
1

Effects of Inaccurate Response Function Calibration on 

Characteristics of the Fiber Orientation Distribution in 

Diffusion MRI

Fenghua Guo1*, Chantal M.W. Tax2, Alberto De Luca1, Max A. Viergever1, 

Anneriet Heemskerk1, Alexander Leemans1

1Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the 

Netherlands

2Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, 

United Kingdom

* Correspondence should be addressed to:

Fenghua Guo

Image Sciences Institute 
University Medical Center Utrecht
Heidelberglaan 100
Room Q.02.4.45
3584CX Utrecht
The Netherlands

Tel: +31 88 75 57772
Email: f.guo@umcutrecht.nl

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/760546doi: bioRxiv preprint 

https://doi.org/10.1101/760546
http://creativecommons.org/licenses/by/4.0/


2

1 Abstract

2 Diffusion MRI of the brain enables to quantify white matter fiber orientations noninvasively. 

3 Several approaches have been proposed to estimate such characteristics from diffusion MRI 

4 data with spherical deconvolution being one of the most widely used methods. Constrained 

5 spherical deconvolution requires to define – or derive from the data – a response function, 

6 which is used to compute the fiber orientation distribution (FOD). This definition or derivation 

7 is not unequivocal and can thus result in different characteristics of the response function which 

8 are expected to affect the FOD computation and the subsequent fiber tracking. In this work, 

9 we explored the effects of inaccuracies in the shape and scaling factors of the response 

10 function on the FOD characteristics. With simulations, we show that underestimation of the 

11 shape factor in the response functions has a larger effect on the FOD peaks than 

12 overestimation of the shape factor, whereas the latter will cause more spurious peaks. 

13 Moreover, crossing fiber populations with a smaller separation angle were more sensitive to 

14 the response function inaccuracy than fiber populations with more orthogonal separation 

15 angles. Furthermore, the FOD characteristics show deviations as a result of modified shape 

16 and scaling factors of the response function. Results with the in vivo data demonstrate that the 

17 deviations of the FODs and spurious peaks can further deviate the termination of propagation 

18 in fiber tracking. This work highlights the importance of proper definition of the response 

19 function and how specific calibration factors can affect the FOD and fiber tractography results.

20
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24 1. Introduction
25

26 Diffusion MRI allows to characterize tissue microstructure in vivo and noninvasively by 

27 measuring the anisotropic diffusion of water molecules [1,2]. Diffusion tensor imaging (DTI) [3]  

28 is the most widely used model in clinical studies to relate the diffusion MRI signals to the 

29 diffusion characteristics of the underlying tissue. However, DTI is inadequate to estimate the 

30 directional information in voxels containing crossing fibers [4,5]. A commonly used approach 

31 to resolve more complex fiber configurations in the brain is spherical deconvolution (SD) [6–

32 8]. SD also allows for the extraction of fiber population specific microstructural measures 

33 derived from the magnitudes of the fiber orientation distribution (FOD) functions, such as 

34 apparent fiber density (AFD) [9] and hindrance modulated orientational anisotropy (HMOA) 

35 [10].

36 SD requires an appropriate response function as input to estimate the FOD [7]. The 

37 response function, representing the diffusion signal for a single fiber population, is ideally 

38 calibrated from the acquired diffusion MRI data [11,12]. In brief, for each subject, the voxels 

39 containing only single fiber populations are localized, and an average of the diffusivity 

40 characteristics within those voxels is used to represent the subject specific response function. 

41 An inadequately chosen response function can affect the quantification of FOD characteristics 

42 like AFD and HMOA, as well as the fiber tractography.  

43 In order to compare inter-subject AFD, Raffelt and colleagues [9] chose a response 

44 function common to all subjects to minimize the differences between subjects for voxel-wise 

45 AFD comparison. However, this may potentially result in a bias in the estimated FOD. 

46 Specifically, the use of such a common response function for group-wise analysis may cause 

47 biases in the FOD peak orientations for individual subjects. Therefore, whereas a common 

48 response function is optimal for the comparison of AFD and HMOA in group studies [9], it is 

49 unclear whether this is also optimal for group-wise tractography studies because of the 

50 potentially inaccurate FOD peak orientations and concomitant spurious FOD peaks. Intuitively, 

51 the difference in response function characteristics across healthy subjects are not expected to 
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52 be large, as response functions are generally averaged from more than hundreds of voxels 

53 that are supposed to contain single fiber populations [6,7,12]. This was partly demonstrated by 

54 Jeurissen and colleagues [13], who studied the inter-subject response functions of 100 healthy 

55 subjects from the Human Connectome Project (HCP) [14] and observed only subtle 

56 differences. Accordingly, it seems justified not to be too concerned about inter-subject 

57 response function variability in healthy subjects, since either using averaged response 

58 functions or individual response functions is not likely to affect the FOD profiles in the HCP 

59 dataset. However, although the differences in the response functions of healthy subjects may 

60 be small [13], this is likely not the case for subjects with some form of pathology. The inter-

61 subject signal deviations do raise concern for aging and diseased groups. 

62 White matter degeneration, whether caused by aging or by a disease process, may 

63 substantially alter the response function. Hence, studying subjects of different ages with a 

64 common response function might introduce errors due to discrepancies in white matter 

65 characteristics. Therefore as the focus of this work, it is useful to investigate such differences 

66 in response functions and the resulting variations of the FOD. A thorough numerical evaluation 

67 focusing on the angular characteristics of FOD is needed to shed more light on this issue.

68 Previous studies have discussed the effect of improperly calibrated response functions 

69 on the FOD characteristics and fiber tracking. Tournier [7] and Dell’Acqua [8] reasoned from a 

70 mathematical point of view that a wrongly chosen response function would affect the 

71 magnitudes of FOD peaks, thus also AFD and HMOA, but would leave their orientations 

72 unaffected. Dell’Acqua and colleagues [8,10] investigated with simulations and in vivo data the 

73 effects of various response function changes on the FOD profiles, including variations in the 

74 response function shape and scaling factor, as well as in axonal radius and in angle of crossing 

75 pathways for the damped Richardson-Lucy (dRL) method. Their paper focused on the effect 

76 of the response function on FOD amplitudes and the sensitivity of HMOA to diffusivity changes 

77 per fiber population, as compared to traditional metrics as fractional anisotropy (FA) and mean 

78 diffusivity (MD). Parker [15] studied the FOD peak orientations and the existence of spurious 

79 peaks in simulations as a function of the response function miscalibration for CSD and dRL. 
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80 The results of that study demonstrate that sharper response functions resulted in more 

81 spurious peaks in the FOD profiles, and that the mismatch of the calibrated-targeted response 

82 functions introduced uncertainty on the main FOD peak orientations. However, in previous 

83 work[15], the authors used the FA value as a metric to characterize the response functions, a 

84 strategy which is unable to describe the true axial and radial diffusivities in crossing fibers [16]. 

85 Changes in FA entangle changes in the axial and radial diffusivities, so that the effects on 

86 these two diffusivities could not be studied straightforwardly. Here we seek to disentangle 

87 these effects and, complementing earlier studies [15,17], also aim to quantify both the effect 

88 on peak magnitude and angular deviation.

89 In this manuscript we studied how variations in the response function affect voxel-wise 

90 FOD characteristics and fiber tracking. Changes in pathology are likely reflected in changes in 

91 either the axial or the radial diffusivity, which in our study, is represented by the shape and 

92 scale factor of the response function. Simulations were designed to explore the effects of the 

93 response function shape and scaling factor on the FOD properties, such as the number of FOD 

94 peaks, their orientation (for tractography) and magnitude, and the AFD. Additionally, in vivo 

95 data from the Human Connectome Project (HCP) were used to illustrate how the choice of the 

96 response function in CSD can affect the FOD quantification and fiber tracking.

97
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98 2. Methods
99

100 In Sections 2.1 and 2.2, we give a brief background on (constrained) spherical 

101 deconvolution methods to reconstruct the FOD. In Section 2.3 we outline the simulation 

102 experiments and introduce the shape and scaling factor that characterize the response 

103 function. Section 2.4 presents the parameter settings used in these simulations. In Section 2.5, 

104 the in vivo data experiments are described.

105

106 2.1 Constrained Spherical Deconvolution
107

108 Recent studies showed that crossing fibers account for over 90% of white matter voxels 

109 [4]. The DTI representation cannot resolve crossing fibers by design and thus provides non-

110 specific metrics in such voxels. Spherical deconvolution approaches [6–8,18,19] overcome this 

111 limitation and allow for estimating the FOD for more complex fiber configurations, while 

112 retaining reasonable computation and acquisition time compared with other methods [20–23]. 

113 CSD assumes that the diffusion MRI signals can be expressed as the spherical 

114 convolution of a fiber response function with the FODs in the spherical harmonics basis, thus 

115 also assuming the validity of the response function in all voxels. The response function 

116 represents the diffusion-weighted signal of a single fiber population. Spherical harmonics form 

117 a complete basis on the sphere. However, to fully reconstruct a signal on the sphere, the 

118 spherical harmonics should have infinite order, which is not possible in practice. In clinical 

119 studies, signals with up to 60 gradient directions are generally acquired, limiting the order of 

120 the spherical harmonics to 8, which we also adopted in this work. 

121 The FODs are used to infer information on the orientation of the fiber pathways under 

122 the assumption that the FOD peak orientations coincide with the underlying fiber directions. 

123 To reconstruct the FOD, truncation of the spherical harmonics is needed, causing the so-called 

124 “ringing” effect on the FOD profiles, which introduces implausible negative values. In order to 

125 suppress the ringing effect and the sensitivity to noise, the regularization of FOD was proposed 
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126 [7,19,24] to improve the conditioning of the deconvolution problem, which is further referred to 

127 as constrained SD (i.e., CSD). In addition to directional information, the magnitudes of the FOD 

128 are used to compute additional metrics, such as AFD [9] and HMOA [10]. The accurate 

129 estimation of FOD peak directions and magnitudes is therefore essential for subsequent 

130 analysis.

131

132 2.2 Shape and scaling of response functions
133

134 The response function used in the CSD process can be either simulated or derived 

135 directly from the data. Following the latter approach, which is more common, voxels that have 

136 a high chance of containing single fiber populations are used to calibrate the response function. 

137 A straightforward approach to numerically implement the concept of a single fiber population 

138 is to threshold, for instance, the fractional anisotropy (FA), above a pre-defined value. 

139 However, the choice of FA threshold is not trivial and can cause inaccuracies in the response 

140 function estimation [12]. A data-driven method using a recursive calibration framework was 

141 proposed to estimate the response function from the subject data in an unbiased way [12]. 

142 This method estimates which voxels contain single fiber populations by iteratively excluding 

143 voxels which do not have a single dominant orientation and updating the estimated response 

144 function. 

145 The choice of the fiber response function has an impact on the peak directions and 

146 magnitudes of the FODs [10,15,19]. Theoretically, changes in the response function are 

147 directly reflected in the FOD estimation, but should affect only peak magnitudes while leaving 

148 their orientations untouched [6,10]. However, in practice, due to the low SNR level in diffusion-

149 weighted MRI data, the ill-posedness of inverse problems, and the regularization process, the 

150 effects of the choice of response function on the FODs become less obvious. 

151 Parker et al. [15] investigated alterations of response function by changing its FA value. 

152 Here, we acknowledge that changing the FA affects both the scale and the shape of the 

153 response function. It is thus not straightforward to disentangle an FOD change into scale and 
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154 shape effects. To this end, we decompose general changes in the response function into 

155 specific changes in shape and scale [8] and analyze their individual effects on the FOD 

156 characteristics (i.e., magnitude, the number of peaks, and peak orientations). The following 

157 sections describe how we can achieve such changes in shape and scale of the response 

158 functions in the simulated and in vivo diffusion MRI data experiments. 

159

160 2.3 Simulation experiments
161

162 2.3.1 Modeling of single fiber populations and response functions
163

164 If the diffusivity  associated with the underlying fiber population is expressed by an 𝐷

165 axially symmetric diffusion tensor, whose first eigenvector is in parallel with the z-axis in the 

166 reference coordinate frame, then  can be written as (Anderson 2005)𝐷(𝜃,𝜑)

,𝐷(𝜃,𝜑) = [sin 𝜃cos 𝜑 sin 𝜃sin 𝜑 cos 𝜃][𝛽 0 0
0 𝛽 0
0 0 𝜆][sin 𝜃cos 𝜑

sin 𝜃sin 𝜑
cos 𝜃 ] (1)

167 where  and  are the axial and the radial diffusivity of the single fiber population,  is the 𝜆 𝛽 (𝜃,𝜑)

168 polar angle set between the fiber orientation and the applied gradient. Given the axial 

169 symmetry property of the diffusion tensor, Eq. (1) can be simplified as

,𝐷(𝜃) =  𝜆 cos2𝜃 + 𝛽 sin2𝜃 =  𝛼 cos2𝜃 + 𝛽 (2)

170 where  is the absolute difference between the axial and radial diffusivity. For simplicity, 𝛼 = 𝜆 ‒ 𝛽

171 if we assume that the signal  from each fiber population is a function of , then the 𝑆(𝜃,𝜑) 𝐷(𝜃,𝜑)

172 diffusion-weighted signal can then be rewritten as [3] 𝑆 

,𝑆(𝜃,𝜑) = 𝑆0𝑒 ‒ 𝑏𝐷(𝜃, 𝜑)    (3)

173 where is the non-diffusion-weighted signal and  is the b-value that represents the strength 𝑆0 𝑏

174 of diffusion weighting. Combining Eq. (1) – Eq. (3), the diffusion-weighted signals can be 

175 expressed as [18] 

 = ,𝑆(𝜃) =  𝑆0e ‒ 𝑏(𝛼cos2𝜃 + 𝛽) 𝑆0𝐾e ‒ 𝑏𝛼cos2𝜃 (4)
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176 where . Eq. (4) highlights the dependency of  on the shape factor  and the scaling 𝐾 = e ‒ 𝑏𝛽 𝑆 𝛼

177 factor , following the definition in previous studies [8]. In this equation, the scaling factor   𝐾 𝐾

178 depends only on the radial diffusivity of the fiber response, representing the isotropic diffusion 

179 within the fiber population, whereas the shape factor  depends on the difference between the 𝛼

180 axial and radial diffusivities, representing the anisotropic diffusion within the fiber population.

181

182 2.3.2 Modifying the shape and scaling factor of the response functions
183

184 Since the response function  is intrinsically based on the shape and scaling of the 𝑅

185 fiber population diffusivities,  can be written in the same form as the signal of a fiber population 𝑅

186 imposed by the gradient at an elevation angle  with the fiber orientation, which is identical to 𝜃

187 Eq. (4), i.e., 

.𝑅(𝜃) = 𝑆0𝐾e ‒ 𝑏𝛼cos2𝜃 (5)

188 According to Eq. (5), we can modify (i) the shape factor  of the response function, by varying  𝛼

189 only the axial diffusivity with a fixed radial diffusivity, to keep  constant; and (ii) the scaling 𝐾

190 factor  of the response function, by changing simultaneously the axial and radial diffusivity, 𝐾

191 to not alter the shape factor .  We can then study the effects of  on FOD characteristics, by 𝛼 𝑅

192 selectively introducing a discrepancy into the shape or the scale of a simulated single fiber 

193 signal with respect to the response function. 

194

195 2.3.3 Modeling of multi-fiber populations
196

197 We model the diffusion-weighted signal within a voxel as the sum of multiple 

198 compartments measured from each fiber population. Each compartment is assumed to share 

199 an identical response function, so the diffusion-weighted signals are depending only on the 

200 orientations of the fiber populations in the voxel and on data noise. We further assume that 

201 there is no exchange of water molecules between fiber populations, and that each single fiber 
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202 population can be represented by a signal  (where  denotes the  fiber population). The 𝑆𝑖(𝜃) 𝑖 𝑖𝑡ℎ

203 signal  generated by a crossing fiber configuration can then be described by 𝑆𝐷𝑊

,𝑆𝐷𝑊 = ∑𝑛
𝑖 = 1𝑓𝑖𝑆𝑖(𝜃) (6)

204 where  is the volume fraction of each fiber population,  is the total number of fiber 𝑓𝑖 𝑛

205 populations intercrossing the voxel, and  is the angle between the applied gradient and the 𝑖(𝜃)

206  fiber population. In our work, we focus on configurations of two crossing fiber populations, 𝑖𝑡ℎ

207 but the equations of generating the diffusion-weighted signals can also be extended to analyze 

208 the FOD characteristics for more than two fiber populations. 

209

210 2.3.4 Data analysis 
211

212 Amongst the SD frameworks, the CSD approach is implemented in several software 

213 packages, such as MRtrix [25], Dipy [26] and ExploreDTI [27]. In this work, the FODs were 

214 estimated with CSD as implemented in ExploreDTI. The FOD peak orientations, which are 

215 assumed to reflect the underlying fiber orientations [6], and the magnitudes of the FOD peaks, 

216 were extracted using a Newton-Raphson gradient descent method [28]. All FOD peaks that 

217 were smaller than an absolute threshold of 0.1 were regarded as contributions from noise and 

218 thus discarded to reduce false positives [29]. All peaks were clustered to the nearest simulated 

219 peak directions, by using an angular threshold of 45◦ to determine whether or not two peaks 

220 were belonging to the same fiber population. In case of simulating multiple fiber populations, 

221 only the estimated FOD peaks closest to the simulated fiber populations were considered. For 

222 each simulation, the mean and standard deviation of the following FOD metrics were 

223 evaluated:

224 a. the average difference between the estimated and simulated number of FOD peaks; 

225 b. the angular deviations between the estimated FOD peak orientation and the simulated fiber 

226 orientation; 

227 c. the estimated separation angles in case of multiple fiber populations;

228 d. the FOD peak magnitudes in case of single fiber populations; 
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229 e. the percentage difference of the estimated AFD with respect to the AFD with the reference 

230 response function. 

231 The AFD computation was performed as the integral of the FOD magnitudes assigned 

232 to each peak, which in the literature is commonly referred to as “lobe”. The calculation of the 

233 AFD is similar to what was used in a previous study [30], except that we use the gradients 

234 generated by the electromagnetic model [31] to segment the FODs for each fiber population 

235 instead of using gradients generated by an icosahedron model. 

236

237 2.4 Parameter settings 
238

239 We simulated different fiber configurations with a predefined b-value equal to 3000 s/

240 , a set of 60 gradient directions [31], and . Rician noise (1000 noise instances) was mm2 𝑆0 = 1

241 added to the diffusion weighted signals to simulate SNR (with respect to ) levels of [50 40 𝑆0

242 30 20 15 10]. In the first simulation, a single-fiber configuration was generated with the main 

243 diffusion direction along the z-axis, setting  and  (i.e. β ~ (𝛼 = 1.2 × 10 ‒ 3 mm2/s 𝐾 = 0.4 0.3 ×

244 )). In the second simulation, a second fiber population was rotated around the y-10 ‒ 3 mm2/s

245 axis and combined with the single-fiber population generated in the first simulation to achieve 

246 a separation angle . Here we simulated crossing fiber populations with separation angles  

247 = [90◦, 75◦, 60◦, 55◦, 50◦, 45◦, 40◦]. 

248 For both simulations, two sets of response functions were tested to achieve (a) different 

249 shape but the same scaling factors, by increasing  from  to𝛼 0.6 ×  10 ‒ 3 mm2/s  1.8 × 10 ‒ 3

250  with steps of , while keeping  constant (Fig. 1a); and (b) the same  mm2/s 0.1 × 10 ‒ 3 mm2/s 𝐾

251 shape but different scaling factors, by decreasing  from 0.7 to 0.3 with steps of 0.1, while 𝐾

252 keeping  constant (Fig. 1b). 𝛼

253

254 Fig. 1. The 2D projection of response functions obtained by changing (a) the shape 

255 factor  and (b) the scaling factor . The shape factors are defined from   𝜶 𝑲 0.6 × 10 ‒ 3 mm2/s
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256 to   in steps of  . The scaling factors are varied from 0.7 to  1.8 × 10 ‒ 3 mm2/s  0.1 × 10 ‒ 3 mm2/s

257 0.3 in steps of 0.05.

258

259 2.5 Peak clustering and angular threshold
260

261 We clustered the peak directions to make sure that we are always comparing the 

262 angular deviations between the simulated fiber orientation and the FOD peak orientation most 

263 closely aligned to that orientation. Like in other studies [16,32,33] that compare axial and radial 

264 diffusion characteristics, we also included an angular threshold (e.g., cos (θ) > 0.7, which 

265 means approximately θ < 45◦) to make sure the correct peaks were being extracted for further 

266 evaluations. 

267

268 2.6 In vivo data experiments
269

270 Diffusion-weighted MRI data of a single HCP subject was further used to illustrate the 

271 effects of ill-defined response functions on voxel-wise FOD characteristics and brain 

272 tractography. In summary, diffusion-weighted images were acquired along 90 diffusion 

273 gradient directions with a b-value of  in addition to 18 non-diffusion-weighted 3000 s/mm2

274 images, and with an isotropic spatial resolution of 1.25 x 1.25 x 1.25 mm3. We performed CSD 

275 based tractography in ExploreDTI with a step size of 1 mm, an FOD threshold of 0.1, an 

276 angular threshold of 30◦, and seeding points per 2mm x 2mm x 2mm across the whole brain. 

277 All the tracts were constructed with deterministic fiber tracking to facilitate data interpretation.  

278

279 2.6.1 Modeling the response function
280

281 The reference response function for the in vivo dataset was represented by the diffusion 

282 tensor fit to the response function, as estimated with the recursive calibration approach [12]. 

283 Similar to the method described in Section 2.3.2, the diffusion tensor was used to model the 

284 changes in the shape and the scaling factor of the response functions. The shape factor  of 𝛼
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285 the response function was modified by +/- , while the scaling factor  [0.1 ‒ 0.3 × 10 ‒ 3 mm2/s] 𝐾

286 was modified by +/- .[0.1 ‒ 0.2]

287

288 2.6.2 Evaluation of in-vivo data
289

290 In analogy with the simulations, we computed the voxel-wise difference in number of 

291 estimated FOD peaks, the angular deviations of the main orientation, and the percentage 

292 difference in AFD of the dominant fiber orientation, for all the estimated FODs. The 

293 comparisons of number of FOD peaks were computed for the whole brain, whereas the 

294 comparisons of angular deviation and AFD were only computed for voxels with FA > 0.2. 

295 Individual white matter fiber bundles were extracted by using the regions of interest 

296 (ROIs) as suggested by Wakana [34]. The segmented fiber pathways include parts of the 

297 splenium of corpus callosum (sCC), the genu of corpus callosum (gCC), the cingulum (Cg), 

298 the uncinate fasciculus (UF), the corticospinal tract (CST), and the temporal part of the superior 

299 longitudinal fasciculus (tSLF). The average FOD characteristics for each fiber bundle were 

300 calculated. In addition, FOD characteristics of the response function were computed from (1) 

301 the region with a single fiber population as identified during the recursive calibration step 

302 (referred to as “SFP-mask”); and (2) the region with voxels for which FA > 0.2 (referred to as 

303 “FA-mask”).

304 3. Results
305

306 3.1 FOD characteristics of single fiber populations
307

308 Fig. 2 shows the effect of changing the shape factor and the scaling factor of the 

309 response function on the FOD characteristics in a single fiber population. At SNR < 20, the 

310 average number of spurious peaks increases when the shape factor increases, but only slightly 

311 increases when the scaling factor decreases (Fig. 2A). The angular deviation depends mainly 

312 on the SNR and is far less affected by changes in shape or scale factor of the response function 
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313 (Fig. 2B). By contrast, changes in peak magnitude (Fig. 2C) and the AFD (Fig. 2D) as a function 

314 of shape and scaling factor of the response function are more pronounced than due to 

315 differences in SNR level alone. Notice that the effect of changing the scaling factor (up to 

316 ~60%) is roughly three times larger compared to changing the shape factor (up to ~20%). 

317

318 Fig. 2. Effect of simulating changes in the response function on FOD characteristics for 

319 a single fiber configuration at different SNR levels. Shape factor   and the scaling factor 

320  of the response function (RF) are varied at different SNR levels to investigate (A) the 𝐾

321 introduction of spurious peaks, i.e., the average difference between the estimated and 

322 predefined number of FOD peaks; (B) the confidence interval (average ± standard error) of the 

323 angular deviation of the primary FOD peak; (C) the percentage difference between the 

324 amplitudes of the estimated FOD peak and the ground-truth FOD peak; and (D) the percentage 

325 difference between the estimated AFD of the primary fiber population and the ground-truth 

326 AFD. The dashed vertical lines represent the ground-truth values. 

327

328 3.2 Occurrence of spurious peaks
329

330 Fig. 3 shows the average difference between the number of estimated and simulated 

331 FOD peaks in relation to the shape (left) and the scaling (right) factor of the response functions 

332 for different SNR levels. Overall, performing spherical deconvolution with sharper response 

333 functions (i.e., higher values of the shape factor) generally introduces more spurious peaks. 

334 On the other hand, CSD fails to extract all the simulated peaks from the estimated FODs when 

335 the response function shape factor has smaller values, in particular for separation angles 

336 below 55◦. With higher noise levels, more spurious peaks are introduced, especially for higher 

337 values of the shape factor. Furthermore, adjusting the scaling factor has no significant effect 

338 on the estimated number of spurious peaks. While there are hardly any spurious peaks 

339 introduced at the lower noise levels (SNR = 30 and 50), additional incorrect peaks can be 

340 observed at the higher noise level (SNR = 10). 
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341

342 Fig. 3. The average difference between the number of estimated and simulated FOD 

343 peaks as a function of shape (left) and scaling (right) factor of the response function 

344 (RF) at three SNR levels (different SNR for each row). Brighter yellow areas show a higher 

345 probability of introducing spurious peaks, whereas darker blue areas show a higher probability 

346 of merging the two simulated peaks into one peak. The dashed vertical lines indicate that the 

347 settings of the response function are identical to those used for generating the underlying 

348 signals. Notice that different scaling of the colorbars were used for better contrast.

349

350 3.3 Angular deviation
351

352 3.3.1 The effect of the shape factor
353

354 Fig. 4 shows the results of investigating the effect of the response function’s shape 

355 factor on the angular characteristics of FOD peaks at SNR = 50, 30 and 10 for crossing fiber 

356 configurations with different separation angles. At lower noise levels (SNR = 30 and 50), lower 

357 values of the shape factor generally cause an underestimation of the separation angles, except 

358 when the two simulated fiber populations are orthogonal to each other (i.e., 90◦) (Fig. 4A).  At 

359 the higher noise level (i.e., SNR = 10), the bias in the estimated separation angle due to 

360 changes in the shape factor is swamped by the noise itself, especially for lower separation 

361 angles. From the observed angular deviations in Fig. 4B (the first peak) and Fig. 4C (the 

362 second peak) we can observe, in general, that for smaller simulated separation angles, the 

363 adverse effects of changing the shape factor of the response function on the estimated FOD 

364 angular characteristics are more pronounced.  

365

366 Fig. 4. Results of exploring the impact of response functions with different shape factor 

367  on the FOD peaks for crossing fiber configurations simulated with separation angles 𝜶

368 ranging from 90◦ to 40◦. Fig. 4A shows the estimated separation angles between the two 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/760546doi: bioRxiv preprint 

https://doi.org/10.1101/760546
http://creativecommons.org/licenses/by/4.0/


17

369 primary peaks. Dashed horizontal lines indicate the simulated separation angles. Fig. 4B and 

370 Fig. 4C show the angular deviations between the estimated first (p1) and second (p2) FOD 

371 peaks and their corresponding simulated fiber orientations. Solid line interruptions occurred 

372 when one of the two peaks was not detected. The means of the estimated values are plotted 

373 with the standard error as the shaded areas. Dashed vertical lines are defined as in Fig. 3.

374

375 3.3.2 The effect of the scaling factor
376

377 Fig. 5 shows the angular deviations between the orientation of the estimated FOD 

378 peaks and the simulated fiber orientations as a function of the scaling factor. Overall, crossing 

379 fibers with separation angles smaller than 45◦ show larger angular deviations than those with 

380 more orthogonal separation angles. In Fig. 5A, the estimated separation angles do not change 

381 significantly as a function of the scaling factor of the response function. Nevertheless, smaller 

382 simulated separation angles result in a larger bias of the estimated separation angles. Fig. 5B 

383 and Fig. 5C present the angular deviations of the first and second FOD peak, respectively. The 

384 angular deviations are not significantly affected by the scaling factor, but do depend on the 

385 magnitude of the separation angles of the two fiber populations.  

386

387 Fig. 5. The effect of varying the scaling factor ( ) of the response function on the FOD 𝑲

388 peaks for crossing fiber configurations simulated with separation angles ranging from 

389 90◦ to 40◦. Fig. 5A shows the estimated separation angles between the two primary peaks. 

390 Dashed horizontal lines indicate the simulated separation angles. Fig. 5B and Fig. 5C show 

391 the angular deviations between the estimated first (p1) and second (p2) FOD peaks and the 

392 corresponding simulated fiber orientations. Solid line interruptions occurred when one of the 

393 two peaks was not detected. The means of the estimated values are plotted with the standard 

394 error as the shaded areas. Dashed vertical lines are defined as in Fig. 3.

395
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396 3.4 AFD per fixel
397

398 Fig. 6 shows the percentage difference of the AFD of the first and second fiber 

399 population in relation to the response function shape factor (A, B) and scaling factor (C, D). In 

400 Fig. 6A, at SNR 50 and 30, the AFD started at a very high value when the shape factor is 

401 smaller than 0.8, 1.0 and 1.4 x 10-3 mm2/s for the simulated separation angles of 55◦, 50◦ and 

402 45◦, respectively. The AFD values converge to the AFD of the other separation angles as the 

403 shape factor increases. As shown in the angular characteristics results (Fig. 4), when the 

404 response function becomes sharper, the drop points of AFD for small separation angles 

405 indicate the boundaries at which CSD is just able to separate the two fiber populations. In case 

406 of the 40◦ separation angle, only one FOD peak is obtained. The large difference in AFD for 

407 small separation angles (45◦-55◦) with decreased shape factors can be a confounding factor in 

408 inter-subject comparisons of AFD studies, which will be discussed further in Section 4.3. At 

409 SNR 10, the AFD differences are more related to noise than to the shape of the response 

410 function for smaller separation angles (below 60◦). As for the second peak (Fig. 6B), the AFD 

411 can change from -30% to 20% when the shape factor was modified from -50% to 50%, 

412 respectively.

413

414 Fig. 6. The percentage difference of the estimated AFD of the first peak (p1) and the 

415 second peak (p2) in relation to the response function shape factor  (A, B) and scaling 𝜶

416 factor  (C, D) at different SNR levels. The quick drop of the AFD difference while increasing 𝑲

417 the shape factor indicates when CSD was able to separate the two fiber populations. Dashed 

418 vertical lines are defined as in Fig. 3.

419 Fig. 6C and Fig. 6D show the percentage difference of the AFD of the first and second 

420 fiber population in relation to the scaling factor of the response function. In line with the 

421 simulation results for single fiber populations (Fig. 2D), AFD can change up to 80% due to the 

422 scaling factor changes for the second peak. For simulated separation angles of approximately 

423 45◦, AFD of the first fiber population can be over-estimated up to as much as 150%. For the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/760546doi: bioRxiv preprint 

https://doi.org/10.1101/760546
http://creativecommons.org/licenses/by/4.0/


19

424 other simulated separation angles, the AFD of the primary peak can vary from -40% to 70% at 

425 SNR = 50 and SNR = 30, irrespective of the simulated separation angles. Notice that the AFD 

426 changes are not linearly related with changes in the scaling factor. 

427

428 3.5 In vivo HCP data set
429

430 3.5.1 FOD characteristics of white matter
431

432 In this section, we present the effect of changing the shape and scaling factors of the 

433 response function on FOD characteristics for an axial slice of the HCP data set. The difference 

434 in number of FOD peaks per voxel is shown in Fig. 7. Differences are typically seen in areas 

435 with partial volume effects and with mostly a peak number difference value of one. When the 

436 difference in shape factor, denoted by Δ , increases by 0.1 mm2/s to 0.3 𝛼 × 10 ‒ 3 × 10 ‒ 3 

437 mm2/s, one can see the increase in occurrence of peak number deviations, such as, for 

438 instance, in mid-sagittal regions of the corpus callosum. With the increase of difference in 

439 scaling factor, denoted by Δ , regions containing CSF showed higher peak number differences 𝐾

440 than regions with white and gray matter.

441

442 Fig. 7. The difference between the number of FOD peaks estimated with the tensor-

443 based response function and the number of FOD peaks computed with the response 

444 function modified according to certain changes in scaling ( ) and shape ( ) factors. 𝑲 𝜶

445 The background is an axial view of the FA map. The peak number difference mostly occurs in 

446 grey matter and CSF areas, and crossing fiber regions for white matter, as indicated by the 

447 colormap. In regions with single fiber populations (e.g., middle parts of the corpus callosum) 

448 spurious peaks are hardly present. 

449

450 Fig. 8 shows the angular difference between the primary FOD peak, computed with the 

451 tensor-fit to the recursive calibrated response function, and the FOD peak obtained with the 
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452 modified shape and scale factors of the response function. In general, regions containing 

453 crossing fibers are affected most when modifying the shape of response functions, with angular 

454 deviations of the main FOD peak of up to 3◦. Notice that the angular deviation is mostly affected 

455 by changing the shape factor, rather than the scaling factor. In addition, while changing Δ  did 𝐾

456 not affect the angular deviation, increasing the magnitude of Δ  resulted in larger angular 𝛼

457 deviations in the same locations. 

458

459 Fig. 8. The angular deviations between the FOD peaks estimated with the tensor-fit of 

460 the response function and the FOD peaks estimated with the response function 

461 modified according to certain changes in scaling ( ) and shape ( ) factors. The 𝑲 𝜶

462 background is an axial view of the FA map and, for clarity, the angular deviations are shown 

463 only in regions where FA > 0.2. Most angular differences are in the range of 0-3◦. Similar to the 

464 results of spurious peaks shown in Fig. 7, angular deviations are larger in regions with crossing 

465 fiber populations than regions with single fiber populations, such as the middle part of the 

466 corpus callosum. Notice that the angular deviations are much higher with regard to shape 

467 factor changes than scaling factor changes.

468

469 Fig. 9 shows the voxel-wise AFD difference for the dominant fiber direction between 

470 the FOD estimated using the tensor-fit to the recursive calibrated response function and the 

471 FOD obtained with the modified shape and scale factors of the response function for the HCP 

472 data set. The AFD shows a very different pattern in relation to the shape factor changes 

473 compared to scaling factor changes. The AFD differences are homogenous throughout the 

474 brain when the scaling factor varies, while the outliers indicate the voxels where there are 

475 potential geometrical differences in the estimated AFD from the reference, such as merging or 

476 spurious peaks. The AFD differences are up to 98% when the scaling factor  decreased by 𝐾

477 0.2. When changing the shape factor with -0.3 mm2/s to 0.3 mm2/s, the highest × 10 ‒ 3 × 10 ‒ 3 

478 differences (around 6 to 8%) were observed in areas with a single-fiber population, such as 
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479 the corpus callosum. Notice that bigger changes of the shape factor α makes the AFD 

480 difference more heterogeneous across the brain. 

481

482 Fig. 9. The percentage difference of the apparent fiber density (AFD) between the FOD 

483 peaks estimated with the tensor-fit of the response function and the FOD peaks 

484 estimated with the response function modified according to certain changes in scaling 

485 ( ) and shape ( ) factors. The background is an axial view of the FA map and, for clarity, 𝑲 𝜶

486 the AFD percentage differences are shown only in regions where FA > 0.2.  Notice that the 

487 AFD difference stays homogenous with respect to the scaling factor changes, whereas it is 

488 heterogeneous when the shape factor changes. 

489

490 3.5.2 Effect on fiber tractography 
491

492 Fig. 10 shows the effect of changing the scaling and shape factors of the response 

493 function on the reconstruction of the pathways of the tSLF. The reference trajectories (shown 

494 in yellow) are computed with the recursive calibration method. While not much differences can 

495 be observed for the main part of the reconstructed tracts, changing the response function 

496 mainly affected the trajectories where the tSLF enters the frontal and temporal lobes (see 

497 enlarged regions in Fig. 10). 

498

499 Fig. 10. The temporal part of the superior longitudinal fasciculus (tSLF) reconstructed 

500 with the FODs estimated using the tensor-fit to the recursively calibrated response 

501 function (yellow), and the tSLF from the same ROIs reconstructed with FODs estimated 

502 using the modified response functions. The other fiber bundles (shown in red, blue, cyan, 

503 magenta, and green) indicate the effect of changing the scaling ( ) and shape ( ) factors 𝐾 𝛼

504 of the response function on the trajectory of the tSLF. Notice the subtle differences in how the 

505 fiber trajectories terminate in the temporal lobe (zoomed areas; the “+” and “-” indicate increase 

506 and decrease in the scaling and shape factors, respectively).
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507

508 Fig. 11 shows the FOD characteristics for the FA-mask, the SFP-mask, and the 

509 extracted fiber bundles (gCC, sCC, CST, UF, Cg and tSLF). From all the three FOD 

510 characteristics (i.e., spurious peaks, angular deviations, and AFD percentage differences), we 

511 can spot a similar trend for all the bundles and the masks with respect to the changes in the 

512 shape and scaling factors of the response function. Overall, the UF has the highest average 

513 number of spurious peaks. The lowest average angular deviations of the first FOD peak can 

514 be seen for the SFP-mask. Furthermore, the alterations of the shape factor of the response 

515 function can cause angular deviations up to 6˚, while the alterations of the scaling factor hardly 

516 cause any angular differences in the masks or the selected fiber bundles (see the enlarged 

517 plot). Finally, the differences in AFD are relatively homogenous across the extracted fiber 

518 bundles and masks with as a function of changing the shape or the scaling factors. 

519

520 Fig. 11. The average number of spurious peaks, the average angular deviations, and the 

521 average percentage differences in AFD of the first fiber population for the FA-mask, the 

522 SFP-mask, and the selected fiber bundles (shown on the right) when a modified 

523 response function was used in comparison to the original tensor-fit to the recursive 

524 calibrated response function. The effect of the changes in the scaling ( ) and shape ( ) 𝐾 𝛼

525 factors of the response function on the selected fiber bundles are reflected in the different color 

526 encoding. sCC = splenium of corpus callosum; gCC = genu of corpus callosum; Cg = cingulum; 

527 UF = uncinate fasciculus; CST = corticospinal tract; tSLF = temporal part of superior 

528 longitudinal fasciculus.

529 4. Discussion
530

531 In this work we investigated the effect of changing response function properties on the 

532 FOD characteristics using numerical simulations and in vivo HCP data. In particular, we show 

533 how miscalibration of the response function, as defined by adjusting the scaling and shape 
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534 factors, can introduce a bias in the orientation and magnitude of fiber population peaks. Our 

535 findings demonstrate that CSD is prone to produce spurious FOD peaks in the presence of 

536 miscalibrated response functions, especially in data with insufficient SNR levels. The 

537 occurrence of such spurious peaks can also introduce inaccurate fiber pathway 

538 reconstructions with fiber tractography. Overall, in agreement with former studies, spurious 

539 peaks are introduced due to overestimating the shape factor of the response function, while 

540 underestimating the shape factor will result in lower angular resolution of the FOD lobes 

541 [10,15]. Proper tuning of the response function is therefore necessary to achieve an optimal 

542 balance between increasing the angular resolution and minimizing the number of spurious 

543 peaks, especially for smaller separation angles (i.e., below 60◦) and at low SNR levels. Further, 

544 AFD estimation can be influenced by the choice of response function, which will be discussed 

545 in section 4.3.

546

547 4.1 Effect of shape and scaling factors with simulations
548

549 At SNR levels of 30 and 50, the FOD characteristics are consistently affected by the 

550 choice of the response functions, while at SNR of 10, noise is the dominating factor that affects 

551 the FOD properties (Fig. 3). In addition, more spurious peaks are observed at SNR of 10. At 

552 relatively high SNR levels, the shape factor of the response function has a greater impact on 

553 the results than the scaling factor. In particular, using a sharper response function for 

554 separation angles below 50◦ can potentially increase the angular resolution of CSD and can, 

555 therefore, improve the estimation of the number of peaks (Fig. 3). The shape of the response 

556 function was reported to vary with axonal injury and brain maturation, whereas the scaling 

557 factor was observed to change as result of demyelination, axonal diameters and axonal density 

558 changes [10,35]. This implies that in brain regions affected by disease, applying CSD with a 

559 response function determined by healthy white matter data can result in unreliable estimates 

560 of FOD characteristics. 

561
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562 4.2 Effect of the separation angle between crossing fiber populations
563

564 The extent to which the FODs will be affected by the response function depends largely 

565 on the separation angle between crossing fiber populations (Fig. 4). More orthogonally 

566 crossing fiber orientations are less sensitive to response function changes, as originally 

567 suggested in the spherical deconvolution paper [6]. In voxels containing crossing fiber 

568 configurations with smaller separation angles (e.g., below 60◦), the average angular deviations 

569 and their variance increase rapidly with lower shape factors of the response function. By 

570 contrast, a higher shape factor of the response function results in a smaller bias in the 

571 computation of the FOD peak orientations than the underestimation of the shape factor (Fig. 4 

572 and Fig. 5). 

573

574 4.3 Effect of shape factor on AFD
575

576 For fiber populations with separation angles below 55◦, CSD fails to estimate the correct 

577 number of peaks when response functions with a lower shape factor are employed, leading to 

578 artificially higher AFD values (Fig. 6). As FOD peaks merge together when the shape factor is 

579 further decreased, the AFD becomes close to the integral of the total FOD amplitudes within 

580 the voxel. This is shown in Fig. 6 for simulated separation angles between 45◦ to 55◦. For these 

581 relatively small separation angles, the large AFD difference is caused by the limited angular 

582 resolution of CSD with the simulated settings. Previous studies [36] reports AFD as a more 

583 sensitive diffusion marker in traumatic brain injury than the traditional metrics. However, one 

584 should be aware that these changes in AFD in the presence of pathology could result from 

585 global response function differences between subjects, rather than local diffusivities 

586 alterations.

587

588 4.4 Effect of FOD angular deviations on fiber tracking
589
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590 If the angular deviations of the FOD peaks are similar in the neighborhood voxels along 

591 the white matter pathways, accumulating effects on reconstructed fibers will be significant. By 

592 contrast, the heterogonous angular deviations of the FOD peaks may only change the voxel-

593 wise characteristics like AFD and number of fiber population peaks, the fiber pathways remains 

594 if the angular deviations of FOD was not big enough to end in different voxels in the trajectory. 

595 Generally, fiber tractography results will not be severely affected in the main part of the fiber 

596 bundles, but may show subtle differences at the edges (Fig. 10). In addition, the termination of 

597 fiber pathways passing through crossing regions can be affected [12]. With the in vivo HCP 

598 data, only minor changes in the tSLF trajectories are detected when using the modified 

599 response functions with different shape factors. Nevertheless, an inaccurate response function 

600 will influence the FODs and subsequently fiber tractography results.

601

602 4.5 Limitations and future directions
603

604 The reference value of the shape and scaling factor of the simulated diffusion-weighted 

605 signals match with the values in the corpus callosum as reported before. However, recent 

606 studies [37–40] indicated that the diffusivities of fiber bundles in the brain are not always the 

607 same. There is not a full map of diffusivity characteristics of each white matter structure yet. 

608 Although our simulation study included the same configurations of crossing fiber bundles in a 

609 voxel, in reality, the diffusivities of these crossing fibers may not be identical. 

610 In this study, we showed tractography results of an HCP subject using the tensor-fit to 

611 the recursively calibrated response function and modified response functions. In group studies 

612 between healthy subjects and patients with neural degradation diseases (e.g., Alzheimer's 

613 disease), it would be useful to compare the alterations of response functions. If there is a 

614 group-wise alteration of the shape and the scaling factor of the response functions, we should 

615 first exclude the deviations of the diffusivities of the diseased group from the healthy subjects, 

616 to ensure that FOD characteristics and fiber tractography changes are not the effects of the 
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617 response function alteration itself. Furthermore, we can separate the effects of disease on 

618 white matter fiber tracking from the effects of response functions used in the FOD estimation. 

619 5. Conclusion
620

621 This study demonstrates with numerical simulations and in vivo HCP data that 

622 decreasing the shape factor of the response function can cause large angular deviations of the 

623 FOD peak orientations in crossing fibers. Sharper response functions are responsible for 

624 introducing spurious peaks, which can also confound subsequent tractography results. 

625 Extremely low shape factors of the response function can cause significant angular deviations 

626 and may complicate the interpretation in studies involving pathology. In addition, although 

627 individual angular deviations of FOD peak orientations are small for single voxels at most 

628 separation angles, the adverse effect can accumulate for brain tractography. Since smaller 

629 separation angles are more sensitive to changes of response function shape factors, future 

630 work of inter-subject AFD and pathological groups should be aware of this possible 

631 confounding factor when investigating brain structures with crossing fiber configurations.

632

633
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