atp + adipic acid 40 082 0.05 0.04 0.06 -
accoa + pyr + nadh — ethyl acetate 5.0 0.63 - - 0.32 -
accoa + oaa + glu + 2 atp + 2 nadph + nadh — akg + propyl acetate 5.2 041 0.30 - 024 -
accoa + 2 pyr + nadph + nadh — isobutyl acetate 53 036 - 0.02 0.06 0.52
2 accoa + 3 nadh + pyr — ethyl butanoate 5.3 0.61 - 0.09 0.23 -
2 accoa + 3 nadh + oaa + glu + 2 atp + 2 nadph — akg + propyl butanoate 54 0.68 0.03 023 004 -
4 accoa + 6 nadh — butyl butanoate 5.5 0.61 - 0.14 0.18 -
2 accoa + 3 nadh + 2 pyr + nadph — isobutyl butanoate 55 064 - 0.16 0.16 -
oaa + glu + accoa + 2 nadh + 2 atp + 2 nadph + pyr — akg + ethyl pentanoate 54 0.68 0.03 023 0.04 -

oaa + glu + accoa + 2 nadh + 2 atp + 3 nadph + 2 pyr — akg + isobutyl pentanoate 5.6 0.67 0.01 025 0.03 -
2 oaa + 2 glu + 2 accoa + 4 nadh + 4 atp + 4 nadph — 2 akg + pentyl pentanoate 5.6 053 022 020 0.02 -
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Figures

Figure 1: Principles of modular cell design. (a) Modular cell chassis. (b) Interfaces. (c)
Production modules. (d) Production strains. A modular cell is designed to provide the
necessary precursors for biosynthesis pathway modules that are independently assembled
with the modular cell to generate production strains exhibiting desirable phenotypes. The
wGCP phenotype, one of the possible design objectives, enforces the coupling between the
desirable product synthesis rate and the maximum cellular growth rate.
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Figure 2: Effect of design parameters, including the target design objective (i.e., wGCP,
IsGCP, and NGP) and the limits of deletion reactions a and endogenous module-specific
reactions (5, on computation time for solving the ModCell2-MILP problem with the blended
(a-c) and goal attainment (d-f) formulations. A time limit of 500 seconds indicated by a red
dashed line was used in all cases, but only reached by certain wGCP and [sGCP cases with
B > 2. The simulations were performed in duplicates.
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Figure 3: Analysis of reaction deletion candidates. (a) Subsystem distribution for the orig-
inal set of 276 candidate reactions in the iML1515 model. Those subsystems that contain
a reaction used in at least one design are colored. (b) Deletion frequency for the reduced
set of 33 candidate reactions. The analysis is based on a pool of 601 wGCP designs from
different o and S parameters whose Pareto fronts were previously determined with Mod-
Cell2.!3 Bar colors indicate membership of these reactions to the subsystems. (c¢) Metabolic
map of core metabolism. Key metabolites, including precursors for the 20 product modules
(i.e., pyruvate, acetyl-CoA, succinyl-CoA, succinate, and a-ketoglutarate), are highlighted in
green. Reactions are colored according to subsytem labels indicated in (a), reactions colored
in light gray do not appear in any of the subsytems of (a), and reactions that are candidates
for deletion, listed in (b), are labeled in red. (d) Link between major precursors and tar-
get products where colors are only used to facilitate visualization. Reaction and metabolite
abbreviations correspond to BiGG™ identifiers (http://bigg.ucsd.edu/).
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Figure 4: Identification of a universal modular cell compatible with all production modules
using the wGCP design objective. (a) Goal programming solutions with increasing a and 3
values. The goal programming objective value (58) in the y-axis measures the difference be-
tween the performance of production strains and the target goal, i.e., Zke{kEK: f,;<gk}(f k9K
where the target goal is set to be g = 0.5. The parameters « = 6 and 8 = 1 are sufficient
to identify a universal modular cell design meeting the required goal for all production net-
works. (b) Comparison between the yield performances of the designed modular production
strains and maximum theoretical values. (c) The feasible flux spaces for the wild-type (gray)
and designed modular production strains (crimson). Based on the wGCP design phenotype,
to increase growth rate, each mutant must increase product synthesis rate. The genetic
manipulations of this universal modular cell design are indicated in the metabolic map of
Figure 5c.
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Figure 5: Flexible metabolic flux capacity of E. coli metabolism enables the universal mod-
ular cell design. (a) Standard deviation of each reaction flux across production networks.
(b) Scaled fluxes of the 51 reactions with standard deviation magnitude above 0.2, excluding
proton, water transport, and exchange reactions. A scaled flux for a reaction is determined
by the reference flux distribution value divided by the maximum value of that reaction across
all production networks. Thus, a scaled flux of 0 indicates a given reaction does not carry
any flux, and a scaled flux of 1 indicates that this reaction carries the highest flux across
production networks. Several columns have multiple reactions, separated by |, since they
carry exactly the same flux. (c¢) Endogenous modules of the universal modular cell. The
reactions colored in red are deleted in the chassis, but are used as module reactions in the
production networks shown in the adjacent gray boxes. Metabolites in periplasmic and ex-
tracellular compartments have “_p” and “.e” suffixed to their abbreviations, respectively.
Metabolite and reaction abbreviations follow BiGG™ notation. (d) Comparison between
simulated and measured fluxes. The solid lines within the “violins” correspond to samples.
The simulated fluxes for the reversible reactions, including FUM, LDH, MDH, and ACALD,
were multiplied by -1 to reflect their most common direction.
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Figure 6: Violin plots of sampled flux distributions of the reactions of interest. Reaction
colors are consistent with Figure 5. The flux of SUCOAS could not be sampled since this
reaction is involved in a thermodynamically infeasible cycle.
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« Supplementary Materials

2 Supplementary Material 1 Modular cell designs for E. coli core model.

3 Supplementary Material 2 Computer programs used to generate the results of this study.
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