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Abstract 

Identifying global cellular targets of small molecules is a challenge for drug discovery. Thermal proteome 

profiling (TPP) is a recent technique that uses quantitative proteomics to identify all small molecule 

protein targets in a single experiment. One current TPP analysis method relies on two major assumptions: 

sigmoidal melting curve behavior and that intra-condition dependencies preclude an independent and 

identically distributed model. Herein, we use a previously published panobinostat TPP dataset to show 

that these assumptions do not hold true and present a novel, shape-independent method, named Analysis 

of Independent Differences (AID). For each temperature, AID models the differences between conditions 

of fractions of non-denatured protein as an independent Normal distribution, resulting in a Multivariate 

Normal observation for each protein. The log of a Multivariate Normal p-value ranks the proteins from 

most to least likely shifted, and individual Normal p-values within each protein allow for qualitative 

inspection. Applying AID to the panobinostat dataset revealed known targets in the top 3% of most 

shifted proteins, as well as candidate targets involved in myeloid leukocyte activation. AID detects 

complex melting profiles and can be extended to any number of temperature channels, ligand-protein or 

protein-protein interactions, or general curve data for deeper biological insight. 
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Introduction 

Identifying physiologically relevant direct and indirect protein targets of small molecules remains a great 

challenge for modern day drug discovery. Chemical probes are often used to validate protein targets, but 

concerns have surfaced regarding probe quality, sufficient controls, and subsequent experimental 

conclusions1,2,3. To address this challenge, thermal proteome profiling (TPP), an extension of the cellular 

thermal shift assay (CETSA), has been successfully employed to monitor small molecule interactions 

within whole cells and cell lysate4,5,6. TPP categorizes small molecule interactors by overall stabilization 

or destabilization of a given protein, which is observed as a shift in the protein’s melting curve. Whole 

cells or lysate are treated with a small molecule of interest, which along with controls, are subjected to a 

temperature gradient and examined for solubility. Multiplexed quantitative mass spectrometry techniques 

are used to generate thousands of protein melting curves in a single experiment. TPP has been further 

applied to probe interactions between endogenous ligands and proteins7, protein-protein interactions8, and 

overall proteome stability in prokaryotes and eukaryotes9,10.  

 

The most common method for analyzing TPP data has both a parametric and non-parametric 

approach4,6,11. The parametric approach fits a sigmoidal function to the data and assesses if there is a 

difference between the melting temperature, Tm, of control and treatment conditions, where Tm is the 

temperature at which the fraction of non-denatured protein equals 0.5. The differences between Tm are 

binned by increasing slope of the fitted curve, and a z-test is performed within each bin to assign a p-value 

to the difference in Tm of each protein. Qualitative filters applied throughout the process result in a rigor-

variance tradeoff; while lenient filters allow more curves to be analyzed, increasing the number of curves 

with a poor sigmoidal fit likewise increases the variance, which decreases confidence during hypothesis 
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testing12. Moreover, if Tm is strictly limited to the temperature at which the fraction of non-denatured 

protein equals 0.5, then a shift in Tm may not accurately represent a change in protein thermostability, or 

Tm may not be calculable from the data. For these reasons, Childs et al. (2018) developed a non-

parametric analysis of response curves (NPARC)11. NPARC compares the sum of squared residuals of a 

null model against that of an alternative model, which measures a difference in overall melting curve 

shape via an F-statistic. The mean function chosen for the null and alternative models is a sigmoidal 

function derived from chemical denaturation theory4. Both approaches assume a large majority of protein 

melting curves follow an approximately sigmoidal shape, though deviations from this behavior are 

common11,13. NPARC further assumes that intra-condition dependencies preclude an independent and 

identically distributed model. If either of these assumptions do not hold true, the statistical power of the 

analysis will be compromised. 

 

Two additional TPP analysis methods have been informally proposed, called Proteome Integral Stability 

Alteration (PISA)13 and TargetSeeker-MS14. PISA collapses melting curve data into a single statistic by 

physically mixing samples in each condition after exposure to a temperature gradient, which are then 

analyzed by mass spectrometry. A t-test is performed to detect a significant difference in protein 

abundance between conditions, representing a shift in protein thermostability. The experimental design 

allows for five replicates in a single TMT 10-plex. However, this method also relies on the assumption of 

sigmoidal melting curve behavior. In addition, the subsequent single data point for a given protein is blind 

to qualitative inspection, which may increase the Type I or Type II error rate or decrease power. 

TargetSeeker-MS employs a Bayesian inference-based approach to compare the probability that a 

fractionation profile of a given protein in the control condition is different from that in the treatment 

condition. Fractionation profiles are compared by subtracting scaled Euclidean distances from 1, yielding 

two similarity values, one for each condition. Because a Bayesian approach warrants constructing a 

reasonable prior distribution, TargetSeeker-MS requires at least 4 control replicates and 2 treatment 
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replicates, requiring 5 full days of instrument time. While this method does not assume sigmoidal melting 

curve behavior, it is impractically resource-intensive. 

 

Herein, we demonstrate limitations of previous TPP analysis methods and present a novel method capable 

of parametrically analyzing all melting curves regardless of shape, named Analysis of Independent 

Differences (AID). This method estimates the underlying null distribution by circumventing dependencies 

within each condition, and is more sensitive for detecting subtle and complex melting curve shifts. To 

demonstrate the method, we analyze a previously published gold standard TPP dataset that investigates 

panobinostat, a therapeutic for multiple myeloma6. Not only does the presented method identify 

previously known targets, including HDACs, it also identifies many other proteins, including those 

involved in leukocyte activation, providing further biological insight into the therapeutic efficacy of 

panobinostat. 

 

Methods 

The dataset used is from Franken et al. (2015) and is publicly available. Two replicates of thermal 

proteome profiling of panobinostat were performed in intact K562 cells, a human chronic myelogenous 

leukemia cell line, as described6. Briefly, TMT-labelled LC-MS/MS spectra were analyzed using 

isobarQuant, a software package provided by Franken et al. (2015), and Mascot, a common search 

engine. Peptide fold changes are calculated from corrected reporter ion intensities, and subsequent protein 

fold changes are calculated using a sum-based bootstrapping approach. The protein fold changes are then 

normalized to a value of 1 in the lowest temperature channel of each protein, such that most normalized 

fold changes fall between 0 and 1.  

 

Examining both replicates of the panobinostat data showed that only approximately 42% of proteins 

exhibit a maximum protein abundance value in the lowest temperature channel. Approximately 25% of 

proteins exhibit a maximum abundance value in the second lowest temperature channel, which is not 
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surprising, as many proteins are stable at temperatures near 40°C. For these reasons, we instead 

normalized to a value of 1 in the maximum protein abundance temperature channel for each protein and 

did not employ further normalization.  

 

Only one replicate was necessary for AID analysis. We proceeded with the second replicate due to a 

larger number of proteins shared between control and treatment conditions (~300 more proteins). 

 

Sigmoidal curve fitting was performed using a function derived from chemical denaturation theory4: 

𝑓(𝑡) =
1 − 𝑝

1 + 𝑒
−(

𝑎
𝑡
−𝑏)

+ 𝑝 

where t is temperature (°C), p is the plateau of the curve, and a and b are constants. The value of p was 

limited to the interval [0,1], in accordance with normalization. 

 

Data analysis was performed in R using the mvtnorm package. The analysis was written in R and as a 

Shiny App. The R script is open-source and available at https://github.com/alex-bio/TPP, and the Shiny 

App is available at https://gygi.med.harvard.edu/software.  

 

Results and Discussion 

We assessed the validity of the two assumptions made by the most common TPP analysis method, namely 

sigmoidal melting curve behavior and that intra-condition dependencies preclude an independent and 

identically distributed model, using a previously published gold standard TPP dataset6.  

 

First, because both approaches of the method assume that most protein melting curves are sigmoidal in 

shape, curves from a simple random sample were fitted to a sigmoidal function derived from chemical 

denaturation theory4, as shown in Figure 1. The coefficient of determination, R2, values from the fit 
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demonstrate that while some curves are approximately sigmoidal in shape, complex curves are non-

trivially present. 

 

Second, dependencies within the data were examined. In particular, intra-condition dependencies between 

the fractions of non-denatured protein add a substantial layer of complexity, as illustrated by the 

correlation matrices in Figure 2A. Because the global normalization scheme from Savitski et al. (2014) is 

frequently employed before analyzing TPP datasets, the dependencies of data after global normalization 

were also examined (Figure 2B). This normalization method significantly alters inherent data 

dependencies, which would have unintended effects when choosing a null distribution, and thus was not 

used further. Circumventing dependencies is possible without alteration by examining the differences 

between the control and treatment fractions of non-denatured protein for each temperature (Figure 2C). 

Specifically, the middle 95% of differences were examined further because of a few extreme outliers, as 

discussed below. In this case, uncorrelated data strongly suggest an underlying null distribution exists and 

may have calculable parameters. 

 

As a result of both assumptions breaking down, we asked if an alternative statistical test could be used. 

The lack of dependencies from Figure 2C indicates that the differences between conditions of fractions of 

non-denatured protein for each temperature may be treated as independent trials from a similar 

distribution. The fractions of non-denatured protein are represented here as xi,j,k, for the fraction non-

denatured of protein i, condition j, and temperature k. As an example, x10,1,3 would indicate the fraction of 

non-denatured protein of the tenth protein in the first condition in the third temperature channel. A 

histogram of the differences between conditions, yi,j, for protein i and temperature j, where  

yi,j  = xi,treatment,k – xi,control,k, was plotted in Figure 3A (blue). As an artifact of normalization, there is a 

slightly higher peak at exactly zero due to differences between the maximum channels of both conditions, 

which is not shown. This peak does not affect any further calculations. 
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For each temperature, the differences across all proteins, all yi,js, appeared Normally distributed. The law 

of large numbers grants confidence that approximating a distribution is feasible because of such a large 

sample size (n = 4,288 proteins).  Due to a few extreme outliers on the order of > 10 standard deviations 

away from the estimated mean, Normal distributions were fit to the middle 95% of differences, yis, for 

each temperature channel j. Using the estimated means and standard deviations, we simulated data to 

overlay the empirical data, the results of which are shown in Figure 3A (gray). The significant overlap 

from this analysis demonstrates that a Multivariate Normal model may sufficiently represent the empirical 

data.  

 

As a result, a vector comprised of the differences for each protein, (yi,1, … , yi,10) for a TMT 10-plex, can 

be modeled as a Multivariate Normal observation, as shown in Figure 3B. In the unique case of 

Multivariate Normal data, a correlation of approximately zero between components implies 

independence. For example, for a given protein, the difference between the control and treatment fraction 

of non-denatured protein in the first temperature channel, yi,1, is independent that of the second 

temperature channel, yi,2, as shown in Figure 2C (right). Taken together, a Multivariate Normal model 

sufficiently represents the null distribution underlying TPP data and bypasses inherent dependencies. 

 

To assess which proteins fall under the alternative hypothesis, that a given protein interacts with a small 

molecule of interest, the log of the Multivariate Normal p-value ranks the proteins from most likely to 

least likely shifted. This p-value may serve as an alternative statistical test. Conceptually, a smaller (more 

negative) value indicates that a given protein melting curve is more “rare” among the rest of the data. A 

nifty advantage of this approach allows internal correction and comparisons across all of the data. 

Because 10-dimensional space is very large, individual p-values are also calculated for each yi,j. 

Individual p-values allow for inspection of the multivariate p-value, a quality control checkpoint which 

would otherwise not be available from a single collapsed statistic, as in the case of PISA13. As proteins 
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exhibit a continuous spectrum of curves ranging from unaltered to extremely shifted, a user-defined 

percentile threshold is recommended to choose the top most likely shifted proteins. 

 

Furthermore, to address noisy protein curves, the variance is calculated for all Multivariate Normal 

observations, or all yi,js for a given protein i. The variance peaks near zero and is skewed right, as 

expected. A warning for high variance is issued if the variance of a Multivariate Normal observation for a 

given protein is greater than two standard deviations away from the mean variance. While this threshold 

is qualitative, the warning intends to highlight curves that oscillate between highly positive and negative 

values. 

 

We have written this analysis in R and as a Shiny App. Notably, the Shiny interface requires no prior 

knowledge of R or coding and can be used with relative ease. The R code is open-source and available 

online at https://github.com/alex-bio/TPP, and the Shiny App is available online at 

https://gygi.med.harvard.edu/software. The Shiny App allows the user to download the result list as an 

Excel file and has an in-app curve viewer. All of these features make this analysis method accessible to 

all. 

 

To validate this method, the gold standard panobinostat TPP dataset was examined. Rank-ordering by the 

log of the Multivariate Normal p-value, the previously identified direct and indirect targets of 

panobinostat11 fell within the top 3% most shifted proteins, as shown in Figure 4 (first 7 curves, left to 

right). We note that HDAC6 and HDAC8, two known panobinostat targets, ranked lower, in the top 17% 

and 15%, respectively. This indicates that the shifts demonstrated by HDAC6 and HDAC8 are more 

common across all proteins, which is supported by the slight shift in melting profiles. Furthermore, above 

the same 3% threshold, many other targets were identified, as shown in Figure 4 (subsequent 9 curves, 

left to right). Among the other targets are NHLRC3, LAMTOR2, and ASAH1, which are involved in 

myeloid leukocyte activation and may offer further insight into multiple myeloma therapeutics.  
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Conclusion 

We present AID, a TPP analysis capable of handling all types of protein melting curves. This method 

approximates the underlying null distribution, which excludes dependencies within conditions. Moreover, 

this method compares proteins against the entire dataset rather than pairwise or individually, allowing for 

a more precise perspective. Applying the analysis to an experiment using panobinostat, a multiple 

myeloma therapeutic, identified additional protein candidates that may offer insight into malignant 

mechanisms. This method can be extended to any number of temperature channels, ligands or protein 

interactors, or general curve data for deeper biological insight. 
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Figure 1. A random sample of melting profiles. Both control and treatment curves for each protein were 

fitted to a sigmoidal function derived from chemical denaturation theory4, shown as dotted gray lines. The 

R2 values are shown, ranging from 0.01 to 0.99. 
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Figure 2. Correlation matrices. (A) Correlation matrix of the fractions of non-denatured protein, or xi,j,ks, 

for protein i across each temperature k for the control condition, j = 1 (left), and the treatment condition,  

j = 2 (right), of the panobinostat TPP dataset6. (B) Correlation matrix as in (A), except after applying the 

global normalization scheme from Savitski et al. (2014) . (C) Correlation matrix of all the differences 

between conditions of fractions of non-denatured protein, or yi,js, where yi,j  = xi,treatment,k – xi,control,k, across 

each temperature (left). The middle 95% of differences between conditions of fractions of non-denatured 

protein, or yi,js, across each temperature (right).  
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Figure 3. (A) Histograms illustrating differences between conditions of fractions of non-denatured 

protein, or yi,js, across each temperature. The empirical data from the panobinostat TPP dataset6 is shown 

in blue, and simulated data from a fitted Normal distribution is in gray. (B) Diagram of Multivariate 

Normal modeling. For each protein, the difference between conditions of fractions of non-denatured 

protein, yi,js (black dotted lines), are calculated for each temperature. A vector consisting of all yi,js for a 

given protein is modeled as a Multivariate Normal observation, where each yi,j is Normally distributed 

among yi,js from all other proteins. Multivariate Normal p-values are assigned to each protein, and the log 

of the p-value rank orders the proteins from most likely to least likely shifted.  
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Figure 4.  Modeling the panobinostat TPP data6 as Multivariate Normal. The Multivariate Normal p-

value rank, indicating most to least likely shifted, is shown in parentheses after each protein name (n = 

4,288 proteins). The previously known targets of panobinostat11, HDAC1, HDAC2, HDAC10, TTC38, 

and ZFYVE28, rank in the top 3% of most likely shifted proteins. HDAC6 and HDAC8 ranked lower, in 

the top 17% and 15% respectively. The melting profiles of identified novel targets, NHLRC3, LSM11, 

LAMTOR2, STMN3, TTC21B, POLR1B, MDN1, ASAH1, and ALKBH1, are shown. NHLRC3, 

LAMTOR2, and ASAH1 are involved in myeloid leukocyte activation. 
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