1	Title: Re-annotation of the <i>Theileria parva</i> genome refines 53% of the proteome and
2	uncovers essential components of N-glycosylation, a conserved pathway in many
3	organisms
4	Kyle Tretina ¹ , Roger Pelle ² , Joshua Oryis ¹ , Hanzel T. Gotia ¹ , Olukemi O. Ifeonu ¹ , Priti
5	Kumari ¹ , Nicholas C. Palmateer ¹ , Shaikh B.A. Iqbal ¹ , Lindsay Fry ^{3,4} , Vishvanath M.
6	Nene ⁵ , Claudia Daubenberger ⁶ , Richard P. Bishop ³ , Joana C. Silva ^{1,7*}
7	Affiliations:
8	¹ Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore,
9	MD, USA
10	² Biosciences eastern and central Africa-International Livestock Research Institute,
11	Nairobi, Kenya
12	³ Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA
13	99164-7030, USA
14	⁴ Department of Veterinary Microbiology & Pathology, Washington State University
15	Pullman, WA 99164-7040, USA
16	⁵ International Livestock Research Institute, Nairobi, Kenya
17	⁶ Swiss Tropical and Public Health Institute, Basel, Switzerland & University of Basel,
18	Basel, Switzerland
19	⁷ Department of Microbiology and Immunology, University of Maryland School of
20	Medicine, Baltimore, MD, USA
21	*Corresponding author
22	
23	

24 Abstract (<350 words)

25	Background: Genome annotation remains a significant challenge because of limitations in
26	the quality and quantity of the data being used to inform the location and function of
27	protein-coding genes and, when RNA data are used, the underlying biological complexity
28	of the processes involved in gene expression. However, comprehensive and descriptive
29	genome annotations are valuable resources for answering biological research questions
30	and discovering novel chemotherapeutic targets for disease treatment.
31	Results: Here, we apply our recently published RNAseq dataset derived from the schizont
32	life-cycle stage of the apicomplexan parasite Theileria parva, which causes a devastating
33	livestock disease in sub-Saharan Africa, to update structural and functional annotations
34	across the entire nuclear genome.
35	Conclusions: The process of re-annotation led to novel insights into the organization and
36	expression profiles of protein-coding sequences in this parasite, and uncovered a minimal
37	N-glycosylation pathway that changes our current understanding of the evolution of this
38	post-translation modification in apicomplexan parasites.
39	
40	Key Words: Theileria, East coast fever, Genome, Re-annotation, N-glycosylation
41	
42	Background
43	East Coast fever (ECF) in eastern, central, and southern Africa causes an
44	estimated loss of over 1 million heads of cattle yearly, with an annual economic loss that
45	surpasses \$300 million USD, impacting mainly smallholder farmers [1]. Cattle are the
46	most valuable possession of smallholder farmers in this region, as they are a source of

47	milk, meat and hides, provide manure and traction in mixed crop-livestock systems, and
48	revenue derived from livestock pays for school fees and dowries [2, 3]. ECF is a tick-
49	transmitted disease caused by the apicomplexan parasite Theileria parva. Lymphocytes
50	infected with <i>T. parva</i> proliferate in the regional lymph node draining the tick bite site,
51	and then metastasize into various lymphoid and non-lymphoid organs, and induce a
52	severe inflammatory reaction that leads to respiratory failure and death of susceptible
53	cattle, which typically die within three to four weeks of infection [4-7]. T. parva control
54	is vital to food security in this region of the world, which is plagued by a range of other
55	infectious diseases of humans and their livestock.
56	Efficacious and affordable chemotherapeutics and vaccines are essential tools in
57	the effective control of infectious disease agents [8, 9]. A reliable structural annotation of
58	the genome, consisting at minimum of the correct location of all protein-coding
59	sequences (CDSs), enables the identification, prioritization and experimental screening of
60	potential vaccine and drug targets [10-12]. The accurate identification of the complete
61	proteome can greatly enhance microbiological studies, and reveals metabolic processes
62	unique to pathogens [13]. In turn, a better understanding of the biology of T. parva
63	transmission, colonization and pathogenesis may ultimately reveal novel targets for
64	pathogen control [14]. Currently, much like for other apicomplexan parasites [15, 16],
65	knowledge on the functional role of genomic sequences outside of T. parva CDSs is
66	sparse, and many gene models containing only CDSs are supported by little or no
67	experimental evidence. RNAseq data, generated through deep sequencing of cDNA using
68	next generation sequencing technologies, can provide an extraordinary level of insight
69	into gene structure and regulation [12, 17]. Here, we used the first high-coverage

70	DNA sag data for this spacing [19] to improve existing gaps models through the
/0	RIVASeq data for this species [18] to improve existing gene models through the
71	identification of start and stop codons, primary intron splice sites and untranslated
72	regions (UTRs). This new gene model annotation brought to light several new insights
73	into gene expression in this gene-dense eukaryote, and led to the discovery of several
74	new prospective chemotherapeutic targets for treating ECF.
75	
76	Results
77	The annotation of the Theileria parya genome is significantly improved, revealing a
70	
/8	higher gene density than previously thought
79	The nuclear genome of the reference T. parva Muguga isolate consists of four
80	linear chromosomes which are currently assembled into eight contigs (Supplementary
81	Table S1, Additional File 1): chromosomes 1 and 2 are assembled into a single contig
82	each, chromosome 3 is in four contigs and chromosome 4 in two [19]. The new genome
83	annotation was based on this assembly and on extensive RNAseq data (Supplementary
84	Figure S1, Additional File 1). We performed a comprehensive revision of the entire <i>T</i> .
85	parva genome annotation, including automated structural annotation and a double-pass
86	manual curation of each locus (see Methods).
87	The re-annotation process resulted in the discovery of 128 new genes, 274
88	adjacent gene models were merged, 157 gene models were split, and 38 genes were
89	replaced by new genes encoded in the reverse orientation (Figure 1). In addition, exons
90	boundaries have been corrected in over a thousand genes. Overall, 83% of all nuclear
91	genes in the original annotation were altered in some way, with changes made on every

92	contig. This resulted in significant alterations to the predicted proteome, with 53% of the
93	nuclear proteins in the original annotation having altered amino acid sequences in the
94	new annotation, a remarkable ~50 bp increase in average CDSs length, a reduction of the
95	average length of intergenic regions by close to 100 bp and the assignment of an
96	additional 200,000 base pairs (or 2.4% of the genome), previously classified as intergenic
97	or intronic sequences, to the proteome. This results in a genome that is denser than
98	previously thought, with an overall increase in the coding fraction of the genome from
99	68% to 71%, more closely resembling T. annulata Ankara, which has a coding fraction of
100	72.9% (Supplementary Table S2, Additional File 1). In fact, T. parva has the densest
101	genome out of the indicated genomes investigated, with one protein-coding gene every
102	~2100 bp (Supplementary Table S2, Additional File 1).
103	Several lines of evidence suggest that this annotation represents a very significant
104	improvement of the <i>T. parva</i> proteome relative to the original annotation. First, there was
105	an increase in the proportion of proteins with at least one PFAM domain in the new
106	proteome compared to the original proteome, implying that the new annotation captures
107	functional elements that were previously missed (Figure 2a). Given the close
108	evolutionary relationship and near complete synteny between T. parva and T. annulata
109	[20], their respective proteomes are expected to be very similar. Indeed, a comparison of
110	the two predicted proteomes results in 52 additional reciprocal best hits and protein
111	length differences between orthologs in T. parva and T. annulata also decreased
112	significantly (Figure 2b). It is likely that some of the most significant differences between
113	the <i>T. parva</i> and <i>T. annulata</i> proteomes, in particular the 25% fewer protein-coding genes
114	and much longer CDSs in the latter, represent annotation errors in the T. annulata

115	genome that will be corrected upon revision with more recently accumulated evidence.
116	The total number of non-canonical splice sites in the genome increased from 0.15% to
117	0.36% of all introns, but the sequence diversity of non-canonical splice sites decreased
118	from eight non-canonical splice donor and acceptor site combinations to only a single
119	splice site pair – GC/AG donor and acceptor dinucleotides, recognized by the U2-type
120	spliceosome [21] (Figure 2c). The new annotation is also considerably more consistent
121	with the RNAseq data, with a larger number of introns, a higher proportion of which is
122	supported by at least one RNAseq read (Figure 2d). A total of 118 introns from the
123	original genome annotation have been removed, due to contradicting RNAseq evidence.
124	The tremendous power of RNAseq to inform on gene and isoform structure in this
125	species revealed a significant amount of transcriptome diversity and complexity. First,
126	the proportion of loci, defined here as a continuous genomic region encoding the length
127	of a CDS, intervening introns, and flanking UTRs, that appear to overlap an adjacent
128	locus increased from 2% to 10% in the new annotation. In many of these instances, read
129	coverage, coding potential, and other evidence support the presence of adjacent genes
130	with overlapping UTRs. In 125 cases, the overlap includes not only UTRs but also CDSs.
131	Secondly, there are many instances of overlapping loci in which the respective CDSs are
132	encoded in the same strand; in these cases, no UTRs were defined in the intervening
133	intergenic region, since their exact boundaries could not be determined. Finally, during
134	manual curation, we observed many instances of potential alternative splicing, the
135	clearest of which were the cases of well-supported introns where RNAseq coverage was
136	nevertheless significantly higher than zero. In these cases, only the most prevalent
137	isoform was annotated (Figure 1f). Finally, despite its power, RNAseq evidence is not

138	sufficient to resolve the structure of all loci; when the evidence did not clearly favor one
139	gene model over another, the gene model in the original annotation was maintained by
140	default. Interestingly, the vast majority of the genes appear to have only one or,
141	sometimes, two most prevalent isoforms, as has been proposed for <i>Plasmodium</i> [22],
142	although this was not defined quantitatively here. The median length of the annotated
143	mRNA reported here is ~1,500 bp, and the maximum length >15,000 bp (Supplementary
144	Figure S2, Additional File 1).
145	

Most genes are transcribed during the schizont stage of the Theileria parva life-cycle, and
antisense transcription is widespread

148 We sequenced cDNA generated from polyA-enriched total RNA collected from a 149 T. parva-infected, schizont-transformed bovine cell line (see Methods section). A total of 150 8.3×10^7 paired-end reads were obtained with an Illumina HiSeq 2000 platform, 70.04% 151 of which mapped to the T. parva reference genome (Supplementary Table S1, Additional 152 File 1). RNAseq provided a complete and quantitative view of transcription revealing that 153 most of the genome of this parasite is transcribed during the schizont stage of its life 154 cycle (Supplementary Figures S1, S3, Additional File 1). We found that 4011 of all 4054 155 (98%) predicted protein-coding parasite genes are transcribed at the schizont stage, and 156 12,172 of all 12,296 introns are supported by RNAseq reads (Figure 2d). We found 157 evidence of expression for almost all of the known humoral and cellular immunity 158 antigens (Supplementary Table S3, Additional File 1). In fact, Tp9, one of those antigens, 159 is among the 15 most highly expressed genes in our dataset (Supplementary Table S4,

160	Additional File 1). Interestingly, its ortholog in <i>T. annulata</i> has been hypothesized to
161	contribute to schizont-induced host cell transformation [23].

162	As has recently been suggested from <i>in silico</i> analyses [18], transcription in T.
163	parva occurs from diverse kinds of promoters, with many instances of adjacent loci
164	overlapping on the same or opposite strands. In fact, of the 4,085 predicted protein-
165	coding nuclear genes, only 74 had an estimated reads per kilobase of transcript per
166	million reads (RPKM) of zero and an additional 154 had RPKM<1. Interestingly, of the
167	74 genes with an RPKM of zero, most are hypothetical, with no predicted functional
168	annotation, and without any high-confidence orthologs (Supplementary Table S5,
169	Additional File 1). Since tRNAs are not polyadenylated, they were not found in our
170	RNAseq dataset (Materials and Methods). Annotated protein-coding genes lacking
171	RNAseq evidence are mostly orthologs of <i>Plasmodium falciparum</i> apicoplast proteins
172	with mid blood stage expression [24, 25], T. parva repeat (Tpr) family proteins, or
173	DUF529 domain-containing proteins (Supplementary Table S5, Additional File 1). These
174	data are consistent with a study published in 2005, which used MPSS to estimate
175	expression levels of <i>T. parva</i> genes in the schizont stage of the parasite [26], as well as a
176	more recent study comparing gene expression between the schizont and the
177	sporozoite/sporoblast stages [27]. The expression levels in the sense strand for each gene,
178	as quantified by RPKM, when log-transformed, followed a unimodal distribution similar
179	to a normal distribution (Figure 3a).
180	

181 T. parva multi-gene families show variable expression levels

182 Large gene families are known to play a role in the pathogenesis of protozoan 183 infections, perhaps the most well-known being the var gene family in *P. falciparum*. 184 These genes encode proteins that are essential for the sequestration of infected red blood 185 cells, a critical biological feature determining severe malaria pathology of *P. falciparum* 186 [28]. Using the OrthoMCL algorithm as described previously [19], we clustered paralogs 187 in this genome, identifying changes in the size of several of the largest T. parva gene 188 families (Supplementary Table S6, Additional File 1), and finding variable patterns in 189 their levels of expression (Supplementary Figure S4, Additional File 1). The roles of 190 most of these gene families are not known. For example, the Tpr (T. parva repeat) gene 191 family has been suggested to be rapidly evolving and expressed as protein in the 192 piroplasm stages [19]. This is consistent with our findings, which show Tpr genes not to 193 be highly expressed in the schizont (Supplementary Figure S4, Additional File 1) or the 194 sporoblast (Supplementary Figure S5, Additional File 1) stages [27, 29]. Interestingly, in 195 that same dataset, we find a significant up-regulation of subtelomeric variable secreted 196 protein gene (SVSP) family genes in the sporozoite stages relative to both the sporoblast 197 and schizont stages, suggesting that they may be important for invasion or the 198 establishment of infection in the vertebrate host (Supplementary Figure S5, Additional 199 File 1) [30]. 200 This new T. parva genome annotation not only improved our resolution of the 201 gene models of multi-gene family members and other transformation factors 202 (Supplementary Figure S6, Additional File 1) [31], but also uncovered 128 genes that

203 were not present in the original annotation.

204

205 A mechanism of core N-glycosylation is now predicted in T. parva

206	Among the 128 newly identified genes, one was annotated as a potential Alg14
207	ortholog, an important part of a glycosyltransferase complex in many organisms that add
208	a N-acetylglucosamine (GlcNAc) to the N-glycan precursor. N-glycosylation is an
209	important type of protein post-translation modification, during which a sugar is linked to
210	the nitrogen of specific amino acid residues, a process that occurs in the membrane of the
211	endoplasmic reticulum and is critical for both the structure and function of many
212	eukaryotic proteins. N-glycosylation is a ubiquitous protein modification process, but the
213	glycans being transferred differ among the domains of life [32]. However, in
214	apicomplexan parasites that infect red blood cells, there appears to be a selection against
215	long N-glycan chains [33]. Theileria parasites were previously believed to not add N-
216	acetylglucosamine to their glycan precursors, since sequence similarity searches did not
217	identify the necessary enzymes. While this previous study did not discover any Alg
218	enzymes, we find that <i>T. parva</i> has Alg7 (<i>Tp</i> Alg7; TpMuguga_01g00118), Alg13
219	(<i>Tp</i> Alg13; TpMuguga_02g00515), and Alg14 (<i>Tp</i> Alg14; TpMuguga_01g02045)
220	homologs, which show differential mRNA-level expression between the sporozoite and
221	schizont life cycle stages (Supplementary Figure S7, Additional File 1). In fact, the
222	structure of each of these Theileria proteins can be predicted ab initio with high
223	confidence (Supplementary Table S7, Additional File 1) and have predicted secondary
224	structural characteristics very similar to their homologs in Saccharomyces cerevisiae
225	(Figure 4a). However, the structure of the $TpAlg7$ -encoding locus was altered as a result
226	of the re-annotation effort and $TpAlg14$ is the product of a newly identified gene, which

227	might have prevented the original identification of the pathway. Therefore, Theileria
228	parasites likely have a minimal N-glycosylation system. Interestingly, we can find Alg14
229	orthologs by blastp search in T. orientalis (TOT_010000184), T. equi (BEWA_032670),
230	but not in <i>T. annulata</i> . Using the adjacent gene, EngB, as a marker, a look at the <i>T</i> .
231	annulata genomic region that is syntenic to TpAlg14 revealed that T. annulata has a
232	hypothetical gene annotated on the opposite strand (Figure 4b), which could be an
233	incorrect annotation. A tblastn search of the T . annulata genome using Tp Alg14 led to the
234	discovery of a nucleotide sequence which translated results in an alignment with E-value
235	of $7x10^{-15}$ and 70% identity over the length of the protein, suggesting the existence of an
236	T. annulata Alg14 ortholog (Ta Alg14). In fact, the gene model that was at the Tp Alg14
237	locus in the original annotation, TP01_0196, was likely a result of an incorrect annotation
238	transfer from T. annulata (or vice-versa), since TP01_0196 shared 52% identity with the
239	gene annotated on the opposite strand at the putative $TaAlg14$ locus (E-value $4x10^{-131}$).
240	Since previous studies have used <i>T. annulata</i> as a model <i>Theileria</i> parasite, this could be
241	the reason that N-glycosylation was not discovered in this parasite genus.
242	While the presence of N-glycans in <i>Plasmodium</i> parasite proteins was initially
243	controversial [34], more recent work provided evidence of short N-glycans on the
244	exterior of <i>P. falciparum</i> schizonts and trophozoites [35]. As a key difference,
245	Plasmodium parasites have a clear ortholog of the oligosaccharyl transferase STT3 (EC
246	2.4.99.18, PF3D7_1116600 in <i>P. falciparum</i> 3D7), which catalyzes the transfer of GlcNAc and
247	GlcNAc ₂ to asparagine residues in nascent proteins, and recent work has identified several
248	other proteins in this protein complex in <i>Plasmodium</i> genomes [34]. No such ortholog
249	was found in T. parva Muguga or T. annulata Ankara by blastp or tblastn searches with
250	the Plasmodium protein. Since there are STT3 orthologs in T. equi and T. haneyi (Figure

4c), as well as *Cytauxoon felis*, it appears that the absence of STT3 in *T. parva* and *T.*

252 annulata represents evolutionary loss of STT3 orthologs in this lineage. This means that

253 while lipid precursor N-glycosylation does likely occur at the ER in these two species,

the canonical mechanism of N-glycan precursor transfer to proteins is apparently absent.

255 **Discussion**

256 The re-annotation of the *T. parva* genome has resulted in significant improvement 257 to the accuracy of gene models, showing that this genome is even more gene-dense than 258 previously thought, with the addition of 2.4% of the genome to CDSs as well as the 259 discovery of additional overlapping genes. Multi-gene families appear to have played a 260 prominent role in the evolution of the lineage leading to *T. parva* and *T. annulata* [36], 261 implying a role for these genes in host-pathogen interactions. These genes have 262 diversified and/or expanded in copy number, possibly as an adaptation to a particular 263 niche, since the high density of the genome is strongly suggestive of selection against 264 non-functional DNA. We now have a clearer picture of the structure, copy number, and 265 relative expression level of these genes. In addition, a recently generated sporozoite and 266 sporoblast datasets opens up new opportunities to study differential gene expression 267 throughout other stages of the parasite life cycle [27].

The model of transcription that emerges from these recent studies is one of ubiquitous transcription of most genes in the schizont stage, but with a wide range of expression levels [18, 26, 27], suggesting that there are likely important *cis* regulatory motifs that control the level of expression or mRNA stability [18, 37]. Transcription can also arise from potential bidirectional and cryptic promoters with highly prevalent antisense transcription. It remains to be determined if sense and anti-sense transcripts are

274	generated in the same or different cells in culture, an issue that may be addressed with
275	single-cell RNAseq. Due to the short-read nature of our sequencing platform, we were
276	only able to accurately annotate the most prevalent isoform of each gene. The sequencing
277	of full-length transcripts, for example with Pacific Biosciences sequencing technology,
278	would provide a more comprehensive description of the <i>T. parva</i> transcriptome,
279	including alternatively spliced variants and the boundaries of overlapping transcripts.
280	In yeast and humans, antisense transcription, defined by the existence of non-
281	coding RNA encoded on the DNA strand opposite to, and overlapping with, that
282	encoding the mRNA, is rare compared to sense transcription [38]. In T. parva, however,
283	antisense transcription is highly prevalent throughout the genome (Figure 3b), as has
284	been found in <i>P. falciparum</i> , where antisense transcription is synthesized largely by RNA
285	polymerase II [39, 40] and can alter the expression of multigene family members by
286	regulating the packaging of these loci into chromatin [41]. Most of the antisense
287	transcripts seem to completely overlap with their sense counterparts, although the
288	functional relevance of this observation has yet to be determined.
289	The discovery of evidence that N-glycosylation may occur in Theileria parasites
290	could open up novel treatment options against Theileria infections. N-glycosylation is
291	thought to be important for Toxoplasma gondii invasion, growth, and motility [42-44].
292	While the results are somewhat confounded by a lack of inhibitor specificity, treatment
293	with the N-glycosylation inhibitor tunicamycin results in parasites with abnormal
294	endoplasmic reticulum, malformed nuclei, and impaired secretory organelles [45]. While
295	once controversial due to differences in analytical methods, parasite life-cycle stages, and
296	host contamination, P. falciparum is now thought to have N-glycosylated proteins,

297	although this is not as frequent a mechanism of protein modification as
298	glycosylphosphatidylinositol [46] . This work has been supported by bioinformatic
299	analyses, finding that <i>P. falciparum</i> contains (albeit few) glycosyltransferases [47]. Early
300	work using N-glycosylation inhibitors has shown strong in vitro growth inhibition of
301	Plasmodium asexual blood stages [48-52], but the function of N-glycosylation of
302	apicomplexan parasite proteins is a topic that requires further study. Importantly, the lack
303	of an STT3 ortholog in T. parva, if true, would suggest that protein-targeted N-
304	glycosylation does not occur in this parasite (as does in <i>Plasmodium</i>), and may only
305	occur on the ER and potentially the surface of the parasite. Even though cytoplasmic N-
306	glycosyltransferases have been found in bacteria, they have not been found in eukaryotes,
307	and their presence in <i>T. parva</i> seems unlikely. The absence of a N-glycan protein transfer
308	system is largely supported by genome-wide searches for the enrichment of N-glycan
309	acceptor sites in <i>T. annulata</i> [53]. While N-glycosylation is often touted as an 'essential'
310	protein modification in eukaryotes [54], the absence of an STT3 ortholog in some
311	Theileria species suggests that this process may be critical as a lipid, rather than protein,
312	modification. This does not diminish the potential relevance of N-glycosylation in these
313	parasites. Regardless of whether these short N-glycans provoke host immune responses
314	or play a homeostatic role in parasite protein folding, they could be important therapeutic
315	targets. Finally, given the possibility that glycans encode immunological 'self', 'non-self'
316	or 'damage' identities [55], it is tempting to speculate that the absence of proteinaceous
317	N-glycans in Theileria species could represent an evolutionary adaptation to immune
318	evasion in a parasite lineage that resides free in the host cytoplasmic environment.
319	

320 Conclusions

321	This study emphasizes the critical interplay between genome annotations and our
322	knowledge of pathogen biology. The significant improvement of the T. parva Muguga
323	reference genome gene annotation will facilitate numerous studies of this parasite to
324	come, and has already given better resolution to genome-wide patterns of gene
325	transcription, including antisense transcription and transcription from multi-gene
326	families. The better the resolution at which we understand gene structure and expression,
327	the more accurately we can characterize and study gene function, novel druggable
328	pathways suitable for interventions and, ultimately, the biology of the pathogen in its
329	different host organisms. For example, the discovery of N-glycosylation precursors in
330	some Theileria parasites in the absence of a protein transfer system opens up new
331	questions about the role of lipid N-glycosylation precursors in eukaryote biology as well
332	as the potential evolutionary reasons why protein N-glycosylation would be lost in this
333	apicomplexan lineage.
334	
335	Methods
336	1) RNA sequencing and genome annotation

An RNA sample was obtained from the reference *T. parva* isolate (Muguga) from
the haploid schizont stage of the parasite life cycle, which proliferates in host
lymphocytes. The extraction method included complement lysis of schizont-infected host
lymphocytes, DNase digestion of contaminating host DNA and differential centrifugation
to enrich for schizonts [26, 56]. PolyA-enriched RNA was sequenced using Illumina

342 sequencing technology, to produce strand-specific RNAseq data. RNAseq reads were

343 aligned with TopHat and RPKM values calculated using an in-house Perl script.

344

345 2) Genome re-annotation

346 For the re-annotation of the *Theileria parva* genome, a number of evidence tracks 347 were generated and loaded into the genome browser JBrowse [57] for manual curation 348 using the WebApollo plugin [58]. RNAseq reads were aligned to the genome with 349 TopHat [59], a splice-aware alignment tool (Supplementary Table S1, Additional File 1). 350 These alignments were used to generate strand-specific read alignment coverage glyphs 351 and XY plots for visualization in WebApollo. TopHat alignment also yields a file of all 352 reported splice junctions using segmented mapping and coverage information, which is 353 useful for curating intron splice sites. RNAseq reads were also assembled into transcripts 354 using CuffLinks [60] and mapped to the genome with TopHat. We also generated two 355 genome-dependent Trinity/PASA [61] transcriptome assemblies (one reference 356 annotation-dependent and one independent of the reference annotation), as well as one 357 completely *de novo* Trinity transcriptome assembly. A variety of other proteome data 358 were aligned to the genome with AAT [62] and used as evidence tracks, including 359 previously generated *Theileria annulata* mass spectrometry data [63], and all non-360 *Theileria* apicomplexan proteins from NCBI's RefSeq. 361 In order to assess gene prediction accuracy before the manual curation phase, a set 362 of 342 high-confidence T. parva gene models were selected from the current reference 363 annotation on the basis of two criteria: (1) RNAseq reads must cover each exon in the 364 gene, (2) Trinity *de novo* assembled transcripts and read coverage must be concordant

365 with the presence or absence of any introns in the gene model. Out of these 342 genes, 50 366 were randomly selected as a validation set and the remaining 292 were used as a training 367 gene set for gene prediction software. The exon distribution of the validation set closely 368 resembles that of the training set (Supplementary Table S8, Additional File 1). 369 Multiple gene prediction software tools were used and then assessed by the 370 accuracy with which they predict the validation set using an in-house script. These 371 included: i) Augustus [64], using RNAseq reads, the *T. parva* training gene set, or no 372 evidence; *ii*) Semi-HMM-based Nucleic Acid Parser (SNAP) [65] and Glimmer [66] 373 were trained with the *T. parva* training set; *iii*) Fgenesh [67] used a pre-existing training 374 set of *Plasmodium* genes from its website; *iv*) the *ab initio* predictor GeneMark-ES [68]. 375 Finally, gene models were selected with the consensus predictor Evidence Modeler 376 (EVM) [69], using 57, differently-weighted combinations of the other evidence, while 377 maximizing prediction accuracy (Supplementary Figure S8, Additional File 1). Based on 378 their performance in comparison with the validation set, only the top four EVM 379 predictions were loaded as evidence tracks for use in manual curation (Supplementary 380 Figure S9, Additional File 1). tRNA and rRNA predictions were generated using 381 tRNAscan-SE [70] and RNAmmer [71] and loaded as evidence tracks, along with the 382 original T. parva Muguga annotation (Supplementary Figure S10, Additional File 1). A 383 genome-wide, double-pass, manual curation of all gene models was completed, weighing 384 the RNAseq evidence over the evidence from alignments with homologs from other 385 species and the gene prediction programs. The annotation assignments were allocated in 386 50 kb segments, with different annotators doing adjacent segments, as well as altering the 387 annotator for the first and second pass in order to reduce annotator bias.

388	Functional annotation of the T. parva proteome consisted of HMM3 searches of
389	the complete proteome against our custom HMM collection that includes TIGRFams
390	[72], Pfams [73], as well as custom-built HMMs [74] and RAPSearch2 searches against
391	UniRef100 (with a cutoff of 1×10^{-10}). In addition, a TMHMM search which was used to
392	assign "putative integral membrane protein" to proteins with 3 of more helical spans
393	(assuming there were no other hits to the previous searches). These searches were
394	synthesized using Attributor (https://github.com/jorvis/Attributor) to generate the final
395	annotation based on the different evidence sources to assign gene product names, EC
396	numbers, GO terms and gene symbols to genes, conservatively where possible.
397	
398	3) Multi-gene family clustering
399	Genes were clustered with OrthoMCL, using an inflation value of 4 and a BLAST
400	p-value cutoff of 10 ⁻⁵ , as previously done [19]. All individual conserved domain searches
401	were done using NCBI's Conserved Domain Database version 3.11 [75] with 45,746
402	PSSMs, with an E-value threshold of 0.01 and a composition based statistics adjustment.
403	HMM searches of the entire PFAM database were done using default settings.
404	
405	List of abbreviations
406	ECF: East Coast fever
407	UTR: Untranslated Regions
408	CDS: Coding Sequence
409	RPKM: reads per kilobase million

410 Tpr: *T. parva* repeat family

411	SVSP:	subtelomeric variable secreted	protein
-----	-------	--------------------------------	---------

- 412 SNAP: Semi-HMM-based Nucleic Acid Parser
- 413

414 Ethics approval and consent to participate

415 Not applicable.

416

417 **Consent for publication**

- 418 Not applicable.
- 419

420 Availability of data and materials

- 421 The *T. parva* Muguga re-annotation is publicly available in GenBank and can be
- 422 visualized at the following online link (<u>http://jbrowse.igs.umaryland.edu/t_parva/</u>), as

423 well as under the NCBI BioProject PRJNA16138.

424

425 **Competing interests**

- 426 The authors declare that they have no competing interests.
- 427

428 Funding

- 429 This work was supported in part by an Immunity and Infection T32 training grant,
- 430 NIH/NIAID T32 AI007540-14, by the by the Bill and Melinda Gates Foundation
- 431 (OPP1078791), and by the United States Department of Agriculture, Agricultural
- 432 Research Service (USDA-ARS) through agreement #59-5348-4-001.

434 Authors' contributions

435	RP isolated T.	parva schizont	RNA for l	RNAseq	using	differential	centrifugation	and
		1			<i>U</i>		0	

- 436 standard kits as described. JO, OOI, and PK built and maintained the JBrowse instance
- 437 for manual curation using the WebApollo plugin, as well as the functional annotation
- 438 pipeline. KT, JO, HTG, OOI, PK, and SBAI generated alignment tracks to assist the
- 439 annotation. KT, HTG, OOI, NCP, SBAI, JCS completed manual re-annotation of the
- 440 genome. KT performed all other analyses. JCS, RPB, CD, VMN, and LF conceived the
- 441 study design. KT and JCS wrote the manuscript. All authors critically reviewed and
- 442 approved the manuscript.

443

444 Acknowledgements

- 445 We would like to thank Donald P. Knowles for his kind and helpful feedback and support
- 446 for this project.
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
-
- 456

457 Figures and Figure Legends

458

459 Figure 1. Manual gene model curation examples. Several tracks are shown: updated
460 gene model (beige background), original (2005) gene annotation (grey background),

461 RNAseq data (white background), transcript assembly (dark green, on green

462 background), and EVM predictions (orange, on green background). (A) A new gene

discovered on the basis of RNAseq data (TpMuguga_03g02005). (B) A case where two

464 genes in the 2005 annotation merge in the new annotation on the basis of RNAseq read

465 coverage (TpMuguga_04g02435). (C) A case where a gene in the 2005 annotation has

466 been split into two genes in the new annotation (TpMuguga_04g02190 and

467 TpMuguga_04g02185). (D) A case where a gene has been reversed in orientation on the

- 468 basis of RNAseq data (TpMuguga_02g02095). (E) A case where overlapping genes led
- to ambiguity in UTR coordinates, and so the UTRs were not defined in this intergenic
- 470 region (TpMuguga_01g00527 and TpMuguga_01g00528). (F) A case of a single gene

- 471 where alternative splicing exists (as seen by significant read coverage in at least one
- 472 intronic region), but there is one most prevalent isoform (TpMuguga_03g00622). (G) A
- 473 case of two genes that overlap by coding sequences. Coding exons are colored by reading
- 474 frame (TpMuguga_05g00017 and TpMuguga_05g00018).

- . . .

494

495 Figure 2. Comparative metrics of original and new *T. parva* annotations.

496 (A) The percentage of proteins with at least one PFAM domain found by Hidden Markov 497 Model searches of the predicted proteomes of the new T. parva Muguga annotation was 498 2% higher than those in the 2005 annotation, implying that the new annotation captures 499 functional elements that were previously missed. (B) The new T. parva Muguga annotation has more reciprocal best-hit orthologs (N) with T. annulata Ankara than the 500 501 2005 T. parva Muguga annotation. The variation in protein length (SD) between T. parva 502 and *T. annulata* ortholog pairs is greatly reduced in the new relative to the original *T*. 503 parva annotation. Only nuclear genes were used for this analysis. The x-axis was limited 504 to the range -300 to +300 for easy visual interpretation. (C) The number of canonical 505 GT/AG intron splice sites increased and the number of non-canonical intron splice site

506	combinations	decreased	in the new	Т.	parva Muguga	annotation of	compared	to the	2005
-----	--------------	-----------	------------	----	--------------	---------------	----------	--------	------

- 507 annotation. (D) The number and proportion of introns validated by at least one RNAseq
- 508 read increased in the new *T. parva* Muguga annotation compared to the 2005 annotation.
- 509 These lines of evidence suggest that the new annotation is more accurate, and also
- 510 considerably more consistent with the RNAseq data, as expected.

527

528 Figure 3. Distribution of RNAseq RPKM values for *T. parva* Muguga genes (A) A

529 histogram of sense RPKM values after logarithmic transformation of the data.

530 Frequencies on the y-axis correspond to probability density. The blue line shows a

normal distribution around the same median, while the red line shows a more reliable

532 fixed-width, Gaussian, kernel-smoothed estimate of the probability density. (B) The

sense (green) and antisense (red) reads per kilobase transcript per million reads (RPKM)

after fourth-root transformation of the data. Genes are sorted by position on the

535 chromosome for all four nuclear chromosomes of *T. parva* Muguga.

536

537

538

539

- 540
- 541

542

543

544

546 Figure 4. The uncovered *Theileria parva* Alg14 shows a similar predicted structure

547 to the empirically determined *Saccharomyces cerevisiae* Alg14 protein structure, and

548 is syntenic in multiple piroplasms. (A) A Phyre2 prediction of *T. parva* Alg14

549 (*Tp*Alg14; green; TpMuguga_01g02045) and the Protein Database (<u>http://www.rcsb.org/</u>)

550 [76] nuclear magnetic resonance structure of *Saccharomyces cerevisiae* Alg14 (*Sc*Alg14;

teal; PDB 2JZC) were aligned in MacPyMol (<u>https://pymol.org/2/</u>) [77]. (B) Shown are

the syntenic regions around Alg14 orthologs (synteny in grey), using the adjacent gene

EngB as an anchor (synteny in red) in the Sybil software package [78]. (C) Shown are the

syntenic regions around STT3 orthologs (synteny in grey), using a B. bovis STT3-

adjacent gene (BBOV_II000210) as an anchor (synteny in red) in the Sybil software

556 package.

557

- 558
- 559
- 560

References

562	1.	Spielman DJ: XVI Public-Private Partnerships and Pro-Poor Livestock
563		Research: The Search for an East Coast Fever Vaccine, vol. 1. Washington,
564		D.C.: The National Academies Press; 2009.
565	2.	Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA,
566		Bossio D, Dixon J, Peters M, van de Steeg J et al: Smart investments in
567		sustainable food production: revisiting mixed crop-livestock systems. Science
568		2010, 327 (5967):822-825.
569	3.	Nkedianye D, Radeny M, Kristjanson P, Herrero M: Assessing returns to land
570		and changing livelihood strategies in Kitengela. In: Staying Maasai?
571		Livelihoods, conservation and development in East African Rangelands. Edited
572		by Homewood K, Kristjanson P, Chevenix Trench P. Dordrecht, The Nethelands:
573		Springer; 2009: 115-150.
574	4.	Baldwin CL, Black SJ, Brown WC, Conrad PA, Goddeeris BM, Kinuthia SW,
575		Lalor PA, MacHugh ND, Morrison WI, Morzaria SP et al: Bovine T cells, B
576		cells, and null cells are transformed by the protozoan parasite Theileria
577		parva. Infection and immunity 1988, 56(2):462-467.
578	5.	Tindih HS, Geysen D, Goddeeris BM, Awino E, Dobbelaere DA, Naessens J: A
579		Theileria parva isolate of low virulence infects a subpopulation of
580		lymphocytes . <i>Infection and immunity</i> 2012, 80 (3):1267-1273.
581	6.	Irvin AD, Mwamachi DM: Clinical and diagnostic features of East Coast fever
582		(Theileria parva) infection of cattle. The Veterinary record 1983, 113(9):192-
583		198.

584	7.	Fry LM, Schneider DA	Frevert CW, Nelson DD	, Morrison WI, Knowles DP:
-----	----	----------------------	-----------------------	----------------------------

- 585 East Coast Fever Caused by Theileria parva Is Characterized by
- 586 Macrophage Activation Associated with Vasculitis and Respiratory Failure.
- 587 *PLoS One* 2016, **11**(5):e0156004.
- 588 8. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savioli
- 589 L: Control of neglected tropical diseases. *The New England journal of medicine*590 2007, 357(10):1018-1027.
- 591 9. Reed SL, McKerrow JH: Why Funding for Neglected Tropical Diseases
- 592 **Should Be a Global Priority**. *Clin Infect Dis* 2018, **67**(3):323-326.
- 593 10. Sette A, Rappuoli R: Reverse vaccinology: developing vaccines in the era of
 594 genomics. *Immunity* 2010, 33(4):530-541.
- 595 11. Seib KL, Dougan G, Rappuoli R: The key role of genomics in modern vaccine
- 596 and drug design for emerging infectious diseases. *PLoS genetics* 2009,
- 597 **5**(10):e1000612.
- Hotez PJ, Fenwick A, Ray SE, Hay SI, Molyneux DH: "Rapid impact" 10 years
 after: The first "decade" (2006-2016) of integrated neglected tropical disease
- 600 **control**. *PLoS Negl Trop Dis* 2018, **12**(5):e0006137.
- 601 13. Chaudhary K, Roos DS: Protozoan genomics for drug discovery. *Nature*602 *biotechnology* 2005, 23(9):1089-1091.
- 603 14. Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA: Systems biology
- approaches to new vaccine development. *Current opinion in immunology* 2011,
 23(3):436-443.

606	15.	Wakaguri H, Suzuki Y, Sasaki M, Sugano S, Watanabe J: Inconsistencies of
607		genome annotations in apicomplexan parasites revealed by 5'-end-one-pass
608		and full-length sequences of oligo-capped cDNAs. BMC Genomics 2009,
609		10 :312.
610	16.	Yeoh LM, Lee VV, McFadden GI, Ralph SA: Alternative Splicing in
611		Apicomplexan Parasites. MBio 2019, 10(1).
612	17.	Yandell M, Ence D: A beginner's guide to eukaryotic genome annotation.
613		<i>Nature reviews Genetics</i> 2012, 13 (5):329-342.
614	18.	Tretina K, Pelle R, Silva JC: Cis regulatory motifs and antisense
615		transcriptional control in the apicomplexan Theileria parva. BMC genomics
616		2016, 17 (1):128.
617	19.	Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, Ren Q,
618		Paulsen IT, Pain A, Berriman M et al: Genome sequence of Theileria parva, a
619		bovine pathogen that transforms lymphocytes. Science 2005, 309(5731):134-
620		137.
621	20.	Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W, Kerhornou A,
622		Aslett M, Bishop R, Bouchier C et al: Genome of the host-cell transforming
623		parasite Theileria annulata compared with T. parva. Science 2005,
624		309 (5731):131-133.
625	21.	Collins L, Penny D: Complex spliceosomal organization ancestral to extant
626		eukaryotes. Molecular biology and evolution 2005, 22(4):1053-1066.

627	22.	Russell K, Hasenkamp S, Emes R, Horrocks P: Analysis of the spatial and
628		temporal arrangement of transcripts over intergenic regions in the human
629		malarial parasite Plasmodium falciparum. BMC genomics 2013, 14:267.
630	23.	Unlu AH, Tajeri S, Bilgic HB, Eren H, Karagenc T, Langsley G: The secreted
631		Theileria annulata Ta9 protein contributes to activation of the AP-1
632		transcription factor. PLoS One 2018, 13(5):e0196875.
633	24.	Painter HJ, Carrasquilla M, Llinas M: Capturing in vivo RNA transcriptional
634		dynamics from the malaria parasite Plasmodium falciparum. Genome
635		research 2017.
636	25.	Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana
637		L, Preiser PR, Bozdech Z, Cortes A: Transcriptional variation in the malaria
638		parasite Plasmodium falciparum. Genome research 2012, 22(5):925-938.
639	26.	Bishop R, Shah T, Pelle R, Hoyle D, Pearson T, Haines L, Brass A, Hulme H,
640		Graham SP, Taracha EL et al: Analysis of the transcriptome of the protozoan
641		Theileria parva using MPSS reveals that the majority of genes are
642		transcriptionally active in the schizont stage. Nucleic acids research 2005,
643		33 (17):5503-5511.
644	27.	Tonui T, Corredor-Moreno P, Kanduma E, Njuguna J, Njahira MN, Nyanjom SG,
645		Silva JC, Djikeng A, Pelle R: Transcriptomics reveal potential vaccine
646		antigens and a drastic increase of upregulated genes during Theileria parva
647		development from arthropod to bovine infective stages. PLoS One 2018,
648		13 (10):e0204047.

649	28.	Deitsch KW, Dzikowski R: Variant Gene Expression and Antigenic Variation
650		by Malaria Parasites. Annu Rev Microbiol 2017, 71:625-641.
651	29.	Bishop R, Musoke A, Morzaria S, Sohanpal B, Gobright E: Concerted evolution
652		at a multicopy locus in the protozoan parasite Theileria parva: extreme
653		divergence of potential protein-coding sequences. Mol Cell Biol 1997,
654		17 (3):1666-1673.
655	30.	Schmuckli-Maurer J, Casanova C, Schmied S, Affentranger S, Parvanova I,
656		Kang'a S, Nene V, Katzer F, McKeever D, Muller J et al: Expression analysis of
657		the Theileria parva subtelomere-encoded variable secreted protein gene
658		family. PLoS One 2009, 4(3):e4839.
659	31.	Marsolier J, Perichon M, DeBarry JD, Villoutreix BO, Chluba J, Lopez T,
660		Garrido C, Zhou XZ, Lu KP, Fritsch L et al: Theileria parasites secrete a prolyl
661		isomerase to maintain host leukocyte transformation. Nature 2015,
662		16 (520):378-382.
663	32.	Schwarz F, Aebi M: Mechanisms and principles of N-linked protein
664		glycosylation. Curr Opin Struct Biol 2011, 21(5):576-582.
665	33.	Samuelson J, Robbins PW: Effects of N-glycan precursor length diversity on
666		quality control of protein folding and on protein glycosylation. Semin Cell
667		<i>Dev Biol</i> 2015, 41 :121-128.
668	34.	Tamana S, Promponas VJ: An updated view of the oligosaccharyltransferase
669		complex in Plasmodium. <i>Glycobiology</i> 2019, 29 (5):385-396.
670	35.	Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV,
671		Dvorin JD, Gubbels MJ, Robertson SD, Steffen M et al: Suggestive evidence for

672		Darwinian Selection against asparagine-linked glycans of Plasmodium
673		falciparum and Toxoplasma gondii. Eukaryot Cell 2010, 9(2):228-241.
674	36.	Reid AJ: Large, rapidly evolving gene families are at the forefront of host-
675		parasite interactions in Apicomplexa. Parasitology 2015, 142 Suppl 1:S57-70.
676	37.	Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B: ApiAP2 Factors as
677		Candidate Regulators of Stochastic Commitment to Merozoite Production in
678		Theileria annulata. <i>PLoS neglected tropical diseases</i> 2015, 9 (8):e0003933.
679	38.	Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John
680		B, Milos PM: Comprehensive polyadenylation site maps in yeast and human
681		reveal pervasive alternative polyadenylation. Cell 2010, 143(6):1018-1029.
682	39.	Militello KT, Patel V, Chessler AD, Fisher JK, Kasper JM, Gunasekera A, Wirth
683		DF: RNA polymerase II synthesizes antisense RNA in Plasmodium
683 684		DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. <i>RNA</i> 2005, 11 (4):365-370.
683 684 685	40.	 DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. RNA 2005, 11(4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A,
683 684 685 686	40.	DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum . <i>RNA</i> 2005, 11 (4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and
 683 684 685 686 687 	40.	DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. <i>RNA</i> 2005, 11(4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum.
683 684 685 686 687 688	40.	 DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. RNA 2005, 11(4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics 2011, 12:587.
 683 684 685 686 687 688 689 	40.	 DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. RNA 2005, 11(4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics 2011, 12:587. Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L:
 683 684 685 686 687 688 689 690 	40.	DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. <i>RNA</i> 2005, 11(4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. <i>BMC Genomics</i> 2011, 12:587. Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L: Plasmodium falciparum var Gene Is Activated by Its Antisense Long
 683 684 685 686 687 688 689 690 691 	40.	DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. <i>RNA</i> 2005, 11 (4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. <i>BMC Genomics</i> 2011, 12 :587. Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L: Plasmodium falciparum var Gene Is Activated by Its Antisense Long Noncoding RNA. <i>Front Microbiol</i> 2018, 9 :3117.
 683 684 685 686 687 688 689 690 691 692 	40.41.42.	DF: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. <i>RNA</i> 2005, 11 (4):365-370. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ: Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. <i>BMC Genomics</i> 2011, 12 :587. Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L: Plasmodium falciparum var Gene Is Activated by Its Antisense Long Noncoding RNA. <i>Front Microbiol</i> 2018, 9 :3117. Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C,

694		glycosylated structures involved in Toxoplasma gondiihost cell interactions.
695		Mol Cell Proteomics 2008, 7(5):891-910.
696	43.	Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M,
697		Bandini G, Samuelson J, Wells L, West CM: CRISPR/Cas9 and glycomics tools
698		for Toxoplasma glycobiology. J Biol Chem 2019, 294(4):1104-1125.
699	44.	Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P,
700		Saeij JPJ, Carruthers VB, Niles JC et al: A Genome-wide CRISPR Screen in
701		Toxoplasma Identifies Essential Apicomplexan Genes. Cell 2016,
702		166 (6):1423-1435 e1412.
703	45.	Luk FC, Johnson TM, Beckers CJ: N-linked glycosylation of proteins in the
704		protozoan parasite Toxoplasma gondii. Molecular and biochemical
705		parasitology 2008, 157 (2):169-178.
706	46.	Cova M, Rodrigues JA, Smith TK, Izquierdo L: Sugar activation and
707		glycosylation in Plasmodium. Malar J 2015, 14:427.
708	47.	Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins
709		PW: The diversity of dolichol-linked precursors to Asn-linked glycans likely
710		results from secondary loss of sets of glycosyltransferases. Proceedings of the
711		National Academy of Sciences of the United States of America 2005, 102 (5):1548-
712		1553.
713	48.	Trigg PI, Hirst SI, Shakespeare PG, Tappenden L: Labelling of membrane
714		glycoprotein in erythrocytes infected with Plasmodium knowlesi. Bull World
715		Health Organ 1977, 55(2-3):205-209.

49.	Udeinya IJ, Van Dyke K: Labelling of membrane glycoproteins of cultivated
	Plasmodium falciparum. Bull World Health Organ 1980, 58(3):445-448.
50.	Udeinya IJ, Van Dyke K: Plasmodium falciparum: synthesis of glycoprotein
	by cultured erythrocytic stages. Experimental parasitology 1981, 52(3):297-
	302.
51.	Udeinya IJ, Van Dyke K: Concurrent inhibition by tunicamycin of
	glycosylation and parasitemia in malarial parasites (Plasmodium falciparum)
	cultured in human erythrocytes. <i>Pharmacology</i> 1981, 23 (3):165-170.
52.	Udeinya IJ, Van Dyke K: 2-Deoxyglucose: inhibition of parasitemia and of
	glucosamine incorporation into glycosylated macromolecules, in malarial
	parasites (Plasmodium falciparum). Pharmacology 1981, 23(3):171-175.
53.	Cui J, Smith T, Robbins PW, Samuelson J: Darwinian selection for sites of Asn-
	linked glycosylation in phylogenetically disparate eukaryotes and viruses.
	<i>Proc Natl Acad Sci U S A</i> 2009, 106 (32):13421-13426.
54.	Lombard J: The multiple evolutionary origins of the eukaryotic N-
	glycosylation pathway. Biol Direct 2016, 11:36.
55.	Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R,
	Raychaudhuri S, Ruhaak LR, Lebrilla CB: Glycans in the immune system and
	The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun
	2015, 57 :1-13.
56.	Graham SP, Pelle R, Honda Y, Mwangi DM, Tonukari NJ, Yamage M, Glew EJ,
	de Villiers EP, Shah T, Bishop R et al: Theileria parva candidate vaccine
	antigens recognized by immune bovine cytotoxic T lymphocytes. Proceedings
	 49. 50. 51. 52. 53. 54. 55. 56.

739		of the National Academy of Sciences of the United States of America 2006,
740		103 (9):3286-3291.
741	57.	Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: a next-
742		generation genome browser. Genome research 2009, 19(9):1630-1638.
743	58.	Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, Stein L,
744		Holmes IH, Elsik CG, Lewis SE: Web Apollo: a web-based genomic
745		annotation editing platform. Genome biology 2013, 14(8):R93.
746	59.	Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2:
747		accurate alignment of transcriptomes in the presence of insertions, deletions
748		and gene fusions. Genome biology 2013, 14(4):R36.
749	60.	Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel
750		transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011,
751		27 (17):2325-2329.
752	61.	Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis
753		X, Fan L, Raychowdhury R, Zeng Q et al: Full-length transcriptome assembly
754		from RNA-Seq data without a reference genome. Nature biotechnology 2011,
755		29 (7):644-652.
756	62.	Huang X, Adams MD, Zhou H, Kerlavage AR: A tool for analyzing and
757		annotating genomic sequences. Genomics 1997, 46(1):37-45.
758	63.	Witschi M, Xia D, Sanderson S, Baumgartner M, Wastling JM, Dobbelaere DA:
759		Proteomic analysis of the Theileria annulata schizont. International journal for
760		parasitology 2013, 43 (2):173-180.

761	64.	Stanke M, Morgenstern B: AUGUSTUS: a web server for gene prediction in
762		eukaryotes that allows user-defined constraints. Nucleic Acids Res 2005,
763		33 (Web Server issue):W465-467.
764	65.	Korf I: Gene finding in novel genomes. BMC bioinformatics 2004, 5:59.
765	66.	Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes
766		and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
767	67.	Solovyev V, Kosarev P, Seledsov I, Vorobyev D: Automatic annotation of
768		eukaryotic genes, pseudogenes and promoters. Genome biology 2006, 7 Suppl
769		1 :S10 11-12.
770	68.	Borodovsky M, Lomsadze A: Eukaryotic gene prediction using
771		GeneMark.hmm-E and GeneMark-ES. Current protocols in bioinformatics /
772		editoral board, Andreas D Baxevanis [et al] 2011, Chapter 4: Unit 4 6 1-10.
773	69.	Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR,
774		Wortman JR: Automated eukaryotic gene structure annotation using
775		EVidenceModeler and the Program to Assemble Spliced Alignments. Genome
776		<i>biology</i> 2008, 9 (1):R7.
777	70.	Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of
778		transfer RNA genes in genomic sequence. Nucleic acids research 1997,
779		25 (5):955-964.
780	71.	Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW:
781		RNAmmer: consistent and rapid annotation of ribosomal RNA genes . <i>Nucleic</i>
782		acids research 2007, 35 (9):3100-3108.

783	72.	Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families.
784		<i>Nucleic acids research</i> 2003, 31 (1):371-373.

- 785 73. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A,
- 786 Hetherington K, Holm L, Mistry J *et al*: **Pfam: the protein families database**.
- 787 *Nucleic acids research* 2014, **42**(Database issue):D222-230.
- 74. Li L, Stoeckert CJ, Jr., Roos DS: OrthoMCL: identification of ortholog groups
 for eukaryotic genomes. *Genome research* 2003, 13(9):2178-2189.
- 790 75. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire
- 791 MK, Geer RC, Gonzales NR *et al*: **CDD/SPARCLE: functional classification of**

792 proteins via subfamily domain architectures. *Nucleic Acids Res* 2017,

- 793 **45**(D1):D200-D203.
- 794 76. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov
- 795 IN, Bourne PE: The Protein Data Bank. *Nucleic Acids Res* 2000, **28**(1):235-242.
- 796 77. Janson G, Zhang C, Prado MG, Paiardini A: **PyMod 2.0: improvements in**
- 797 protein sequence-structure analysis and homology modeling within PyMOL.
- 798 *Bioinformatics* 2017, **33**(3):444-446.
- 799 78. Riley DR, Angiuoli SV, Crabtree J, Dunning Hotopp JC, Tettelin H: Using Sybil
- 800 for interactive comparative genomics of microbes on the web. *Bioinformatics*
- 801 2012, **28**(2):160-166.
- 802

A. New gene

B. Merged genes

D. Changed orientation

E. Adjacent genes with ambiguous UTR coordinates

F. Introns with high read coverage and alternative splicing

G. Genes with overlapping coding sequences

Species	Proteome Size (#)	% >= 1 PFAM hit	Year Published
Theileria parva Muguga (2019)	4055	61%	2019
Theileria parva Muguga (2005)	4079	58%	2005
Theileria annulata Ankara	3792	60%	2005
Theileria equi WA	5332	53%	2012
Theileria orientalis Shintoku	4002	59%	2012
Babesia bovis T2Bo	3703	63%	2007
Plasmodium vivax Sall	5393	62%	2008
Plasmodium falciparum 3D7	4555	61%	2002

^	20	005	2	019	RNAseq-validated Introns
U -	Splice Sites	Frequency (#)	Splice Sites	Frequency (#)	
	GTAG	10,406	GTAG	12,445	
	GCAG	5	GCAG	45	2005 Only 2019 Only
	TGTA	4			114 3579
	TGAA	2			
	ATTG	1			🕈 Overlap both 🔺
	AATA	1			8603
	GTAA	1			
	ATTA	1			
	ACTA	1			
2	Total	10,422	Total	12,490	

Α

Missing STT3 ortholog

T. GROVE