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Abstract 25 

  26 

Identifying genes and cellular pathways associated with normative brain physiology and behavior 27 

could help discover molecular therapies that target specific psychiatric symptoms with minimal side 28 

effects. Linking genotype-phenotype associations from population-scale datasets to brain function is 29 

challenging because of the multi-level, heterogeneous nature of brain organization. To address this 30 

challenge, we developed a novel brain-focused gene and pathway prioritization workflow, which maps 31 

variants to genes based on knowledge of brain genome regulation, and subsequently to pathways, 32 

cells, diseases and drugs (21 resources). We applied this workflow to nine cognitive tasks from the 33 

Philadelphia Neurodevelopmental Cohort (subset of 3,319 individuals aged 8-21 years). We report 34 

genome-wide significance of variants associated with nonverbal reasoning within the 3' end of the 35 

FBLN1 gene (p=4.6x10-8), itself linked to fetal neurodevelopment and psychotic disorders. These 36 

findings suggest that nonverbal reasoning and FBLN1 variation warrant further investigation in 37 

studies of psychosis. Multiple cognitive tasks demonstrated significant enrichment of variants in 38 

cellular pathways and brain-related gene sets, such as organ development, cell proliferation and 39 

nervous system dysfunction. Top-ranking genes in working memory associated pathways are 40 

genetically associated with multiple diseases with working memory deficits, including schizophrenia 41 

and Parkinson's disease, and with multiple drugs, suggesting that choice of therapy for memory 42 

deficits should consider disease context. Given the large amount of additional biological insight 43 

derived from our pathway analysis, versus a standard gene-based approach, we propose that “genes to 44 

behaviour” frameworks for modeling brain-related phenotypes, like RDoC, should include pathway 45 

information to create a “genes to pathways to behaviour” approach. Our workflow is broadly useful to 46 

put genotype-phenotype associations of brain-related phenotypes into the context of brain 47 

organization, function,  disease and known molecular therapies. 48 
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Introduction 49 

A major drive in the field of psychiatry is the reconceptualization of mental illnesses, diseases 50 

traditionally classified on the basis of clinical descriptions, as brain disorders treatable by 51 

neurobiologically-grounded therapies. The U.S. National Institute of Mental Health developed 52 

Research Domain Criteria (or RDoC), a framework to build a “genes to behaviour” model of the human 53 

brain that deconstructs behaviour into multiple domains mediated by different neuroanatomical 54 

regions, local cellular circuits and molecules (https://www.nimh.nih.gov/research-55 

priorities/rdoc/index.shtml ; 1). The ambition of the RDoC framework is to develop neurobiologically-56 

grounded taxonomy, biomarkers and treatments for mental illness to support use of precision 57 

medicine in psychiatry2. The neurobehavioural framework has been embraced by psychiatric 58 

researchers at multiple levels of brain research, including cross-disorder genome-wide association 59 

studies and genetic risk prediction3,4, and identification of genetic contributors to neuroimaging-based 60 

measures of brain activity and structure associated with disease5. Population-scale datasets that 61 

measure genotype and cognition-related phenotypes, such as the Philadelphia Neurodevelopmental 62 

Cohort6,7, the Adolescent Brain Cognitive Development (ABCD) dataset8 and UK Biobank9, provide an 63 

attractive resource to build a molecules-to-behaviour model for brain-specific phenotypes. Moreover, 64 

maps of brain-specific genome regulation, such as those generated by the GTEx10, NIH Roadmap 65 

Epigenomics11 and PsychENCODE12 projects, now enable the effect of genetic variants to be 66 

interpreted in brain-relevant neuroanatomical and developmental contexts. However, integrating 67 

genotype-phenotype associations with these data resources to methodically infer variant impact on 68 

various levels of brain organization represents a major challenge, due to the large number of complex 69 

data sets that need to be integrated.  70 

 71 

In this work, we develop a novel brain-focused computational analysis workflow to identify genes, 72 

pathways and cellular functions, as well as gene-related brain functions, diseases and drugs. We apply 73 

this workflow to identify genes and functions associated with normative variation in nine cognitive 74 

phenotypes from the Philadelphia Neurodevelopmental Cohort (PNC). To our knowledge, little is 75 

known about the molecular basis of different cognitive phenotypes in humans, and the extent to which 76 

molecular and cellular players overlap across these. With extensive neurobehavioural and genotyping 77 

data available on 8,000 community youths aged 8-21 years, the PNC represents the largest publicly-78 

available dataset of its kind for genotype-phenotype analysis of cognition6,7. All participants have 79 

computerized neurocognitive test battery (CNB) scores which measures speed and accuracy in 80 

multiple cognitive domains (e.g. emotion processing, executive function), and which has 81 

neurobehavioural validity (i.e. tasks known to activate specific brain regions), SNP-based 82 

heritability13, and disease relevance3,14. The CNB has also been characterized for demographic effects15 83 

and neuropsychological validation16, altogether providing a well-characterized set of phenotypes to 84 

study the genetic basis of specific cognitive abilities. While a number of CNB phenotypes demonstrate 85 

significant SNP-based heritability13, and reduced test scores have been genetically associated with 86 

psychiatric disease risk3, there has not been a methodical examination of the molecular players 87 

involved in individual phenotypes. We reasoned that identifying the genes, pathways, cellular and 88 

developmental context associated with these phenotypes could pinpoint genetic crosstalk between 89 

individual cognitive tasks and psychiatric and neurological diseases, and provide hypotheses for 90 

molecular therapy of corresponding cognitive impairments in disease.  91 
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Methods 92 

Genetic imputation 93 

The workflow for genomic imputation is shown in Supplementary Figure 1. Genotypes for four 94 

microarray genotyping platforms were downloaded from dbGaP (phs000607.v1). We performed 95 

genetic imputation for the Illumina Human610-Quad BeadChip, the Illumina HumanHap550 96 

Genotyping BeadChip v1.1, Illumina HumanHap550 Genotyping BeadChip v3, and the Affymetrix 97 

AxiomExpress platform (Supplementary Table 1, total of 6,502 samples before imputation), using the 98 

protocol recommended by the EMERGE consortium17. Imputation was performed as follows: 99 

Step 1: Platform-specific plink Quality Control: Quality control was first performed for each 100 

microarray platform. Single nucleotide polymorphisms (SNPs) were limited to those on chr1-22. SNPs 101 

in linkage disequilibium (LD) were excluded (--indep-pairwise 50 5 0.2), and alleles were recoded 102 

from numeric to letter (ACGT) coding. Samples were excluded if they demonstrated heterozygosity > 3 103 

standard deviations (SD) from the mean, or if they were missing >=5% genotypes. Where samples had 104 

pairwise Identity by Descent (IBD) > 0.185, one of the pair was excluded. Variants with minor allele 105 

frequency (MAF) < 0.05 were excluded, as were those failing Hardy-Weinberg equilibrium with p < 1e-106 

6 and those missing in >=5% samples.  107 

Step 2: Convert coordinates to hg19. LiftOver18 was used to convert SNPs from hg18 to hg19; 108 

Hap550K v1 data was in hg17 and was converted from this build to hg19. 109 

Step 3: Strand-match check and prephasing: ShapeIt v2.r79019 was used to confirm that the allelic 110 

strand in the input data matched that in the reference panel; where it did not, allele strands were 111 

flipped (shapeit “–check” flag). ShapeIt was used to prephase the variants using the genetic_b37 112 

reference panel (downloaded from the Shapeit website, 113 

http://www.shapeit.fr/files/genetic_map_b37.tar.gz) 114 

Step 4: Imputation: Genotypes were imputed using Impute2 v2.3.220 and a reference panel from the 115 

1,000 Genomes (phase 1, prephased with Shapeit2, no singletons, 16 June 2014 release, downloaded 116 

from 117 

https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_SHAPEIT2_16-06-118 

14.html ) was used for imputation, using the parameter settings “–use_prephased_g –Ne 20000 –seed 119 

367946”. Average concordance for all chromosomes was ~95%, indicating successful imputation 120 

(Supplementary Figure 2). Imputed genotypes were merged across all platforms using software from 121 

the Ritchie lab17 (impute2-group-join.py, from https://ritchielab.org/software/imputation-download) 122 

and converted to plink format. Following previous PNC genotype analysis13, only SNPs with info score 123 

> 0.6 were retained, and deletions/insertions were excluded (plink “-snps-only just-acgt” flags). As 124 

preliminary quality control, when merging across chromosomes, samples with missingness exceeding 125 

99% were excluded, as were SNPs with MAF < 1% and with missingness exceeding 99%. This step 126 

resulted in 10,845,339 SNPs and 6,327 individuals. 127 

Step 5: Post-imputation Quality Control: The HapMap3 panel was used to assign genetic ancestry 128 

for samples, using steps from 21 (Supplementary Figure 3). Individuals within 5 SD of the centroid of 129 

the HapMap3 CEU (Utah residents with Northern or Western European ancestry) or TSI (Tuscans in 130 

Italy) cluster were assigned to belong to the respective groups, and were classified as being of 131 

European descent; 3,441 individuals pass this filter. Individuals with >5% missing data were excluded, 132 

as was one of each pair of individuals with IBS > 0.185 (47 individuals); 3,394 individuals passed this 133 

filter. Variants that were symmetric or in regions of high LD (Supplementary Table 2) were excluded 134 

(9,631,316 SNPs passed). Variants with >5% missingness were excluded (1,569,407 SNPs excluded).  135 

Finally, SNPs with MAF < 0.01 (3,168,339 SNPs) and failing Hardy-Weinberg equilibrium (HWE) with 136 

p value < 1e-6 (373 SNPs) were excluded, resulting in 4,893,197 SNPs. Unlike Verma et al, quality 137 

control steps were performed once, rather than repeated after samples were excluded. In sum, the 138 
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imputation process resulted in 3,394 individuals and 4,893,197 SNPs available for downstream 139 

analysis. 140 

Phenotype processing 141 

Phenotype data was downloaded from dbGaP for 8,719 individuals. 637 individuals with severe 142 

medical conditions (Medical rating=4) were excluded to avoid confounding the symptoms of their 143 

conditions with performance on the cognitive tests13. Linear regression was used to regress out the 144 

effect of age at test time (variable name: “age at cnb”) and sex from sample-level phenotype scores, 145 

and the residualized phenotype was used for downstream analysis.  146 

The nine phenotypes selected for pathway analysis were measures of overall performance accuracy in 147 

Penn Computerized Neurocognitive Test Battery (CNB; Supplementary Table 3) and represented 148 

major cognitive domains. Following regression, none of the phenotypes were significantly correlated 149 

with age after Bonferroni correction, indicating that the age effect had been reduced (Supplementary 150 

Table 4). Following guidelines from previous analyses on these data3, individuals with scores more 151 

than four standard deviations from the mean for a particular test were excluded from the analysis of 152 

the corresponding phenotype. For a given phenotype, only samples with a code indicating a valid test 153 

score (codes "V" or "V2") were included; e.g. for pfmt_tp (Penn Face Memory Test), only samples with 154 

pfmt_valid = “V” or “V2” were retained; the rest had scores set to NA. Finally, each phenotype was 155 

dichotomized so that samples in the bottom 33rd percentile were relabeled as “poor” performers and 156 

those in the top 33rd were set to be “good” performers; for a given phenotype, this process resulted in 157 

~1,000 samples in each group (Supplementary Table 3). Where an individual had good or poor 158 

performance in multiple phenotypes, they were included in the corresponding group for each of those 159 

phenotypes. 160 

 161 

Genetic association analysis 162 

For each of 9 CNB phenotypes, marginal SNP-level association was calculated using a mixed-effects 163 

linear model (MLMA), using the leave-one-chromosome-out (LOCO) method of estimating polygenic 164 

contribution (GCTA v1.97.7beta software22). In this strategy, a mixed-effect model is fit for each SNP: 165 

y = a + bx + g- + e 166 

 167 

In this model, y is the binarized label (good/poor performers on a particular task), x measures the 168 

effect of genotype (indicator variable encoded as 0, 1 or 2), and g- represents the polygenic 169 

contribution of all the SNPs in the genome (here, the ~4.89M imputed SNPs). In the LOCO variation, g- 170 

is calculated using a chromosome-specific genetic relatedness matrix, one that excludes the 171 

chromosome on which the candidate SNP is located22. SNPs and associated genes were annotated as 172 

described in Supplementary Notes 1-4. 173 

 174 

Hi-C Data Processing 175 

We generated Hi-C data from the human prefrontal cortex23 (Illumina HiSeq 2000 paired-end raw 176 

sequence reads; n=1 sample; 746 Million reads; accession: GSM2322542 177 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2322542]). Hi-C analysis involved Trim 178 

Galore24 (v0.4.3) for adapter trimming, HICUP25 (v0.5.9) for mapping and performing quality control, 179 

and GOTHIC 26 for identifying significant interactions (Bonferroni p <0.05), with a 40 kb resolution. Hi-180 

C gene annotation involved identifying interactions with gene promoters, defined as ± 2 kb of a gene 181 

TSS. This analysis identified 303,464 interactions used for our study. 182 

 183 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/751933doi: bioRxiv preprint 

https://doi.org/10.1101/751933
http://creativecommons.org/licenses/by/4.0/


Page 6 of 23

SNP to gene mapping for annotation and enrichment analyses 184 

SNPs were mapped to genes using a combination of positional information, brain-specific expression 185 

Quantitative Trait Locus (eQTL) and higher-order chromatin interaction (hi-C) information. For eQTL-186 

based mapping, we limited the search to significant eQTLs in brain tissue (GTEx v7 brain anterior 187 

cingulate cortex BA24, brain cortex, brain frontal cortex BA9, and hippocampus; downloaded from 188 

https://www.gtexportal.org; Supplementary Note 110); of these, only SNPs located in open chromatin 189 

regions of brain-related samples were included (Roadmap Epigenomics 15-core chromatin state 190 

<=7)11. These included maps derived from neurospheres, angular gyrus, anterior caudate, germinal 191 

matrix, hippocampus, inferior temporal lobe, dorsolateral prefrontal cortex, substantia nigra, and fetal 192 

brain of both sexes (samples E053, E054, E067, E068, E069, E070, E071, E072, E073, E074, E081, 193 

E082, and E125), downloaded from http://www.roadmapepigenomics.org/. For 3D chromatin 194 

interaction mapping, SNPs were mapped to genes if these were located within a region where higher-195 

order interaction was ascertained in the dorsolateral prefrontal cortex27; this region was constrained 196 

to be 250bp upstream and 500bp downstream of the gene's transcription start site; of these SNPs, only 197 

those overlapping brain enhancers were included11. These included enhancers in angular gyrus, 198 

hippocampus, inferior temporal lobe, and dorsolateral prefrontal cortex (samples E067, E071, E072, 199 

and E073; chromatin state "Enh" or "EnhG"). Finally, SNPs were positionally mapped to the nearest 200 

gene if the shortest distance to either transcription start site or end site was 60kb. This cutoff was 201 

selected because it maps the majority (90%) of SNPs to their nearest gene.  202 

 203 

The order of mapping was as follows: SNPs that mapped to a gene via brain eQTL or hi-C interactions 204 

were not also positionally mapped to a gene. A  SNP was allowed to map to genes using both eQTL and 205 

hi-C, and where SNPs mapped to multiple genes all associations were retained. SNPs without eQTL or 206 

hi-C mappings were positionally mapped to a gene. Where a SNP mapped to multiple genes, all 207 

associations were retained. These SNP-gene mappings were used for the gene set enrichment analysis 208 

described below, as well as to annotate SNPs from the GWAS analysis. 209 

Gene set enrichment analysis 210 

For each of the nine CNB phenotypes, gene set enrichment analysis was performed using an 211 

implementation of GSEA for genetic variants28,29. GSEA was selected as it computes pathway 212 

enrichment scores using all available SNP information, which improves sensitivity, rather than using a 213 

hypergeometric model limited to SNPs passing a specific GWAS p-value cutoff. All SNPs were mapped 214 

to genes (as described in the "SNP-gene mapping for annotation and enrichment analyses" section) 215 

and each gene score is the best GWAS marginal p-value of all mapped SNPs. For each pathway, GSEA 216 

computes an enrichment score (ES) using the rank-sum of gene scores. The set of genes that appear in 217 

the ranked list before the rank-sum reaches its maximum deviation from zero, is called the "leading 218 

edge subset", and is interpreted as the core set of genes responsible for the pathway's enrichment 219 

signal. Following computation of the ES, a null distribution is created for each pathway by repeating 220 

genome-wide association tests with randomly label-permuted data and by computing ES from these 221 

permuted data; in this work, we use 100 permutations. Finally, the ES on the original data is 222 

normalized to the score computed for the same gene set for label-permuted data (Z-score of real ES 223 

relative to distribution of ES in label-permuted data), resulting in a Normalized Enrichment Score 224 

(NES) per pathway. The nominal p-value for the NES score is computed based on the null distribution 225 

and FDR correction is used to generate a q-value. 226 

 227 

The first enrichment analysis used pathway information compiled from HumanCyc30 228 

(http://humancyc.org), NetPath (http://www.netpath.org)31, Reactome (http://www.reactome.org)32, 229 

NCI Curated Pathways33, mSigDB34 (http://software.broadinstitute.org/gsea/msigdb/), and Panther35 230 

(http://pantherdb.org/) and Gene Ontology36 231 
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(Human_GOBP_AllPathways_no_GO_iea_May_01_2018_symbol.gmt, downloaded from 232 

http://download.baderlab.org/EM_Genesets/May_01_2018/Human/symbol/Human_GOBP_AllPathwa233 

ys_no_GO_iea_May_01_2018_symbol.gmt); only pathways with 20-500 genes were used. 234 

 235 

The second enrichment analysis used brain-related gene sets we compiled from various literature 236 

sources (see Supplementary Table 5 and Supplementary Note 5 for details). Gene sets included those 237 

identified through transcriptomic or proteomic assays in human brain tissue (i.e. direct measurement 238 

of expression), and genes associated with brain function by indirect inference (e.g. genetic association 239 

of nervous system disorders); both groups of gene sets were combined for this enrichment analysis. 240 

The transcriptomic/proteomic gene sets included: genes identified as markers for adult and fetal brain 241 

cell types through single-cell transcriptomic experiments37-39, genes enriched for brain-specific 242 

expression (Human Protein Atlas project (https://www.proteinatlas.org40); genes co-expressed with 243 

markers of various stages of human brain development (BrainSpan41); and genes encoding proteins 244 

altered in the schizophrenia synaptosomal proteome42. Other gene sets included: genes associated 245 

with schizophrenia, bipolar disorder, autism spectrum disorder and major depressive disorder 246 

through large-scale genetic association studies by the Psychiatric Genomics Consortium 247 

(Supplementary Note 5); genes associated with nervous system disorders by the Human Phenotype 248 

Ontology43. Genes in the second group were filtered to only include genes with detectable expression 249 

(including long non-coding RNA genes) in the fetal44 or adult human brain40. A total of 1,343 gene sets 250 

were collected. Only gene sets with 20-500 genes were included in the analysis; 421 gene sets met 251 

these criteria and were included in the enrichment analysis. 252 

Enrichment map  253 

An enrichment map was created to visualize the functional themes significant in enrichment analyses. 254 

We used the EnrichmentMap app v3.1.045 and Cytoscape v3.7.146 to create the map. Nodes in the map 255 

are pathways with FDR significance of FDR < 0.10 and edges in the map connect nodes with at least a 256 

gene set similarity of 0.375 (using Jaccard + Overlap similarity). 257 

 258 

Leading edge gene interaction network 259 

Genes contributing to pathway enrichment results (leading edge genes) were obtained as part of the 260 

implementation of GSEA for genetic variants28. The network was constructed from leading edge genes 261 

of pathways with q < 0.05. The online GeneMANIA service (v 3.6.0; https://genemania.org47) was used 262 

to obtain a gene-gene interaction network for leading edge genes (human database, default settings); 263 

the resulting network and edge attributes were downloaded. This network was imported into 264 

Cytoscape v3.7.1. Known drug associations were obtained from DGIdb48 and GWAS associations with 265 

nervous system disorders were obtained from the NHGRI-EBI GWAS catalogue, via programmatic 266 

search using the TargetValidation.org API49,50. Cell type marker information was compiled from single 267 

cell RNA-seq datasets, including those for adult and fetal human brain37-39. 268 

Results 269 

Figure 1a shows the workflow for the analysis performed in this work. Briefly, genotypes were 270 

imputed using a reference panel from the 1,000 Genomes Project51, and samples were limited to those 271 

of European genetic ancestry (Supplementary Figure 1-3, Supplementary Table 1). 3,394 individuals 272 

and ~4.9M SNPs passed the quality control and imputation process. Following quality control of 273 

phenotype data, 3,116 European samples passed both genotype and phenotype filters and were 274 

included in downstream analyses. We selected nine phenotypes from the Penn Computerized 275 

Neurocognitive Test Battery (CNB) representing overall accuracy in four cognitive domains: complex 276 
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cognition, executive function, declarative memory, and social processing (Supplementary Table 3). 277 

Measures included performance for verbal reasoning, nonverbal reasoning, spatial reasoning, 278 

attention allocation, working memory, recall tests for faces, words and objects, and emotion 279 

identification14. In all instances, age and sex was regressed out of the phenotype (Supplementary Table 280 

4) and samples were thereafter binarized into poor and good performers (bottom and top 33% 281 

percentile, respectively) resulting in ~1,000 samples per group for each phenotype (Supplementary 282 

Figure 4,5, Supplementary Table 3). 283 

 284 

For each of the nine phenotypes, we first performed SNP-level genome-wide association analysis using 285 

a mixed-effects linear model that included genome-wide genetic ancestry as a covariate (GCTA22). 286 

Among the nine phenotypes, 661 SNPs had suggestive levels of significance at the genome-wide level 287 

(p < 10-5; Figure 1b,c, Supplementary Figure 6,7, Supplementary Table 6). Over half of these SNPs are 288 

associated with tasks related to complex cognition (377 SNPs or 57%); 27% were associated with 289 

executive function (177 SNPs), 13% with declarative memory tasks (83 SNPs), and 4% with emotion 290 

identification (24 SNPs). 291 

 292 

We mapped SNPs to genes using brain eQTL information, brain-specific higher-order chromatin 293 

interactions10,27 and positional information. We integrated our findings with functional annotation 294 

maps of the brain to identify the neurodevelopmental and psychiatric significance of these genes 295 

(Figure 1d, Supplementary Table 7). The 661 suggestive peaks map to 106 genes. ~14% (15 genes) 296 

have been genetically associated with diseases of the nervous system, including schizophrenia 297 

(SNAP91, CORO7), bipolar disorder (FBLN1), multiple sclerosis (THEMIS, CLECL16A), alcohol 298 

dependence (MREG, KCNJ6, FSTL5), and Alzheimer's disease (NRXN1) (11 or 13% genes; 299 

Supplementary Table 7). Nearly one-third of these genes are markers of various cell-types in the fetal 300 

and newborn brain, including neuronal progenitor cells, neurons, radial glia, astrocytes, and 301 

endothelial cells (31 genes, 29%; 39), and one gene is a marker of adult brain cells (THEMIS)37. Seven 302 

genes are known to interact with drugs; a notable interaction is between CACNA2D3, a voltage gated 303 

Calcium channel with suggestive association with working memory (top SNP p = 3.9e-6), and 304 

Gabapentin enacarbil, a drug used to treat epilepsy, neuralgia and restless legs syndrome52. One-sixth 305 

of suggestive peaks (112 SNPs or 17%) were predicted to have a functional consequence in brain 306 

tissue (Figure 1c, e), including nonsynonymous changes to protein sequence, presence in brain-307 

specific promoters and enhancers, or association with changes in gene expression. In summary, 308 

genetic variants associated with typical variation in neurocognition map to genes implicated in human 309 

brain development, altered in psychiatric disease, and that are modulated by drugs used to treat 310 

neurological conditions. 311 

 312 

Nonverbal reasoning was the only phenotype with SNPs passing the cutoff for genome-wide 313 

significance (rs77601382 and rs5765534, p = 4.6x10-8) (Figure 2). The peak is located in a ~33kb 314 

region (chr22:45,977,415-46,008,175) overlapping the 3' end of the Fibulin-1 (FBLN1) gene, including 315 

the last intron and exon (Figure 2b). To better understand the significance of this gene in brain 316 

function, we examined FBLN1 expression in published fetal and adult transcriptomes, and single-cell 317 

data10,39,41. FBLN1 transcription in the human brain is highest in the early stages of fetal brain 318 

development, with little to no expression in the adult (Figure 2c, Supplementary Figure 8); this is 319 

consistent with single-cell assays showing FBLN1 to be a marker for dividing progenitor cells in the 320 

fetal brain (Figure 1d, 39). FBLN1 encodes a glycoprotein present in the extracellular matrix; this 321 

protein is a direct interactor of proteins involved in neuronal diseases, such as Amyloid Precursor 322 

Protein-1 (Supplementary Figure 9 53). FBLN1 expression is upregulated in the brain in schizophrenia 323 

and has been previously associated with genetic risk for bipolar disorder (Figure 1d, 54,55). Therefore, 324 

we conclude that FBLN1, associated with nonverbal reasoning test performance, shows characteristics 325 
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of a gene involved in neurodevelopment and the dysregulation of which could increase risk for 326 

psychotic disorders of neurodevelopmental origin.  327 

 328 

We then performed pathway analysis for all nine selected CNB phenotypes using a rank-based 329 

pathway analysis strategy that includes all SNPs used in the association analysis (GSEA28,34, 100 330 

permutations; 4,102 pathways tested). SNPs were mapped to genes using brain-specific eQTL, 331 

chromatin interaction and positional information, using the same method as described above. Four out 332 

of nine phenotypes demonstrated significant enrichment of top-ranking genetic variants in pathways 333 

(q < 0.1; Figure 3a, Supplementary Tables 8-10). These included tasks in complex cognition (spatial 334 

reasoning), declarative memory (object and face memory), and executive function (working memory). 335 

The working memory phenotype showed significant enrichment of variants in pathways related to 336 

development, including neural development (q<0.05; Figure 3a, Supplementary Tables 8-10). To 337 

understand how genes contributing to pathway enrichment could be related to brain function, we 338 

annotated the corresponding leading edge genes with prior knowledge about associations with 339 

nervous system disorders, drug interactions and transcription in brain cell types37-39,48,49. Out of 355 340 

leading edge genes, over half are known brain cell markers (228 genes or 64%), roughly one-third 341 

have known drug interactions (129 genes or 36%), and ~14% are associated with nervous system 342 

disease (51 genes) (pathway q < 0.10, Figure 3b, Supplementary Table 10). Among disease-associated 343 

genes were those associated with autism (CSDE1), multiple sclerosis (CYP27B1, EOMES), depression 344 

(ROBO1), glaucoma and wet macular degeneration (LHCGR). None of the SNPs associated with leading-345 

edge genes (416 SNPs) overlapped suggestive or significant GWAS SNPs (661 SNPs).  346 

 347 

To identify enrichment specific to brain-related processes and mental illness, we performed a second 348 

enrichment analysis using gene sets curated from the literature (Supplementary Note 5). These 349 

included gene sets derived from transcriptomic and proteomic profiles of the developing and adult 350 

healthy brain and brains affected by mental illness, genome-wide association studies and terms from 351 

phenotype ontology (421 gene sets tested, Supplementary Note 5, Supplementary Table 5, 352 

Supplementary Data 1). Six gene sets were significantly enriched (q<0.10), with five associated with 353 

working memory and the sixth with verbal reasoning (Figure 3c, Supplementary Table 11). A cluster of 354 

related gene sets related to autonomic nervous system dysfunction and a gene set related to locomotor 355 

dysfunction achieved significance at q < 0.05. Only one out of 157 SNPs associated with leading-edge 356 

genes overlaps with suggestive SNPs from GWAS analysis. Roughly 13% of the 134 leading edge genes 357 

are associated with nervous system disorders (18 genes), one-fifth have known drug targets (27 358 

genes, 20%), and over half (81 genes or 60%) are markers of brain cell-types (Figure 3c,d; 359 

Supplementary Table 12, 13). Five genes have all three attributes: SNCA, CAV1, LRRK2, ERBB4 and 360 

MAPT (Figure 3d, Supplementary Table 13). One example is Alpha-synuclein (SNCA, top SNP p=2.6e-4), 361 

which has been genetically associated with risk for developing Parkinson's disease56, is a marker of 362 

excitatory neurons in the fetal brain39, and is a drug target of BIIB50448. Another example is ERB-B2 363 

receptor tyrosine kinase 4 (ERBB4), which has been genetically associated with mood disorders and 364 

unipolar depression57, is a target of 24 drugs and is a marker of inhibitory neurons in the fetal brain. 365 

Other leading edge genes have been associated with schizophrenia, autism spectrum disorder, 366 

Parkinson's disease, Alzheimer's disease, depression and mood disorders (Figure 3d, Supplementary 367 

Table 13). In summary, genetic variants associated with normative variation in a range of 368 

neurocognitive phenotypes are enriched in pathways and gene sets related to cell proliferation, brain 369 

development, nervous system dysfunction and mental disorders. 370 
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Discussion 371 

This study identifies molecular variants and cellular processes that contribute to normal human 372 

variation in specific cognitive domains. Consistent with heritability estimates, we find that the number 373 

of variant-level associations and enriched pathways varies considerably by phenotype (Figure 4). In 374 

particular, we find an enrichment of genetic variants associated with complex cognitive phenotypes 375 

(75-219 suggestive peaks), consistent with heritability estimates of up to 0.30-0.41 for these 376 

phenotypes13. A variety of cognitive phenotypes are enriched for variants in pathways. Moreover, the 377 

set of variants driving pathway enrichment has almost no overlap with suggestive variants from the 378 

GWAS analysis (no overlap for brain-related gene sets; a single SNP, rs9367669, overlaps for pathway 379 

sets). These results suggest that a molecules-to-behaviour research framework that includes genes 380 

and molecules, should also include pathways as a way to uncover new biological insights into existing 381 

genotype databases. Previous research in other polygenic psychiatric disorders, such as schizophrenia 382 

and major depression58, has also shown an enrichment of disease-associated molecules in pathways. 383 

We suggest that the Research Domain Criteria (RDoC) matrix be updated to add a level for pathways, 384 

above that of genes and molecules and below cells. This modification will help associate additional 385 

genetic signal with brain related phenotypes, which otherwise would be missed if just considering 386 

SNPs and genes. 387 

 388 

Variants, genes and pathways associated with typical variation in neurocognitive phenotypes, 389 

demonstrate evidence for a role in neurodevelopment, modulating gene expression in the fetal and 390 

adult brain and increasing risk for psychiatric disease (Figure 1, Supplementary Table 6, 7, 10, 13). 391 

Multiple lines of evidence suggest that FBLN1, the gene associated with genome-wide significant SNPs 392 

for nonverbal reasoning, is dysregulated in disease. In addition to the evidence provided in our results 393 

(Figure 1d, Figure 2c, Supplementary Figure 8,9), FBLN1 has been associated with other rare genetic 394 

syndromes and protein levels of FBLN1 have been associated with altered risk for ischaemic 395 

stroke59,60. However, the mechanism by which FBLN1 contributes to normal brain function is not 396 

known. We also do not exclude the possibility that suggestive peaks we identified within FBLN1 may 397 

affect the function of neighbouring genes. One such gene is Ataxin-10 (ATXN10), in which a 398 

pentanucleotide repeat expansion causes spinocerebellar atrophy and ataxia61. 399 

 400 

An advantage of using a rank-based gene set enrichment analysis method, as compared to 401 

hypergeometric tests, is that the method ranks and prioritizes a subset of genes (leading edge genes) 402 

within a potentially large gene set (>100 genes), which are responsible for driving the enrichment 403 

statistic. In this work, we found five neurocognitive phenotypes with significant enrichment of high-404 

ranking variants in pathways.  We annotated leading edge genes to identify those that are jointly 405 

related to working memory, which demonstrated significant enrichment in both gene set analyses,  406 

and psychiatric disease (Figure 3). For instance, among the leading edge genes contributing to working 407 

memory were genes previously associated with Parkinson's disease, Alzheimer's disease, 408 

schizophrenia, autism, and depression, all of which have been associated with working memory 409 

impairments62-67. We note, however, that the individual genes connecting any given disease to working 410 

memory are different. For instance, among leading edge genes for working memory, ERBB4 is 411 

associated with depression, whereas SNCA is associated with Parkinson's disease (Figure 3c, 412 

Supplementary Table 13). One implication of this partially overlapping gene network is that the 413 

therapeutic targets that may be relevant for working memory deficits may depend on what disease the 414 

patient has, as a different subset of the "working memory gene network" is affected by each condition. 415 

 416 

This work contributes towards an understanding of the molecular underpinnings of human brain-417 

related behaviour and could help to identify genetic contributors towards the heterogeneity in 418 

phenotypes associated with multiple brain-related disorders68,69. Our analysis is limited to univariate 419 
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genetic effects, and future work will explore the contribution of interactions between individual SNPs, 420 

possibly explaining lack of SNP-level or pathway-level signal in some of the phenotypes studied here70. 421 

Our findings also suggest that different cognitive phenotypes may be vulnerable to genetic alterations 422 

in different cellular pathways. Such exploration could identify disease-specific molecular targets that 423 

impinge on the same neurocognitive phenotype. Finally, we propose that research frameworks for 424 

linking genotype to phenotype for brain-related traits include cellular pathways as an organizational 425 

layer to support uncovering additional genetic signal from available genetic data. 426 
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Figure 1. Genome-wide association analysis for neurocognitive phenotypes from the Philadelphia 621 

Neurodevelopmental Cohort. 622 

a. Workflow. Genotypes were imputed (1KGP reference), and limited to European samples. Samples 623 

with severe medical conditions were removed and invalid test scores excluded. Nine neurocognitive 624 

test scores were binarized after age and sex had been regressed out. GWAS was performed for 625 

accuracy for each of these nine phenotypes. 626 

b. Breakdown of SNPs achieving suggestive significance, by phenotype (top). 627 

c. Suggestive and significant SNPs and associated genes. The outermost ring shows the location of 628 

suggestive peaks (p < 10-5), coloured by phenotype (see b); y-axis shows –log10(SNP p), so that SNPs 629 

with stronger significance are higher. SNPs with p<10-7 are labeled. The tracks with ticks indicate 630 

functional consequences of associated SNPs. The track closest to the middle indicate SNPs overlapping 631 

brain enhancers (light gray) or promoters (black). The dark red middle track indicates SNPs with 632 

nonsynonymous variation, including NMD transcript, missense or splice variants71. The outermost 633 

track indicates QTL associations, including eQTL in adult prefrontal cortex (dark blue), fetal brain 634 

(cyan), or neuronal cell proportions in the adult brain (fQTL; orange). Genes associated with top SNPs 635 

are indicated within the circle. 636 

d. Genes associated with top SNPs (p < 3x10-7) with prior knowledge about relevance to brain 637 

development and psychiatric disorders. Columns indicate differential expression in 638 

neurodevelopmental disorders54 (SCZ = schizophrenia; ASD= autism), significant association with a 639 

nervous system disorder49, or status as marker gene for specific cell types in fetal brain39. 640 

e. Breakdown of functional consequence of top SNPs and by functional consequence (bottom). 641 

Consequence shown is limited to effect on protein sequence71, presence in enhancers or promoters in 642 

adult cortical regions11, eQTL in fetal brain, or adult forebrain. Final bar shows cumulative proportion 643 

of putatively functional SNPs.  644 
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 645 
 646 

Figure 2. Genome-wide significance of FBLN1 region for binarized performance in nonv647 

reasoning 648 

a. Manhattan plot of univariate SNP association with binarized performance in nonverbal reas649 

(N=1,024 poor vs. 1,023 good performers; 4,893,197 SNPs). Plot generated using FU650 

b. Detailed view of hit region at chr22q13. Two SNPs pass genome-wide significance thre651 

rs77601382 and rs74825248 (p=4.64e-8). View using Integrated Genome Viewer (v2.3.9373,74652 

red bar indicates the region with increased SNP-level associ653 

c. FBLN1 transcription in the human brain through the lifespan. Data from BrainSpan41.654 

transformed normalized expression is shown for cerebellar cortex (CBC), central ganglionic emi655 

(CGE) and lateral ganglionic eminence (LGE), dorsal frontal cortex (DFC), and hippocampus (HIP)656 
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  657 

 658 
Figure 3. Pathway and gene set enrichment analysis for neurocognitive task performance 659 

a. Pathways significantly enriched for genetic variation in neurocognitive task performance (GSEA, 660 

100 permutations, q < 0.1, Supplementary Tables 8, 9, 10). Nodes indicate pathways, with fill 661 

indicating phenotype and yellow bubbles denoting clusters of related gene sets; edges indicate shared 662 

genes.  663 

b. Number of leading edge genes associated with transcription in specific brain cell types (blue), drug 664 

targets (yellow) or genetic associations with specific nervous system disorders (pink) (pathways with 665 

q < 0.10, N=355 genes). 666 

c. Brain-related gene sets enriched for genetic variation in task performance. Left: Significant gene 667 

sets; legend same as panel a (Supplementary Tables 11,12, 13). Right: Top leading edge genes in 668 

enriched brain-related gene sets (N=48 genes, p < 5e-3, pathways with q < 0.05). Nodes show genes 669 

and fill indicates genes associated with brain cell types, drugs or genetic associations with nervous 670 

system disorders (white indicates absence of association). Edges indicate known interactions 671 

(GeneMANIA47). Genes with disease associations have been highlighted in grey pullout bubbles. 672 
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d. Leading edge genes in brain-related gene sets associated with disease, drugs or brain cell types 673 

(N=134 genes); legend as in b.  674 
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Figure 4. a. Association of top genes, gene sets, and pathways with different levels of brain 676 

organization. Each column shows data for an individual phenotype, grouped by domain; rows show 677 

associations at increasingly higher levels (from top to bottom), and finally with drug targets. All results 678 

are from this work unless otherwise cited. Circles indicate relative number of suggestive variant peaks 679 

(p < 10-5) from GWAS (median=43; mean=73.4), with numbers indicated below (asterisk: p < 5x10-8), 680 

and genes are those mapped to top-ranking SNPs (p <=1x10-5) (only protein-coding genes; noncoding 681 

genes listed in Supplementary Table 14). Pathways and brain-related gene sets shown are those 682 

passing q < 0.1 in enrichment analysis (red asterisk: q<=0.05). Fetal brain cell associations are as 683 

shown in Figure 1d. Gene-disease associations combine those for top GWAS SNPs (Figure 1d) and from 684 

gene set enrichment analysis; drug associations are from the latter (Supplementary Tables 10 and 14). 685 

Prior associations of alterations in phenotype or task-based brain activation as described in 14(1) or 686 
75(2).  687 

b. Proposed workflow for gene prioritization, as used in this work. When provided with genotype-688 

phenotype data, SNPs are first prioritized by assigning an association statistic (e.g. by GWAS). Gene set 689 

enrichment analysis is performed to identify groups of genes with subthreshold phenotype 690 

association. SNP-gene mappings use brain-specific maps of genome regulation, prioritizing evidence-691 

based association over positional mapping. Enrichment of pathways and brain-related gene sets are 692 

simultaneously performed using a rank-based method such as GSEA, which provides a leading edge 693 

subset for subsequent prioritization. Leading edge genes are annotated with clinical attributes of 694 

interest, such as druggability, prior disease association and evidence for expression in particular brain 695 

cell types, and the combination of attributes can be turned into a prioritization score. 696 
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Tables 697 

 698 
Phenotype N # lead 

SNPs 

(p < 1e-5) 

Indiv. Sig. SNPs  

(p < 1e-6) 
SNP p Gene  

Complex Cognition 
Verbal 2,068 83 -   
Non-verbal 2,047  75 rs77601382 4.6X10-8 FBLN1 

   rs76901846 1.0 X10-7 BTBD11 

   rs5765534 1.4 X10-7  
Spatial 2,024 219 rs446816 2.6 X10-7 NBEA 

   rs7001721 8.5 X10-7  
Executive Function 

Working 

memory  
2,047 153 rs565936 6.6 X10-7 FAT3 

   rs2093484 9.3 X10-7  

Attention 2,041 24 rs11992719 5.1 X10-8  

   rs1792551 9.3 X10-7 INSC 

Social processing 

Emotion 

Identification° 
2,068 24 rs73118294 7.1 X10-8 TOX2 

   rs4341378 4.9 X10-7  

Declarative memory 

Face memory 2,066 16 rs6926533; 

rs148111284 
5.4 X10-7; 

6.9 X10-7 

RBMXP1 

PCP4 

Word memory 2,073 43 -   

Object memory 2,070 24 rs56659368 3.2 X10-7  

 699 

Table 1. Genetic variants significantly associated with neurocognitive phenotypes in the Philadelphia 700 

Neurodevelopmental Cohort (PNC) dataset. For each test in the PNC neurocognitive test battery, GCTA 701 

was run to obtain SNP-level (marginal) p-values associated with binarized (good or poor) 702 

performance. Top SNPs (p < 1.0x10-6) are shown above (full list of suggestive SNPs in Supplementary 703 

Table 5). SNPs were mapped to genes based on expression modulation, chromatin interaction of 704 

positional information. Only protein-coding genes shown here; additional non-coding RNA 705 

associations shown in Supplementary Table 7).   706 

 707 

 708 
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