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Abstract

Identifying genes and cellular pathways associated with normative brain physiology and behavior
could help discover molecular therapies that target specific psychiatric symptoms with minimal side
effects. Linking genotype-phenotype associations from population-scale datasets to brain function is
challenging because of the multi-level, heterogeneous nature of brain organization. To address this
challenge, we developed a novel brain-focused gene and pathway prioritization workflow, which maps
variants to genes based on knowledge of brain genome regulation, and subsequently to pathways,
cells, diseases and drugs (21 resources). We applied this workflow to nine cognitive tasks from the
Philadelphia Neurodevelopmental Cohort (subset of 3,319 individuals aged 8-21 years). We report
genome-wide significance of variants associated with nonverbal reasoning within the 3' end of the
FBLN1 gene (p=4.6x10-8), itself linked to fetal neurodevelopment and psychotic disorders. These
findings suggest that nonverbal reasoning and FBLN1 variation warrant further investigation in
studies of psychosis. Multiple cognitive tasks demonstrated significant enrichment of variants in
cellular pathways and brain-related gene sets, such as organ development, cell proliferation and
nervous system dysfunction. Top-ranking genes in working memory associated pathways are
genetically associated with multiple diseases with working memory deficits, including schizophrenia
and Parkinson's disease, and with multiple drugs, suggesting that choice of therapy for memory
deficits should consider disease context. Given the large amount of additional biological insight
derived from our pathway analysis, versus a standard gene-based approach, we propose that “genes to
behaviour” frameworks for modeling brain-related phenotypes, like RDoC, should include pathway
information to create a “genes to pathways to behaviour” approach. Our workflow is broadly useful to
put genotype-phenotype associations of brain-related phenotypes into the context of brain
organization, function, disease and known molecular therapies.
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| ntroduction

A major drive in the field of psychiatry is the reconceptualization of mental illnesses, diseases
traditionally classified on the basis of clinical descriptions, as brain disorders treatable by
neurobiologically-grounded therapies. The U.S. National Institute of Mental Health developed
Research Domain Criteria (or RDoC), a framework to build a “genes to behaviour” model of the human
brain that deconstructs behaviour into multiple domains mediated by different neuroanatomical
regions, local cellular circuits and molecules (https://www.nimh.nih.gov/research-
priorities/rdoc/index.shtml ; 1). The ambition of the RDoC framework is to develop neurobiologically-
grounded taxonomy, biomarkers and treatments for mental illness to support use of precision
medicine in psychiatry?. The neurobehavioural framework has been embraced by psychiatric
researchers at multiple levels of brain research, including cross-disorder genome-wide association
studies and genetic risk prediction3#, and identification of genetic contributors to neuroimaging-based
measures of brain activity and structure associated with disease>. Population-scale datasets that
measure genotype and cognition-related phenotypes, such as the Philadelphia Neurodevelopmental
Cohort®’, the Adolescent Brain Cognitive Development (ABCD) dataset® and UK Biobank?, provide an
attractive resource to build a molecules-to-behaviour model for brain-specific phenotypes. Moreover,
maps of brain-specific genome regulation, such as those generated by the GTEx!'%, NIH Roadmap
Epigenomics!? and PsychENCODE!2 projects, now enable the effect of genetic variants to be
interpreted in brain-relevant neuroanatomical and developmental contexts. However, integrating
genotype-phenotype associations with these data resources to methodically infer variant impact on
various levels of brain organization represents a major challenge, due to the large number of complex
data sets that need to be integrated.

In this work, we develop a novel brain-focused computational analysis workflow to identify genes,
pathways and cellular functions, as well as gene-related brain functions, diseases and drugs. We apply
this workflow to identify genes and functions associated with normative variation in nine cognitive
phenotypes from the Philadelphia Neurodevelopmental Cohort (PNC). To our knowledge, little is
known about the molecular basis of different cognitive phenotypes in humans, and the extent to which
molecular and cellular players overlap across these. With extensive neurobehavioural and genotyping
data available on 8,000 community youths aged 8-21 years, the PNC represents the largest publicly-
available dataset of its kind for genotype-phenotype analysis of cognition®’. All participants have
computerized neurocognitive test battery (CNB) scores which measures speed and accuracy in
multiple cognitive domains (e.g. emotion processing, executive function), and which has
neurobehavioural validity (i.e. tasks known to activate specific brain regions), SNP-based
heritability?3, and disease relevance314. The CNB has also been characterized for demographic effects!>
and neuropsychological validation1, altogether providing a well-characterized set of phenotypes to
study the genetic basis of specific cognitive abilities. While a number of CNB phenotypes demonstrate
significant SNP-based heritability!3, and reduced test scores have been genetically associated with
psychiatric disease risk3, there has not been a methodical examination of the molecular players
involved in individual phenotypes. We reasoned that identifying the genes, pathways, cellular and
developmental context associated with these phenotypes could pinpoint genetic crosstalk between
individual cognitive tasks and psychiatric and neurological diseases, and provide hypotheses for
molecular therapy of corresponding cognitive impairments in disease.
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M ethods

Genetic imputation

The workflow for genomic imputation is shown in Supplementary Figure 1. Genotypes for four
microarray genotyping platforms were downloaded from dbGaP (phs000607.v1). We performed
genetic imputation for the Illumina Human610-Quad BeadChip, the Illumina HumanHap550
Genotyping BeadChip v1.1, Illumina HumanHap550 Genotyping BeadChip v3, and the Affymetrix
AxiomExpress platform (Supplementary Table 1, total of 6,502 samples before imputation), using the
protocol recommended by the EMERGE consortium!’. Imputation was performed as follows:

Step 1: Platform-specific plink Quality Control: Quality control was first performed for each
microarray platform. Single nucleotide polymorphisms (SNPs) were limited to those on chr1-22. SNPs
in linkage disequilibium (LD) were excluded (--indep-pairwise 50 5 0.2), and alleles were recoded
from numeric to letter (ACGT) coding. Samples were excluded if they demonstrated heterozygosity > 3
standard deviations (SD) from the mean, or if they were missing >=5% genotypes. Where samples had
pairwise Identity by Descent (IBD) > 0.185, one of the pair was excluded. Variants with minor allele
frequency (MAF) < 0.05 were excluded, as were those failing Hardy-Weinberg equilibrium with p < le-
6 and those missing in >=5% samples.

Step 2: Convert coordinates to hgl9. LiftOver!® was used to convert SNPs from hgl8 to hgl9;
Hap550K v1 data was in hg17 and was converted from this build to hg19.

Step 3: Strand-match check and prephasing: Shapelt v2.r7901° was used to confirm that the allelic
strand in the input data matched that in the reference panel; where it did not, allele strands were
flipped (shapeit “-check” flag). Shapelt was used to prephase the variants using the genetic_b37
reference panel (downloaded from the Shapeit website,
http://www.shapeit.fr/files/genetic_map_b37 .tar.gz)

Step 4: Imputation: Genotypes were imputed using Impute2 v2.3.22° and a reference panel from the
1,000 Genomes (phase 1, prephased with Shapeit2, no singletons, 16 June 2014 release, downloaded
from
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phasel_integrated_SHAPEIT2_16-06-
14.html ) was used for imputation, using the parameter settings “—use_prephased_g —-Ne 20000 -seed
367946". Average concordance for all chromosomes was ~95%, indicating successful imputation
(Supplementary Figure 2). Imputed genotypes were merged across all platforms using software from
the Ritchie lab” (impute2-group-join.py, from https://ritchielab.org/software /imputation-download)
and converted to plink format. Following previous PNC genotype analysis13, only SNPs with info score
> 0.6 were retained, and deletions/insertions were excluded (plink “-snps-only just-acgt” flags). As
preliminary quality control, when merging across chromosomes, samples with missingness exceeding
99% were excluded, as were SNPs with MAF < 1% and with missingness exceeding 99%. This step
resulted in 10,845,339 SNPs and 6,327 individuals.

Step 5: Post-imputation Quality Control: The HapMap3 panel was used to assign genetic ancestry
for samples, using steps from 2! (Supplementary Figure 3). Individuals within 5 SD of the centroid of
the HapMap3 CEU (Utah residents with Northern or Western European ancestry) or TSI (Tuscans in
Italy) cluster were assigned to belong to the respective groups, and were classified as being of
European descent; 3,441 individuals pass this filter. Individuals with >5% missing data were excluded,
as was one of each pair of individuals with IBS > 0.185 (47 individuals); 3,394 individuals passed this
filter. Variants that were symmetric or in regions of high LD (Supplementary Table 2) were excluded
(9,631,316 SNPs passed). Variants with >5% missingness were excluded (1,569,407 SNPs excluded).
Finally, SNPs with MAF < 0.01 (3,168,339 SNPs) and failing Hardy-Weinberg equilibrium (HWE) with
p value < 1le-6 (373 SNPs) were excluded, resulting in 4,893,197 SNPs. Unlike Verma et al, quality
control steps were performed once, rather than repeated after samples were excluded. In sum, the
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imputation process resulted in 3,394 individuals and 4,893,197 SNPs available for downstream
analysis.

Phenotype processing

Phenotype data was downloaded from dbGaP for 8,719 individuals. 637 individuals with severe
medical conditions (Medical rating=4) were excluded to avoid confounding the symptoms of their
conditions with performance on the cognitive tests!3. Linear regression was used to regress out the
effect of age at test time (variable name: “age at cnb”) and sex from sample-level phenotype scores,
and the residualized phenotype was used for downstream analysis.

The nine phenotypes selected for pathway analysis were measures of overall performance accuracy in
Penn Computerized Neurocognitive Test Battery (CNB; Supplementary Table 3) and represented
major cognitive domains. Following regression, none of the phenotypes were significantly correlated
with age after Bonferroni correction, indicating that the age effect had been reduced (Supplementary
Table 4). Following guidelines from previous analyses on these data3, individuals with scores more
than four standard deviations from the mean for a particular test were excluded from the analysis of
the corresponding phenotype. For a given phenotype, only samples with a code indicating a valid test
score (codes "V" or "V2") were included; e.g. for pfmt_tp (Penn Face Memory Test), only samples with
pfmt_valid = “V” or “V2” were retained; the rest had scores set to NA. Finally, each phenotype was
dichotomized so that samples in the bottom 33rd percentile were relabeled as “poor” performers and
those in the top 33rd were set to be “good” performers; for a given phenotype, this process resulted in
~1,000 samples in each group (Supplementary Table 3). Where an individual had good or poor
performance in multiple phenotypes, they were included in the corresponding group for each of those
phenotypes.

Genetic association analysis

For each of 9 CNB phenotypes, marginal SNP-level association was calculated using a mixed-effects

linear model (MLMA), using the leave-one-chromosome-out (LOCO) method of estimating polygenic

contribution (GCTA v1.97.7beta software?2). In this strategy, a mixed-effect model is fit for each SNP:
y=a+bx+g-+e

In this model, y is the binarized label (good/poor performers on a particular task), x measures the
effect of genotype (indicator variable encoded as 0, 1 or 2), and g- represents the polygenic
contribution of all the SNPs in the genome (here, the ~4.89M imputed SNPs). In the LOCO variation, g-
is calculated using a chromosome-specific genetic relatedness matrix, one that excludes the
chromosome on which the candidate SNP is located?2. SNPs and associated genes were annotated as
described in Supplementary Notes 1-4.

Hi-C Data Processing

We generated Hi-C data from the human prefrontal cortex??® (Illumina HiSeq 2000 paired-end raw
sequence reads; n=1 sample; 746 Million reads; accession: GSM2322542
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2322542]). Hi-C analysis involved Trim
Galore?* (v0.4.3) for adapter trimming, HICUP?> (v0.5.9) for mapping and performing quality control,
and GOTHIC 26 for identifying significant interactions (Bonferroni p <0.05), with a 40 kb resolution. Hi-
C gene annotation involved identifying interactions with gene promoters, defined as + 2 kb of a gene
TSS. This analysis identified 303,464 interactions used for our study.
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SNP to gene mapping for annotation and enrichment analyses

SNPs were mapped to genes using a combination of positional information, brain-specific expression
Quantitative Trait Locus (eQTL) and higher-order chromatin interaction (hi-C) information. For eQTL-
based mapping, we limited the search to significant eQTLs in brain tissue (GTEx v7 brain anterior
cingulate cortex BA24, brain cortex, brain frontal cortex BA9, and hippocampus; downloaded from
https://www.gtexportal.org; Supplementary Note 110); of these, only SNPs located in open chromatin
regions of brain-related samples were included (Roadmap Epigenomics 15-core chromatin state
<=7)11, These included maps derived from neurospheres, angular gyrus, anterior caudate, germinal
matrix, hippocampus, inferior temporal lobe, dorsolateral prefrontal cortex, substantia nigra, and fetal
brain of both sexes (samples E053, E054, E067, E068, E069, EQ070, E071, E072, E073, E074, E081,
E082, and E125), downloaded from http://www.roadmapepigenomics.org/. For 3D chromatin
interaction mapping, SNPs were mapped to genes if these were located within a region where higher-
order interaction was ascertained in the dorsolateral prefrontal cortex??; this region was constrained
to be 250bp upstream and 500bp downstream of the gene's transcription start site; of these SNPs, only
those overlapping brain enhancers were included!!. These included enhancers in angular gyrus,
hippocampus, inferior temporal lobe, and dorsolateral prefrontal cortex (samples E067, E071, E072,
and E073; chromatin state "Enh" or "EnhG"). Finally, SNPs were positionally mapped to the nearest
gene if the shortest distance to either transcription start site or end site was 60kb. This cutoff was
selected because it maps the majority (90%) of SNPs to their nearest gene.

The order of mapping was as follows: SNPs that mapped to a gene via brain eQTL or hi-C interactions
were not also positionally mapped to a gene. A SNP was allowed to map to genes using both eQTL and
hi-C, and where SNPs mapped to multiple genes all associations were retained. SNPs without eQTL or
hi-C mappings were positionally mapped to a gene. Where a SNP mapped to multiple genes, all
associations were retained. These SNP-gene mappings were used for the gene set enrichment analysis
described below, as well as to annotate SNPs from the GWAS analysis.

Gene set enrichment analysis

For each of the nine CNB phenotypes, gene set enrichment analysis was performed using an
implementation of GSEA for genetic variants?®2°. GSEA was selected as it computes pathway
enrichment scores using all available SNP information, which improves sensitivity, rather than using a
hypergeometric model limited to SNPs passing a specific GWAS p-value cutoff. All SNPs were mapped
to genes (as described in the "SNP-gene mapping for annotation and enrichment analyses"” section)
and each gene score is the best GWAS marginal p-value of all mapped SNPs. For each pathway, GSEA
computes an enrichment score (ES) using the rank-sum of gene scores. The set of genes that appear in
the ranked list before the rank-sum reaches its maximum deviation from zero, is called the "leading
edge subset”, and is interpreted as the core set of genes responsible for the pathway's enrichment
signal. Following computation of the ES, a null distribution is created for each pathway by repeating
genome-wide association tests with randomly label-permuted data and by computing ES from these
permuted data; in this work, we use 100 permutations. Finally, the ES on the original data is
normalized to the score computed for the same gene set for label-permuted data (Z-score of real ES
relative to distribution of ES in label-permuted data), resulting in a Normalized Enrichment Score
(NES) per pathway. The nominal p-value for the NES score is computed based on the null distribution
and FDR correction is used to generate a g-value.

The first enrichment analysis used pathway information compiled from HumanCyc30
(http://humancyc.org), NetPath (http://www.netpath.org)3!, Reactome (http://www.reactome.org)32,
NCI Curated Pathways33, mSigDB34 (http://software.broadinstitute.org/gsea/msigdb/), and Panther3>

(http://pantherdb.org/) and Gene Ontology?3®
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(Human_GOBP_AllPathways_no_GO_iea_May_01_2018_symbol.gmt, downloaded from

http://download.baderlab.org/EM Genesets/May 01 2018/Human/symbol/Human GOBP AllPathwa
ys no GO iea May 01 2018 symbol.gmt); only pathways with 20-500 genes were used.

The second enrichment analysis used brain-related gene sets we compiled from various literature
sources (see Supplementary Table 5 and Supplementary Note 5 for details). Gene sets included those
identified through transcriptomic or proteomic assays in human brain tissue (i.e. direct measurement
of expression), and genes associated with brain function by indirect inference (e.g. genetic association
of nervous system disorders); both groups of gene sets were combined for this enrichment analysis.
The transcriptomic/proteomic gene sets included: genes identified as markers for adult and fetal brain
cell types through single-cell transcriptomic experiments37-39, genes enriched for brain-specific
expression (Human Protein Atlas project (https://www.proteinatlas.org*’); genes co-expressed with
markers of various stages of human brain development (BrainSpan#!); and genes encoding proteins
altered in the schizophrenia synaptosomal proteome*?. Other gene sets included: genes associated
with schizophrenia, bipolar disorder, autism spectrum disorder and major depressive disorder
through large-scale genetic association studies by the Psychiatric Genomics Consortium
(Supplementary Note 5); genes associated with nervous system disorders by the Human Phenotype
Ontology#3. Genes in the second group were filtered to only include genes with detectable expression
(including long non-coding RNA genes) in the fetal** or adult human brain#?. A total of 1,343 gene sets
were collected. Only gene sets with 20-500 genes were included in the analysis; 421 gene sets met
these criteria and were included in the enrichment analysis.

Enrichment map

An enrichment map was created to visualize the functional themes significant in enrichment analyses.
We used the EnrichmentMap app v3.1.0%> and Cytoscape v3.7.14¢ to create the map. Nodes in the map
are pathways with FDR significance of FDR < 0.10 and edges in the map connect nodes with at least a
gene set similarity of 0.375 (using Jaccard + Overlap similarity).

L eading edge gene interaction networ k

Genes contributing to pathway enrichment results (leading edge genes) were obtained as part of the
implementation of GSEA for genetic variants28. The network was constructed from leading edge genes
of pathways with q < 0.05. The online GeneMANIA service (v 3.6.0; https://genemania.org*’) was used
to obtain a gene-gene interaction network for leading edge genes (human database, default settings);
the resulting network and edge attributes were downloaded. This network was imported into
Cytoscape v3.7.1. Known drug associations were obtained from DGIdb* and GWAS associations with
nervous system disorders were obtained from the NHGRI-EBI GWAS catalogue, via programmatic
search using the TargetValidation.org API4?50. Cell type marker information was compiled from single
cell RNA-seq datasets, including those for adult and fetal human brain37-3°.

Results

Figure 1a shows the workflow for the analysis performed in this work. Briefly, genotypes were
imputed using a reference panel from the 1,000 Genomes Project°!, and samples were limited to those
of European genetic ancestry (Supplementary Figure 1-3, Supplementary Table 1). 3,394 individuals
and ~4.9M SNPs passed the quality control and imputation process. Following quality control of
phenotype data, 3,116 European samples passed both genotype and phenotype filters and were
included in downstream analyses. We selected nine phenotypes from the Penn Computerized
Neurocognitive Test Battery (CNB) representing overall accuracy in four cognitive domains: complex
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cognition, executive function, declarative memory, and social processing (Supplementary Table 3).
Measures included performance for verbal reasoning, nonverbal reasoning, spatial reasoning,
attention allocation, working memory, recall tests for faces, words and objects, and emotion
identification4 In all instances, age and sex was regressed out of the phenotype (Supplementary Table
4) and samples were thereafter binarized into poor and good performers (bottom and top 33%
percentile, respectively) resulting in ~1,000 samples per group for each phenotype (Supplementary
Figure 4,5, Supplementary Table 3).

For each of the nine phenotypes, we first performed SNP-level genome-wide association analysis using
a mixed-effects linear model that included genome-wide genetic ancestry as a covariate (GCTAZ2%).
Among the nine phenotypes, 661 SNPs had suggestive levels of significance at the genome-wide level
(p < 105 Figure 1b,c, Supplementary Figure 6,7, Supplementary Table 6). Over half of these SNPs are
associated with tasks related to complex cognition (377 SNPs or 57%); 27% were associated with
executive function (177 SNPs), 13% with declarative memory tasks (83 SNPs), and 4% with emotion
identification (24 SNPs).

We mapped SNPs to genes using brain eQTL information, brain-specific higher-order chromatin
interactions%27 and positional information. We integrated our findings with functional annotation
maps of the brain to identify the neurodevelopmental and psychiatric significance of these genes
(Figure 1d, Supplementary Table 7). The 661 suggestive peaks map to 106 genes. ~14% (15 genes)
have been genetically associated with diseases of the nervous system, including schizophrenia
(SNAP91, CORO7), bipolar disorder (FBLNI), multiple sclerosis (THEMIS, CLECL16A), alcohol
dependence (MREG, KCNJ6, FSTL5), and Alzheimer's disease (NRXN1) (11 or 13% genes;
Supplementary Table 7). Nearly one-third of these genes are markers of various cell-types in the fetal
and newborn brain, including neuronal progenitor cells, neurons, radial glia, astrocytes, and
endothelial cells (31 genes, 29%; 39), and one gene is a marker of adult brain cells (THEMIS)?’. Seven
genes are known to interact with drugs; a notable interaction is between CACNA2D3, a voltage gated
Calcium channel with suggestive association with working memory (top SNP p = 3.9e-6), and
Gabapentin enacarbil, a drug used to treat epilepsy, neuralgia and restless legs syndrome>2. One-sixth
of suggestive peaks (112 SNPs or 17%) were predicted to have a functional consequence in brain
tissue (Figure 1c, e), including nonsynonymous changes to protein sequence, presence in brain-
specific promoters and enhancers, or association with changes in gene expression. In summary,
genetic variants associated with typical variation in neurocognition map to genes implicated in human
brain development, altered in psychiatric disease, and that are modulated by drugs used to treat
neurological conditions.

Nonverbal reasoning was the only phenotype with SNPs passing the cutoff for genome-wide
significance (rs77601382 and rs5765534, p = 4.6x10-8) (Figure 2). The peak is located in a ~33kb
region (chr22:45,977,415-46,008,175) overlapping the 3’ end of the Fibulin-1 (FBLN1) gene, including
the last intron and exon (Figure 2b). To better understand the significance of this gene in brain
function, we examined FBLN1 expression in published fetal and adult transcriptomes, and single-cell
datal03%41, FBLN1 transcription in the human brain is highest in the early stages of fetal brain
development, with little to no expression in the adult (Figure 2c, Supplementary Figure 8); this is
consistent with single-cell assays showing FBLN1 to be a marker for dividing progenitor cells in the
fetal brain (Figure 1d, 3°). FBLN1 encodes a glycoprotein present in the extracellular matrix; this
protein is a direct interactor of proteins involved in neuronal diseases, such as Amyloid Precursor
Protein-1 (Supplementary Figure 9 53). FBLN1 expression is upregulated in the brain in schizophrenia
and has been previously associated with genetic risk for bipolar disorder (Figure 1d, 54°5). Therefore,
we conclude that FBLN1, associated with nonverbal reasoning test performance, shows characteristics


https://doi.org/10.1101/751933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

of a gene involved in neurodevelopment and the dysregulation of which could increase risk for
psychotic disorders of neurodevelopmental origin.

We then performed pathway analysis for all nine selected CNB phenotypes using a rank-based
pathway analysis strategy that includes all SNPs used in the association analysis (GSEAZ2834, 100
permutations; 4,102 pathways tested). SNPs were mapped to genes using brain-specific eQTL,
chromatin interaction and positional information, using the same method as described above. Four out
of nine phenotypes demonstrated significant enrichment of top-ranking genetic variants in pathways
(q < 0.1; Figure 3a, Supplementary Tables 8-10). These included tasks in complex cognition (spatial
reasoning), declarative memory (object and face memory), and executive function (working memory).
The working memory phenotype showed significant enrichment of variants in pathways related to
development, including neural development (q<0.05; Figure 3a, Supplementary Tables 8-10). To
understand how genes contributing to pathway enrichment could be related to brain function, we
annotated the corresponding leading edge genes with prior knowledge about associations with
nervous system disorders, drug interactions and transcription in brain cell types37-39.4849, Qut of 355
leading edge genes, over half are known brain cell markers (228 genes or 64%), roughly one-third
have known drug interactions (129 genes or 36%), and ~14% are associated with nervous system
disease (51 genes) (pathway q < 0.10, Figure 3b, Supplementary Table 10). Among disease-associated
genes were those associated with autism (CSDE1), multiple sclerosis (CYP27B1, EOMES), depression
(ROBO1), glaucoma and wet macular degeneration (LHCGR). None of the SNPs associated with leading-
edge genes (416 SNPs) overlapped suggestive or significant GWAS SNPs (661 SNPs).

To identify enrichment specific to brain-related processes and mental illness, we performed a second
enrichment analysis using gene sets curated from the literature (Supplementary Note 5). These
included gene sets derived from transcriptomic and proteomic profiles of the developing and adult
healthy brain and brains affected by mental illness, genome-wide association studies and terms from
phenotype ontology (421 gene sets tested, Supplementary Note 5, Supplementary Table 5,
Supplementary Data 1). Six gene sets were significantly enriched (q<0.10), with five associated with
working memory and the sixth with verbal reasoning (Figure 3¢, Supplementary Table 11). A cluster of
related gene sets related to autonomic nervous system dysfunction and a gene set related to locomotor
dysfunction achieved significance at q < 0.05. Only one out of 157 SNPs associated with leading-edge
genes overlaps with suggestive SNPs from GWAS analysis. Roughly 13% of the 134 leading edge genes
are associated with nervous system disorders (18 genes), one-fifth have known drug targets (27
genes, 20%), and over half (81 genes or 60%) are markers of brain cell-types (Figure 3c,d;
Supplementary Table 12, 13). Five genes have all three attributes: SNCA, CAV1, LRRK2, ERBB4 and
MAPT (Figure 3d, Supplementary Table 13). One example is Alpha-synuclein (SNCA4, top SNP p=2.6e-4),
which has been genetically associated with risk for developing Parkinson's disease®®, is a marker of
excitatory neurons in the fetal brain3?, and is a drug target of BIIB50448. Another example is ERB-B2
receptor tyrosine kinase 4 (ERBB4), which has been genetically associated with mood disorders and
unipolar depression®?, is a target of 24 drugs and is a marker of inhibitory neurons in the fetal brain.
Other leading edge genes have been associated with schizophrenia, autism spectrum disorder,
Parkinson's disease, Alzheimer's disease, depression and mood disorders (Figure 3d, Supplementary
Table 13). In summary, genetic variants associated with normative variation in a range of
neurocognitive phenotypes are enriched in pathways and gene sets related to cell proliferation, brain
development, nervous system dysfunction and mental disorders.
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Discussion

This study identifies molecular variants and cellular processes that contribute to normal human
variation in specific cognitive domains. Consistent with heritability estimates, we find that the number
of variant-level associations and enriched pathways varies considerably by phenotype (Figure 4). In
particular, we find an enrichment of genetic variants associated with complex cognitive phenotypes
(75-219 suggestive peaks), consistent with heritability estimates of up to 0.30-0.41 for these
phenotypes?3. A variety of cognitive phenotypes are enriched for variants in pathways. Moreover, the
set of variants driving pathway enrichment has almost no overlap with suggestive variants from the
GWAS analysis (no overlap for brain-related gene sets; a single SNP, rs9367669, overlaps for pathway
sets). These results suggest that a molecules-to-behaviour research framework that includes genes
and molecules, should also include pathways as a way to uncover new biological insights into existing
genotype databases. Previous research in other polygenic psychiatric disorders, such as schizophrenia
and major depression®8, has also shown an enrichment of disease-associated molecules in pathways.
We suggest that the Research Domain Criteria (RDoC) matrix be updated to add a level for pathways,
above that of genes and molecules and below cells. This modification will help associate additional
genetic signal with brain related phenotypes, which otherwise would be missed if just considering
SNPs and genes.

Variants, genes and pathways associated with typical variation in neurocognitive phenotypes,
demonstrate evidence for a role in neurodevelopment, modulating gene expression in the fetal and
adult brain and increasing risk for psychiatric disease (Figure 1, Supplementary Table 6, 7, 10, 13).
Multiple lines of evidence suggest that FBLN1, the gene associated with genome-wide significant SNPs
for nonverbal reasoning, is dysregulated in disease. In addition to the evidence provided in our results
(Figure 1d, Figure 2c, Supplementary Figure 8,9), FBLN1 has been associated with other rare genetic
syndromes and protein levels of FBLN1 have been associated with altered risk for ischaemic
stroke>%60, However, the mechanism by which FBLN1 contributes to normal brain function is not
known. We also do not exclude the possibility that suggestive peaks we identified within FBLNI may
affect the function of neighbouring genes. One such gene is Ataxin-10 (ATXN10), in which a
pentanucleotide repeat expansion causes spinocerebellar atrophy and ataxia®!.

An advantage of using a rank-based gene set enrichment analysis method, as compared to
hypergeometric tests, is that the method ranks and prioritizes a subset of genes (leading edge genes)
within a potentially large gene set (>100 genes), which are responsible for driving the enrichment
statistic. In this work, we found five neurocognitive phenotypes with significant enrichment of high-
ranking variants in pathways. We annotated leading edge genes to identify those that are jointly
related to working memory, which demonstrated significant enrichment in both gene set analyses,
and psychiatric disease (Figure 3). For instance, among the leading edge genes contributing to working
memory were genes previously associated with Parkinson's disease, Alzheimer's disease,
schizophrenia, autism, and depression, all of which have been associated with working memory
impairments®2-67. We note, however, that the individual genes connecting any given disease to working
memory are different. For instance, among leading edge genes for working memory, ERBB4 is
associated with depression, whereas SNCA is associated with Parkinson's disease (Figure 3c,
Supplementary Table 13). One implication of this partially overlapping gene network is that the
therapeutic targets that may be relevant for working memory deficits may depend on what disease the
patient has, as a different subset of the "working memory gene network” is affected by each condition.

This work contributes towards an understanding of the molecular underpinnings of human brain-
related behaviour and could help to identify genetic contributors towards the heterogeneity in
phenotypes associated with multiple brain-related disorders®®%°, Our analysis is limited to univariate
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genetic effects, and future work will explore the contribution of interactions between individual SNPs,
possibly explaining lack of SNP-level or pathway-level signal in some of the phenotypes studied here.
Our findings also suggest that different cognitive phenotypes may be vulnerable to genetic alterations
in different cellular pathways. Such exploration could identify disease-specific molecular targets that
impinge on the same neurocognitive phenotype. Finally, we propose that research frameworks for
linking genotype to phenotype for brain-related traits include cellular pathways as an organizational
layer to support uncovering additional genetic signal from available genetic data.
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Figure 1. Genome-wide association analysis for neurocognitive phenotypes from the Philadelphia
Neurodevelopmental Cohort.

a. Workflow. Genotypes were imputed (1KGP reference), and limited to European samples. Samples
with severe medical conditions were removed and invalid test scores excluded. Nine neurocognitive
test scores were binarized after age and sex had been regressed out. GWAS was performed for
accuracy for each of these nine phenotypes.

b. Breakdown of SNPs achieving suggestive significance, by phenotype (top).

c. Suggestive and significant SNPs and associated genes. The outermost ring shows the location of
suggestive peaks (p < 10-5), coloured by phenotype (see b); y-axis shows -log10(SNP p), so that SNPs
with stronger significance are higher. SNPs with p<10-7 are labeled. The tracks with ticks indicate
functional consequences of associated SNPs. The track closest to the middle indicate SNPs overlapping
brain enhancers (light gray) or promoters (black). The dark red middle track indicates SNPs with
nonsynonymous variation, including NMD transcript, missense or splice variants’l. The outermost
track indicates QTL associations, including eQTL in adult prefrontal cortex (dark blue), fetal brain
(cyan), or neuronal cell proportions in the adult brain (fQTL; orange). Genes associated with top SNPs
are indicated within the circle.

d. Genes associated with top SNPs (p < 3x107) with prior knowledge about relevance to brain
development and psychiatric disorders. Columns indicate differential expression in
neurodevelopmental disorders®* (SCZ = schizophrenia; ASD= autism), significant association with a
nervous system disorder#?, or status as marker gene for specific cell types in fetal brain3?.

e. Breakdown of functional consequence of top SNPs and by functional consequence (bottom).
Consequence shown is limited to effect on protein sequence’!, presence in enhancers or promoters in
adult cortical regions!!, eQTL in fetal brain, or adult forebrain. Final bar shows cumulative proportion
of putatively functional SNPs.
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Figure 2. Genome-wide significance of FBLNI1 region for binarized performance in nonverbal
reasoning

a. Manhattan plot of univariate SNP association with binarized performance in nonverbal reasoning
(N=1,024 poor vs. 1,023 good performers; 4,893,197 SNPs). Plot generated using FUMA7Z
b. Detailed view of hit region at chr22q13. Two SNPs pass genome-wide significance threshold,
rs77601382 and rs74825248 (p=4.64e-8). View using Integrated Genome Viewer (v2.3.937374), The
red bar indicates the region with increased SNP-level association.
c. FBLN1 transcription in the human brain through the lifespan. Data from BrainSpan*l. Log-
transformed normalized expression is shown for cerebellar cortex (CBC), central ganglionic eminence
(CGE) and lateral ganglionic eminence (LGE), dorsal frontal cortex (DFC), and hippocampus (HIP).
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>59  Figure 3. Pathway and gene set enrichment analysis for neurocognitive task performance
»60  a. Pathways significantly enriched for genetic variation in neurocognitive task performance (GSEA,
>61 100 permutations, q < 0.1, Supplementary Tables 8, 9, 10). Nodes indicate pathways, with fill
>62  indicating phenotype and yellow bubbles denoting clusters of related gene sets; edges indicate shared
>63  genes.
»64  b. Number of leading edge genes associated with transcription in specific brain cell types (blue), drug
»65  targets (yellow) or genetic associations with specific nervous system disorders (pink) (pathways with
)66 q<0.10, N=355 genes).
»67  c. Brain-related gene sets enriched for genetic variation in task performance. Left: Significant gene
)68  sets; legend same as panel a (Supplementary Tables 11,12, 13). Right: Top leading edge genes in
>69  enriched brain-related gene sets (N=48 genes, p < 5e-3, pathways with q < 0.05). Nodes show genes
>70  and fill indicates genes associated with brain cell types, drugs or genetic associations with nervous
»71  system disorders (white indicates absence of association). Edges indicate known interactions
»72  (GeneMANIA%7). Genes with disease associations have been highlighted in grey pullout bubbles.
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»73  d. Leading edge genes in brain-related gene sets associated with disease, drugs or brain cell types
»74  (N=134 genes); legend as in b.
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Figure 4. a. Association of top genes, gene sets, and pathways with different levels of brain
organization. Each column shows data for an individual phenotype, grouped by domain; rows show
associations at increasingly higher levels (from top to bottom), and finally with drug targets. All results
are from this work unless otherwise cited. Circles indicate relative number of suggestive variant peaks
(p < 10-°) from GWAS (median=43; mean=73.4), with numbers indicated below (asterisk: p < 5x10-8),
and genes are those mapped to top-ranking SNPs (p <=1x10-°) (only protein-coding genes; noncoding
genes listed in Supplementary Table 14). Pathways and brain-related gene sets shown are those
passing q < 0.1 in enrichment analysis (red asterisk: q<=0.05). Fetal brain cell associations are as
shown in Figure 1d. Gene-disease associations combine those for top GWAS SNPs (Figure 1d) and from
gene set enrichment analysis; drug associations are from the latter (Supplementary Tables 10 and 14).
Prior associations of alterations in phenotype or task-based brain activation as described in 14(1) or
75(2).

b. Proposed workflow for gene prioritization, as used in this work. When provided with genotype-
phenotype data, SNPs are first prioritized by assigning an association statistic (e.g. by GWAS). Gene set
enrichment analysis is performed to identify groups of genes with subthreshold phenotype
association. SNP-gene mappings use brain-specific maps of genome regulation, prioritizing evidence-
based association over positional mapping. Enrichment of pathways and brain-related gene sets are
simultaneously performed using a rank-based method such as GSEA, which provides a leading edge
subset for subsequent prioritization. Leading edge genes are annotated with clinical attributes of
interest, such as druggability, prior disease association and evidence for expression in particular brain
cell types, and the combination of attributes can be turned into a prioritization score.
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597 Tables
98
Phenotype N # lead Indiv. Sig. SNPs | SNPp Gene
SNPs (p < le-6)
(p < 1le-5)

Complex Cognition

Verbal 2,068 83 -

Non-verbal 2,047 75 rs77601382 4.6X108 FBLN1
rs76901846 1.0 X107 BTBD11
rs5765534 1.4 X107

Spatial 2,024 219 rs446816 2.6 X107 NBEA
rs7001721 8.5 X107

Executive Function

Working 2,047 153 rs565936 6.6 X107 FAT3

memory
rs2093484 9.3 X107

Attention 2,041 24 rs11992719 5.1X108
rs1792551 9.3 X107 INSC

Social processing

Emotion 2,068 24 rs73118294 7.1 X108 TOX2

Identification®
rs4341378 4.9 X107

Declarative memory

Face memory 2,066 16 rs6926533; 5.4 X107 RBMXP1
rs148111284 6.9 X107 PCP4

Word memory 2,073 43 -

Object memory | 2,070 24 rs56659368 3.2X107

99

’00  Table 1. Genetic variants significantly associated with neurocognitive phenotypes in the Philadelphia
’01  Neurodevelopmental Cohort (PNC) dataset. For each test in the PNC neurocognitive test battery, GCTA
’02  was run to obtain SNP-level (marginal) p-values associated with binarized (good or poor)
’03  performance. Top SNPs (p < 1.0x10-¢) are shown above (full list of suggestive SNPs in Supplementary
’04  Table 5). SNPs were mapped to genes based on expression modulation, chromatin interaction of
’05  positional information. Only protein-coding genes shown here; additional non-coding RNA
’06  associations shown in Supplementary Table 7).
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