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ABSTRACT 

We aimed to identify shared genetic background between multiple system atrophy (MSA) and 

autoimmune diseases by using the conjFDR approach. Our study showed significant genetic overlap 

between MSA and inflammatory bowel disease and identified DENND1B, C7, and RSP04 loci, which are 

linked to significant changes in methylation or expression levels of adjacent genes. We obtained 

evidence of enriched heritability involving immune/digestive categories. Finally, an MSA mouse model 

showed dysregulation of the C7 gene in the degenerating midbrain compared to wildtype mice. The 

results identify novel molecular mechanisms and implicate immune and gut dysfunction in MSA 

pathophysiology. 

 

INTRODUCTION 

Genome-wide association studies (GWASs) and subsequent GWAS based meta-analysis studies led to 

the discovery of novel loci for most of the complex diseases [1]. Heritability estimates revealed that 

studies have explained the fraction of the missing heritability; the majority of the complex diseases are 

influenced by numerous genes that each have small individual effects [2]. This polygenic architecture of 

complex diseases necessitated the use of approaches which can leverage the availability of a genome-

wide data to identify additional novel loci which can be overlooked by applying a standard genome-wide 

analytical approach [3]. The evidence generated so far from GWAS has shown overlapping single 

nucleotide polymorphisms (SNPs) in several phenotypes [4-6]. This genetic-pleiotropy has already been 

exploited successfully to identify novel loci for various complex diseases, including between Parkinson’s 

disease (PD) and autoimmune diseases such as Crohn’s disease (CD) and diabetes mellitus type 1 (T1D) 

[6]. 

The role of immune dysfunction in neurodegenerative diseases has long been debated. For example, 

one of the earlier studies using autopsy-confirmed PD cases showed a higher level of microglial 

activation within the substantia nigra, and this increase in microglia activity was identified by human 
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leukocyte antigen DR (HLA-DR) [7]. With the availability of genome-wide data, GWAS have started to 

reveal the extent of the immune component in the etiopathogenesis of neurodegenerative diseases [8-

10]. Previously published GWAS and follow-up studies in PD provided unequivocal evidence regarding 

the role of the HLA region in PD pathogenesis [8, 9]. A recently published study identified alpha-

synuclein-derived peptides, which regulate the expression of the HLA locus [11]. Likewise, GWAS studies 

in tauopathies, a group of diseases such as Alzheimer’s disease (AD), frontotemporal dementia (FTD), 

and progressive supranuclear palsy (PSP) characterized by an abnormal accumulation of neurofibrillary 

tangles, have established the role of immune component, and thus lending further support to the notion 

that immune dysfunction is one of the central pathways to neurodegenerative disorders [12-14]. 

Because of the involvement of alpha-synuclein, multiple system atrophy (MSA) is categorized as a 

synucleinopathy along with PD, and dementia with Lewy bodies (DLB). MSA is an adult-onset 

progressive neurodegenerative disorder characterized by a combination of parkinsonism, autonomic, 

cerebellar or pyramidal signs [15]. Pathologically, it is defined by neuronal cell loss, gliosis and alpha-

synuclein positive oligodendroglial cytoplasmic inclusions (GCIs). Neuronal loss in MSA affects 

striatonigral and olivopontocerebellar structures, and the degree of neuronal loss and GCI density 

showed a positive correlation between both lesions, suggesting that the accumulation of GCIs is an 

important factor in neuronal death in MSA [16]. 

 In contrast to other more common neurodegenerative disorders, genetic studies including GWAS have 

failed to identify disease-associated genetic loci for MSA, though heritability estimates have established 

a small genetic component in MSA [17]. Nevertheless, emerging evidence points towards deregulation 

of mitochondria, energy homeostasis, oxidative stress and immune dysfunction that could contribute to 

the alpha-synuclein inclusions observed in oligodendrocytes in MSA [18]. Despite this, developing a 

consensus on potential mechanisms that explain the causes of MSA remains challenging. In the present 

study, we applied a genome-wide genetic-pleiotropy informed approach to identify shared genetic risk 

factors between MSA and autoimmune diseases with subsequent validation in MSA transgenic mice. 

Major steps of the study are presented in Figure 1. 
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RESULTS 

Genetic overlap between MSA and autoimmune diseases 

Conditional Q-Q plots for association p-values of MSA and autoimmune diseases showed strong 

enrichment for Crohn's disease (CD) and inflammatory bowel disease (IBD, including CD, ulcerative 

colitis and unclassified IBD cases) (Figure 2 A-D). Successive leftward shifts for strata of SNPs with higher 

significance in the conditional phenotype indicated that the proportion of MSA-associated SNPs 

increased considerably with higher levels of association with IBD and CD (and vice versa), suggesting 

significant shared genetic background between MSA and both IBD and CD (Figure 2). In contrast, there 

was weak enrichment observed for other analyzed phenotypes (Supplementary Figure 1). 

Shared loci between MSA and IBD 

Enrichment observed in the conditional Q-Q plot (Figure 2) led us to perform in-depth genome-wide 

association screening by combining MSA with IBD and CD GWAS summary statistics in conjFDR analysis 

[19] (see URLs). In the presence of genetic overlap between analyzed phenotypes conjFDR approach 

offers increased statistical power to discover genetic loci shared between analyzed phenotypes as 

compared to conventional multiple testing approaches [20, 21]. Three LD-independent regions 

significantly associated with MSA and IBD/CD were identified at conjFDR < 0.05 (Table 1, Supplementary 

Table 1). Identified loci with leading SNPs, rs12740041 (DENND1B, upstream), rs4957144 (C7, intronic) 

and rs116843836 (RSPO4, upstream), in our analysis, suggested underlying common genetic 

mechanisms between these phenotypes. Manhattan plot for conjFDR results is presented in Figure 3. 

Detailed regional association plots for identified loci are presented in Figure 4. 

Identification of relevant tissues and cell types 

A total of 7 datasets with tissue/cell type-specific gene expression and chromatin state data were 

assessed to determine potential enrichment of tissue/cell type-specific categories in MSA heritability. 

Among all datasets, we identified elevated enrichment for blood/immune and digestive categories in 

the Roadmap dataset [22] (Supplementary Figure 2a right, and Supplementary Table 2). Furthermore, 

the ImmGen dataset [23] highlighted a trend for enrichment for B and Myeloid cells in MSA 
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(Supplementary Figure 2, b, left and Supplementary Table 2). Taken together, these results suggested 

the relevance of the immune and digestive system in MSA pathogenesis. Though we observed a trend 

for enrichment for various categories, they were not significant when corrected for multiple testing, 

most likely due to the small sample size of our MSA cohort (Supplementary Figure 2, Supplementary 

Table 2). 

Functional annotation of identified loci 

Functional annotation of three leading variants from loci shared between MSA and IBD/CD as identified 

in conjFDR analysis (conjFDR < 0.05) showed that one variant (rs4957144) is located in the first intron of 

C7 gene while two others: rs12740041 and rs116843836 are intergenic variants located upstream 

DENND1B and RSPO4 genes correspondingly (Table 1). A lead variant of locus shared between MSA and 

IBD/CD on chromosome 5 at 5p13.1 (rs4957144, CADD = 14.2) has a CADD score above 12.37 suggesting 

deleteriousness [24] (Supplementary Table 1). Querying these three variants for eQTL status in the GTEx 

data (version 7) [25] revealed DENND1B (rs12740041), TTC33 (rs4957144) and PSMF1 (rs116843836) as 

potential target genes in various tissues (Table 2). Additional scan of blood (N > 30,000) [26] and brain 

(N > 520) [27] eQTL summary statistics with substantially larger sample sizes than corresponding tissues 

in GTEx (Nblood<400, Nbrain<200) suggested rs12740041 as eQTL for DENND1B and rs4957144 as eQTL 

from TTC33 in both blood and brain, while rs4957144 was also highlighted as potential eQTL for RPL37 

gene in brain (Table 2). TTC33 is 158 kb downstream of rs4957144 (Supplementary Figure 3), thus is not 

shown in Table 1, however, we decided to include it into consequent analyses together with genes listed 

in Table 1. Assessing a single-variant of eQTL data is prone to false positives [28]. We applied 

LocusCompare (see URLs) to refine our eQTL findings and check whether loci identified in conjFDR 

analysis colocalizes with eQTL signal [29]. Indeed, a notable colocalization was observed for rs12740041, 

where a clump of variants in LD (r2>0.4) significantly associated with MSA, CD, and IBD in the conjFDR 

analysis also revealed substantial deregulation of DENND1B gene expression in the brain (Figure 5). The 

same locus also revealed pronounced colocalization of conjFDR and eQTL signals in other tissues 

(Supplementary Figure 4, b, c). Observed colocalization of conjFDR and eQTL signals in multiple tissues 

suggests that deregulation of DENND1B gene expression is more likely to be involved in MSA/IBD/CD 
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pathogenesis. Other loci identified in our analysis did not show strong evidence of colocalization events 

(Supplementary Figure 4, d - j).  

Gene-level association analysis 

Genes within 100kb from lead SNPs identified in the conjFDR analysis were assessed to estimate the 

cumulative impact of coding variants observed in IBD/CD and MSA cohorts. SKAT test [30] applied to all 

coding variants (no minor allele frequency threshold) identified C7 gene as a top association in IBD, CD, 

and MSA (pMSA=1.10E-03, pCD=2.74E-05, pIBD=5.99E-05) suggesting the importance of the genetic 

variability within C7 gene for MSA and IBD/CD (Table 3). Three other genes from the same locus: CARD6 

(pIBD=3.33E-02), RPL37 (pMSA=8.79E-03) and TTC33 (pCD=9.46E-03) were nominally significant in IBD, MSA, 

and CD correspondingly but did not survive multiple testing correction. 

Gene set enrichment analysis 

FUMA gene set enrichment analysis revealed significant overrepresentation of genes located within 

100kb from conjFDR lead SNPs in several biological processes (based on Gene Ontology classification) 

(Supplementary Table 3). Many of these genes were related to immune responses. Complementary to 

FUMA analysis, our pathway analysis using DEPICT showed that ITGA2 subnetwork was the most 

significant gene set for lead SNPs shared between MSA and IBD/CD (nominal p=5.55E-07). However, it 

did not survive multiple testing correction at FDR<0.05. Complete results of this analysis are presented 

in Supplementary Table 4. 

Dysregulation of candidate genes in the degenerating midbrain of MSA mice 

The PLP-hαSyn transgenic model is characterized by MSA-P-like striatonigral degeneration triggered by 

human alpha-synuclein overexpression in oligodendrocytes and partly mediated by neuroinflammatory 

responses [31]. We assessed the expression of nine top candidate genes as identified in the conjFDR 

analysis. MROH2B (p=0.03) and C7 (p=0.04) showed significant dysregulation in the midbrain of MSA 

mice following multiple t-test comparisons corrected with the Bonferroni-Dunn method (Figure 6, 

Supplementary Table 5). However, the expression levels of MROH2B gene were negligible, therefore we 
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conclude that among the examined genes C7 is the top candidate linked to MSA-like neurodegeneration 

in the transgenic mouse model. 

DISCUSSION 

The genetic studies so far failed to provide disease-associated genetic loci for MSA [17, 32]. 

Nevertheless, because of clinical overlap with PD, a number of studies have assessed the association of 

top genetic loci of PD with MSA [33, 34]. Thus far, results on the underlying genetic heterogeneity in 

MSA pathogenesis have been conflicting [32]. The present study, using a genome-wide genetic 

pleiotropy informed approach, provided evidence of shared genetic etiology between IBD/CD and MSA. 

The use of a genetic-pleiotropy informed approach has been successful in identifying shared loci for 

many complex diseases, including AD and PD [35]. Indeed, a previously published study showed a 

substantial genetic overlap between PD and autoimmune diseases, in particular with CD and T1D [6]. 

These studies highlight the involvement of the immune component in neurodegenerative diseases. 

Given that MSA is a synucleinopathy, our study followed an unbiased approach to understand the 

extent of the shared genetic etiology between MSA and autoimmune diseases. Q-Q plots (Figure 2) 

suggested a genetic overlap between MSA and IBD/CD. Our approach helped to expand the genetic 

spectrum of MSA pathogenesis. These putative loci have not been reported in the previously published 

MSA GWAS and highlight the utility of such agnostic approaches in gene discovery [32].  

MSA GWAS data have yielded negligible heritability estimates in a range of 2% to 6% [17]. The lack of 

identifying heritability in MSA could be due to studies not using a tissue and cell-specific data in 

conjunction with GWAS data, which has been shown to increase power in deciphering the missing 

heritability [36]. Furthermore, as it has been shown in various other complex diseases, including 

neurodegenerative diseases, simultaneous inclusion of common and rare variants increases power to 

detect the underlying genetic underpinnings for complex diseases [37-40]. By leveraging various gene 

expression datasets, our study showed that MSA heritability is enriched in genes with the highest 

specific expression in blood and digestive categories in GTEx and Roadmap datasets. Interestingly, we 

observed evidence of enriched heritability in genes showing elevated expression of immune cells in our 
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study. Though the elevated expression was not statistically significant, this is likely due to the small 

sample of our MSA GWAS data [32]. Our FUMA analysis provided further evidence of involvement of a 

locus on chromosome 5 at 5p13.1, which encompasses the C7 gene and shows a high deleterious and 

moderate regulome score, indicating genetic variability within C7 gene could modulate disease risk. The 

role of the C7 gene was further strengthened by detecting a significant association of common and rare 

variants of C7 in both phenotypes, indicating that genetic variability within C7 gene is important for 

disease pathogenesis. This genetic evidence is further supported by the findings in the PLP-hαSyn 

transgenic model of MSA-P-like neurodegeneration, which showed a significant difference in the 

expression of C7 gene in the midbrain, a region specifically characterized by early neuroinflammatory 

response and neuronal loss linked to oligodendroglial alpha-synucleinopathy [31]. All these converging 

genetic/functional data provide compelling evidence regarding the C7 gene as a novel locus for MSA 

pathogenesis. Nevertheless, further functional studies are warranted to decipher the role of C7 gene in 

MSA. 

Our study reinforces the potential role of “gut-brain axis” in neurodegenerative diseases, and in 

particular parkinsonian syndromes [41]. For example, a previously published study showed considerable 

genetic overlap between PD, schizophrenia, and CD [42]. Interestingly, some comorbidity between PD 

and CD was driven by the genetic variability within LRRK2 [43]. Furthermore, a recently published study 

further refined the LRRK2 locus signal in CD and identified the p.N2081D variant driving increased CD 

risk [43]. Of note, both p.G2019S and p.N2081D mutations are located in the kinase domain of LRRK2, 

highlighting the role of kinase activity in disease pathogenesis [43]. LRRK2 has been shown to be 

involved in a diverse range of functions, including vesicular trafficking, autophagy, and inflammation 

[44]. 

A recently published study using population-based data from Denmark showed a 22% increased risk for 

PD for patients with IBD as compared to non-IBD individuals. Interestingly, the authors also observed a 

trend for increased risk for MSA in IBD patients [45]. This indicates a bi-directional mechanism between 

the central and enteric nervous system mediated via the gut microbiome, which is directly linked to the 
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status of the intestinal immune system [41]. Thus, the chronic state of inflammation can promote 

systemic inflammation and neuroinflammation [46]. Interestingly, a recently published study showed 

the migration of human α-synuclein after injecting into the intestinal wall of rats to the dorsal motor 

nucleus in the brainstem in a time-dependent manner, suggesting that changes induced in α-synuclein 

in the gut can directly affect the brain and elicit an immune response [47]. 

The loci identified in our study are directly linked to immune-related activities. A recently published 

study identified genetic variability in C7 gene as a major risk factor for AD in the Han Chinese population 

[48]. In addition, the complementary system has been shown to be implicated in a diverse range of 

functions, including Aβ clearance, microglia activation, neuroinflammation, apoptosis and neuron death 

[12, 49]. Of note, in our epigenetic analyses, we obtained significant evidence of involvement of 

DENND1B (DENN Domain Containing 1B) gene in blood. DENND1B, a member of the connecdenn family, 

has been shown to play a role in clathrin-mediated endocytosis [50]. The evidence obtained from our 

study underlying the relevance of immune and vesicular trafficking is important for MSA pathogenesis. 

Our pathway analysis identified ITGA2 pathway as a “top hit”. Integrins are cell adhesion mediators and 

have been shown to be involved in a diverse range of human diseases, including IBD, as has been shown 

in a recently published GWAS [51]. 

Neuroinflammation characterized by microglia activation has been involved in neurodegenerative 

diseases, including MSA [46, 52]. Thus, interventional strategies targeting the neuroinflammation offers 

an alternative approach to either halt or slow disease progression. For example, a study by Mandler et 

al. [47] performed active immunization againts α-synuclein in MBP α-SNCA transgenic mice. They 

observed reduced α-synuclein colocalization in oligodendrocytes and astrocytes along with reduced 

neuronal death and motor deficits.  Similarly, therapeutic strategies, which interfere with the synthesis 

of TNF-α, have been tested in animal models of PD [47], though results generated so far have been 

remained inconclusive. 
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The current results might have potential clinical implications. The more extensive clinical evaluation of 

patients with IBD/CD for monitoring immune/inflammatory and MSA related symptoms should be 

allowed, as has been suggested in a recently published study [45]. 

In conclusion, our study extends the genetic architecture of MSA and provides evidence of shared 

genetic etiology with IBD. Importantly, our findings extend the “gut-brain axis” spectrum from PD to 

atypical parkinsonian syndromes.  

URLs 

condFDR/conjFDR software, https://github.com/precimed/pleiofdr; LocusCompate tool, 

http://locuscompare.com; 

METHODS 

Participant samples 

We used summary statistics from 7 autoimmune disease GWAS and independent GWAS on MSA: IBD 

(25042 cases, 34915 controls) [51], CD (12194 cases, 34915 controls) [51], ulcerative colitis (12366 

cases, 34915 controls) [51], diabetes mellitus type 1 (7514 cases, 9045 controls) [53], celiac disease 

(4533 cases, 10750 controls) [54], rheumatoid arthritis (29880 cases, 73758 controls) [55], multiple 

sclerosis (9772 cases, 17376 controls), and MSA (918 cases and 3864 controls) [32]. IBD, CD and 

ulcerative colitis GWAS [51] were conducted with the same set of controls. IBD cases used in [51] 

included CD, ulcerative colitis and unclassified cases. Details of the inclusion criteria and phenotype 

characteristics of the GWAS are described in the original publications. The relevant institutional review 

boards or ethics committees approved the research protocol of the individual GWAS used in the present 

analysis, and all participants gave written informed consent.  

Genetic overlap between MSA and autoimmune diseases 

To visually assess enrichment of cross-phenotype polygenic overlap between MSA and autoimmune 

diseases, we generated conditional quantile-quantile (Q-Q) plots by conditioning MSA on each of seven 

autoimmune phenotypes and vice versa [19]. Q-Q plots are commonly used for visualization of p-values 
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from GWAS summary statistics to assess enrichment of association by plotting quantiles of the observed 

distribution of association p-values with the phenotype against quantiles of p-value distribution 

expected under no association (standard uniform distribution). In the absence of association, the Q-Q 

plot represents a straight line (diagonal of the first quadrant), while deflection from the line indicates 

the presence of a systematic association. Conditional Q-Q plots are constructed by defining subsets of 

variants based on significance levels in the conditional phenotype and constructing Q-Q plots for 

associated-values in the primary phenotype for each subset separately. Enrichment of genetic overlap 

between primary and conditional phenotype emerges in the conditional Q-Q plot as successive leftward 

deflections as the significance with the conditional phenotype increases. For more details, please see 

[19]. Prior to the construction of Q-Q plots, the genomic inflation control procedure described in [19] 

was applied to correct p-values for all analyzed phenotypes. Additionally, to correct for LD-induced 

inflation, the contribution of each SNP was measured considering LD structure in the surrounding 

region, using 100 iterations of random pruning at LD threshold r2=0.1. LD structure (r2 values) was 

estimated with PLINK [56] using the 1000 Genomes Project phase 3 European subpopulation data [57]. 

At each iteration, a set of nearly LD-independent SNPs was selected by taking one random SNP in each 

LD-independent region (clump of SNPs in LD, r2>0.1). The final contribution of each SNP was estimated 

as an average across all iterations. Because of the underlying complex LD structure encompassing the 

HLA and the MAPT regions, which may inflate a conditional Q-Q plot, and introduce a bias in the 

conjDFR estimation, we excluded SNPs from these regions (hg19 locations chr6:25119106-33854733 and 

chr17:40000000-47000000, respectively) [58]. The data corrected for LD-induced inflation, including the 

HLA and MAPT regions, were used for the downstream analyses.  

Shared loci between MSA and IBD 

The phenotypes which showed substantial genetic overlap with MSA in conditional Q-Q plots were 

further analyzed with genome-wide conjFDR method to identify shared genetic loci between MSA and 

autoimmune diseases [19] (see URLs). The conjFDR method is based on the condFDR approach. The 

condFDR method combines summary statistics from two phenotypes (primary and conditional) and 

estimates a posterior probability that a variant has no association in the primary phenotype, given that 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/751354doi: bioRxiv preprint 

https://doi.org/10.1101/751354
http://creativecommons.org/licenses/by/4.0/


14 
 

p-values of the variant in both primary and conditional phenotypes are lower than observed p-values. 

Therefore, condFDR may boost the discovery of loci associated with a primary phenotype by leveraging 

associations with conditional phenotype. The increase in statistical power is achieved by re-ranking 

variants as compared to ranking based on the original GWAS p-values [19]. On the contrary, the ranking 

induced by the standard unconditional FDR (e.g. Benjamini–Hochberg procedure) does not change the 

order of variants as compared to nominal p-values.  

The conjFDR is an extension of condFDR allowing identification of loci associated with both phenotypes 

simultaneously. For each specific variant, conjFDR is defined as a maximum of two condFDR values 

(taking one phenotype as primary and another as conditional and then swapping their roles). Therefore, 

conjFDR provides a conservative estimate of a posterior probability that a variant has no association 

with either of the phenotypes, given that the p-values for that variant in both analyzed phenotypes are 

lower than the observed p-values. For more details please refer to the original publication [19].  

Identification of relevant tissues and cell types 

To understand whether conjFDR genetic-pleiotropy analyses help further to explain the heritability in 

MSA by identifying genes expressed in certain tissue/cell types, we used a modified LD score regression 

applied to specifically expressed genes (LD-SEG) method [36]. In brief, for each gene a t-test was 

evaluated for the tissue/cell type-specific expression level. Subsequently, the top 10% of genes were 

selected and a 100 kb window was added around the transcribed region of each selected gene. Finally, 

stratified LD score regression [59] was applied to resulting genetic regions. This procedure was then 

repeated for each tissue/cell type of interest. We used publicly available tissue/cell type datasets 

together with corresponding precomputed gene sets and respective LD-scores as described in the LD-

SEG method [36]. A total of seven datasets were used for analyses, including data from GTEx (53 tissues 

and 13 brain regions) [60], Franke lab (152 tissues) [61, 62], Roadmap Epigenomics consortium (396 

tissues and cell types) [22], EN-TEx (93 tissues and cell types), Cahoy et al. [63] (3 brain cell types), 

ImmGen Consortium (292 immune cell types) [23] and Corces at al. [64] (13 cell types).  
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Functional mapping and annotation of identified loci 

Two types of analyses were performed. First, positional and functional annotation of lead variants of the 

loci identified in the conjFDR GWAS analyses was performed using ANNOVAR [65] as implemented in 

FUMA [66]. Lead variants were annotated with Combined Annotation Dependent Depletion (CADD) [24] 

scores, measuring the degree of variant deleteriousness on protein structure/function, RegulomeDB 

[67] scores, predicting the likelihood of regulatory functionality, and chromatin states, estimating 

transcription/regulatory effects from chromatin states at the locus [22]. Lead variants were queried for 

known expression quantitative trait loci (eQTLs) in the genotype tissue expression (GTEx) portal [60]. 

Additionally, eQTL status for lead variants identified in the conjFDR analysis was checked in brain eQTL 

summary statistics extracted from [27] and blood eQTL summary statistics from [26]. LocusCompare tool 

(see URLs) was then applied to check whether loci identified in conjFDR analysis colocalizes with eQTL 

signal. 

Gene-level association tests 

The top loci from the conjFDR analysis were further evaluated to determine the role of common and 

rare variants in IBD/CD and MSA cohorts respectively. 

An exome-wide chip covering a total of 205,313 SNPs was used to determine the role of common and 

rare variants in IBD/CD. RAREMETALWORKER was used with the first ten principal components from PCA 

as covariates to analyze individual CD and IBD studies and to generate association summary statistics 

[68]. The exome chip genotype data was converted into Variant Call Format 

(https://github.com/samtools/hts-specs) format with PLINK [56], and variants were functionally 

annotated with EPACTS (v3.2.3; http://genome.sph.umich.edu/wiki/EPACTS).  

A two-step approach was followed:  (i) SKAT test [30] was performed in German CD cohort (exome array 

study including 4,989 cases and 16,307 controls, using the chip with 205,313 mostly rare coding 

variants) followed by replication (ii) in a combined IBD cohort (15,236 cases and 34,668 controls). The 

total number of genes covered in CD cohort was: n = 15,975 for all variants, n = 15,742 for rare variants, 

and in IBD cohort was: n = 16,306 for all variants, n = 16,138 for rare variants. SKAT test in both cohorts 
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was conducted using all coding variants within identified genes (Table 3). P-values resulting from these 

tests were corrected for multiple testing using Bonferroni correction. 

Whole exome sequencing data from 358 European-ancestry MSA patients and 1,297 neurologically 

healthy, European controls were generated using the SureSelect Exome target enrichment technology 

according to the manufacturer’s protocol (Agilent, CA, USA). Sequence alignment to the human 

reference genome (hg19) and variant calling were performed using the Genome Analysis Toolkit. After 

removal of duplicate samples using Picard software, stringent quality control filters were applied, 

including the removal of non-European ancestry individuals and cryptically related individuals, exclusion 

of individuals with the discrepancy between reported sex and genotypic sex and individuals with high 

genotype missingness or extreme heterozygosity. Next, all variants were annotated using ANNOVAR 

[65]. Principle components were generated using flashPCA. SKAT test was performed on all coding 

variants within identified genes using RVtests and corrected for multiple testing using Bonferroni 

correction (Table 3). 

Gene set enrichment analysis 

DEPICT (depict_140721) [61] was applied to get biological insights from lead variants of loci shared 

between MSA and overlapping autoimmune diseases, as identified in the conjFDR analysis with relaxed 

significance threshold (conjFDR<0.35) (Supplementary Table 6). DEPICT is a phenotype-agnostic data-

driven integrative method that employs reconstituted gene sets based on massive numbers of 

experiments measuring gene expression to (1) prioritize genes and pathways related to observed 

genetic associations and (2) highlight tissues where prioritized genes are highly expressed. Gene set 

enrichment analysis in DEPICT is based on a ‘guilt-by-association’ procedure [62] which prioritizes genes 

that share predicted functions with genes from the other associated loci more often than expected by 

chance. Precomputed GWAS based on arbitrarily generated phenotypes is used to estimate the 

distribution of p-values under null expectation and to perform multiple testing correction by computing 

FDR. 
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In our analysis, we followed an analysis protocol as described in online DEPICT documentation 

(https://data.broadinstitute.org/mpg/depict/documentation.html). For MSA and overlapping 

autoimmune disease summary statistic first variants were clumped with PLINK [56] (using flags --clump-

p1 1e-5 --clump-kb 500 --clump-r2 0.05). Resulting tag variants were analyzed with the standard DEPICT 

pipeline using a FDR threshold of 0.05. Leading variants of loci shared between MSA and autoimmune 

diseases were directly used in standard DEPICT pipeline (no clumping was performed since these 

variants represent LD-independent regions). 

Additionally, gene set enrichment test implemented in FUMA [66] was applied to genes located within 

100kb from the lead SNPs of the loci shared between MSA and autoimmune diseases as identified by 

conjFDR analysis (conjFDR<0.05). The hypergeometric test was used to assess enrichment of input genes 

in gene sets obtained from MsigDB [69, 70] (which integrates information from KEGG [71], REACTOME 

[72], Gene Ontology [73] and other sources) taking 19,283 protein-coding genes as a background gene 

set. Multiple testing correction (per data source) was performed using the Benjamini–Hochberg 

procedure to control FDR at 5% level. 

Gene expression analysis with real-time PCR in the midbrain of transgenic MSA mice 

PLP-hαSyn transgenic mice (also called MSA mice [31, 74]) and wild type controls were kept under 

temperature-controlled pathogen-free conditions on a light/dark 12 h cycle. All experiments were 

performed according to the ethical guidelines of the EU (Directive 2010/63/EU for animal experiments) 

and the Austrian Federal Ministry of Science and Research (permission BMFWF-66.011/0018-

WF/v/3b/2015). Twelve-month-old male mice (five PLP-hαSyn and five wild type mice) were perfused 

intracardially with phosphate buffered saline (PBS, pH 7.4, Sigma) under deep thiopental anesthesia. 

Brains were extracted, and midbrains were quickly dissected and snap-frozen in liquid nitrogen. Samples 

were stored at -80°C until further processing. Samples were homogenized in TRIzol reagent (Life 

technologies) with ULTRA-TURRAX T-8 basic tissueruptor (IKA) and RNA was isolated following the 

manufacturer´s instructions. RNA samples were retrotranscribed into cDNA by using the High-Capacity 

cDNA Reverse Transcription Kit (Applied-Biosystems). Analyses were performed in a CFX96 Touch™ Real-
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Time PCR Detection System (Bio-Rad) using iTaq universal probes supermix (Bio-Rad). Gapdh mRNA 

levels were used as an internal normalization control. All statistical analyses were conducted using the 

software Graph-Pad Prism 7 (Graphpad Software). The mean ± S.E.M was used to present the results. 

Comparisons were performed with multiple t-tests with Bonferroni- Dunn correction. An adjusted p-

value <0.05 was considered statistically significant. 
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FIGURES 

 

Figure 1. Flow chart representing major steps of the study. 

MSA: multiple system atrophy; CD: Crohn's disease; IBD: inflammatory bowel disease, including CD, 

ulcerative colitis and unclassified IBD cases; UC: ulcerative colitis; T1D: diabetes mellitus type 1; CeD: 

celiac disease; RA: rheumatoid arthritis; MS: multiple sclerosis. 
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Figure 2. Conditional Q-Q plot showing the relation between expected (x-axis) and observed (y-axis) 

significance of SNPs in the primary phenotype when markers are stratified by their p-values in the 

conditional phenotype. A sequence of 4 nested strata is presented: all SNPs (blue), pconditional_phenotype < 

0.1 (orange), pconditional_phenotype < 0.01 (yellow) and pconditional_phenotype < 0.001 (purple). Dashed black line 

demonstrates expected behavior under no association. The increasing degree of leftward deflection 

from the no-association line for strata of SNPs with higher significance in the conditional phenotype 

indicates putative polygenic overlap. 

A: MSA conditioned on CD; B: CD conditioned on MSA; C: MSA conditioned on IBD; D: IBD conditioned 

on MSA. 
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Figure 3. Manhattan plot of -log10(conjFDR) for MSA and CD (orange)/IBD (blue). Horizontal dashed 

black line shows the significance threshold conjFDR=0.05. For each significant locus, genes within 100 

kb from the locus lead SNP are shown. Lead variants at each locus are shown as bold dots with black 

border. Variants in high LD (r2>0.6) with the lead variant are shown as bold dots without border. 
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Figure 4. Genetic context of loci identified in the conjFDR analysis. The x-axis represents the positional 

location of the variants on the chromosome, left y-axis shows -log10(conjFDR) value if the variants. In 

each subplot, a variant with the strongest association is shown in the large purple circle. The color of the 

remaining markers reflects the degree of linkage disequilibrium (LD), with the strongest-associated 

variant measured as r2 coefficient (described in the legend). The recombination rate is plotted as a solid 

blue line; its value in centimorgan/megabase (cM/Mb) is indicated on the right y-axis. The black dashed 

lines indicate the conjFDR threshold = 0.05. Surrounding of the loci with the strongest signal at: a, 

rs12740041 (conjFDR=2.73E-02); b, rs4957144 (conjFDR=2.37E-02); c, rs116843836 (conjFDR=1.96E-02). 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/751354doi: bioRxiv preprint 

https://doi.org/10.1101/751354
http://creativecommons.org/licenses/by/4.0/


27 
 

 

 

 

Figure 5. Colocalization of association signals from conjFDR analysis and brain eQTL data [27] in the 

upstream region of DENND1B gene. 

Scatter plot of the -log10(conjFDR) plotted against -log10(PeQTL) (left), regional association plot for -

log10(conjFDR) values (top right), regional association plot for -log10(PeQTL) (bottom right). A lead 

variant of the locus identified in the conjFDR analysis (rs12740041) is shown in the large purple circle. 

Other variants are colored according to the degree of linkage disequilibrium (LD) with rs12740041 

measured as r2 coefficient (described in the legend). 
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Figure 6. Comparison of expression levels in the midbrain between wild-type mice (blue bars) and 

transgenic MSA mice (orange bars) for genes identified in the conjFDR analysis. 

Genes with significantly different expression between wild-type and transgenic mice are marked 

either with * (nominal p-value < 0.05), with ** (nominal p-value < 0.01) or with *** (nominal p-value 

< 0.005). C7 and MROH2B genes survive multiple testing with Bonferroni-Dunn correction (adjusted 

p< 0.05). Error bars show standard error of the mean. 
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TABLES 

Lead 
SNP 

Chr 
Region 

Position 

conjFDR of MSA 
and 

Location 
relative 
to the 
closest 
gene 

Genes 
within 
100 kb 

p-value Effect Size (Beta) 

CD IBD MSA CD IBD MSA CD IBD 

rs12740041 1q31.3 197814607 2.73E-2 2.80E-2 
 

upstream C1orf53 
LHX9 
DENND1B 

3.68E-5 4.78E-7 9.95E-8 -2.84E-1 9.74E-2 8.02E-2 

rs4957144 5p13.1 40914326 2.37E-2 2.44E-2 
 

intronic C7 
CARD6 
RPL37 
MROH2B 

3.14E-5 2.90E-9 2.56E-7 2.82E-1 
 

-9.59E-2 -6.46E-2 

rs116843836 20p13 1033414 1.96E-2 9.42E-2 upstream RSPO4 
PSMF1 

2.46E-5 5.40E-5 2.96E-4 -8.75E-1 -2.08E-1 -1.46E-1 

Table 1. Significant (conjFDR<0.05) loci shared between MSA and IBD/CD. Chromosome (Chr) and position are indicated 
according to GRCh37. Significant conjFDR values (conjFDR<0.05) are shown in boldface type. Closest gene is shown in bold. 
For all phenotypes, p-values without genomic inflation correction are shown. The effect size is given as Beta regression 
coefficient. 

 

SNP Gene Tissue Data source p-value Effect size 

rs12740041 DENND1B 

Brain Qi et al. 4.88E-04 0.18 

Blood Võsa et al. 6.90E-25 0.12 

Nerve – Tibial GTEx 6.00E-05 0.15 

rs4957144 
TTC33 

Brain Qi et al. 3.48E-03 -0.14 

Blood Võsa et al. 1.09E-16 0.09 

Artery – Tibial GTEx 7.50E-07 0.13 

RPL37 Brain Qi et al. 6.32E-08 -0.24 

rs116843836 PSMF1 

Cells - Transformed fibroblasts GTEx 3.00E-07 0.66 

Muscle – Skeletal GTEx 3.40E-07 0.48 

Nerve – Tibial GTEx 1.30E-06 0.44 

Table 2. Significant eQTL functionality of lead variants of loci shared between MSA and IBD/CD. 
Only results passing multiple testing correction from GTEx (passing FDR<0.05), Qi et al. [27] (passing 
Bonferroni correction p<0.05/N, where N is a number of genes tested for a given SNP) and Võsa et al. 
[26] (passing Bonferroni correction p<0.05/N). 
The effect size was computed in a normalized space; thus, its magnitude does not have direct 
biological interpretation. 

 

Lead SNP 
Genes within 

100 kb 

p-value in SKAT test 

MSA CD IBD 

rs12740041 

C1orf53 9.95E-01 6.50E-01 7.02E-01 

LHX9 4.60E-01 7.86E-01 9.24E-01 

DENND1B 8.21E-01 - 9.42E-01 

rs4957144 

C7 1.10E-03 2.74E-05 5.99E-05 

CARD6 5.38E-01 4.12E-01 3.33E-02 

RPL37 8.79E-03 - - 

MROH2B - - - 

TTC33 7.67E-01 9.46E-03 4.36E-01 

rs116843836 
RSPO4 8.97E-01 8.17E-01 4.46E-01 

PSMF1 8.36E-01 2.79E-01 7.05E-01 

Table 3. SKAT test p-values in MSA, CD and IBD cohorts for genes within 100 
kb from leading SNPs identified in the conjFDR analysis of MSA vs IBD/CD at 
conjFDR<0.05 (Table 1) and eQTL genes of these leading SNPs (Table 2). 
p-values for all three cohorts (MSA, CD, and IBD) are estimated using coding 
variants with no minor allele frequency threshold. 
Nominally significant p-values (p-value < 0.05) are typed in italic, p-values 
surviving Bonferroni correction (p-value < 0.05/9 = 5.55E-3) are typed in bold. 
“-”: data not available because the gene was not screened in the 
corresponding cohort. 
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