
 
Supplemental Data  
 
Supplemental Table 1 
 
The model consists of four cell types, of which only the two pyramidal cell types have multiple 
compartments and contribute to the dipole. Layer 2/3 pyramidal cells consist of a soma, an apical 
trunk directly above the soma, followed by apical 1 and, most distally, the apical tuft. The apical 
oblique dendrite branches horizontally from the apical trunk. There are also three basal dendritic 
compartments, with basal 1 directly below the soma and basal 2 and basal 3 branching from basal 1 
at an angle, for a total of 8 compartments. The setup of the layer 5 pyramidal neurons is the same 
except that there is an additional apical compartment, apical 2, situated between apical 1 and the 
apical tuft. See Experimental Procedures and Figure 10 for a diagram of cell morphologies. 
 

Cell parameters 
Cell type Parameter Jones 2009 Law 2019 
L2/3 Pyr Soma length (µm) 22.1 22.1 
 Soma diameter (µm) 23.4 23.4 
 Soma capacitive density (µF/cm2) 0.6195 0.6195 
 Soma resistivity (Ω-cm) 200 200 
 Dendrite capacitive density (µF/cm2) 0.6195 0.6195 
 Dendrite resistivity (Ω-cm) 200 200 
 Apical trunk length (µm) 59.5 59.5 
 Apical trunk diameter (µm) 4.25 4.25 
 Apical 1 length (µm) 306 306 
 Apical 1 diameter (µm) 4.08 4.08 
 Apical tuft length (µm) 238 238 
 Apical tuft diameter (µm) 3.4 3.4 
 Apical oblique length (µm) 340 340 
 Apical oblique diameter (µm) 3.91 3.91 
 Basal 1 length (µm) 85 85 
 Basal 1 diameter (µm) 4.25 4.25 
 Basal 2 length (µm) 255 255 
 Basal 2 diameter (µm) 2.72 2.72 
 Basal 3 length (µm) 255 255 
 Basal 3 diameter (µm) 2.72 2.72 
 AMPA reversal (mV) 0 0 
 AMPA rise time (ms) 0.5 0.5 
 AMPA decay time (ms) 5 5 
 NMDA reversal (mV) 0 0 
 NMDA rise time (ms) 1 1 
 NMDA decay time (ms) 20 20 
 GABAA reversal (mV) -80 -80 
 GABAA rise time (ms) 0.5 0.5 
 GABAA decay time (ms) 5 5 
 GABAB reversal (mV) -80 -80 
 GABAB rise time (ms) 1 45 
 GABAB decay time (ms) 20 200 
 Soma voltage-gated K+ channel density (S/cm2) 0.01 0.01 
 Soma Na+ channel density (S/cm2) 0.18 0.18 
 Soma leak channel reversal (mV) -65 -65 
 Soma leak channel density (S/cm2) 0.0000426 0.0000426 
 Soma M-type K+ channel density (pS/µm2) 250 250 
 Dendrite voltage-gated K+ channel density (S/cm2) 0.01 0.01 
 Dendrite Na+ channel density (S/cm2) 0.15 0.15 
 Dendrite leak channel reversal (mV) -65 -65 
 Dendrite leak channel density (S/cm2) 0.0000426 0.0000426 
 Dendrite M-type K+ channel density (pS/µm2) 250 250 



L5 Pyr Soma length (µm) 39 39 
 Soma diameter (µm) 28.9 28.9 
 Soma capacitive density (µF/cm2) 0.85 0.85 
 Soma resistivity (Ω-cm) 200 200 
 Dendrite capacitive density (µF/cm2) 0.85 0.85 
 Dendrite resistivity (Ω-cm) 200 200 
 Apical trunk length (µm) 102 102 
 Apical trunk diameter (µm) 10.2 10.2 
 Apical 1 length (µm) 680 680 
 Apical 1 diameter (µm) 7.48 7.48 
 Apical 2 length (µm) 680 680 
 Apical 2 diameter (µm) 4.93 4.93 
 Apical tuft length (µm) 425 425 
 Apical tuft diameter (µm) 3.4 3.4 
 Apical oblique length (µm) 255 255 
 Apical oblique diameter (µm) 5.1 5.1 
 Basal 1 length (µm) 85 85 
 Basal 1 diameter (µm) 6.8 6.8 
 Basal 2 length (µm) 255 255 
 Basal 2 diameter (µm) 8.5 8.5 
 Basal 3 length (µm) 255 255 
 Basal 3 diameter (µm) 8.5 8.5 
 AMPA reversal (mV) 0 0 
 AMPA rise time (ms) 0.5 0.5 
 AMPA decay time (ms)  5 5 
 NMDA reversal (mV) 0 0 
 NMDA rise time (ms) 1 1 
 NMDA decay time (ms) 20 20 
 GABAA reversal (mV) -80 -80 
 GABAA rise time (ms) 0.5 0.5 
 GABAA decay time (ms) 5 5 
 GABAB reversal (mV) -80 -80 
 GABAB rise time (ms) 1 45 
 GABAB decay time (ms) 20 200  
 Soma voltage-gated K+ channel density (S/cm2) 0.01 0.01 
 Soma Na+ channel density (S/cm2) 0.16 0.16 
 Soma leak channel reversal (mV) -65 -65 
 Soma leak channel density (S/cm2) 0.0000426 0.0000426 
 Soma Ca2+ channel density (pS/µm2) 60 0 
 Soma Ca2+ decay time (ms) 20 20 
 Soma Ca2+-dependent K+ channel density (pS/µm2) 0.0002 0.0002 
 Soma M-type K+ channel density (pS/µm2) 200 200 
 Soma T-type Ca2+ channel density (S/cm2) 0.0002 0.0002 
 Soma HCN channel density (S/cm2) 0.000001 0.000001 
 Dendrite voltage-gated K+ channel density (S/cm2) 0.01 0.01 
 Dendrite Na+ channel density (S/cm2) 0.14 0.14 
 Dendrite leak channel reversal (mV) -71 -71 
 Dendrite leak channel density (S/cm2) 0.0000426 0.0000426 
 Dendrite Ca2+ channel density (pS/µm2) 60 60* 
 Dendrite Ca2+ decay time (ms) 20 20 
 Dendrite Ca2+-dependent K+ channel density (pS/µm2) 0.0002 0.0002 
 Dendrite M-type K+ channel density (pS/µm2) 200 200 
 Dendrite T-type Ca2+ channel density (S/cm2) 0.0002 0.0002 
 Dendrite HCN channel density (S/cm2) 0.000001** 0.00001** 

 
* Density is equal to this value in apical dendrites (apical trunk, apical oblique, apical 1, apical 2, and apical tuft) only, and 
equal to 0 in the basal dendrites (basal 1, basal 2, basal 3). 
** HCN channel density increases as an exponential function of distance from the soma, starting at 0.000001 S/cm2 in 
the soma and increasing with a space constant of 0.003. 
  



Figure 10 provides a schematic of the connectivity between cell types in the model. Within each 
layer, synaptic strengths between pyramidal neurons are scaled according to a 2D symmetric 
Gaussian defined on the grid of cells, with a weight space constant of 3. Similarly, the synaptic delay 
between two PNs in the same layer is scaled according to an inverse Gaussian with a delay space 
constant of 3. 
 

Network connectivity parameters 
Source cell Target cell Synapse Maximal conductance (µS) 

Jones 2009 Law 2019 
L2/3 Pyr L2/3 Pyr AMPA 0.0005 0.0005 
  NMDA 0.0005 0.0005 
 L2/3 Basket AMPA 0.0005 0.0005 
 L5 Pyr AMPA 0.00025 0.00025 
 L5 Basket AMPA 0.00025 0.00025 
L2/3 Basket L2/3 Pyr GABAA 0.05 0.05 
  GABAB 0.05 0.05 
 L2/3 Basket GABAA 0.02 0.02 
 L5 Pyr GABAA 0.001 0 
  GABAB 0 0.0002 
L5 Pyr L5 Pyr AMPA 0.0005 0.0005 
  NMDA 0.0005 0.0004 
 L5 Basket AMPA 0.0005 0.0005 
L5 Basket L5 Pyr GABAA 0.025 0.02 
  GABAB 0.025 0.005 
 L5 Basket GABAA 0.02 0.02 

 
ERP input parameters 

Input type Target cell Synapse Maximal conductance (µS) 
Jones 2009 Law 2019 

Early proximal L2/3 Pyr AMPA 0.001 0.0011 
 L2/3 Basket AMPA 0.002 0.002 
 L5 Pyr AMPA 0.0005 0.001 
 L5 Basket AMPA 0.001 0.001 
Distal L2/3 Pyr AMPA 0.001 0.004 
  NMDA 0.001 0.004 
 L2/3 Basket AMPA 0.0005 0.0005 
  NMDA 0.0005 0.0005 
 L5 Pyr AMPA 0.001 0.0005 
  NMDA 0.001 0.0005 
Late proximal L2/3 Pyr AMPA 0.0053 0.005 
 L2/3 Basket AMPA 0.0053 0.005 
 L5 Pyr AMPA 0.0027 0.01 
 L5 Basket AMPA 0.0027 0.01 

 
  



Beta event parameters 
Burst properties 

Input type Parameter Sherman 2016 Law 2019 
Proximal Standard deviation (ms) 20 20 
 Number of bursts 10 10 
 Spikes per burst 2 2 
 L2/3 delay (ms) 0.1 0.1 
 L5 delay (ms) 1.0 1.0 
Distal Standard deviation (ms) 10 10 
 Number of bursts 10 10 
 Spikes per burst 2 2 
 L2/3 delay (ms) 5 0.5 
 L5 delay (ms) 5 0.5 

 
AMPA conductances (µS) 

Input type Target cell Compartment Sherman 2016 Law 2019 
Proximal L2/3 Pyr Basal 2 0.00002 0.00002 
  Basal 3 0.00002 0.00002 
  Apical oblique 0.00002 0.00002 
 L2/3 Basket Soma 0.00004 0.00004 
 L5 Pyr Basal 2 0.00002 0.00002 
  Basal 3 0.00002 0.00002 
  Apical oblique 0.00002 0.00002 
 L5 Basket Soma 0.00002 0.00002 
Distal L2/3 Pyr Apical tuft 0.00004 0.00008 
 L2/3 Basket Soma 0.00008 0.00032 
 L5 Pyr Apical tuft 0.00004 0.00004 

 
 
Supplemental Calculation 1: Spike destruction accompanies biophysically maximal dipoles 
 
The model “Class 2” evoked response dominates nonperceived trial averages despite a generating 
population of no more than 200,000 model L2/3 pyramids (see Figure 7 and Results). Although 
dipoles scale with their spatial separation, this large current dipole is generated by a near point-
source. We show here that it is indeed the largest current dipole that can be generated by the model 
cell.  
 
We first show that the current dipole dependence on length disappears in a linear resistive medium, 
as in the far-field we can view the net current dipole (D) as a sum of dipoles from all compartments 
c.  
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Intracellular axial current flow is governed by 𝐼 = 𝑔(𝑉, − 𝑉.) where 1 and 0 represent upper and 
lower cable junctions (compartment boundaries), g the intracellular conductance, and V the 
transmembrane voltage (conventionally assuming uniformity of the extracellular fluid).  
 
For each compartment, conductance scales inversely with length ℓ and directly with cross-sectional 
area 𝐴, which is assumed to be maximized in the soma. The one-compartment current dipole state is  
𝐷 = 𝜎3, 4

ℓ
∆𝑉∆𝑧. Observing that ∆𝑧 = ℓ, the current dipole for any compartment is then 
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This shows that given our assumptions, current dipoles are independent of compartment length. 
Geometrically, they depend on cross-sectional area instead; this is physically reasonable as magnetic 
fields depend on current flux density through a surface. Note that magnetic fields measured in MEG 
(fT) were converted to current dipole units (nAm) during the source localization procedure (1, 2). 
 
The state model is now equivalent to a series composition of simple resistors where we may set 
junction voltages arbitrarily to find a configuration that maximizes the net directional current flux. 
The maximum current dipole occurs when all junctions above the soma are at  𝑉567  and all 
junctions below the soma are at 𝑉589 . Here, |∆𝑉|, 𝐴 are both maximized despite generator length 
being essentially minimized.  
 
Conditions in a cell that maximize current dipoles will be said to satisfy the extreme local current 
property. In models of adult mammalian cells without calcium currents, see e.g. (3), membrane 
voltages are bounded by the respective sodium and potassium reversal potentials, i.e. 𝐸=6 = 𝑉567 
and 𝐸> = 𝑉589. Figure 7C confirms the extreme local current property holds approximately for 
sodium dendritic spikes where strong somatic inhibition (viewed as a control signal, denoted U) acts 
as a spike destructor function: 

𝑓: (𝑈, 𝑠𝑝𝑖𝑘𝑒) → (𝑈, 0) 
 
 
 
Supplemental Calculation 2: Estimated thermal activity due to spike destruction 
 
If an extremal current is indeed localized to a somatic compartment, the following estimate shows 
the thermal side effects of spike destruction are nonnegligible.  
 
Energy conservation governs heating in simple electrical resistors, and if linear resistive models of 
cytoplasm suffice, the average thermal energy dissipated over a compartment (Joule heating) for a 
distorted spike is estimated as: 
 

∆𝐸 = ∆t(Δ𝑉)K/𝑅 
 
The reader may verify that one destroyed spike generates thermal energy in the sub-nJ range for our 
model parameters, and one may also wish to estimate the energetic upper bound where spike 
destruction occurs simultaneously in all pyramidal somata.  
 
Here, though, we are interested in the rate of temperature change in a volume 𝒱 (the soma) 
containing a substance (water) with density 𝜌 (= 1 × 103R	µg/µmW) and specific heat capacity 𝐶	(=
4.186	𝜇𝐽/(𝜇𝑔 ⋅ 𝐾)) as a spike of amplitude ∆𝑉(= 100	mV) is destroyed while traversing that 
volume.  
Recalling Δ𝑇 = cd

5e
= cd

fℓ4e
 for a linear compartment (where 𝒱 = 𝐴ℓ for cross-sectional area A) we 

have: 
  

∆𝑇
∆𝑡 =

(∆𝑉)K
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The resistance scales linearly with length (in series) and inversely with cross-sectional area (in 
parallel), with model resistivity 𝜎 = 200	Ωcm (4, 5). Substituting 𝑅 = 𝜎ℓ/𝐴 into the above equation 
(while again noting that ∆𝑧 = ℓ) yields:  
 

∆𝑇
∆𝑡 =

(∆𝑉)K

𝜎𝜌𝐶(∆𝑧)K 

≅ 2.5	𝐾/𝑠 , 
 
assuming the spike is destroyed over the model L2/3 pyramidal somatic compartment, a drum-
shaped cable segment with height 22.1𝜇𝑚. Under alternate conditions (150𝑚𝑉 attenuation, 
150Ω𝑐𝑚 resistivity), we obtain instead 7.5K/s. Large differences in TRPV3 cationic currents were 
reported in this range of thermalization (6).  
 
Two exemplar studies exhibiting a remarkable range of thermodynamic processes in living cells can 
be found in (7, 8). We observe that the electrothermal shocks associated with spike destruction are 
inverse-quadratically sensitive to the axial length of the prosomatic “shock zone” wherein a spike is 
destroyed. If pronounced in real neurons, the effect will likely depend on the distribution of 
perisomatic inhibition – our model uses a point synapse at the middle of the somatic compartment. 
Absolute temperature changes will depend on the rate of destroyed spikes and the diffusion tensor.  
 
 
Supplemental Text Describing Experimental Procedures 
 
MEG Data Collection and Analysis  
 
Tactile-detection task 
 
A 2kHz auditory cue was presented for a duration of 2000ms. The timing of each tactile stimulus 
was sampled uniformly from a comb distribution spanning 500–1500ms after cue onset, consisting 
of 11 evenly spaced postcue timings. The stimulus consisted of a single sinusoidal tactile pulse 
lasting 10ms, delivered from a piezoelectric ceramic benderplate to the tip of the D3 digit of the 
right hand. After cue offset, subjects were instructed to press a button with the left hand (second or 
third digit) to report if the stimulus was perceived or not perceived. Tactile stimulus pulse amplitude 
was initially tuned to the individual’s perceptual threshold using the parameter estimation by 
sequential testing method (9, 10) and then dynamically maintained around threshold (1).  
 
MEG dipole source localization and preprocessing 
 
MEG dipoles were source-localized to primary somatosensory cortex using a two-dipole model (SI 
and SII), fitting suprathreshold responses with a signal-space projection method (11, 12). Data were 
sampled at 600Hz and bandpassed online between 0.01Hz and 200Hz. Individual trials were 
epoched into prestimulus (-1000ms – 0ms, where 0ms indicates tactile pulse onset) and poststimulus 
(0 – 2500ms) time periods. For each individual, the final 100 hit (detected) and 100 miss (non-
detected) trials were isolated for further analysis due to the stability of the dynamics at the end of the 
experiment (13). 
 
Baseline normalization and time-derivative estimation 



 
The choice of baseline correction method has been shown to differentially bias bandlimited power 
in postcue periods (13), and it was more recently shown directly that oscillations are coupled to 
baseline changes (14). If events influence later responses, baseline correction may also introduce 
spurious biases that will confound modeling attempts. In our study, the downward-bias of beta 
event waveforms (15) consistently lowers event-trial dipole means, and compensatory shifting 
intended to correct for these prestimulus differences introduced strong but spurious differences in 
poststimulus dipoles. 
 
To ensure that we did not fit our model to biased differences, we did not baseline shift our data.  We 
examined both raw data and time-derivatives — these yield baseline-free comparisons of dipole 
changes from active membrane processes. We used total-variation regularized differentiation, which 
corrects noise amplification in first-difference estimates of time-derivatives while preserving jump 
discontinuities observed in MEG data without linear filtering artifacts (16). We fixed the 
regularization parameter at 10-8 based on visual inspection of regularized fits to two trials (not 
shown). 
 
Defining beta events and assessing their perceptual effects 
 
Events in the prestimulus period were identified as regions in the time-frequency plane whose 
energy crossed six times the median energy at a given frequency, computed separately for each 
individual by convolution with a six-cycle Morlet wavelet (see 7 for more detailed methods). In this 
study we restricted our analysis to events with energy peaks between 20-22Hz, following the spectral 
concentration within the beta wideband (15-29Hz) observed in human somatosensory recordings (2, 
18). Trials were then partitioned into those with one or more prestimulus events (event trials) and 
those without events (no-event trials).  
 
We used the Wilcoxon rank-sum test to assess whether narrowband beta events affected perception 
(see Figure 1B). 
 
Post-stimulus phase coherence 
 
For all post-stimulus phase-coherence analyses, we first filtered the data in the frequency band of 
interest across the entire trial [-1000, 2500ms] and then applied a Hilbert transform to define phase, 
after which phase coherence was computed across trials.  
 
We obtained results pertaining to poststimulus phase coherence (Figure 8B, G and H) with a 
Chebyshev bandpass filter at 10dB within-band ripple. We initially chose this filter due to its rolloff 
properties useful for narrowband analysis, as higher-order Butterworth filters failed due to numerical 
issues. Because the Chebyshev filter amplifies at the bandlimits, we also determined whether a more 
conventional filter choice could yield similar results. Events with energy peaks at 20-22Hz had a 
nearly flat event-density distribution between 18–24Hz (data not shown), justifying the use of a 
third-order Butterworth filter in this wider band for beta phase analysis, and where we obtained 
nearly identical results.  
 
For the 160-200Hz Chebyshev filter, we found that a third-order Butterworth filter in the 178-
197Hz band also reproduced the significant differences between hit and miss trials at similar or 



identical timepoints. We report one result from each filter for beta- (3rd order Butterworth; 18–
24Hz) and high-frequency phase (Chebyshev, 10dB within-band ripple; 160-200Hz).  
 
After bandpassing, we computed the Hilbert transform for each trial x: 
 

𝐻(𝑥) = ℱ3,(2𝑢 ∙ ℱ(𝑥)) 
 
where ℱ is the (fast) Fourier transform and 𝑢 is the Heaviside step function. Real-valued sequences 
are paired with complex sequences, resulting in analytic signals 𝑥 + 𝑖𝐻(𝑥) with instantaneous phase 
given by the complex angle 𝜙 = arctan	 y(7)

7
. For narrowband beta events, the trough is associated 

with phase 𝜋 —Note that under this convention phase decreases over time. 
 
We then computed the cross-trial phase coherence at each timepoint as the modulus of the vector 
mean: 
 

𝐶 =
|Σ𝑒8|(})|

𝑁  
 
Note that zero coherence does not imply a uniform distribution across phases, but rather that the 
sample is phase-cancellative across trials.  
 
Correlating Class 2 model waveforms and MEG miss trials 
To compare “Class 2” (in which a beta event precedes the tactile stimulus by ~100-400 ms) model 
waveforms to MEG miss trials (Figure 7A), the mean empirical evoked response waveform (uMEG) 
was linearly regressed by least-squares directly onto the smoothed model waveform (xmodel), 
obtaining: 
 

𝜇�d� ≈ 𝛽. + 𝛽, ∙ 𝑥5���� 
 
The  𝑟K values assess agreement between model and data. We performed regressions separately for 
miss trials in event and no-event cases as well as in aggregate. In all cases, the constant offset 
parameter 𝛽. was small and not considered further. The linear scaling parameter 𝛽, was similar in all 
cases and used to estimate the scaling factor applied to the model to estimate the number of neurons 
that can account for the magnitude of the recorded signal.  
 
We report error regions reflecting standard error of the mean �

9�/�
 for reference in Figure 7A, but we 

do not report the standard error in other figures as our evidence of multiple waveform classes 
indicates that this statistic, which should only be interpreted under normality of residuals, would be 
misleading for interpreting our data.  
 
Finding direct and indirect correlates of Class 1 evoked responses in MEG data 
 
We expected Class 1 trials (in which a beta event and tactile stimulus occur at the same time) to be 
rare (see Results) making their identification sensitive to ongoing activity that might vary on a trial 
wise or individual basis. We furthermore did not want to exclude candidate trials due to small time-
lags unaccounted for by our model. However, because Class 1 trials were primarily characterized by 



a dipole upswing near 40ms poststimulus (see Figures 6, 8), false-positives could be generated by 
unrelated high-amplitude transients or indeed any waveform with an upward trend. 
 
To find candidate Class 1 trials in such a way that would be unbiased by within-trial variability, we 
first calculated the normalized cross-correlation 𝜒(𝑥5����, 𝑥�d�) between the model waveform and 
each MEG trial -- over the entire trial (-1000–2500ms) -- and found the lag time of peak cross-
correlation for each trial i:  

𝜏8 = argmax	𝜒8  
Histograms indicated a large peak in the distribution of peak Class 1 cross-correlates near 50ms lag 
(data not shown), an indicator of spurious correlation with the 80-90ms upward deflection exhibited 
in a significant fraction of all trials. These trials are more likely to be Class 2 or Class 3 trials: We 
excluded these, as well as trials with peak cross-correlation before onset, restricting our analysis to 
candidate Class 1 trials with lags 0𝑚𝑠 ≤ 𝜏 ≤ 25𝑚𝑠. This interval would not confound Class 1 with 
Class 3 trials, which exhibit similar waveforms but with different time-delays. This method also 
generated a sample small enough (n=18) where all waveforms could be presented, but large enough 
where statistics could be meaningfully computed. Similar results were obtained in wider intervals, up 
to −5𝑚𝑠 ≤ 𝜏 ≤ 30𝑚𝑠.  
 
The model having indicated that beta phase at 25ms poststimulus should covary with detection, we 
then examined how this feature, in combination with cross-correlation, dissociated Class 1 
candidates into hit and miss trials. To do so, we simply examined a circular histogram of beta phases 
for the 18 candidate Class 1 trials. 
 
Supplemental Text Describing Computational Model  
 
Computational Neural Model Construction and Analysis  
 
Comparison between current model and Jones et al. 2009 
 
Cell dendrite and somatic compartments were simulated with active ionic currents, as detailed in our 
prior study (2), see Supplementary Table 1. Structural differences between the 2009 model and 
current model included addition of Martinotti-like recurrent tuft connections from the L5 
interneuron to the L5 pyramidal neurons’ distal dendrites and removal of L2/3 GABAA interneuron 
synapses onto those same dendrites. We also adapted the model’s L5 calcium channel distribution, 
restricting expression to the apical dendrite. The most important a priori change in the model was an 
increase of the GABAB channel time constants to reflect data reported in (19). We reduced this 
model to a double-exponential conductance with 45/200ms respective rise/fall times, matching the 
peak conductance latency ~100ms of the above channel model (see also Figure 10 for model 
details).  
 
Modeling the tactile evoked response  
 
Model simulations of tactile evoked responses were generated by a sequence of three inputs to SI, as 
in (1, 2). Based on this prior work, the first “feedforward”, or bottom-up, input is simulated to arrive 
at pyramidal basal dendrites 25ms after stimulus onset, ostensibly from L4 by way of the sensory 
thalamus. Then, at 70ms, a top-down “feedback” input arrives from SII or higher-order thalamus. A 



subsequent basal input from L4 arrives 135ms poststimulus; however, we restricted our analysis of 
evoked responses to the first 140ms following the tactile stimulus because variability in the late input 
may depend on unmodeled interactions between SI and other cortical regions e.g. premotor cortex 
(20). See Supplemental Table 1 for parameters of evoked inputs.  
 
We obtained substantially better agreement with evoked response curvature by smoothing the raw 
model evoked response with a 45ms Hamming window. A primary mismatch between model and 
data was the M70 depth, which is shallow in the model compared to the data (Figure 3C and 3D).  
Our primary conclusions hold true irrespective of this discrepancy.  
 
Model of beta event generation and hypothesized recruitment of long-time scale supragranular inhibition 
 
In a recent study, we showed that brief ~50ms bursts of excitatory synaptic input to supragranular 
layers from unspecified upstream regions can explain coarse spectrotemporal features of the beta 
event waveshape (15). Spiking in SI pyramidal cells is not needed to explain these features, which 
can arise due to the subthreshold nature of macroscale beta events, particularly those with sources in 
matrix or “modulatory” thalamus (21, 22). Our hypothesis that a primary source of burst inputs 
generating beta events is higher order (nonlemniscal) thalamus (15), a hypothesis bolstered by a 
recent study showing that nonlemniscal thalamic spikes generate subthreshold effects on both L2/3 
and L5b pyramidal neurons in mice. These inputs also cause suprathreshold, basally-generated spikes 
in L54, concurrently recruiting VIP+ interneurons and potentially other 5HT3a+ interneurons in 
L2/3 (23).  
 
The immediate action of nonlemniscal thalamus on cortex appears to be disinhibition and 
subthreshold excitation – a puzzle in light of our behavioral data. Yet, on longer timescales, strong 
excitation of rodent nonlemniscal homolog POm profoundly reduces sensory-evoked spiking in barrel 
cortex (24), suggesting that thalamus may act on cortex at multiple timescales by first facilitating and 
then suppressing activity. Although the cortical response to higher-order thalamic bursts has not 
been directly quantified, we hypothesize that the thalamic inputs responsible for beta events elicit 
long-timescale inhibition of cortical pyramidal neurons. Noting that the tactile suppression timescale 
corresponds to that of GABAB1a G-protein coupled inhibition, we furthermore propose that L2/3 
neurogliaform cells (NGFCs) can mediate this effect.  
 
One of the few cell classes known to act through GABAB1a receptors, NGFCs are represented 
among 5HT3a+ interneurons in L2/3 and are coupled to all other interneuron populations via gap 
junctions (25). Direct recruitment of NGFCs through nonlemniscal bursting is therefore plausible 
(23), but local neurogliaform cells can also be influenced to spike through electrical coupling -- 
synchronized VIP+ recruitment by a thalamic burst is arguably the single most likely means of 
activating an NGFC “circuit-breaker” in L2/3. These neurogliaform cells can act perisomatically on 
L2/3 pyramids, either synaptically (26, 27) or through volume transmission (25) and on middle-
apical dendrites of L5 pyramidal cells (28). 
 
Based on this proposed mechanistic framework, we simulate the inhibitory effects of GABAB in 
trials that include a prestimulus beta event, as follows. We drive the L2/3 inhibitory neurons strong 
enough to elicit a spike, and assume that in addition to impacting the L2/3 somata, there is an 
additional GABAB “synapse” from L2/3 inhibitory cells to the L5 pyramidal neuron middle-apical 
dendrite (see Figure 4B). This inhibition represents the L2/3 neurogliaform cell activation, as bulk 
GABA release is not explicitly modeled. These GABAB “synapses” onto the L5 apical dendrite were 



not present in simulations without a prestimulus beta event, but we did not alter somatic GABAB 
conductances between models with and without beta events (Figure 4). See Supplemental Table 1 
for parameter values of the beta-generating drive, and for a comparison to earlier model parameters 
(29). 
 
Comparing MEG and Model Data 
 
Statistical analysis 
 
Hypothesis testing 
Let 𝑋 be a data matrix with 𝑋(𝑖, 𝑡) representing the observation at time 𝑡 during trial 𝑖. Here 𝑋(𝑖, 𝑡) 
will be some property, such as current dipole or instantaneous phase, of a MEG signal from a single 
source-localized channel (real or modeled) at time 𝑡 on trial 𝑖. Let 𝐿 be vector of labels with 𝐿(𝑖) 
representing the label for trial 𝑖. Here 𝐿(𝑖) ∈ {0,1} will indicate a behavioral outcome or prestimulus 
event, such as a correct detection or a beta event, for trial 𝑖.  
 
We use permutation tests to test the null hypothesis that the labels and the data at time 𝑡 are 
independent (or, more generally, that the labels are exchangeable given the data, at time 𝑡). For 
current dipole data our test statistic is the difference between the average current dipole on trials 
with label 1 and the average current dipole on trials with label 0. For instantaneous phase data our 
test statistic is the difference between the phase coherence on trials with label 1 and the phase 
coherence on trials with label 0.  
 
Permutation tests work by randomly shuffling the trial labels and recomputing the test statistic for 
nonsensically labelled data many times in order to obtain a null distribution. The observed test 
statistic (on the correct trial labels) is compared to this null distribution in order to obtain a p-value. 
We report two-sided p-values in all cases and use at least 5000 permutations. See (30) for more 
details about hypothesis testing and permutation tests. We use the same trial label permutation for 
testing each time 𝑡 (i.e. the shuffling is performed on entire time-series, not independent time 
points). This is important for our method of controlling for multiple hypothesis tests, described 
next.  
 
Because we are testing a separate null hypothesis at each time 𝑡, it is important to control for 
multiple hypothesis tests. We use a variant of the max-t method, which creates a global test statistic 
by taking the maximum (for the upper-tail) and minimum (for the lower tail) of the test-statistic over 
all times 𝑡, and then creates a null distribution (one for each tail) in the usual way by shuffling trial 
labels. The observed test statistic at each time 𝑡 is compared to these common, global null 
distributions in order to create adjusted p-values that provide strong control of the family-wise error 
rate. Rejecting those null hypotheses with adjusted p-values ≤ 𝛼 guarantees that the probability of 
zero false rejections is ≥ 1 − 𝛼. See (31, 32) for more details about permutation tests and multiple 
testing.  
 
Our variant of the max-t method robustly standardizes the test statistics at each time 𝑡 prior to 
computing the maximum (or minimum) in order to more evenly distribute statistical power across all 
of the hypotheses. The specific details of our procedure can be found in (33) (We thank M. 
Harrison, Brown University, for sharing code for this procedure.)  



 
Supplementary Discussion 
 
Beta Mediation of Learning 
 
A natural pathway for beta events to induce learning is through the VIP+ interneuron system, 
known to be activated by higher-order thalamus (23) and recently shown to mediate NMDA-based 
long term potentiation (LTP) in pyramidal cells (34). Though not directly modeled, we hypothesized 
that the aforementioned VIP networks, when synchronized, also recruit neurogliaform cells via 
electrical synapses, which causes beta event suppression in our model. Interestingly, in rodent 
somatosensory L2/3 pyramidal cells, NMDA spike-mediated LTP, also with a thalamic source, had 
been found in the absence of somatic activity (35). This parallels our findings that L2/3 inhibition 
with a thalamic source results in a large dipole signal in the absence of somatic spiking (Figure 7).  
 
Along these lines, it is interesting to note that increased somatic calcium flow has been reported 
under strong somatic inhibition during slow-wave sleep, where it was hypothesized to optimize 
learning (36). In that study, GABAA-ergic parvalbumin positive interneurons were found responsible 
for the effect – however, GABAB activation tends to follow hyperactivation of GABAA interneurons 
as GABA overflows the synaptic cleft (37). Therefore, in addition to this VIP-NMDA mechanism, 
the collision between dendritic spikes and perisomatic suppression may lead to calcium transfer to 
the soma; such signaling cation fluxes are well-known to play fundamental and general roles in 
structural plasticity (38, 39). Electromotive forces generated in high voltage dendritic sodium spikes 
can presumably push calcium directly from the dendrite into the soma. Moreover, in the extreme 
case of long-duration dendritic bursts, the sheer voltage difference between compartments can also 
lead to an energy transfer large enough to cause perisomatic heating (see SI Appendix, Supplemental 
Calculation 1). Calcium influx due to momentary heating can then be effected through temperature-
sensitive ion channels or through membrane capacitance changes, as evident in infrared stimulation 
protocols (e.g. 40).  
 
Therefore, together with our modeling results, the literature appears to support two mechanisms  — 
one short-term process via VIP - NMDA at the dendrite, and one long-term process via calcium at 
the soma — both of which might be linked by coupling through the Class 2 mechanism. It is 
possible that VIP-coupled NMDA may act as a short-term tag on a synaptic site, which could later 
be converted to permanent memory after spike destruction and subsequent somatic calcium influx, 
mediated by neurogliaform cells and/or soma-targeting GABAA-ergic populations.  
 
Modeling Assumptions, Limitations and Independence  
 
This study builds from a body of prior MEG and modeling work, where we first showed that post-
stimulus features of the tactile-evoked response in SI (i.e. the M70 amplitude and slope) alone could, 
in principle, account for correlates of tactile detection without considering prestimulus state (1). 
Later, we established that prestimulus low-frequency rhythms (i.e. the SI mu rhythm, comprised of 
7-14 Hz alpha and 15-29 Hz beta rhythms) influence components of the evoked response through 
specific network mechanisms, including a strong inhibitory influence mediated by sensory evoked 
inhibition (2). However, in the latter study, we reported only on averaged data, and did not separate 
the effects of the alpha and beta components of the SI mu rhythm, nor did we investigate the 
relation of these effects to perception. Further studies showed alpha and beta have separable effects 



on perception and attention (18, 41). The current study is the first to look at circuit mechanism 
mediated perceptual effects specifically in the beta band.   
 
The chosen SI model configuration is grounded in generalizable principles of cortical circuitry and 
known somatosensory cortical architecture (see Experimental Procedures). Some of the model 
assumptions create limitations in our conclusions, while many of the findings are independent of 
specific model choices.  
 
One potential limitation is that we simulate only one type of GABAB receptor. We found that even 
at low densities, simulated GABAB1a channels in middle-apical dendrites of L5 pyramidal cells 
induced by beta-events can prevent these cells from firing during sensory stimulation. However, the 
primary target of L2/3 NGF activation on L5b apical dendrites is presumably the GABAB1b 
receptor, which inactivates calcium channels while admitting sodium spike propagation (28). As 
such, it is possible that L5 pyramidal spikes can be recruited by weak sensory stimuli in the absence 
of L2/3 recruitment when they are close to their firing threshold. Our model, and the assumed 
higher-order thalamic origin of burst events, also does not account for the higher-order thalamic 
recruitment of L5a pyramidal spikes observed in rodent slices (23).  
 
Despite these assumptions, it is crucial to note that several of our main results, while dependent on 
our proposed beta-generating mechanism – namely, the ~50ms burst of subthreshold excitatory 
synaptic input to pyramidal neuron distal dendrites -- are essentially independent of free parameters 
in the model. First, the high-frequency coherence predicted during detected Class 1 responses relies 
only on the ~5ms L2/3 doublet interval observed in our model, which has been noted in awake 
rodents and may possibly have a correlate in primates (42, 43). Second, non-detected Class 2 
waveforms should occur in any model that contains dendritic geometry, dendritic spikes, and strong 
perisomatic inhibition. Third, while we’ve assumed beta events are mediated by higher-order 
thalamus, it is possible that top-down corticocortical connections play a role in generating beta 
events. The functional distinction of the source of the distal drive does not change the fundamental 
findings of our study, which identifies neural circuit mechanisms generating beta-mediated evoked 
response correlates of perception within a canonical cortical unit. 
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