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Abstract 
 
Background 

Molecular profiling has become essential for tumor risk stratification and treatment 

selection. However, cancer genome complexity and technical artifacts make 

identification of real variants a challenge. Currently, clinical laboratories rely on manual 

screening, which is costly, subjective, and not scalable. Here we present a machine 

learning-based method to distinguish artifacts from bona fide Single Nucleotide Variants 

(SNVs) detected by NGS from tumor specimens.  

Methods 

A cohort of 11,278 SNVs identified through clinical sequencing of tumor specimens 

were collected and divided into training, validation, and test sets. Each SNV was 

manually inspected and labeled as either real or artifact as part of clinical laboratory 

workflow. A three-class (real, artifact and uncertain) model was developed on the 
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training set, fine-tuned using the validation set, and then evaluated on the test set. 

Prediction intervals reflecting the certainty of the classifications were derived during the 

process to label “uncertain” variants. 

Results 

The optimized classifier demonstrated 100% specificity and 97% sensitivity over 5,587 

SNVs of the test set. 1,252 out of 1,341 true positive variants were identified as real, 

4,143 out of 4,246 false positive calls were deemed artifacts, while only 192(3.4%) 

SNVs were labeled as “uncertain” with zero misclassification between the true positives 

and artifacts in the test set. 

Conclusions 

We presented a computational classifier to identify variant artifacts detected from tumor 

sequencing. Overall, 96.6% of the SNVs received a definitive label and thus were 

exempt from manual review. This framework could improve quality and efficiency of 

variant review process in clinical labs. 
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Introduction 

 

A large number of unique and non-recurrent somatic and germline variants may exist in 

a cancer genome(1). Clinical interpretation of these mutations is key for tumor 

stratification and subsequent treatment selections(2). However, the diversity of somatic 

events that occur in heterogeneous tumor clones and technical artifacts make 

identification of bona fide genomic variants using next generation sequencing (NGS) 

technology a challenge(3). Specifically, single nucleotide variants (SNVs) constitute the 

majority of the somatic variants of the cancer genome. These variants may only be 

present in a small portion of the sample DNA due to the subclonal events or 

contamination by normal cells(4). The abundance of variant calls derived from 

inherently noisy NGS data, such as pseudogenes, sequencing artifacts or low coverage 

regions makes it even more arduous to identify the real somatic SNVs. 

 

The choice of variant calling algorithms has a critical and direct impact on the outcome 

of the clinical laboratory findings, therefore the algorithms must demonstrate high 

robustness, sensitivity, and specificity. Many algorithms, such as VarScan(5), 

SomaticSniper(6), and MuTect(4), incorporate unique models and varying information 

from the sequencing data, which leads to different performance characteristics. For 

instance, a highly sensitive algorithm is capable of detecting more real variants but may 

suffer from reporting higher rate of false positive calls (7). Although lower specificity may 

be addressed through validation using an orthogonal method such as Sanger 

sequencing, it could be costly for clinical laboratories due to the high number of variants 
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to be confirmed from a large sequencing panel (8). Additionally, confirming somatic 

mutations with low allele fraction may be challenging (9). A number of comparative 

studies have revealed the lack of concordance among different variant calling 

methods(10, 11). To address this issue, some studies have suggested improved 

performance using ensemble or consensus approaches to detect somatic and germline 

variants (12, 13).  

 

While combining results from multiple variant callers increases sensitivity, it often yields 

large number of variants which pose a challenge for manual review and analysis in 

clinical labs. Due to the clinical demand for extremely high sensitivity and the complex 

nature of cancer genomes, noise, such as artifacts, may be introduced into the DNA 

sequencing datasets and can easily overwhelm the variant call sets(14). A number of 

bioinformatics strategies have been proposed to perform variant refinement on the raw 

variant call set to remove likely false positives depending on caller-specific metrics such 

as mapping quality and strand bias(11, 15, 16). These approaches apply a combination 

of filtration schemes on detected variants based on empirical observations, without 

systematically investigating the optimal cutoffs for each of the features to achieve the 

best performance. Further, clinical-grade sequencing and interpretation require 

additional quality-assurance methods to ensure the validity of the variants detected from 

the algorithms(17). For instance, an in-house database of well-annotated variants is 

strongly recommended to characterize the mutations frequently encountered by the lab 

and hence facilitate this process(2).  
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Quality control screenings are indispensable to filter sequencing artifacts and other non-

reportable variants before assessing the clinical significance of the remaining variants. 

Visual inspections are commonly implemented in clinical laboratories for variant 

screening(18, 19). A recent study has developed a deep learning-based approach to 

automate the variant screening process(20). The computational models were trained on 

adult clinical tumor sequencing and public datasets, achieving high classification 

performance. Despite the wide collection of attributes and sophisticated methods, the 

optimized models did not achieve 100% sensitivity or specificity. Additionally, as the 

histopathological traits and molecular characteristics of pediatric tumors diverge from 

adult tumors (21),  the mutation landscape of pediatric tumors is drastically different 

from that of adult cancers (22). Therefore, continued refinement of computational 

methods to improve variant review is necessary (23). 

 

Since SNVs constitute the majority of the detected variants in tumor samples(21), and 

greater complexity of sequencing artifacts is observed in formalin-fixed paraffin-

embedded (FFPE) tissues, we limited our study to SNVs of non-FFPE pediatric tumor 

samples(24).  In the following sections, we detail the design and assessment of the 

computational framework to automatically perform variants screening on pediatric tumor 

samples. We then demonstrate the optimized model can improve the accuracy and 

efficiency of tumor variant classification.  

 

Materials and Methods 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


Sequencing and Clinical Bioinformatics Pipeline 

 

Variant data sets used for this study were compiled from pediatric cancer patients who 

underwent molecular testing of hematological or solid tumor NGS targeted gene panels 

at the Children’s Hospital of Philadelphia (CHOP). The solid tumor panel comprised 238 

genes while the hematological cancer panel comprised 118 genes (25). For each of the 

clinical samples, regions of interest (ROI) were captured using Agilent SureSelect QXT 

target enrichment technology. FASTQ data generated by Illumina MiSeq/HiSeq 

sequencers was aligned to the hg19 reference genome using Novoalign(26). The 

average coverage for the panels was 1500X with 99.7% of the ROI fully covered at 

equal to/greater than 100X. After alignment, four different variant callers were used to 

achieve a high detection sensitivity, including Mutect(4), Scapel(27), FreeBayes(28), 

and VarScan2(5). If a variant was detected by any of the tools, it was retained for 

downstream analysis. 

 

Manual Inspection 

In the manual variant review process in the cancer diagnostics lab at CHOP, an SNV 

was deemed a sequencing artifact if at least two of the followings were true:  

• High allele ratio (VAF) and could be visually seen in at least two normal controls 

of similar VAFs 

• Low mapping quality 

• High strand bias in both patient sample and control samples 
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• Supported by no more than two unique paired reads when the coverage at the 

locus was at least 50X 

• Located in difficult genomic regions that were susceptible to potential PCR 

amplification errors, such as poly A/T regions, or of paralogous alignment quality 

(29)  

Several healthy samples were selected to serve as negative controls to assist visual 

inspection. These samples were thoroughly investigated to be free of known pathogenic 

mutations of cancer genes in the panels and underwent same sequencing and 

bioinformatics processing as patient samples. The variant of interest was compared to 

the same genomic coordinate in these negative control samples in Integrative 

Genomics Viewer (IGV)(30). The premise is if a variant under investigation could be 

observed in a similar manifestation in the control samples, it is likely called due to 

technical or algorithmic errors that universally affect other samples as well. Because of 

the complexity of cancer genomes and the nature of NGS, many thresholds in the 

criteria were empirically derived and refined over time. To mitigate the subjectivity 

introduced by personal bias, two independent reviews of the same variant were 

performed by different genome scientists, which made the procedure even more 

laborious and thus not scalable. 

 

Data Generation and Feature Selection 

 

A total of 11,278 SNVs from 291 individual tumor samples of pediatric cancer patients 

from 9 cancer types and more than 30 subtypes of tumors (supplementary Figure 1) 
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were compiled for the study. Each SNV was manually reviewed and labeled as either 

real (TP, including reportable variants, polymorphisms, intronic and synonymous 

variants) or non-reportable (FP, i.e. sequencing artifacts). Similar to previous machine 

learning applications in genomics (31), data was randomly split into three subsets that 

were mutually exclusive: training, validation, and test sets. The training set comprised of 

3,362 variants, from 61 solid and 23 hematology tumor specimens, respectively. The 

validation set comprised of 2,329 variants (32 solid/34 hematology tumor specimens), 

while the test set comprised of 5,587 variants (69 solid/72 hematology tumor 

specimens). The breakdown of the variants of these datasets was summarized in Figure 

1.  

 

A pseudo-score based on the ENCODE mappability track (32) was derived to assess 

sequence uniqueness of each exon (33). Variants from computationally inferred pseudo 

regions were marked in the clinical bioinformatics pipeline. These variants were 

challenging to review and were always confirmed by Sanger sequencing in case of 

clinical relevance, and hence were not included in the variant dataset of this study. 

 

Guided by the manual inspection process, we started with a collection of attributes for 

each of the variant such as alternate allele coverage, minor allele fraction, etc. 

Univariate feature selection based on chi-squared test was performed to remove 

features that were less informative, such as mapping quality of the aligned reads. The 

following features were selected to represent each SNV in the computational model: 

• Alternate coverage: number of unique reads supporting the alternate allele 
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• Strand bias: imbalance between aligned reads supporting the alternate allele on 

opposing strands, higher values indicated greater bias: 
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    (Equation 1) 

• Variant allele fraction (VAF): ratio between unique reads supporting the alternate 

allele and the total number of reads at the locus 

• Dissimilarity to normal control samples: this feature captures the separation 

between the variant of interest and the characteristics of the alleles at the same 

genomic coordinate in normal control samples. A three-component vector was 

composed integrating alternate coverage, strand bias and VAF for the variant of 

interest and the same chromosomal locus on the normal control sample. The 

metric was measured by the Euclidean distance between the two vectors: 

���_�	
��
 � �∑������
�� � �	
��	
���    (Equation 2) 

Two control samples with the highest VAF were selected to compare with the 

variant of interest using Equation 2, because the probability of both unrelated 

samples carrying the same somatic variants was extremely low. 

• Batch effect: the metric indicated the separation between the variant of interest 

and the characteristics of the same genomic coordinate on the other samples 

processed in the same batch. One sample besides the patient sample from the 

batch exhibiting the highest VAF was selected to compare with the variant of 

interest using Equation 2.  

To assess the separation of data in an unsupervised manner, a principal component 

analysis was performed on the data and the result suggested the two classes were 

largely separable using the selected features (Figure 2). 
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Computational Framework Training, Tuning and Testing 

 

Random forest (RF) algorithm as an ensemble approach was implemented since it has 

been demonstrated to be adaptive to correlated features and prevent overfitting for 

genomic data (34). The models were trained, validated, and tested using the Python 

Scikit-learn package (35).  

 

A proof-of-concept model was learned using the training set, which achieved 100% 

sensitivity and specificity with a 0.98 F1 score in 10-fold cross-validation on the two-

class training set. Following this, fine-tuning parameters of the model was carried out by 

evaluating the performance using the validation set. To achieve clinical assurance, an 

imperative objective in this step was to derive a three-class classifier from the baseline 

model, for the third class being “uncertain”. Systematic errors may contribute to the 

ambiguity such as insensitive variant calling for variants with low VAF, low coverage or 

imperfect alignment. These errors can be difficult to analyze, as the source of errors 

could be lost in most existing evaluation methods.(36) Therefore, the third class may 

include variants of complex feature manifestations and require further manual 

inspection with additional information. During this process, different ranges of values 

over a set of parameters were evaluated, resulting in over 1,000 classifier instances, 

before an optimal model was identified. Following this, the optimal model was 

benchmarked on the independent test set. The overall workflow of this study is 

demonstrated in Figure 3. To reflect the higher cost of type 2 errors than type 1 errors in 
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clinical laboratories, different weights were assigned to true and false outcomes as 

explained in Results. 

 

Results 

 

Baseline Model from Training Set 

 

The training set consisted of 3,362 labeled SNVs from 84 somatic tumor samples, and 

each SNV was represented by the features as discussed in Methods. In the 

configuration of the baseline model, total number of trees was set to 100 while the 

maximum depth of each tree was 10. A 10:1 weight ratio was assigned to true positive 

and false positive labels, respectively, and information gain was used as the criterion to 

split the nodes in each tree. The baseline model achieved 100% accuracy on the 

training data, and 0.98 F-score in a ten-fold cross-validation. 

 

Finding Optimal Three-class Model 

 

Fine-tuning parameters of the classifier was performed using the validation set, which 

consisted of 2,329 SNVs from 66 somatic tumor samples. Example parameters 

evaluated in this step included weight ratio between the true positives and artifacts, 

maximum depth of a tree and total number of trees in the forest. Due to the 

characteristics of data available and the intrinsic behaviors of the computational models, 

a classifier was often more confident about some predictions than others presented with 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


new data. The prediction intervals in the range of [0, 1] were used to measure the level 

of confidence (37). Specifically, a value equal or close to one indicated the classifier 

was confident the variant was real while a value equal or close to zero indicated the 

classifier was confident the variant was an artifact. Therefore, the third class of 

“uncertain” variants was defined as less confident classifications inferred by the 

prediction intervals. The ideal model should yield minimized number of 

misclassifications while the prediction intervals of the misclassifications should be far 

away from the two ends of the range.  

 

Guided by these heuristics, the candidate classifier instances were sorted by the 

number of misclassifications and then the difference between the highest and lowest 

prediction intervals among the misclassifications. The optimal classifier was identified, 

along with the boundaries of the third class defined by the prediction interval: [0.05 - 0.9]. 

The prediction intervals of all of the misclassifications were within the range, with 

sufficient margins to the boundaries. The resulting RF consisted of 51 trees whose 

maximum depth was 10 and the weight ratio between the two classes was 101:1. Using 

this classifier, SNVs with prediction intervals in the range of [0 - 0.05) were labeled as 

non-reportable, those with prediction intervals in the range of (0.9 - 1] were labeled as 

true while the rest were labeled as “uncertain” and hence require manual inspections 

(Figure 4). In the validation set, 496 out of 526 (94.3%) TP SNVs were predicted real, 

1779 out of 1803 artifacts (98.7%) were labeled false while the remaining 54 variants 

(2.3%) were labeled "uncertain".  
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Benchmarking Using Test Set 

 

We then further evaluated the optimal classifier on the independent test set, which 

consisted of 5,587 SNVs from 141 somatic tumor samples. Applying the classifier, 1252 

out of 1341 (93.3%) TP SNVs were predicted real, 4143 out of 4246 (97.6%) artifacts 

were labeled artifacts while the remaining 192 (3.4%) SNVs were labeled as “uncertain”. 

More importantly, none of the TP SNVs were misclassified as sequencing artifacts or 

vice versa, while only 3.4% of the SNVs did not receive a definitive label and required 

further manual investigation.  

 

Feature Importance and Uncertain SNVs 

 

To determine the relative contribution of each feature in the computational model, 

feature importance analysis was performed on the optimal classifier. The importance of 

a feature was measured by the decrease in accuracy of the classifier when the values 

of the feature were randomly permutated. Strand bias was recognized as the most 

important feature, followed by alternate allele frequency and batch effect. The complete 

list of feature importance is summarized in Table 1. Additionally, further investigation did 

not suggest strong pairwise correlations among features. More details are presented in 

the Supplemental Methods.  

 

The optimal classifier agreed with the manual inspection in 97.7% (2275/2329) and 96.6% 

(5395/5587) of calls in the validation and test sets, respectively. However, 54 (2.3%) 
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and 192 (3.4%) variants from respective sets were labeled “uncertain” and hence 

discordant from their original labels. Among these 246 “uncertain” variants, 119 were 

real mutation events while the rest 127 were manually rejected by the genome scientists. 

These discrepancies would not impact clinical outcome as these variants would be 

manually inspected. 

 

Impact on Clinical Workflow 

 

In order to assess impact of using of implementing the optimal model in clinical variant 

review process in the lab, we measured combined hands-on time of first and second 

variant review steps for 203 cases before and for 211 cases after implementation. 

Average hands-on time before implementation was 240 minutes compared to 89 

minutes after the model was implemented which is an improvement of 63%. This has 

enabled the lab to reduce the turnaround time and increase variant review capacity by 

42% with the same number of genome scientists. 

 

Discussion 

 

Manual inspections on the variants detected from tumors are commonly implemented in 

clinical laboratories for quality control. This will delay the release of results on which 

oncologists rely to deliver timely treatments for their patients. In order to automate the 

process, we developed a computational classifier to distinguish sequencing artifacts 

from the true positive events. We limited our study to SNVs of non-FFPE samples 
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because they constituted the majority of the variants detected and there was an 

insufficient number of indels to train computational models. As a result, the optimal RF-

based three-class model demonstrated high accuracy and utility on the validation set 

and the independent test set. Overall, 96.6% of the SNVs received a definitive label and 

hence be exempt from the manual screening process.  

 

To better understand features influencing the 246 variants labeled “uncertain” by the 

optimal model in the validation and test sets, they were further examined and plausible 

explanations were as follows. For 115 variants, the coverage might be too low for the 

computational model to confidently determine their validity (average coverage <50x).  

Another 65 “uncertain” variants might suffer from low VAF (VAF <10%), despite the 

overall coverage at the locus. The rest were labeled “uncertain” likely because of their 

complex feature manifestations. For example, a TP variant labeled “uncertain” exhibited 

high strand bias for it resided in a GC rich region. Another “uncertain” variant of similar 

characteristics was, however, an artifact, where its lowered similarity to normal controls 

was primarily due to low read depths on the control samples. In these cases, variants 

were warranted to be manually inspected and subject to confirmatory methods to 

determine its validity.  

 

Compared to the recent study which generated over 70 features for each variant, our 

dataset did not include many of those features such as tumor type or average number 

of mismatches in the aligned reads (20). While those characteristics could be helpful in 

refining the sequencing data in the abovementioned study, we decided they were less 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


applicable to the clinical lab practice. Some of those characteristics were correlated with 

our selected features and hence redundant to the machine learning models. Meanwhile, 

the minimal set of highly pertinent features we selected was a close reflection of the 

manual screening procedure. Our study suggests it is possible to achieve similar or 

better performance in pediatric tumor sequencing using limited yet carefully designed 

features compared to the abovementioned study using adult sequencing data .  

 

There are several limitations to this study. All of the data used in the study was 

generated from the cancer genomic diagnostic laboratory at CHOP, hence, it is possible 

that the model could be partial to the latent characteristics that are laboratory-specific. 

However, the robustness demonstrated in the results indicated the methodology is 

applicable to overall variant screening carried out in other laboratories.  

 

Additionally, the machine learning models were trained and optimized using data from 

manual review. Ideally, all variants used for training the models need to be confirmed by 

orthogonal methods but this would not be feasible for the reasons explained in 

Introduction. Therefore, it was possible that noise might have been introduced during 

the manual label process. For instance, the majority of the polymorphic variants were 

labeled as “real” while some others were labeled “non-reportable”. Such variants were 

difficult to be consistently classified as polymorphism or sequencing artifact without 

further confirmation. Although they did not present any clinical significance, these 

variants might have contributed imperfections to the models. Consequently, the 

classifier was less confident on these variants and labeled most of which “uncertain”. 
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Our classifier did not aim to distinguish somatic and germline variants in cancers. The 

majority of the clinical laboratories in the US offer tumor-only assays,  due to the clinical 

challenges of obtaining normal specimen such as specimen adequacy concerns in 

pediatric patients, the logistics of acquiring normal samples, and the requirements for 

complex consent forms (38). Specimen used in this study were submitted for tumor-only 

tests, but might contain a certain percentage of germline tissues. Thus, inherent 

challenges remain in distinguishing germline variants based on tumor-only tests, which 

make it difficult to generate confident training data to build the model to classify the 

germline variants(38). In future studies similar approaches could be applied to identify 

germline variants with minor adjustment provided well curated data is available. 

 

In summary, sequencing artifacts caused by a number of fundamentally persistent 

issues could overwhelm bona fide variants in somatic tumor sequencing. Manual 

screening of the variants is subjective and labor intensive. Here, we have presented an 

approach to apply machine learning methods to systemically identify TP SNVs from 

artifacts in pediatric non-FFPE tumors. We have shown the accuracy and robustness of 

our approach, as well as the reduced bias and gained efficiency implementing the 

model in a clinical setting. 

 

Acknowledgements 
 
We would like to thank Sarah Lipson from Wake Forest University for her contributions 

in editing and improving the quality of the manuscript.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


References 
 

1. Smara Turajlic AS, Trevor Graham, Charles Swanton. Resolving genetic heterogeneity in 

cancer. Nature Reviews Genetics 2019. 

2. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and 

guidelines for the interpretation and reporting of sequence variants in cancer: A joint 

consensus recommendation of the association for molecular pathology, american 

society of clinical oncology, and college of american pathologists. The Journal of 

molecular diagnostics 2017;19:4-23. 

3. Liu X, Wang J, Chen L. Whole-exome sequencing reveals recurrent somatic mutation 

networks in cancer. Cancer letters 2013;340:270-6. 

4. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive 

detection of somatic point mutations in impure and heterogeneous cancer samples. 

Nature biotechnology 2013;31:213. 

5. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. Varscan 2: Somatic 

mutation and copy number alteration discovery in cancer by exome sequencing. 

Genome research 2012. 

6. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al. Somaticsniper: 

Identification of somatic point mutations in whole genome sequencing data. 

Bioinformatics 2011;28:311-7. 

7. Goode DL, Hunter SM, Doyle MA, Ma T, Rowley SM, Choong D, et al. A simple consensus 

approach improves somatic mutation prediction accuracy. Genome medicine 2013;5:90. 

8. Muzzey D, Kash S, Johnson JI, Melroy LM, Kaleta P, Pierce KA, et al. Software-assisted manual 

review of clinical next-generation sequencing data: An alternative to routine sanger 

sequencing confirmation with equivalent results in> 15,000 germline DNA screens. The 

Journal of Molecular Diagnostics 2019;21:296-306. 

9. Gao J, Wu H, Shi X, Huo Z, Zhang J, Liang Z. Comparison of next-generation sequencing, 

quantitative pcr, and sanger sequencing for mutation profiling of egfr, kras, pik3ca and 

braf in clinical lung tumors. Clinical laboratory 2016;62:689-96. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


10. Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, et al. Detecting somatic point mutations in cancer 

genome sequencing data: A comparison of mutation callers. Genome medicine 

2013;5:91. 

11. Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS, et al. A 

comparative analysis of algorithms for somatic snv detection in cancer. Bioinformatics 

2013;29:2223-30. 

12. Alioto TS, Buchhalter I, Derdak S, Hutter B, Eldridge MD, Hovig E, et al. A comprehensive 

assessment of somatic mutation detection in cancer using whole-genome sequencing. 

Nature communications 2015;6:10001. 

13. Krøigård AB, Thomassen M, Lænkholm A-V, Kruse TA, Larsen MJ. Evaluation of nine somatic 

variant callers for detection of somatic mutations in exome and targeted deep 

sequencing data. PLoS One 2016;11:e0151664. 

14. Fang LT, Afshar PT, Chhibber A, Mohiyuddin M, Fan Y, Mu JC, et al. An ensemble approach 

to accurately detect somatic mutations using somaticseq. Genome biology 2015;16:197. 

15. Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. 

Bioinformatics 2014;30:2843-51. 

16. Niazi R, Gonzalez MA, Balciuniene J, Evans P, Sarmady M, Tayoun ANA. The development 

and validation of clinical exome-based panels using exomeslicer: Considerations and 

proof of concept using an epilepsy panel. The Journal of Molecular Diagnostics 

2018;20:643-52. 

17. Van Allen EM, Wagle N, Levy MA. Clinical analysis and interpretation of cancer genome data. 

Journal of clinical oncology 2013;31:1825. 

18. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MD, Wendl MC, et al. Integrated 

analysis of germline and somatic variants in ovarian cancer. Nature communications 

2014;5:3156. 

19. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized 

genomic analyses for cancer mutation discovery and interpretation. Science 

translational medicine 2015;7:283ra53-ra53. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


20. Ainscough BJ, Barnell EK, Ronning P, Campbell KM, Wagner AH, Fehniger TA, et al. A deep 

learning approach to automate refinement of somatic variant calling from cancer 

sequencing data. Nature genetics 2018;50:1735. 

21. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The 

landscape of genomic alterations across childhood cancers. Nature 2018;555:321. 

22. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui C-H, Ding L, et al. The pediatric cancer 

genome project. Nature genetics 2012;44:619. 

23. Sarmady M, Tayoun AA. Need for automated interactive genomic interpretation and 

ongoing reanalysis. JAMA pediatrics 2018;172:1113-4. 

24. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: Causes and 

strategies for minimization. Clinical chemistry 2014:clinchem. 2014.223040. 

25. Surrey LF, MacFarland SP, Chang F, Cao K, Rathi KS, Akgumus GT, et al. Clinical utility of 

custom-designed ngs panel testing in pediatric tumors. Genome Medicine 2019;11:32. 

26. Hercus C, ALBERTYN Z. Novoalign. Selangor: Novocraft Technologies 2012. 

27. Fang H, Bergmann EA, Arora K, Vacic V, Zody MC, Iossifov I, et al. Indel variant analysis of 

short-read sequencing data with scalpel. Nature protocols 2016;11:2529. 

28. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 

preprint arXiv:12073907 2012. 

29. Malhis N, Jones SJ. High quality snp calling using illumina data at shallow coverage. 

Bioinformatics 2010;26:1029-35. 

30. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (igv): High-

performance genomics data visualization and exploration. Briefings in bioinformatics 

2013;14:178-92. 

31. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in 

genomics. Nature genetics 2018:1. 

32. Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, Ribeca P. Fast computation and 

applications of genome mappability. PloS one 2012;7:e30377. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/670687doi: bioRxiv preprint 

https://doi.org/10.1101/670687
http://creativecommons.org/licenses/by-nd/4.0/


33. Wu C, Devkota B, Evans P, Zhao X, Baker SW, Niazi R, et al. Rapid and accurate 

interpretation of clinical exomes using phenoxome: A computational phenotype-driven 

approach. European Journal of Human Genetics 2019;27:612. 

34. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012;99:323-9. 

35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 

Machine learning in python. Journal of machine learning research 2011;12:2825-30. 

36. Kim SY, Speed TP. Comparing somatic mutation-callers: Beyond venn diagrams. BMC 

bioinformatics 2013;14:189. 

37. Wager S, Hastie T, Efron B. Confidence intervals for random forests: The jackknife and the 

infinitesimal jackknife. The Journal of Machine Learning Research 2014;15:1625-51. 

38. Mandelker D, Zhang L. The emerging significance of secondary germline testing in cancer 

genomics. The Journal of pathology 2018;244:610-5. 

 

 

 

 

Feature Importance 

Strand Bias 0.38 

VAF 0.21 

Batch effect 0.17 

Alternate Coverage 0.11 

Dissimilarity to normal sample 2 0.09 

Dissimilarity to normal sample 1 0.03 

Table 1. Feature importance 
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