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ABSTRACT	
Combined	measurements	 of	mRNA	and	protein	 expression	 in	 single	 cells	 enables	 in-depth	 analysis	 of	
cellular	 states.	 We	 present	 single-cell	 protein	 and	 RNA	 co-profiling	 (SPARC),	 an	 approach	 to	
simultaneously	measure	 global	 mRNA	 and	 large	 sets	 of	 intracellular	 protein	 in	 individual	 cells.	 Using	
SPARC,	 we	 show	 that	 mRNA	 expression	 fails	 to	 accurately	 reflect	 protein	 abundance	 at	 the	 time	 of	
measurement	in	human	embryonic	stem	cells,	although	the	direction	of	changes	of	mRNA	and	protein	
expression	 are	 in	 agreement	 during	 cellular	 differentiation.	Moreover,	 protein	 levels	 of	 transcription	
factors	better	predict	their	downstream	effects	than	do	the	corresponding	transcripts.	We	further	show	
that	 changes	 of	 the	 balance	 between	 protein	 and	 mRNA	 expression	 levels	 can	 be	 applied	 to	 infer	
expression	kinetic	trajectories,	revealing	future	states	of	individual	cells.	Finally,	we	highlight	that	mRNA	
expression	 may	 be	 more	 varied	 among	 cells	 than	 levels	 of	 the	 corresponding	 proteins.	 Overall,	 our	
results	 demonstrate	 that	 mRNA	 and	 protein	 measurements	 in	 single	 cells	 provide	 different	 and	
complementary	information	regarding	cell	states.	Accordingly,	SPARC	can	offer	valuable	insights	in	gene	
expression	programs	of	single	cells. 
	
INTRODUCTION	
Advances	in	single	cell	analysis	are	impacting	the	scale	and	resolution	at	which	we	investigate	biological	
systems.	The	majority	of	 these	advances	are	 focused	on	 the	application	of	 single	cell	RNA	sequencing	
(scRNAseq).	However,	 transcriptomes	may	not	 fully	 reflect	 cell	 states	 and	 cellular	 signal	 transmission.	
scRNAseq	 provides	 comprehensive	 snapshots	 of	 gene	 expression,	 but	 gene	 transcription	 is	 stochastic	
and	characterized	by	transcriptional	bursts	of	varying	rates	and	sizes1,	and	half-lives	of	mRNA	molecules	
vary	 significantly	 between	 genes2.	 Sampling	 from	 low	 number	 of	 molecules,	 variable	 efficiency	 to	
convert	mRNA	to	cDNA	and	PCR	amplification	bias	during	sequencing	library	preparation	also	contribute	
to	noisy	expression	data3.	
		
In	 contrast	 to	 mRNA,	 proteins	 are	 more	 stable,	 and	 typically	 present	 in	 orders	 of	 magnitude	 higher	
amounts	within	 the	 cell2,	 reducing	 chance	 fluctuations	 of	 their	 levels.	Moreover,	 proteins	 have	more	
direct	roles	in	maintaining	cellular	functions	compared	to	transcripts.	While	bulk	sample	measurements	
generally	 report	 good	 correlation	 between	 mRNA	 and	 protein	 expression2,4-6,	 there	 has	 been	 little	
insight	into	the	extent	of	the	agreement	at	cellular	resolution	in	systems	at	steady-state	or	undergoing	a	
dynamic	 transition.	 Therefore,	 we	 argue	 that	 combined	 mRNA	 and	 protein	 single	 cell	 measurement	
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approaches	are	necessary	to	better	understand	cellular	states,	the	causes	and	consequences	of	cell-to-
cell	variability,	and	to	decipher	regulatory	circuits	and	pathways.	
		
A	number	of	approaches	are	emerging	to	simultaneously	measure	both	mRNA	and	protein	at	single	cell	
resolution.	These	include	measurement	of	cell	surface	proteins	and	mRNA	in	droplet	microfluidic-based	
analysis	 platforms7,8,	 targeted	 mRNA	 and	 protein	 detection9-12,	 and	 mRNA	 and	 targeted	 protein	
measurement	for	a	limited	number	of	cellular	proteins	(n=6)	 in	fixed	cells13.	We	describe	an	approach,	
herein	 called	 single-cell	 protein	 and	 RNA	 co-profiling	 (SPARC),	 which	 enables	measurement	 of	 global	
mRNA	 and	 high	 multiplex,	 targeted	 cellular	 proteins	 in	 single	 cells	 (Figure	 1A).	 mRNA	 levels	 were	
recorded	 using	 a	modified	 Smart-seq2	 protocol14	 enabling	 sensitive	 expression	measurements	 of	 the	
full-length	transcripts.	Proteins	were	measured	using	multiplex,	homogeneous	protein	extension	assays	
(PEA)12,	15,	an	affinity-based	protein	detection	method	that	allows	scalable	protein	detection	in	fresh	cell	
or	tissue	lysates	without	a	need	for	prior	fixation.	
	
PEA	 is	 a	 member	 of	 a	 class	 of	 proximity-based	 assays	 that	 require	 two	 binding	 events	 in	 order	 to	
generate	a	DNA	reporter	molecule.	 In	turn,	 the	reporter	can	be	detected	and	quantified	using	various	
DNA	 detection	 technologies,	 including	 quantitative	 PCR	 and	 sequencing.	 Here,	 proteins	 are	 detected	
using	 pairs	 of	 antibodies	 conjugated	 with	 oligonucleotides	 whose	 free	 3’	 ends	 are	 pairwise	
complementary.	When	cognate	antibody	pairs	bind	their	 target	protein,	 the	attached	oligonucleotides	
are	 brought	 in	 proximity	 and	 can	 be	 extended	 by	 polymerization	 to	 create	 amplifiable	 DNA	 reporter	
molecules.	A	multiplex	readout	is	achieved	by	decoding	extension-generated	DNA	reporters	by	real-time	
PCR	using	primer	pairs	specific	for	cognate	pairs	of	antibody	conjugates.	The	requirement	for	pairwise	
protein	 detection	 ensures	 assays	 equivalent	 in	 quality	 to	 sandwich	 immunoassays,	while	 allowing	 for	
simultaneous	measurement	 of	many	 proteins	 in	 each	 reaction.	Moreover,	 PEA	 assays	 do	 not	 require	
fixation	of	the	cell,	capture	of	target	proteins	on	solid	supports	or	wash	steps	following	the	addition	of	
the	oligo-conjugated	antibody	probes	to	the	cell	lysate.	
	
Here,	we	used	 SPARC	 to	 investigate	 to	what	 extent	 the	 amounts	 of	 a	 transcript	 are	 predictive	 of	 the	
levels	of	the	corresponding	protein	in	cells	at	steady-state	or	undergoing	a	state-transition.	Specifically,	
we	measure	mRNA	and	protein	 in	 human	embryonic	 stem	 cells	 (hESCs)	 unperturbed	or	 at	 fixed	 time	
points	after	induction	of	directed	neuronal	differentiation	(Figure	1B).	We	also	investigate	the	effects	of	
biological	 inferences	 by	 analyzing	 scRNAseq	 data	 alone	 or	 integrated	 with	 the	 targeted	 protein	
expression	data	and	measure	the	agreement	between	mRNA	and	protein	expression	variation.	
	
We	 show	 that	 mRNA	 expression	 fails	 to	 accurately	 reflect	 protein	 abundance	 at	 the	 time	 of	
measurement	 in	 cells,	 either	 at	 steady-state	 or	 undergoing	 neuronal	 differentiation,	 although	 the	
direction	of	mRNA	and	protein	expression	changes	are	primarily	in	agreement	during	differentiation.	We	
further	show	that	changes	of	the	balance	between	protein	and	mRNA	expression	levels	can	be	applied	
to	infer	the	kinetic	trajectories,	or	so-called	velocity	vectors,	of	single	cells16,	revealing	the	future	state	of	
individual	 cells.	Moreover,	we	demonstrate	 that	measurements	of	 transcription	 factors	at	 the	protein	
level	 better	 predict	 their	 downstream	 effects	 than	 measurement	 of	 the	 corresponding	 transcripts.	
Finally,	we	provide	evidence	 that	gene	expression	variation	 is	not	always	 in	agreement	 for	mRNA	and	
protein.		
	
With	 SPARC,	we	 present	 a	 powerful	 approach	 to	 quantitatively	measure	mRNA	 and	 protein	 in	 single	
cells	 and	 show	 how	 protein	measurements	 greatly	 aid	 the	 analysis	 of	 gene	 expression	 variation,	 cell	
states	and	cellular	regulatory	mechanisms.	
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RESULTS	
Single	cell	mRNA	expression	data	
The	 Smart-seq2	 scRNAseq	method	 adapted	 for	 the	 SPARC	 protocol	 includes	 a	 number	 of	 steps	 that	
differ	from	the	published	protocol	(Picelli	et	al.,	2014).	The	key	differences	include	additional	detergents	
in	the	cell	 lysis	buffer	 in	order	to	ensure	access	to	nuclear	proteins,	 the	use	of	oligo-dT	conjugated	T1	
Dynabeads	in	order	to	immobilize	the	poly(A)	mRNA	fraction,	and	exclusion	of	the	72°C	heat	step	before	
the	 reverse	 transcription	 reaction	 to	 avoid	 denaturing	 cellular	 proteins	 (Methods).	We	 compared	 the	
expression	data	prepared	with	the	reference	Smart-seq2	method	(0h,	n	=	67	cells)	and	SPARC	(0h	n	=	85	
cells).	The	cells	were	sorted	and	processed	for	analysis	 in	parallel	and	the	sequencing	was	done	in	the	
same	 lane	 of	 the	 sequencing	 flow	 cell.	 Only	 SPARC	 data	 was	 collected	 for	 cells	 during	 early	
differentiation	(24h	n	=	76	cells,	and	48h	n	=	86	cells).	
		
Overall,	 the	 scRNA-seq	 data	 using	 SPARC	 was	 of	 high	 quality	 and	 highly	 comparable	 to	 Smart-seq2	
(Pearson	correlation	coefficient	=	0.90)	(Figure	S1).	Some	minor	differences	were	observed	for	numbers	
of	genes	(n	=	3308	for	SPARC	vs.	3746	for	Smart-seq2)	or	pseudogenes	(n	=	113	vs.	62),	the	fraction	of	
reads	in	introns	(n	=	0.43	vs.	0.13)	and	average	length	of	detected	genes	(Figure	S1).	We	attribute	the	
greater	 intron	capture	with	SPARC	 to	 lysis	 conditions	providing	greater	access	 to	nuclear	 content	and	
the	 omission	 of	 a	 heating	 step	 before	 the	 oligo-dT	 primed	 reverse	 transcription.	 Specifically,	we	may	
preferentially	access	and	capture	unspliced,	nascent	mRNA	before	they	mature	and	are	fully	coated	with	
RNA	binding	proteins17.	Nonetheless,	 the	QC	analysis	 showed	 that	 the	SPARC	mRNA	data	was	of	high	
quality	and	highly	reproducible,	allowing	us	to	proceed	with	the	combined	mRNA	and	protein	analysis.	
		
Single	cell	protein	expression	data	
We	 developed	 an	 exploratory	multiplex	 PEA	 panel	 for	 single	 cell	 analysis	 in	 collaboration	 with	 Olink	
Proteomics,	involving	96	proteins	and	focused	on	cellular	proteins	of	interest	for	our	investigation.	The	
panel	 includes	 proteins	 across	 different	 functional	 groups	 related	 to,	 for	 example,	 pluripotency,	
neurogenesis,	cell	cycle	phase	and	metabolic	functions	(Table	S1).	The	PEA	protein	panel	was	developed	
for	 application	 across	 different	 cellular	 models,	 and	 therefore	 not	 all	 proteins	 were	 expected	 to	 be	
detectable	at	the	single	cell	 level	 in	hESCs.	Of	the	92	proteins	in	the	panel,	87	proteins	had	detectable	
levels	in	the	100	cell	control,	and	89	proteins	in	single	cells	(Figure	1C)	(Table	S1)	(Figure	S2).	
		
We	 proceeded	 to	 investigate	 the	 major	 sources	 of	 variation	 using	 PCA	 for	 the	 mRNA	 and	 protein	
expression	 data	 sets.	 Using	 RNA	 expression	 data,	 the	 three	 factors	 most	 strongly	 contributing	 to	
variation	between	the	sampled	cells	were	the	numbers	of	detected	genes,	developmental	state	and	cell	
cycle	phase.	For	the	protein	data,	the	most	important	factors	were	total	protein	abundance	(Methods)	
and	developmental	state.	We	also	observed	a	strong	positive	correlation	between	numbers	of	mRNAs	or	
proteins	detected	and	the	cumulative	sum	of	protein	expression	for	individual	cells,	and	a	weak	positive	
correlation	between	numbers	of	genes	detected	at	the	level	of	mRNA	and	protein.	We	hypothesize	that	
these	 correlations	 reflect	 the	 relationship	 between	 the	 amount	 of	 RNA	 or	 protein	 and	 cell	 size,	with	
larger	 cells	 containing	 more	 absolute	 numbers	 of	 molecules18	 (Figure	 S3A,B).	 Indeed,	 we	 observed	
higher	protein	levels	as	measured	by	protein	sum	in	G2	versus	S	or	G1	cells	for	cells	FACS	sorted	by	cell	
cycle	phase	(Figure	S3C).	In	order	to	minimize	the	effects	of	cell	cycle	phase,	cell	size	and	mRNA	capture	
efficiency	on	the	mRNA	expression	variation,	 the	data	was	normalized	 for	variation	related	to	 the	cell	
cycle	 and	 the	 number	 of	 genes	 detected.	 For	 the	 protein	 measurements,	 the	 data	 was	 normalized	
according	to	cumulative	protein	sums.	
	
To	reduce	the	dimensionality	of	 the	data	and	align	 the	cells	along	a	 trajectory	based	on	similarities	 in	
their	expression	patterns,	we	next	performed	tSNE	and	pseudotime	analysis.	We	applied	SCORPIUS19,	a	
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single	trajectory	inference	method,	to	order	the	dynamic	cells	along	a	progression	from	undifferentiated	
to	 a	 more	 differentiated	 state.	 The	 analysis	 was	 done	 separately	 on	 normalized	 mRNA	 and	 protein	
expression	data.	The	cells	were	largely	ordered	and	grouped	according	to	the	sampled	time	points	(0h,	
24h	and	48h)	(Figure	2A,B)	and	the	cell	order	was	very	similar	whether	the	trajectory	was	determined	
based	on	mRNA	or	protein	 expression	data	 (Pearson	 correlation	 coefficient	 r	 =	 0.82)	 (Figure	2C).	The	
results	highlight	that	both	the	mRNA	and	protein	data	generated	with	SPARC	recapitulate	the	expected	
dynamic	chanages	of	the	model	cell	system.	
		
Relation	of	RNA	and	protein	data	in	single	cells	at	steady-state	
We	next	 investigated	 the	 co-expression	of	mRNA	and	protein	 in	 cells	measured	at	 the	0h	 time	point,	
purportedly	at	steady-state.	We	define	cells	as	being	 in	steady-state	when	the	mean	protein	or	mRNA	
levels	remain	relatively	constant	over	several	hours	 6,5.	For	 investigation	of	correlation,	we	focused	on	
within	 gene	 correlations	 i.e.	 the	 variation	of	 a	 gene’s	mRNA	and	protein	 concentrations	 across	 single	
cells20.	We	focused	on	genes	where	we	detected	the	protein	at	a	level	of	>	3	Cq	over	background	in	the	
100	cell	population	control	in	at	least	one	time	point.	
		
In	 agreement	 with	 previous	 studies,	 we	 found	 that	 levels	 of	 mRNA	 expression	 are	 generally	 a	 poor	
predictor	 of	 protein	 expression	 in	 single	 cells	 (Pearson	 correlation	 coefficient	 between	 -0.12	 to	 0.40),	
and	 that	 the	 scaling	 and	 the	 extent	 of	 the	 relationship	 between	mRNA	 and	 protein	 is	 gene-specific9	
(Figure	2E	and	Figure	S4).	We	measured	a	limited	set	of	genes	across	many	different	functional	classes	
(e.g.	 transcription	 factors,	 metabolic	 genes),	 and	 therefore	 we	 do	 not	 attempt	 to	 make	 generalized	
conclusions	about	mRNA-protein	relationships	at	the	gene	function	level.	
	
For	genes	where	we	detect	both	the	mRNA	and	protein	in	the	majority	of	the	cells,	the	molecules	exist	
in	 very	 different	 dynamic	 expression	 ranges	 -	 with	 the	mRNA	 consistently	 spanning	 a	much	 broader	
range	of	expression	levels	compared	to	protein	(e.g.	EPCAM,	CASP3)	(Figure	S4).	We	also	observed	that	
protein	level	measurements	appear	to	provide	a	more	stable	representation	of	a	gene’s	expression	state	
with	protein	expression	detected	in	the	majority	of	cells	measured,	whereas	mRNA	expression	detection	
was	more	variable,	with	a	fraction	of	cells	showing	no	detectable	expression.	This	could	be	because	the	
gene	was	not	expressed	at	detectable	levels	at	the	time	of	measurement,	or	the	mRNA	may	have	failed	
to	 be	 reliably	 captured	 and	 measured,	 a	 common	 technical	 problem	 in	 scRNAseq	 protocols	 (Figure	
S4)(Supplemental	Results).	
		
For	 some	 of	 the	 genes	we	measured,	 the	 PEA	 assay	 did	 not	 to	 detect	 the	 protein	 despite	 high	 RNA	
expression	(e.g.	PARP1)	as	the	assays	did	not	have	single	cell	sensitivity	in	the	cells	investigated,	or	that	
the	 level	 of	 detection	 of	 the	 PEA	 probe	 is	 at	 the	 limit	 of	 detection	 and	 results	 are	 therefore	 only	
qualitative	(Table	S2).	Examples	of	the	latter	include	the	detection	of	the	cell	cycle	markers	CCNA2	and	
AURKA	where	we	expect	peak	expression	during	the	cell	cycle	phase	G2.	 Indeed,	this	 is	what	what	we	
observe,	both	in	single	cells	predicted	to	be	in	G2	(data	not	shown)	and	in	a	separate	experiment	where	
cells	were	sorted	by	cell	cycle	phase	(Figure	S3C).	Accordingly,	some	of	the	proteins	that	we	could	could	
not	detect	are	likely	not	or	very	lowly	expressed	at	specific	cell	states.	
	
Relation	of	RNA	and	protein	levels	in	single	cells	during	a	dynamic	change	
Next,	 we	 investigated	 the	 agreement	 of	 mRNA	 and	 protein	 expression	 during	 early	 time-points	 of	
directed	 neuronal	 differentiation	 (Figure	 1B).	 As	 with	 the	 cells	 at	 steady-state,	 mRNA	 expression	 is	
generally	a	poor	predictor	of	protein	expression.	Despite	the	poor	relationship,	we	were	 interested	to	
see	whether	the	directional	changes	of	mRNA	and	protein	abundances	are	in	agreement	in	cells	ordered	
along	 pseudotime	 as	 defined	 by	 the	mRNA	 expression	 data	 (pseudotimeRNA)	 (Figure	 2)(Figure	 S5).	To	
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test	whether	the	expression	levels	for	both	mRNA	and	protein	level	show	the	same	directional	changes,	
we	applied	a	linear	model	for	expression	over	time	for	both	the	RNA	log-transformed	RPKM	values	and	
for	protein	Cq	 values.	 The	 resulting	 linear	model	 had	a	 low	but	 significant	Pearson’s	 r-square	 value	=	
0.20	(p-value	<0.0005)	(Figure	S6).	Therefore,	the	directional	changes	of	mRNA	and	protein	abundances	
are	in	general	agreement	when	measured	over	differentiation	time.	
	
In	our	data,	we	observed	clear	examples	of	temporal	delay	of	gene	expression	at	the	level	of	mRNA	and	
protein	expression.	This	is	well	demonstrated	by	POU5F1,	a	transcription	factor	that	is	rapidly	turned	off	
in	 hESCs	 upon	 directed	 neuroectodermal	 differentiation21.	 When	 we	 order	 the	 single	 cells	 along	
pseudotimeRNA	 and	 plot	 POU5F1	 gene	 expression,	we	observed	 that	 both	 POU5F1	mRNA	and	protein	
show	concordant	downward	trends	 in	expression	 (Figure	2E).	However,	we	note	 that	 the	protein,	but	
not	the	mRNA,	is	detectable	in	many	cells	assigned	to	late	pseudotimeRNA	(corresponding	primarily	to	the	
cells	 measured	 at	 48h).	 We	 attribute	 the	 time-dependent	 increase	 in	 mRNA-protein	 expression	
variability	as	an	effect	of	gene	down-regulation	and	the	differential	stabilities	of	mRNA	versus	protein22.	
Long	 protein	 half-lives	 will	 enable	 proteins	 to	 be	 present	 in	 a	 cell	 long	 after	 repression	 of	 gene	
transcription,	 especially	 so	 if	 targeted	 protein	 degradation	 is	 not	 accelerated.	 We	 made	 similar	
observations	 for	 other	 genes	 that	 are	 down-regulated	 upon	 differentiation,	 including	 EPCAM.	
Accordingly,	 we	 motivate	 that	 when	 analysing	 expression	 data	 from	 a	 cellular	 system	 undergoing	
dynamic	 changes,	 the	 lag-times	 in	mRNA	and	protein	expression	 should	be	accounted	 for	 in	 terms	of	
assessing	the	functional	state	of	the	cell	at	the	time	of	measurement.	
	
Overall,	 the	 results	 highlight	 that	 while	 mRNA	 expression	 abundances	 are	 not	 predictive	 of	 protein	
abundances	at	the	time	of	measurement,	the	differences	can	be	reconciled	when	we	resolve	mRNA	and	
protein	 expression	 over	 a	 (pseudo)temporal	 scale,	 and	 therefore	 take	 into	 account	 the	 temporal	
elements	 of	 gene	 regulation,	 including	 the	 lag	 times	 between	 transcription	 and	 translation,	 and	 the	
different	half-lives	of	mRNA	and	protein	molecules.	Accordingly,	 these	results	also	suggest	 that	mRNA	
and	protein	measurements	in	single	cells	are	not	redundant	but	provide	different	information	regarding	
the	cell	state	at	the	time	of	measurement.	
	
RNA	and	protein	velocity	
In	RNA	sequencing	data,	the	balance	of	unspliced	and	spliced	mRNA	abundance	have	been	used	as	an	
indicator	of	the	future	state	of	mature	mRNA	abundance,	and	therefore	the	future	state	of	the	cell	16,	23.	
We	hypothesize	that	 in	a	similar	 fashion,	 future	cell	states	as	 indicated	by	proteome	profiles	can,	to	a	
certain	degree,	be	predicted	from	current	transcriptome	states.	In	order	to	explore	this	assumption,	we	
applied	the	analysis	program	for	RNA	velocity	as	described	by	La	Manno	et	al16	separately	to	the	mRNA	
and	 to	 the	 combined	 mRNA	 and	 protein	 expression	 data.	 Our	 scRNAseq	 protocol	 targets	
polyadenylated,	 mature	 spliced	 mRNA	 via	 enrichment	 with	 oligo-dT	 primers.	 However,	 there	 is	 a	
consistent	 fraction	 of	 reads	mapping	 to	 introns,	 and	 these	 reads	 are	 attributed	 to	 secondary	 priming	
within	 the	 primary	 transcripts16.	 In	 agreement	 with	 previous	 work,	 the	 amounts	 of	 intron	 and	 exon	
reads	are	correlated,	indicating	that	introns	represent	unspliced,	precursor	mRNA	(data	not	shown).	
		
We	first	explored	whether	analysis	of	our	mRNA	expression	data	results	in	so	called	RNA	velocity	vectors	
-	 the	 first	 time	 derivative	 of	 the	 spliced	mRNA	 abundance	 -	 that	 are	 consistent	with	 the	 direction	 of	
differentiation	in	our	cell	model.	The	vector	prediction	range	is	on	the	order	of	hours16,	whereas	we	are	
sampling	every	24h.	Therefore,	there	was	a	risk	that	our	long	sampling	intervals	would	make	it	difficult	
to	 capture	meaningful	 expression	 dynamics	 in	 our	 data.	 However,	 the	 resulting	 RNA	 velocity	 vectors	
recapitulate	the	sampling	time	and	the	direction	of	the	differentiation	in	our	cell	model	(Figure	S7A).	
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Next,	we	asked	whether	we	could	perform	the	velocity	analysis	by	assigning	the	mRNA	expression	data	
as	the	“unspliced”,	immature	mRNA	input	and	protein	abundance	as	the	“spliced”,	mature	mRNA	input.	
With	this	analysis,	we	aimed	to	further	confirm	that	the	protein	expression	data	is	consistent	with	the	
biological	 model,	 and	 to	 further	 evaluate	 the	 relative	 use	 of	 mRNA	 and	 protein	 expression	
measurements	 to	 predict	 the	 future	 states	 of	 the	 cells.	We	 show	 that	 the	 use	 of	 combined	 protein-
mRNA	expression	results	 in	a	velocity	map	 (Figure	2D)	 that	 is	consistent	with	the	RNA	velocity	 results	
(Figure	 S7A).	 To	 verify	 that	 RNA-protein	 velocity	 results	 are	 not	 driven	 by	 changes	 of	 total	 protein	
abundance,	we	performed	a	permuted	 control	 and	 coloured	 the	 cells	 according	 to	 their	 total	 protein	
abundance	(data	not	shown).	We	also	permuted	the	intron	count	per	gene	between	samples	to	test	 if	
the	 embedding,	 i.e.	 the	 sample	 location	 in	 the	 tSNE	 plot	 generated	 in	 Seurat24,	 could	 influence	 the	
direction	of	the	arrows	(Figure	S7B).	Neither	analysis	gave	an	indication	that	total	protein	abundance	or	
the	 pre-defined	 location	 of	 the	 samples	 are	 the	 main	 drivers	 of	 the	 velocity	 vectors.	 Together,	 the	
results	 show	 that	 mRNA	 abundance	 can	 be	 used	 to	 predict	 future	 protein	 abundance	 in	 a	 dynamic	
system,	and	importantly,	they	also	highlight	the	limitations	of	mRNA	expression	data	to	predict	protein	
abundances	in	the	cells	at	the	time	of	measurement.	
		
Protein	vs.	mRNA	expression	levels	correlate	better	with	their	trans-regulatory	targets	
To	 date,	 a	major	 limitation	 of	 regulatory	 network	 inference	 analysis	 is	 the	 requirement	 for	 very	 high	
numbers	of	replicate	observations25.	Single	cell	analysis	experiments	produce	hundreds	or	thousands	of	
independent	measurements	and	provide	an	opportunity	to	use	single	cell	data	to	power	the	analysis	of	
causal	gene	regulatory	network	analysis.	Despite	the	increase	in	power,	the	use	of	scRNAseq	remains	a	
challenge,	in	part	due	to	the	stochastic	nature	of	RNA	transcription	and	the	technical	limitations	of	the	
sequencing	protocols.		
	
We	 were	 interested	 to	 determine	 whether	 integrating	 protein-level	 expression	 data	 with	 the	 mRNA	
expression	would	 help	 decipher	 gene	 regulatory	 networks.	 Our	 reasons	 to	 expect	 an	 added	 value	 of	
protein	measurements	 include	 the	observation	 that	 single	cell	mRNA	and	protein	 sets	are	concordant	
but	 not	 redundant,	 the	 circumstance	 that	 protein	 expression	 measurements	 show	 lower	 biological	
and/or	 technical-associated	 cell-to-cell	 variation	 than	mRNA	measurements,	 and	 the	 expectation	 that	
protein	 expression	 levels	 of	 gene	 regulatory	 effectors	 such	as	 transcription	 factors	 should	be	 a	 closer	
representation	of	their	functional	activity	at	time	of	measurement.	
	
To	 specifically	 address	 the	question	of	how	protein	measurement	 can	 complement	 transcriptomics	 in	
analyses	 of	 gene	 regulatory	 networks,	 we	 asked	 whether	 expression	 changes	 at	 the	 level	 of	 RNA	 or	
protein	of	a	transcription	factor	better	predict	downstream	changes	to	its	targets.	We	decided	to	focus	
our	analysis	here	on	POU5F1	as	it	is	essential	stem	cell	factor,	it	positively	and	negatively	regulates	many	
genes,	 and	 that	 it	 is	 rapidly	 turned	 off	 upon	 differentiation.	We	 expect	 to	 observe	 both	 (a)	 POU5F1-
POU5F1target	 co-variation	 in	 steady-state	 cells	 (0h)	 as	 the	 cells	manage	 their	 pluripotent	 state,	 and	 (b)	
POU5F1-POU5F1target	 correlation	 as	 POU5F1	 is	 turned	off	 upon	differentiation	 (0h,	 24h,	 48h).	We	 first	
investigated	the	relationship	between	either	POU5F1RNA	or	POU5F1protein	expression	levels	and	the	mRNA	
expression	levels	of	a	subset	(n	=	7)	of	well-established	downstream	POU5F1	trans-regulatory	targets	in	
ESCs	 (Methods)	 (Figure	3A,	B).	We	did	 the	analysis	 focusing	either	on	the	cells	at	steady-state	 (0h)	or	
including	all	time	points	analyzed	(0h,	24h,	48h).	Overall,	the	correlation	of	mRNA	expression	to	POU5F1	
target	genes	 is	stronger	for	POU5F1	protein	values	than	for	POU5F1	mRNA	expression.	This	 is	true	for	
analysis	of	cells	either	at	steady-state	and	cells	undergoing	differentiation	(Figure	3A,	B).	
	
Given	the	strong	correlation	between	levels	of	POU5F1protein	and	a	subset	of	known	targets,	we	went	on	
to	 investigate	 the	possibility	 to	use	 the	correlation	between	protein	expression	of	 transcription	 factor	
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and	 the	 expression	 of	 the	 specific	 transcripts	 as	 evidence	 that	 the	 corresponding	 gene	 might	 be	
regulated	 by	 that	 transcription	 factor.	 To	 test	 this,	 we	 ranked	 all	 TF-target	 scores	 (as	 described	 in	
Methods)	of	either	POU5F1protein	or	POU5F1RNA	as	TF	to	all	expressed	genes	in	a	set	of	samples.	Next,	we	
assigned	all	seven	initial	POU5F1-target	pairs	described	above	as	positive	targets	and	all	the	other	genes	
as	negative	targets	(n	=	11,008).		We	used	this	classified	ranked	list	to	create	a	ROC	curve	to	identify	the	
cost	of	 identifying	negative	 targets,	 i.e.	 the	 false	positive	 rate	 (FPR),	based	on	 the	number	of	positive	
targets,	i.e.	true	positive	rate	(TPR),	identified.	We	did	this	using	four	different	analysis	groups	where	we	
calculated	 the	 correlation	 between	 POU5F1protein	 or	 POU5F1RNA	 and	 targetRNA,	 and	 included	 either	 only	
steady-state	(0h)	cells	or	all	cells	(0h,	24h,	48h)	(Figure	3C).	
	
To	 estimate	 the	power	 of	 the	 different	 correlation	 analysis	 groups,	we	 calculated	 the	 area	under	 the	
curve	 (AUC)	 of	 the	ROC	 curves.	 The	 results	were	 as	 follows:	 correlation	of	 POU5F1protein	 and	 targetRNA	
with	 steady-state	 (AUC	 =	 0.84)	 or	 all	 cells	 (AUC	 =	 0.98),	 correlation	 of	 POU5F1RNA	 and	 targetRNA	 with	
steady-state	(AUC	=	0.81)	or	all	cells	(AUC	=	0.95)	(Figure	S8).	As	expected,	the	AUC	results	suggest	that	
using	data	 from	cells	undergoing	a	state-change	gives	better	power	to	detect	positive	POU5F1	targets	
than	 only	 using	 data	 from	 steady-state	 and	 that	 this	 is	 true	 for	 correlation	 to	 either	 POU5F1protein	 or	
POU5F1RNA.	 Importantly,	 the	 results	 also	 show	 that	 POU5F1protein	 expression	 levels	 better	 predict	
regulatory	targets	than	POU5F1RNA	levels,	especially	when	only	using	steady	state	samples.		
	
We	next	asked	if	we	could	identify	POU5F1	regulatory	targets	that	were	not	in	our	initial	candidate	list.	
We	did	this	by	selecting	the	most	correlated	POU5F1-target	pairs	with	a	FPR	of	0.10	for	the	four	analysis	
groups	analyzed	above.	Next,	we	filtered	the	list	of	gene	pairs	by	requiring	evidence	that	POU5F1	binds	
in	the	vicinity	of	the	transcription	start	site	of	the	identified	target	gene.	To	accomplish	this,	we	used	the	
same	curated	 list	 (1035	genes)	of	published	ChIP-seq	data	 that	we	used	 for	 identifying	 the	 first	 seven	
candidates.	This	resulted	 in	a	 list	of	252	candidates	where	73	genes	were	found	 in	at	 least	 two	of	 the	
analysis	 groups	 (Figure	 3C).	 Gene	 enrichment	 analysis	 of	 the	 73	 predicted	 POU5F1	 targets	 using	 the	
Reactome	pathway	database	 identified	two	statistically	significant	 (adjusted	p-value	<	0.05)	pathways.	
Both	 of	 these	 pathways	 were	 directly	 related	 to	 the	 regulation	 of	 human	 pluripotent	 stem	 cells,	
specifically	Transcriptional	regulation	of	pluripotent	stem	cells	(adjusted	p-value	=	0.0002)	and	POU5F1,	
SOX2,	 NANOG	 activate	 genes	 related	 to	 proliferation	 (adjusted	 p-value	 =	 0.002).	 Also,	 POU5F1	 was	
identified	 as	 the	 most	 significant	 transcription	 factor	 candidate	 in	 a	 query	 of	 the	 Enrichr	 TF-Gene	
Cooccurence	 data	 set	 (adjusted	 p-value	 3.7e-14)26.	 In	 summary,	 our	 analysis	 highlights	 the	 power	 of	
using	 protein	 level	 measurements	 to	 identify	 transcription	 factor	 regulatory	 targets	 in	 single	 cell	
expression	data,	and	also	introduces	an	approach	that	provides	orthogonal	evidence	to	that	from	ChIP-
seq	for	identifying	target	genes	for	transcription	factors.	
	
Gene	expression	variation	
A	major	strength	of	single-cell	gene	expression	profiling	is	the	possibility	to	study	how	gene	expression	
varies	between	cells.	Importantly,	the	factors	that	impact	variation	of	expression	at	the	mRNA	or	protein	
level	can	differ.	To	date,	 little	 is	known	about	 to	what	extent	RNA	expression	variation	translates	 into	
protein	expression	variation.	For	both	mRNA	and	protein	measurements	taken	at	the	0h	time	point,	we	
calculated	 the	 coefficient	 of	 variation	 of	 each	 gene.	 For	 mRNA,	 it	 is	 well	 understood	 that	 gene	
expression	 variation	 depends	 on	 the	mean	 expression27,	 and	 the	mRNA	expression	 clearly	 shows	 this	
relationship	(Figure	4A).	We	demonstrate	a	similar	dependence	for	proteins	(Figure	4B).	
	
We	subsequently	normalized	the	mRNA	and	protein	expression	variation	data	to	their	respective	mean	
expression	 to	 obtain	 independent	 measurements	 of	 mRNA	 and	 protein	 expression	 variation	 (see	
Methods).	 We	 find	 that	 for	 many	 genes,	 variation	 of	 expression	 at	 the	 mRNA	 and	 protein	 level	
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expression	are	generally	comparable	(Spearman’s	rho=0.30,	Figure	4C).	The	pluripotent	factor	POU5F1	
is	stably	expressed	both	at	the	levels	of	RNA	and	protein,	while	other	genes	show	both	substantial	RNA	
and	protein	expression	variability	 (e.g.	PLAU).	Other	subsets	of	genes	are	more	variable	on	the	mRNA	
level	(e.g.	FGF19),	or	on	the	protein	level	(e.g.	TP53).	Overall,	these	results	highlight	that	variation	at	the	
mRNA	level	is	not	necessarily	propagated	to	protein,	and	therefore	RNA	and	protein	levels	should	both	
be	considered	when	assessing	the	impact	of	expression	variation	on	gene	function.	Accordingly,	SPARC	
provides	 valuable	opportunities	 to	 study	how	mRNA	variation	 relates	 to	 that	 at	 the	protein	 level	 and	
how	this	process	is	regulated.	
	
RNA	 and	 protein	 expression	 variation	 are	 complex,	 co-dependent	 processes.	 In	 order	 to	 investigate	
factors	that	determine	differences	between	mRNA	and	protein	expression	variation,	we	considered	the	
translation	 of	 mRNA	 to	 protein.	 We	 estimated	 translation	 rates	 by	 comparing	 mRNA	 abundances	
(RPKM)	measured	by	SPARC	with	protein	abundances	from	public	quantitative	mass-spectrometry	data	
(see	Methods).	On	the	basis	of	reporter	assays,	it	has	been	suggested	that	highly	translated	genes	show	
higher	 variability	 of	 protein	 levels28.	 Here,	 we	 confirm	 this	 hypothesis	 for	 dozens	 of	 genes	 under	
physiological	 conditions	 as	we	 find	 a	 positive	 correlation	 between	 the	 estimated	 translation	 rate	 and	
protein	expression	variability	(Spearman’s	rho=0.39).	Interestingly,	a	simple	addition	of	RNA	expression	
variability	and	estimated	translation	rate	yields	an	even	better	estimate	of	protein	expression	variability	
(Spearman’s	rho=0.61,	Figure	4D).	This	finding	supports	the	notion	that	protein	variability	in	single	cells	
can	be	decomposed	into	RNA	variability	and	noise	originating	from	translation.	
	
DISCUSSION	
We	 present	 a	 protocol,	 SPARC,	 to	 simultaneously	 profile	 mRNA	 and	 protein	 expression	 at	 cellular	
resolution.	The	modified	Smart-seq2	protocol	provides	sensitive	and	precise	gene	expression	detection	
and	 information	 of	 the	 full-length	 transcripts.	 Meanwhile,	 proximity	 extension	 assays	 enable	 highly	
specific	and	scalable	protein	detection	of	sets	of	cellular	proteins	in	cells	that	have	not	been	fixed.	Using	
this	 method,	 we	 have	 explored	 the	 relationship	 between	 mRNA	 and	 protein	 expression	 in	 cells	 at	
steady-state	or	at	the	early	stages	of	differentiation.	Moreover,	we	introduce	an	approach	to	investigate	
mRNA	and	protein	expression	variation	and	covariance	at	cellular	resolution,	and	extend	the	concept	of	
mRNA	velocity	to	use	protein	level	expression	data.	
	
Overall,	we	 find	 that	 the	observed	patterns	of	mRNA	and	protein	 co-expression	 reflect	 the	 snap-shot	
single	 cell	 measurements	 of	 gene	 expression	 with	 the	 inherent	 temporal	 element	 of	 delay	 between	
transcription	 and	 translation6	 and	 the	 characteristics	 of	 mRNA	 and	 protein	 molecules,	 including	
expression	kinetics29,	half-lives,	and	copy	numbers2.		
		
Moreover,	the	observed	relationships	between	mRNA	and	protein	variability	are	consistent	with	earlier	
observations	 that	 cells	 employ	 mechanisms	 to	 either	 reduce	 or	 amplify	 intra-	 and	 inter-cell	 protein	
expression	variability	introduced	by	burst-like/noisy	mRNA	transcription29-31.	As	outlined	by	Raj	and	van	
Oudenaarden31,	 protein	 stability	 can	 play	 a	 role	 in	 the	 relationship	 between	 mRNA	 and	 protein	
variability.	 Short-lived	 proteins	 can	 track	 fluctuating	mRNA	 levels	 closely,	 while	 levels	 of	 protein	 that	
degrade	slowly	fail	to	follow	the	rapid	fluctuations	of	mRNA.	
		
Going	forward,	measurement	limitations	and	errors	should	be	taken	into	consideration	when	evaluating	
mRNA-protein	co-expression	profiles.	For	example,	no	detection	(zero	expression)	of	a	specific	gene	can	
arise	either	because	its	cognate	mRNA	was	not	present	at	the	time	the	cell	was	interrogated	(biological	
variation),	or	because	the	mRNA	was	 lost	during	cDNA	generation,	amplification	or	 library	preparation	
(technical	variation	referred	to	as	gene	dropouts).	While	the	Smart-seq2	procedure	has	high	sensitivity	
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and	precision,	technical	variation	is	still	present	and	needs	to	be	considered	when	weighing	the	effects	
of	 biological	 versus	 technical	 variation32.	 For	 proteins,	 PEA	 assays	 have	 demonstrated	 low	
measurements	variation12,	 they	are	 less	prone	to	dropouts	but	depend	on	antibody	performance,	and	
therefore	may	fail	to	detect	some	proteins	despite	relatively	high	protein	expression.	
	
The	SPARC	procedure	described	herein	can	help	resolve	regulatory	networks	or	monitor	developmental	
processes	 and	 cellular	 responses	 to	 e.g.	 genetic	 or	 chemical	 perturbations.	 We	 propose	 that	 the	
approach	can	be	used	for	the	analysis	of	transcript	isoform	usage	and	protein	expression	as	explored	in	
Gerlach	 et	 al13	 and	 will	 be	 valuable	 for	 analyses	 of	 the	 relationship	 between	 mRNA	 and	 protein	
expression	 variation.	 The	 proximity-based	 protein	 assays	 are	 well	 suited	 to	 detect	 post-translational	
modifications33	and	can	be	scaled	up	via	a	sequencing	readout34,	allowing	measurement	of	still	greater	
numbers	of	proteins	and	protein	modifications	in	individual	cells.	
	
In	summary,	the	more	direct	roles	of	proteins	in	maintaining	cellular	functions	compared	to	transcripts,	
together	 with	 the	 recognized	 importance	 of	 posttranslational	 regulation,	 render	 single	 cell	 protein	
analysis	an	 important	complement	of	 comprehensive	RNA	analyses	of	 cell	 state	and	 to	decipher	gene	
regulation	circuitry.	
	
MATERIAL	AND	METHODS	
Cell	culture	and	neural	induction	of	human	embryonic	stem	cells	
Human	 embryonic	 stem	 cell	 line	 HS181	 (hPSCreg	 Kle001-A)	 was	 maintained	 on	 vitronectin	 (VTN-XL;	
Stem	Cell	Technologies,	07180)	in	Essential-E8	Medium	(ThermoFisher	Scientific,	A1517001).	Cells	were	
passaged	as	clumps	with	gentle	cell	dissociation	reagent	 (GCDR;	Stem	Cell	Technologies,	07174)	when	
necessary.	Two	days	before	neural	induction,	cells	were	harvested	with	GCDR	and	plated	in	Essential-E8	
supplemented	with	10	uM	Rho-kinase	inhibitor	Y27632	(Stem	Cell	Technologies,	72304)	on	VTN	coated	
6-well	 culture	 dish	 to	 yield	 approximately	 80%	 confluence	 next	 day.	 When	 cells	 reached	 100%	
confluence,	 neural	 differentiation	 was	 induced	 (Day	 0/0h)	 using	 dual	 smad	 inhibition	 (Maroof	 et	 al.,	
2013).	 Briefly,	 cells	 were	 washed	 with	 1x	 DPBS	 and	 neural	 induction	 medium	 (NIM)	 was	 added,	
consisting	 of	 KnockoutTM	 DMEM	 (10829018),	 15%	 KnockOutTM	 Serum	 Replacement	 (A3181501),	 1x	
GlutaMax	 (35050038),	 1x	 non-essential	 amino	 acids	 (11140035),	 1%	 penicillin/streptomycin	
(1514022)(all	 ThermoFisher	 Scientific),	 supplemented	 with	 2	 uM	 tankyrase	 inhibitor	 XAV939	 (Sigma-
Aldrich,	 X3004),	 100	 nM	 ALK2/3	 inhibitor	 LDN193189	 (Miltenyi	 Biotech,	 130-106-540)	 and	 10	 uM	
ALK4/5/7	inhibitor	SB431542	(Millipore,	616464).	Medium	was	replaced	on	days	1	and	2.		
		
To	follow	early	neural	differentiation,	cells	were	harvested	at	indicated	time	points	(0h;	24h;	48h).	Cells	
were	washed	 twice	with	DPBS	 to	 remove	 floating	dead	cells,	 and	 subsequently	 treated	with	Accutase	
(Sigma-Aldrich)	for	5	to	15	min	until	a	single	cell	suspension	was	obtained.	Cells	were	collected	in	13	ml	
DPBS	and	then	centrifuged	at	300	x	g	for	5	min,	washed	with	DPBS,	centrifuged	again	and	re-suspended	
in	DPBS.	Cells	were	kept	on	ice	until	single	cell	sorting.	
		
Single	cell	isolation	
The	 single	 cells	were	 incubated	on	 ice	with	 a	 viability	 dye	 (LIVE/DEAD	Viability	 Kit,	Molecular	 Probes,	
L3224)	for	approximately	15	minutes	and	then	filtered	through	a	40	μM	filter	before	sorting.	Cells	were	
sorted	on	a	BD	FACS	ARIAIII	into	a	96-well	plate.	We	used	a	gating	strategy	to	exclude	of	debris,	doublets	
and	cells	positive	 for	EthD-1,	a	nucleic	acid	dye	 that	enters	cells	with	damaged	membranes.	After	 the	
cells	were	sorted,	the	plate	was	centrifuged	at	700	g	and	4°C	for	1	minute	and	then	quickly	transferred	
to	dry	ice.	The	plates	were	stored	at	-80°C	until	processed.	
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For	 the	 SPARC	protocol,	 cells	were	 sorted	 into	1.5	μl	 TE	buffer	 (pH	8.0	 Invitrogen,	AM9858)	with	 the	
following	 components:	 1%	NP-40	 (Thermo	 Fisher,	 28324),	 0.1%	 Triton	 X-100	 (Thermo	 Fisher,	 28314),	
0.1%	 Sulfobetaine	 (Sigma-Aldrich,	 82804-50G),	 150	 mM	 NaCl	 (Ambion,	 AM9760G),	 10	 mg/ml	 BSA	
(Ambion,	 AM2616),	 2	 U	 SUPERase	 In	 RNase	 Inhibitor	 (Ambion,	 AM2696),	 1X	 HALT	 protease	 inhibitor	
(Thermo	Fisher,	78430)	and	1:1,250,000	ERCC	(Invitrogen,	4456740).	
		
For	the	Smart-seq2	protocol,	cells	were	sorted	into	4	μl	TE	buffer	pH	8.0	with	the	following	components:	
0.1%	 Triton	 X-100	 (Thermo	 Fisher,	 28314),	 1	 U	 SUPERase	 In	 RNase	 Inhibitor	 (Ambion,	 AM2696),	
1:4000000	ERCC	spike-in	(Ambion,	4456740),	2.5	mM	dNTPs	(Thermo	Fisher,	R0191)	and	2.5	μM	oligo-
dT	 (Integrated	 DNA	 Technologies	 IDT,	 5’-/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTA	 CT30VN-3’,	
where	V	is	either	A,	C	or	G,	and	N	is	any	base).	For	multiplex	protein	detection	only,	cells	were	sorted	
into	1.5	μl	TE	buffer	pH	8.0	with	the	following	components:	1%	NP-40	(Thermo	Fisher),	0.1%	Triton	X-
100	 (Thermo	 Fisher),	 0.1%	 Sulfobetaine	 (Sigma-	 Aldrich),	 150	 mM	 NaCl,	 10	 mg/ml	 BSA	 (Ambion,	
4456740),	and	1X	HALT	Protease	Inhibitor	(Thermo	Fisher).	
		
On	each	96-well	sorting	plate,	we	included:	(i)	population	controls	of	100	sorted	cells/well	in	duplicate;	
(ii)	buffer,	no-cell	control	 in	triplicate;	 (iii)	100	cell	equivalent	 lysate	prepared	from	the	SK-MEL-30	cell	
line.	The	SK-MEL-30	cell	lysate	was	prepared	in	bulk,	aliquoted	and	added	to	every	plate	in	triplicate	as	
an	inter-plate	control.	
		
Oligo-dT	bead	preparation	
For	every	 reaction,	5µl	Dynabeads	MyOne	Streptavidin	T1	 (Invitrogen,	65602)	was	washed	 twice	with	
1.45	µl	washing	solution	containing	100mM	NaOH	(Sigma-Aldrich,	S8045-500G),	50mM	NaCl	 (Ambion,	
AM9760G)	 and	 UltraPure	 DNase/RNase-Free	 Distilled	Water	 (Invitrogen,	 10977035).	 The	 beads	 were	
then	 washed	 with	 1.45	 µl	 RNAse-free	 bind	 and	 wash	 solution	 containing	 0.01	 mM	 Tris	 (Invitrogen,	
AM9855G),	 1mM	 EDTA	 (AM9260G),	 2	M	NaCl	 (Ambion,	 AM9760G)	 and	 UltraPure	 DNase/RNase-Free	
Distilled	Water	(Invitrogen,	10977035).	The	beads	were	then	mixed	with	2	µl	RNAse-free	bind	and	wash	
solution	 and	 0.1	 µl	 oligo-dT	 (IDT,	 5’-/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTA	 CT30VN-3’)	 and	
incubated	 in	 ambient	 temperature	 for	 15	 minutes.	 The	 beads	 were	 finally	 stored	 in	 1	 µl	 1%	 BSA	
(Ambion,	 AM2616)	 in	 TE	 buffer	 (Invitrogen,	 AM9858)	 and	 incubated	 on	 a	 rotator	 overnight	 in	 8°C.	
Before	use,	the	buffer	was	exchanged	for	the	RNA	and	Protein	lysis	buffer.	
		
mRNA	capture,	reverse	transcription	and	pre-amplification	
Lysis	plates	with	FACS	sorted	cells	were	centrifuged	in	700	g	for	10	seconds	and	thawed	on	ice.	Smart-
seq2	 reference	 samples	were	 incubated	at	72°C	 for	3	minutes	and	directly	placed	back	on	 ice.	 SPARC	
samples	were	pipette	mixed	while	1	µl	of	prepared	beads	was	added	to	each	reaction.	The	SPARC	plate	
was	 then	 incubated	 for	10	minutes	with	orbital	 shaking	at	1000	 rpm.	Plates	were	 then	centrifuged	at	
700	g	for	10	seconds	and	placed	on	a	magnetic	rack	(Alpaqua	Magnum	FLX)	where	1.7	µl	from	each	well	
was	transferred	for	protein	analysis.	The	Smart-seq2	and	SPARC	samples	were	supplied	with	6	µl	and	10	
µl	 reverse	 transcription	 mix,	 respectively.	 The	 mixes	 contained:	 100	 U	 SuperScript	 II	 reverse	
transcriptase,	 1x	 First	 Strand	 Buffer,	 5mM	 DTT	 (all	 Invitrogen,	 18064014),	 10	 U	 SUPERase	 In	 RNase	
Inhibitor	 (Invitrogen,	 AM2696),	 1	 M	 Betaine	 (Sigma-Aldrich,	 61962-250G),	 6	 mM	 MgCl2	 (Invitrogen,	
AM9530G),	 1	 mM	 each	 of	 dNTP’s	 (ThermoScientific,	 R0192),	 1	 µM	 TSO	 (5ʹ-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3ʹ,	 Exiqon	 as	 described	 in	 (Picelli	 et	 al.,	 2014)	 and	
UltraPure	 DNase/RNase-Free	 Distilled	 Water	 (Invitrogen,	 10977035).	 The	 Smart-seq2	 samples	 were	
centrifuged	 for	 700	 g	 for	 10	 seconds	 and	 then	 placed	 in	 a	 thermal	 cycler.	 The	 SPARC	 samples	 were	
pipette	 mixed	 prior	 to	 incubation	 in	 a	 thermal	 cycler.	 Both	 samples	 sets	 were	 processed	 using	 the	
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following	program:	42°C	for	90	minutes,	10	cycles	with	50°C	for	2	minutes	and	42°C	for	2	minutes	and	
finally	70°C	for	15	minutes	before	holding	at	4°C.	
		
Each	 first	 strand	 cDNA	 reaction	was	 supplied	with	 15	µl	 of	 PCR	mix	 containing	1x	KAPA	HiFi	HotStart	
Ready	Mix	 (Kapa	Biosystems,	KK2601),	1	µM	IS	PCR	primer	 (5ʹ-AAGCAGTGGTATCAACGCAGAGT-3ʹ,	 IDT,	
as	 described	 in	 (Picelli	 et	 al.,	 2014)	 and	 UltraPure	 DNase/RNase-Free	 Distilled	 Water	 (Invitrogen,	
10977035).	The	RNA	samples	were	vortexed	and	centrifuged	(700	g	for	10	seconds)	while	the	combined	
RNA/Protein	 samples	 were	 pipette	 mixed,	 prior	 to	 incubation	 in	 PCR	 program:	 98°C	 for	 3	 minutes,	
cycling	of	98°C	for	20	seconds,	67°C	for	15	seconds	and	72°C	for	6	minutes.	Lastly,	 the	final	extension	
was	at	72°C	 for	30	seconds	prior	 to	holding	at	4°C.	Single	cells	were	subjected	 to	20	PCR	cycles	while	
bulk	samples	(100	cells)	were	subjected	to	14	PCR	cycles.	Samples	were	finally	purified	with	AMPure	XP	
beads	(Beckman	Coulter,	A63880)	using	0.8X	bead	to	sample	ratio.	
	
scProtein	expression	analysis	
Cell	 lysate	 containing	 the	protein	 supernatant	were	 transferred	 to	 a	new	96-well	 PCR-plate	 and	were	
processed	immediately.	To	each	sample,	we	added	2.1	µl	Incubation	Solution	(Olink	Proteomics),	0.3	µl	
Incubation	Stabilizer	(Olink	Proteomics),	0.3	µl	of	each	PEA	A-	and	B-probe	mix	(final	concentration	100	
pM;	Olink	Proteomics).	The	probes	 targeted	92	cellular	proteins	and	4	controls.	The	controls	 included	
spiked-in	 GFP,	 PE,	 an	 extension	 control	 and	 a	 detection	 control15.	 Each	 96-well	 plate	 included	 a	 lysis	
buffer	 only	 negative	 control	 in	 triplicate.	 PCR-plates	 were	 briefly	 vortexed,	 centrifuged,	 sealed	 and	
incubated	overnight	at	8°C.	Following	overnight	incubation,	plates	were	brought	to	room	temperature,	
briefly	spun	down	and	96	µl	Extension	mix	was	added	to	each	well.	The	extension	mix	contained	10	µl	
PEA	 Solution	 (Olink	 Proteomics),	 0.5	 µl	 PEA	 Enzyme	 (Olink	 Proteomics),	 0.2	 µl	 PCR	 Polymerase	 (Olink	
Proteomics)	 and	 85.3	 µl	 UltraPure	 DNase/RNase-Free	 Distilled	 Water	 (Invitrogen,	 10977035).	 Plates	
were	sealed,	gently	vortexed,	centrifuged	and	within	5	minutes	of	adding	the	Extension	mix,	placed	in	a	
thermal	cycler	for	the	extended	reaction	(50	°C,	20	min),	and	pre-amplification	of	extended	PEA	probes	
via	universal	primers	(95°C,	5	min,	(95°C,	30	s;	54°C,	1	min;	and	60°C,	1	min)	x	17).	
	
The	pre-amplified	extended	PEA	products	were	decoded	and	quantified	using	a	Fluidigm	96.96	Dynamic	
Array	Integrated	Fluidic	Circuit	on	a	Biomark	HD	system.	Ninety-six	primers	pairs	(5	µl	of	each)	targeting	
each	PEA	probe	pair	were	loaded	in	the	left	inlets	of	the	array.	A	Detection	mix	containing	5	µl	Detection	
Solution,	 0.071	 µl	 Detection	 Enzyme,	 0.028	 µl	 PCR	 Polymerase	 (all	 Olink	 Proteomics)	 and	 2.1	 µl	
UltraPure	DNase/RNase-Free	Distilled	Water	(Invitrogen,	10977035)	was	added	in	the	right	inlets	of	the	
array.	The	96.96	IFC	chip	was	primed	in	Fluidigm’s	IFC	HX	according	to	manufacturer’s	instructions	and	
then	 run	 on	 the	 Biomark	 HD	 system	 with	 the	 following	 settings:	 Gene	 Expression	 application,	 ROX	
passive	reference,	single-probe	assay	with	FAM-MGB	probe.	The	thermal	protocol	included	thermal	mix	
(50C,	120	s;	70C,	1,800	s;	25C,	600	s),	hot	start	(95C,	300	s),	and	PCR	cycling	for	40	cycles	(95C,	15	s;	60C,	
60	s).	
	
Library	preparation	and	sequencing	
Purified	cDNA	(75	ng)	was	used	as	input	to	the	Nextera	XT	DNA	library	preparation	kit	(Illumina,	FC-131-
1096),	 following	 the	 manufacturers	 protocol	 with	 the	 modification	 of	 using	 1:5	 of	 reagent	 volumes.	
Indexing	primers	 (Illumina,	 FC-131-2001;	 FC-131-2002;	 FC-131-2003;	 FC-131-2004)	were	diluted	1:2	 in	
UltraPure	DNase/RNase-Free	Distilled	Water	 (Invitrogen,	10977035)	prior	 to	use.	Samples	were	 finally	
pooled	and	purified	with	AMPure	XP	beads	(Beckman	Coulter,	A63880)	using	0.6x	bead	to	sample	ratio	
and	 concentrated	 by	 eluting	 in	 60%	 of	 the	 corresponding	 input	 sample	 volume	 using	 Elution	 buffer	
(Qiagen,	19086).	The	final	sequencing	library	was	quantified	using	BioAnalyzer	High	Sensitivity	DNA	kit	
(Agilent,	5067-4626)	using	a	region	table	spanning	100	bp	to	1000	bp.	The	pooled	library	was	sequenced	
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on	two	lanes	of	 Illumina	HiSeq2500	using	single	read	50	bp	read	length,	v4	chemistry.	The	sequencing	
was	performed	at	the	SNP&SEQ	Technology	Platform,	Science	for	Life	Laboratory,	Uppsala,	Sweden.	
		
scRNAseq	dataset	processing	
Reads	 were	 mapped	 to	 the	 human	 genome	 (GRCh38)	 including	 the	 sequence	 of	 the	 spike-in	 RNAs.	
FeatureCount	 summarised	 over	 annotated	 genes	 from	 the	GRCh38.77	 version	 of	 the	 human	 genome	
including	the	spike	ins	were	used	to	get	counts	for	all	exons	of	annotated	genes	in	the	human	genome.	
Samples	with	less	than	10	000	reads	mapping	to	the	exons	or	the	fraction	of	spike-in	RNAs	were	greater	
than	20	percent	were	removed	from	further	analysis.	RPM	values	and	RPKM	values	were	calculated	for	
all	genes	in	all	samples.			
	
scProtein	dataset	processing	
Following	the	completion	of	the	qPCR	run	on	the	Fluidigm	Biomark	HD	system,	we	visually	inspected	the	
amplification	curves.	Samples	showing	evidence	of	failed	or	poor	amplification	reactions	were	excluded	
from	 further	 analysis.	 Next,	 the	 raw	Cq	 data	 (log	 2	 scale)	 from	 the	 Fluidigm	Biomark	HD	 system	was	
exported	and	processed.	First,	samples	were	excluded	if	no	signal	was	detected	in	any	of	control	assays	
(extension	control,	 incubation	control	or	detection	control),	or	 if	 the	signal	 in	any	of	 the	controls	was	
greater	 or	 less	 than	 2	 standard	 deviations	 (SD)	 of	 the	mean	 value	 across	 all	 samples	measured	 on	 a	
96.96	IFC	Biomark	chip.	Next,	the	remaining	Cq	values	were	normalized	for	intra-plate	variation	with	the	
extension	 control	 (Cqassay	 -	 CqExtCtl)	 yielding	 dCq	 values.	 Then,	 for	 each	 assay,	 the	 dCq	 values	 were	
subtracted	 from	 the	 negative	 control	 computed	 as	 the	 lysis	 buffer	 mean	 +	 2*SD.	 This	 ensures	 that	
observed	 signals	 for	 each	 assay	 in	 the	 presence	 of	 a	 cell	 are	 at	 least	 2	 SDs	 away	 from	 any	 signals	
observed	in	the	absence	of	any	antigen.	Resulting	values	below	zero	were	set	to	zero	and	the	signal	was	
deemed	 undetected.	 The	 cumulative	 protein	 sum	 was	 calculated	 by	 summing	 across	 all	 proteins	
measured	(n=92)	per	cell.		
		
Method	comparison	for	RNA	analysis	
Samples	from	both	the	SPARC	protocol	and	standard	Smart-seq2	protocol	at	0h	were	used	to	compare	
similarities	and	differences	between	the	two	protocols.	Only	genes	with	log	RPKM	greater	than	1	were	
used	 for	 further	 analysis.	 Genes	 were	 separated	 into	 different	 biotypes	 according	 to	 GRCh38.77			
annotation	 and	 number	 of	 detected	 genes	 per	 biotype	 were	 compared	 between	 the	 two	 protocols.	
Read	 counts	 for	 all	 exons	 and	 introns	 in	 all	 genes	was	 counted	 and	 the	distribution	 across	 the	 genes	
were	 compared	 between	 the	 two	 protocols.	 Logarithmic	 mean	 expression	 (LME)	 for	 each	 gene	 was	
calculated	 for	 all	 samples	 irrespective	 of	 protocol,	 and	 for	 each	 protocol	 by	 itself	 LMESPARC-seq	 and	
LMESmart-seq2.	Differential	 expression	between	 the	protocols	 (DE-prot)	 per	 gene	were	 calculated	by	
dividing	the	LMESPARC-seq	with	the	LMESmart-seq2	value	per	gene.	Both	the	LME	and	the	DE-prot	was	
taken	into	account	by	multiplying	the	two	values	to	identify	the	differences	between	the	two	protocols.	
Genes	were	the	product	of	the	two	was	greater	than	8	was	considered	to	be	different	and	analyzed	for	
differences	in	lengths	and	gene	biotype.				
		
Cell	cycle	assignment	
RNA	samples	were	normalized	using	the	Seurat	224	package	and	the	samples	were	scaled	by	the	number	
of	 detected	 genes	 per	 sample.	 Scores	 for	 each	 sample	 being	 in	 either	 S	 phase	 or	 G2/M	 phase	 was	
calculated	using	the	Seurat	2	package	and	at	 the	same	time	predicted	to	belong	to	either	 the	G1,S	or	
G2/M	phase.		
	
To	 further	 explore	 the	 relationship	 between	 cell	 cycle	 phase	 and	 protein	 expression,	 the	 hESCs	were	
labeled	with	the	Live	cell	DNA	dye	Vybrant	DyeCycle	Violet	(Invitrogen,	V35003)	and	sorted	by	cell	cycle	
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phase	(G1,	S	or	G2/M)	in	triplicate	at	100	cells	per	well.	Cells	were	sorted	in	the	following	lysis	buffer:	2	
μl	TE	buffer	pH	8.0	with	the	following	components:	1%	NP-40	(Thermo	Fisher,	28324),	0.1%	Triton	X-100	
(Thermo	Fisher,	28314),	0.1%	Sulfobetaine	(Sigma-Aldrich),	150	mM	NaCl	(Thermo	Fisher,	AM9760G),	10	
mg/ml	 BSA	 (Thermo	 Fisher,	 AM2618),	 and	 1X	 HALT	 Protease	 Inhibitor	 (Thermo	 Fisher,	 78430).	 Cells	
were	then	processed	for	multiplex	PEA	analysis	as	described	above.	
	
PCA	analysis	and	pseudotime	analysis	
The	normalized	and	scaled	data	from	the	cell	cycle	prediction	were	further	scaled	by	the	scores	for	the	S	
phase	 and	 the	 G2M	 scores	 to	 remove	 the	 cell	 cycle	 dependency	 of	 the	 samples	 using	 the	 Seurat	
package.	 Dimensional	 reduction	 analysis	 using	 tSNE	 were	 used	 to	 reduce	 the	 dimensionality	 of	 the	
sample	data.	 The	 three	dimensions	 from	 the	 tSNE	analysis	was	 then	used	by	 SCORPIUS19	 to	predict	 a	
linear	pseudo	time	through	all	the	samples	with	a	score	between	0	and	1.	Average	pseudotime	scores	
for	 the	 0h	 samples	 and	 48h	 samples	 were	 calculated.	 If	 the	 average	 pseudotime	 score	 for	 the	 0h	
samples	were	higher	than	the	average	48h	samples	the	pseudotime	was	re-calculated	by	subtracting	the	
pseudotime	with	1	and	then	multiplying	by	-1	to	change	the	order	of	the	samples	and	maintaining	the	
pseudotime	distances	between	 samples.	 Pseudotime	 scores	were	 then	multiplied	with	48	 to	 reflect	 a	
pseudotime	over	48h.	Genes	that	change	over	time	was	identified	by	SCORPIUS	(adj	p-value	<0.05)	and	
separated	into	different	modules	dependent	on	expression	pattern	over	time.		
	
Comparison	of	RNA	and	protein	changes	over	time		
To	test	whether	the	expression	levels	for	both	RNA	and	protein	level	show	the	same	directional	changes,	
we	applied	a	linear	model	for	expression	over	time	for	both	the	RNA	logged	RPKM	values	(lRPKM(pt)	=	
klRPKM*pt	+	IlRPKM)	and	for	protein	Cq	values	(Cq(pt)	=	kCq*pt	+	ICq).	We	then	tested	if	the	slope	of	
the	RNA	levels	for	a	gene	could	predict	the	slope	of	the	protein	for	the	same	gene	with	the	linear	model		
(lRPKM(pt)	=	klRPKM*pt	+	IlRPKM)	(Cq(pt)	=	kCq*pt	+	ICq).	We	then	tested	if	the	slope	of	the	RNA	levels	
for	a	gene	could	predict	the	slope	of	the	protein	for	the	same	gene	with	the	linear	model	kCq(klRPKM)	=	
klRPKM*0.49	+	0.01.	
	
RNA	and	protein	velocity	
Exon,	 intron	and	spanning	reads	were	retrieved	using	the	reads	mapped	to	the	GRCh38	reference	and	
the	 GRCh38.77	 annotation.	 Only	 coding	 genes	 were	 the	 total	 intron	 counts	 and	 exon	 counts	 were	
greater	than	1000	reads	and	spanning	gene	count	reads	with	more	than	500	reads	were	kept	for	further	
analysis.	 To	 estimate	 velocity	we	 used	 20	 cell	 kNN	 pooling	with	 the	 gamma	 fit	 based	 on	 an	 extreme	
quantile	of	0.05	including	the	spanning	reads	the	gene	offsets.	The	flow	of	the	cells	was	visualised	on	the	
tSNE	 embedding	 that	 was	 identified	 using	 the	 Seurat	 2	 package	 described	 above	 and	 used	 in	 the	
pseudotime	 analysis.	 To	 generate	 a	 set	 of	 noise	 samples,	 intron	 counts	 per	 gene	 per	 sample	 were	
randomly	 shuffled	between	 samples	 to	 remove	 true	 correlation	between	exon	and	 introns.	 The	 same	
parameters	 and	 method	 that	 was	 used	 to	 get	 the	 true	 flow	 was	 used	 for	 the	 shuffled	 exon	 intron	
dataset.	For	the	mature	mRNA	and	protein	analysis,	RPKM	values	for	exons	as	“intron”	counts	and	Cq	
values	 for	 protein	were	 used	 as	 “exon”	 counts.	 All	 62	 proteins	 that	 passed	 protein	 QC	was	 used	 for	
analysis.	To	estimate	the	velocity,	we	used	20	cell	kNN	pooling	with	the	gamma	fit	based	on	an	extreme	
quantile	of	0.05.	The	flow	of	the	cells	were	visualised	on	the	tSNE	embedding	that	was	identified	using	
the	Seurat	2	package24	described	above	and	used	in	the	pseudotime	analysis.	As	a	further	control,	the	
assignment	of	gene	RNA	expression	values	and	gene	protein	expression	values	was	permuted	for	each	
cell,	thereby	preserving	the	total	RNA	and	protein	abundance	in	each	cell.	
	
	
	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/749473doi: bioRxiv preprint 

https://doi.org/10.1101/749473
http://creativecommons.org/licenses/by-nc/4.0/


 14	

Gene	regulatory	network	analysis	–	selection	of	POU5F1	targets	
To	identify	genes	that	are	trans-regulated	by	POU5F1,	an	 initial	set	of	targets	to	POU5F1	was	selected	
based	 on	 two	 criteria:	 (1)	 It	 should	 be	 identified	 as	 changing	 over	 pseudotime	 according	 to	 the	
pseudotime	calculated	and	described	above;	and	(2)	 It	should	be	reported	as	bound	by	POU5F1	in	the	
vicinity	of	the	TSS	by	the	curated	set	of	ChIP-seq	data	described	in	the	section	below.	The	intersection	of	
the	two	assumptions	gave	a	subset	of	7	genes.		
	
A	set	of	genes	where	POU5F1	binds	in	the	vicinity	of	the	TSS	in	primed	hESCs	were	identified	using	ChIP-
seq	 data35.	 An	 initial	 set	 of	 11	 hESC	 samples	 (SRX017276,	 SRX021069,	 SRX021071,	 SRX1053369,	
SRX1053370,	 SRX1053378,	 SRX1053379,	 SRX266859,	 SRX702065,	 SRX702066,	 SRX702069)	 were	
collected	from	CHiP-Atlas35	by	filtering	with	POU5F1	as	antigen	and	a	distance	from	TSS	as	1	kb.	For	the	
remaining	samples	hierarchical	clustering	of	the	euclidean	distance	all	samples	binding	scores	across	all	
genes	compared	to	each	other	was	done.	A	final	set	of	7	samples	(SRX017276,	SRX021069,	SRX021071,	
SRX1053378,	 SRX1053379,	 SRX702065,	 SRX702066)	 that	 clustered	 as	 primed	 hESC	 in	 the	 hierarchical	
cluster	were	kept	for	further	analysis.	Genes	with	a	reported	binding	score	in	ChIP-Atlas	in	at	least	two	
samples	were	considered	as	the	curated	set	of	POU5F1	target	genes.			
		
TF-target	 scores	were	 calculated	 for	 a	 set	of	 sc	 samples	 in	 three	 steps:	 (1)	 calculation	of	 the	Pearson	
correlation	between	the	TF	expression	pattern	and	the	expression	pattern	of	annotated	genes	in	a	cell;	
(2)	 calculation	 of	 a	 z-score	 for	 each	 TF-target	 by	 subtracting	 the	mean	 and	 dividing	 by	 the	 standard	
deviation	 of	 the	 Pearson	 correlation	 scores	 for	 all	 TF-targets;	 and	 (3)	 The	 TF-targets	 scores	was	 then	
calculated	by	taking	the	absolute	value	of	the	z-scores	creating	a	distribution	scores	greater	than	zero.		
The	 greater	 the	 TF-targets	 score	 the	more	 correlation,	 positive	 or	 negative,	 between	 the	 TF	 and	 the	
target	expression	pattern.	
	
Gene	expression	variation	
Gene	expression	variation	was	estimated	using	 the	 squared	coefficient	of	 variation	 (CV2).	As	 variation	
and	 mean	 expression	 are	 inherently	 linked	 due	 to	 sampling	 properties,	 we	 perform	 a	 linear	 fit	 of	
variation	to	mean	expression	in	log-space.	For	protein	measurements,	a	cubic	polynomial	was	applied	to	
reflect	 the	 non-linear	 dependence	 of	 exceedingly	 lowly	 or	 highly	 expressed	 proteins.	 For	 RNA	
measurements,	 weights	 equal	 to	 the	 square	 root	 of	 the	 expression	 values	were	 applied	 to	 the	 fit	 to	
withhold	 lowly	 expressed	 genes	 from	driving	 the	 fit.	We	 then	 consider	 the	 residuals	 of	 the	 individual	
gene	 measurements	 with	 regard	 to	 this	 fit	 as	 mean	 independent	 gene	 expression	 variation	
measurements	(termed	“normalized	variation”).	To	avoid	in-silico	biases,	data	was	not	computationally	
de-noised	 using	 batch-effect	 removal	 tools.	 Instead,	 cells	were	 strictly	 filtered	 and	 quality	 controlled.	
Specifically,	 outliers	 were	 removed	 using	 pseudo-time	 estimations	 from	 SCORPIUS,	 and	 only	 cells	
labeled	 S-phase	 of	 the	 cell-cycle	 using	 the	 cyclone	 package	 of	 SCRAN	 were	 considered.	 Mass-
spectrometry	data	for	the	estimation	of	the	translation	rate	for	hESCs	(E14	cells36)	was	retrieved	from	
the	FunCoup	PaxDB	statistics37.	Translation	rates	are	estimated	as	the	log2	ratio	of	protein	abundances	
vs.	RNA	RPKM	measurements.	Due	to	the	different	dynamic	ranges	of	the	RNA	variability	and	translation	
measures,	the	“combined	normalized	variation	and	translation	rate”	reflects	the	sum	of	normalized	RNA	
expression	variation	and	0.5	times	estimated	translation	rate.	Lines	in	Figures	4C	and	D	show	linear	least	
total	square	fits.	
	
Data	availability	
The	RNA	expression	data	is	uploaded	to	ENA	with	the	project	number	PRJEB33157.	The	protein	data	is	
attached	as	Table	S2.		
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FIGURE	LEGENDS	
Figure	1:	SPARC	method	overview	
(A)	 The	 SPARC	 procedure.	 Single	 cells	 are	 isolated	 and	 lysed	 in	 the	 presence	 of	 oligo-dT	 conjugated	
magnetic	beads.	Following	oligo-dT	mRNA	hybridization,	the	protein-containing	supernatant	is	removed	
for	 subsequent	 multiplex	 proximity	 extension	 analysis	 (PEA)	 and	 the	 mRNA	 is	 processed	 using	 a	
modified	 Smart-seq2	 approach.	 (B)	 Overview	 of	 the	 cellular	 model	 analyzed	 using	 SPARC.	 Human	
embryonic	 stem	 cells	were	 analyzed	 in	 culture	 (0h)	 and	 following	 directed	 neural	 induction	 (24h	 and	
48h).	(C)	Example	mRNA	(blue)	and	protein	(red)	expression	in	single	cells	(violin	plots)	or	replicate	100	
cell	population	control	(black	dots)	measured	at	0h,	24h	and	48h	post-neural	induction.	
	
Figure	2:	Combined	mRNA	and	protein	expression		
tSNE	 plot	 and	 pseudotime	 analysis	 of	 the	 (A)	 normalized	mRNA	 and	 (B)	 protein	 expression	 data.	 (C)	
Comparison	of	the	cell	pseudotime-ordering	 if	calculated	based	on	either	mRNA	or	protein	expression	
data.	(D)	Protein-RNA	velocity	vectors	plotted	on	the	tSNE	plot	as	determined	by	the	normalized	mRNA	
expression.	 (E)	 Example	 mRNA	 and	 protein	 expression	 data	 plotted	 for	 SOX2,	 EPCAM,	 CDH1	 and	
POU5F1.	The	data	is	shown	either	as	RNA	expression	vs.	protein	expression	scatter	plot	with	respective	
density	 plots	 included	 on	 each	 axis,	 or	 as	 cells	 ordered	 along	 RNA	 pseudotime	 with	 either	 RNA	 and	
protein	 expression	 plotted	 on	 the	 y	 axis.	 Both	 the	 RNA	 and	 protein	 data	 are	 plotted	 as	 log2.	 Color	
corresponds	to	time	point	in	all	plots	0h	(green),	24h	(orange)	and	48h	(blue).	
	
Figure	3:	Transcription	factor	and	trans	regulatory	correlation	
(A)	Scatter	plot	of	POU5F1	expression	in	0h	single	cells,	both	at	the	level	of	RNA	(left	panels)	and	protein	
(right	panels)	compared	to	the	RNA	expression	of	POU5F1	regulatory	target	genes	OTX2	(upper	panels)	
and	TDGF1	(lower	panels).	Blue	line	represents	linear	model	between	the	two	expression	patterns.	(B)	
Scatter	 plot	 of	 Pearson	 correlation	 values	 of	 POU5F1protein-TargetRNA	 compared	 to	 Pearson	 correlation	
values	of	POU5F1RNA-TargetRNA	for	cells	 in	steady	state	(0h)	or	undergoing	a	state-change	(0h,	24h,	and	
48h).	 Each	 dot	 represents	 one	 target	 and	 the	 color	 of	 the	 dot	 identifies	 the	 gene.	 (C)	 Heatmap	with	
expression	 levels	of	POU5F1protein,	POU5F1RNA	and	20	genesRNA	 identified	as	POU5F1	regulatory	targets.	
The	 color	 scale	 relates	 to	 high	 expression	 (red)	 and	 low	expression	 (blue).	Blue	 rectangles	 indicate	 in	
which	of	the	analysis	groups	the	gene	was	considered	to	be	a	significant	target.	The	ALL	group	includes	
samples	 from	 0h,	 24h	 and	 48h.	 SS	 group	 includes	 samples	 from	 0h	 or	 steady-state	 (SS)	 only.	 The	
columns	in	the	heatmap	are	ordered	based	on	the	expression	of	POU5F1protein.	
	
Figure	4:	RNA	and	protein	gene	expression	variation	
Patterns	of	gene	expression	variation	at	steady-state	 in	S-phase	cells.	(A)	Relation	between	mean	RNA	
expression	 mean	 and	 RNA	 expression	 variation	 (CV2).	 Colors	 indicate	 variable	 (red)	 or	 stable	 (blue)	
genes.	(B)	Similar	to	(A),	but	for	protein.	(C)	Normalized	gene	expression	variation	(residuals)	at	the	RNA	
and	 protein	 levels	 correlate	 moderately.	 Genes	 of	 interest	 are	 circled.	 TP53	 has	 very	 high	 protein	
expression	 variation	 and	 is	 located	 outside	 the	 plot	 (x=-1.26,	 y=3.38).	 (D)	 A	 simple	 additive	model	 of	
RNA	variation	and	estimated	translation	rate	effectively	predicts	protein	expression	variation	(rho=0.61).	
Not	all	genes	in	Figure	3C	are	included	here,	since	public	data	were	not	available	to	estimate	translation	
rate	for	all	genes.	
	
SUPPLEMENTAL	RESULTS	&	FIGURES	
Relation	of	RNA	and	protein	data	in	single	cells	at	steady-state	
We	observed	a	number	of	genes	where	mRNA	and	protein	expression	are	discordant.	Specifically,	we	
observed	a	very	low	fraction	of	cells	expressing	mRNA	but	a	high	fraction	of	cells	expressing	the	cognate	
protein.	A	parsimonious	explanation	for	these	observations	is	that	we	failed	to	reliably	capture,	amplify	
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and	 sequence	 the	 specific	 mRNAs,	 an	 outcome	 that	 is	 common	 in	 scRNAseq	 experiments	 (ref).	 To	
explore	 this	 possibility,	 we	 isolated	 total	 RNA	 from	 the	 same	 hESC	 cell	 line	 used	 in	 the	 study	 and	
performed	bulk	cell	gene	expression	analysis	using	TaqMan	Gene	Expression	assays.	We	targeted	three	
genes	showing	discordant	gene	expression	(IKBKG,	HMOX1,	METAP1D)	and	included	EIF4B	as	a	positive	
control.	 We	 clearly	 detect	 RNA	 expression	 in	 all	 the	 genes	 analyzed,	 suggesting	 that	 the	 mRNA	 for	
IKBKG,	HMOX1,	METAP1D	are	expressed	but	were	not	reliably	detected	in	the	single	cell	experiments.		
	
However,	 we	 cannot	 rule	 out	 that	 the	 observed	 discordant	 mRNA	 and	 protein	 co-expression	 at	 the	
single	cell	 level	 is	due	 to	 that	 the	mRNAs	 for	 these	genes	have	very	 short-half	 lives	and	are	absent	 in	
many	cells,	whereas	the	cognate	proteins	are	relatively	stable.	Alternatively,	but	less	likely,	the	protein	
expression	 signal	 originates	 from	 antibody	 cross-reactivity	 to	 homologous	 gene	 products.	 PEA	 probes	
employed	in	this	study	were	tested	to	ensure	that	they	indeed	detect	the	expected	target,	and	that	they	
do	not	give	any	signal	when	tested	against	a	large	pool	of	recombinant	proteins.	
	
TaqMan	Gene	Expression	analysis	
Total	 RNA	was	 isolated	 from	 the	HS181	 cell	 line	 using	 the	miRNeasy	Micro	 Kit	 (Qiagen,	 217084).	We	
used	the	One-Step	RT-PCR	System	(Thermo	Fisher	Scientific,	12574026)	with	the	Taqman	Assays	IKBKG	
(Hs00415849_m1,	 4453320),	 METAP1D	 (Hs00994998_m1,	 4448892),	 HMOX1	 (Hs01110250_m1,	
4453320)	 and	 EIF4B	 (Hs00973573_m1,	 4331182)	 (all	 Thermo	 Fisher).	 Gene	 expression	was	 quantified	
from	the	isolated	RNA	at	100	ng/reaction	using	the	Quantstudio	real	time	qPCR	instrument.	 	
	
Figure	S1:	Characteristics	of	SPARC	
(A)	Comparative	characteristics	of	the	single	cell	mapped	sequencing	reads	(exon,	intergenic,	intron)	for	
the	SPARC	versus	Smart-seq2	protocol.	Data	 is	reported	both	for	the	reads	originating	from	the	single	
cell	 data	 and	 the	 FACS	 sorted	 100	 cell	 control	 data.	 (B)	Annotation	 of	 differentially	 expressed	 genes	
detected	via	SPARC	versus	Smart-seq2.	The	genes	preferentially	detected	with	SPARC	tend	to	be	longer	
than	the	genes	preferentially	detected	with	Smart-seq2.	The	Not	DE	group	represent	the	group	of	genes	
equally	detected	with	both	methods.	(C)	Single	cell	mean	RKPM	(log2)	expression	for	all	genes	measured	
using	either	SPARC	(x-axis)	or	Smart-seq2	(y-axis)	(Pearson	correlation	coefficient	=	0.90)	(D)	Comparison	
of	 SPARC	 mean	 RKPM	 (log2)	 RNA	 expression	 reads	 for	 replicate	 FACS	 sorted	 100	 hESC	 cells	 at	 0h	
population	(x-axis)	or	single	cells	(Pearson	correlation	coefficient	=	0.96).	(E)	Comparison	of	Smart-seq2	
mean	RKPM	(log2)	RNA	expression	reads	 for	replicate	FACS	sorted	100	hESC	cells	at	0h	population	(x-
axis)	or	single	cells	(Pearson	correlation	coefficient	=	0.96).	
	
Figure	S2:	RNA	and	protein	gene	expression	violin	plots	
Gene	expression	plots	for	the	genes	measured	at	both	the	level	of	protein	(red)	and	RNA	(blue).	Results	
are	 shown	 for	 both	 the	 duplicate	 100	 cell	 control	 (black	 dots)	 and	 single	 cells	 (violin	 plots).	 The	
presented	 data	 is	 not	 normalized	 for	 cell	 cycle,	 the	 number	 of	 genes	 detected	 (RNA)	 or	 cumulative	
protein	sums	(protein).		
	
Figure	S3:	Cell	cycle	and	gene	expression		
Relationship	 between	 the	 predicted	 cell	 cycle	 phase	 (G1,	 S	 or	G2/M)	 and	 (A)	 the	 per	 cell	 cumulative	
protein	sum	or	(B)	number	of	detected	genes.	The	cumulative	protein	sum	was	calculated	by	summing	
across	all	proteins	measured	(n=92)	per	cell.	(C)	hESCs	were	labeled	with	the	live	cell	Vybrant	DyeCycle	
Violet	DNA	stain	and	sorted	by	cell	cycle	phase	G1,	S	or	G2/M.	Cells	were	sorted	100	cells	 in	triplicate	
per	 cell	 cycle	 and	 processed	 for	 multiplex	 PEA	 analysis.	 Protein	 expression	 was	 compared	 in	 G2/M	
sorted	 cells	 compared	 to	 G1	 sorted	 cells.	 The	 volcano	 plot	 shows	 the	 extent	 of	 the	 difference	 in	
expression	between	G2	and	G1	cell	cycle	phases	(x-axis)	and	significance	of	the	difference	(y-axis).	The	
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red	line	marks	p-value	0.01.	The	blue	lines	mark	0.5	Cq	difference	between	the	cell	cycle	phases	G2	and	
G1,	or	an	approximate	1.5-fold	difference.	As	expected,	G2-specific	proteins	AURKA,	CCNA2	and	AURKB	
and	G1-Gspecific	 protein	 CCNE1	 show	higher	 expression	 in	G2	 and	G1	 cell	 cycle	 phases,	 respectively.		
The	majority	of	protein	show	a	mean	1.5	increase	in	protein	amount	in	G2	versus	G1,	with	some	notable	
exceptions,	including	e.g.	pluripotent	factors	NANOG	and	POU5F1.	
	
Figure	S4:	RNA	and	protein	gene	expression	dot	and	density	plots	
Combined	dot	and	density	plot	of	mRNA	(log	RPKM)	and	protein	(Cq)	expression	in	cells	measured	at	0h	
(green),	24h	(orange)	and	48h	(blue).	The	presented	data	is	not	normalized	for	cell	cycle,	the	number	of	
genes	detected	(RNA)	or	cumulative	protein	sums	(protein).		
	
Figure	S5:	RNA	and	protein	gene	expression	in	single	cells	as	ordered	by	pseudotime	
mRNA	(log	RPKM)	and	protein	(Cq)	expression	in	cells	ordered	by	pseudotime	as	determined	by	the	RNA	
expression	 data.	 The	 presented	 data	 is	 not	 normalized	 for	 cell	 cycle,	 the	 number	 of	 genes	 detected	
(RNA)	or	cumulative	protein	sums	(protein).		
	
Figure	S6:	Analysis	of	agreement	of	mRNA	or	protein	expression	changes	over	time	
Agreement	of	 changes	of	mRNA	and	protein	abundances	over	 the	measured	 time	points	0h,	24h	and	
48h	at	the	level	of	RNA	and	protein.	The	plot	shows	the	results	of	the	linear	model	Cq(lRPKM))	=		0.49*	
lRPKM	+	0.01	with	a	significant	Pearson	r-square	value	of	0.20	(p-value	5,1*10-4).	Each	dot	represents	a	
measured	gene.	
	
Figure	S7:	RNA	and	protein	velocity	controls	
(A)	The	results	of	 the	RNA	velocity	analysis.	 (B)	Example	 result	of	one	 round	where	we	permuted	 the	
intron	count	per	gene	between	samples	to	test	if	sample	embedding	within	the	tSNE	plot	can	influence	
the	direction	of	the	velocity	vectors.	Color	corresponds	to	time	point	in	all	plots	0h	(green),	24h	(orange)	
and	48h	(blue).	
	
Figure	S8:	ROC-curve	of	Pearson	correlation	scores	as	predictor	of	POU5F1	targets	
Red	lines	represent	POU5F1protein-targetRNA	ROC	curves	and	blue	lines	represent	POU5F1RNA-targetRNA	ROC	
curves.	 Solid	 line	 represents	when	 all	 samples	 (0h,	 24h,	 48h)	 have	 been	 considered	 and	dashed	 lines	
represents	 when	 only	 steady-state	 (0h)	 samples	 have	 been	 considered.	 Filled	 circles	 represent	 the	
Youden	index	of	the	different	ROC	curves.		
	
Table	S1:	List	of	the	PEA	protein	expression	assays	
	
Table	S2:	Protein	expression	data	
0h,	 24h	 and	 48h	 protein	 expression	 data	 for	 the	 single	 cell	 and	 100	 cell	 FACS	 controls.	 The	 data	 is	
reported	 as	 described	 in	 methods	 under	 scProtein	 dataset	 processing	 but	 are	 not	 normalized	 for	
cumulative	protein	sum.	Assays	are	filtred	for	those	where	we	detected	the	protein	at	a	level	of	>	3	Cq	
over	background	in	the	100	cell	population	control	in	at	least	one	time	point.	
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