Bidirectional crosstalk between HIF and Glucocorticoid signalling in zebrafish larvae

Davide Marchi1*, Kirankumar Santhakumar5, Eleanor Markham1, Nan Li2, Karl-Heinz Storbeck3, Nils Krone2,4, Vincent T. Cunliffe1 and Fredericus J.M. van Eeden1**

1The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom. 2The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, S10 2TH, United Kingdom. 3Department of Biochemistry, Stellenbosch University, Stellenbosch, 7602, Matieland, South Africa. 4Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany. 5Department of Genetic Engineering, SRM Institute of Science and Technology Kattankulathur 603 203, India.

*Corresponding author. Tel: +44 1142 24653; E-mail: dmarchi1@sheffield.ac.uk
**Corresponding author. Tel: +44 1142 222348; E-mail: f.j.vaneeden@sheffield.ac.uk

Abstract

In the last decades few in vitro studies highlighted the potential for cross-talk between hypoxia inducible factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid response and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF signalling. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing the HIF response. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this cross-talk occurs in vivo.

Keywords: glucocorticoid signaling, hypoxia inducible factor, vhl, zebrafish, hypotalamus-pituitary-interrenal axis, metabolism, negative feedback, liver.

Subject Categories Developmental biology; Endocrinology; Metabolism.
Introduction

Glucocorticoids constitute a well-characterized class of lipophilic steroid hormones produced by the adrenal glands in humans and by the interrenal tissue in teleosts. The circadian production of glucocorticoids in teleosts is regulated by the hypothalamus-pituitary-interrenal (HPI) axis, which is the equivalent of the mammalian hypothalamus-pituitary-adrenal (HPA) axis. Both are central to stress adaptation (Alsop and Vijayan, 2009; Griffiths et al., 2012; Tokarz et al., 2013; Faught and Vijayan, 2018). Glucocorticoids exert their function via direct binding to the intracellular glucocorticoid receptor (GR) (Bamberger, Schulte and Chrousos, 1996), and together act as a transcription factor, which can function either in a genomic or in non-genomic way (Stahn and Buttgereit, 2008; Mitre-Aguilar, et al., 2015; Facchinello et al., 2017; Panettieri et al., 2019).

Hypoxia-inducible factor (HIF) transcription factors are key regulators of the cellular response to hypoxia, which coordinate a metabolic shift from aerobic to anaerobic metabolism in the presence of low oxygen availability in order to assure homeostasis (Semenza, 2011). Hypoxia, is a common pathophysiological condition (Bertout, Patel and Simon, 2008; Semenza, 2013) to which cells must promptly respond in order to avert metabolic shutdown and subsequent death (Elks et al., 2015). In the presence of normal oxygen levels, a set of prolyl hydroxylases (PHD1, 2 and 3) use the available molecular oxygen directly to hydroxylate HIF-α subunit. Hydroxylated HIF-α is then recognised by the Von Hippel Lindau (VHL) protein, which acts as the substrate recognition part of a E3-ubiquitin ligase complex. This leads to HIF-α proteasomal degradation to avoid HIF pathway activation under normoxic conditions. On the other hand, low O2 levels impair the activity of the PHDs enzymes leading to HIF-α stabilisation and subsequent translocation in the nucleus. Here, together with HIF-β subunit, HIF-α forms a functional transcription complex, which drives the hypoxic response (Semenza, 2012). Although the HIF response is aimed to restore tissue oxygenation and perfusion, it can sometimes be maladaptive and can contribute to a variety of pathological conditions including inflammation, tissue ischemia, stroke and growth of solid tumours (Cummins and Taylor, 2005). Finally, it is important to note for this study that HIF signalling is able to regulate its own activation via negative feedback, by inducing the expression of PHD genes, in particular prolyl hydroxylase 3 (PHD3) (Pescador et al., 2005; Santhakumar et al., 2012).
The presence of a cross-talk between glucocorticoids and hypoxia dependent signalling (HIF) pathways has been widely demonstrated by several *in vitro* studies (Kodama *et al.*, 2003; Leonard *et al.*, 2005; Wagner *et al.*, 2008; Zhang *et al.*, 2015, 2016). Moreover, synthetic glucocorticoids (i.e. betamethasone and dexamethasone), which are analogous to naturally occurring steroid hormones, have been extensively used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, rheumatoid arthritis, ischemic injury, etc.) (Nikolaus, Fölschen and Schreiber, 2000; Neeck, Renkawitz and Eggert, 2002; Busillo and Cidlowski, 2013). However, due to the presence of adverse effects (Moghadam-Kia and Werth, 2010) and glucocorticoid resistance (Barnes and Adcock, 2009; Barnes, 2011), their use has been limited. Therefore, extending the research on how precisely this interplay occurs *in vivo*, may have a wide physiological significance in health and disease.

The first evidence of interaction between HIF and GR was provided by Kodama *et al.* 2003, who discovered that ligand-dependent activation of glucocorticoid receptor enhances hypoxia-dependent gene expression and hypoxia response element (HRE) activity in HeLa cells. Leonard *et al.* 2005 subsequently revealed that GR is transcriptionally upregulated by hypoxia in human renal proximal tubular epithelial cells. Furthermore, the hypoxic upregulation of GR was confirmed by Zhang *et al.* 2015. In contrast, a dexamethasone-mediated inhibition of HIF-1α target genes expression in hypoxic HEPG2 cells was demonstrated by Wagner *et al.* 2008. In addition to that, they showed retention of HIF-1α in the cytoplasm, suggesting a blockage in nuclear import. Finally, Gaber *et al.*, 2011 indicated the presence of dexamethasone-induced suppression of HIF-1α protein expression, which resulted in reduced HIF-1 target gene expression.

From these *in vitro* results it has become clear that HIF-GCs cross-talk is complex and may depend on cell type. In the present study, we have used the zebrafish (*Danio rerio*) as an *in vivo* model organism to study how and to what degree hypoxic signalling affects the endogenous glucocorticoids’ response and vice versa. The use of whole animals allows us to show how these signals interact at a more global level than in cell culture, where interactions between different tissues and cell types are not easily modelled. The zebrafish offers an excellent genetic vertebrate model system for endocrine studies, and similar to humans, they are diurnal and use cortisol as the main glucocorticoid hormone (Weger *et al.*, 2016). Importantly, unlike other teleosts, zebrafish have only a single glucocorticoid (zGr) and mineralocorticoid receptor (Mr) (zMr) isoform (Faught and Vijayan, 2018). Moreover, zGr shares high structural and functional
similarities to its human equivalent, making zebrafish a reliable model for studying glucocorticoids activity in vivo (Alsop and Vijayan, 2008; Chatzopoulou et al., 2015; Xie et al., 2019). Additionally, zebrafish share all the components of the human HIF signalling pathway and it has been proved to be a very informative and genetically tractable organism for studying hypoxia and HIF pathway both in physiological and pathophysiological conditions (van Rooijen et al., 2011; Santhakumar et al., 2012; Elks et al., 2015).

In our previous work, we identified new activators of the HIF pathway, e.g. betamethasone, a synthetic glucocorticoid drug (Vettori et al., 2017). Counterintuitively, GR loss of function was shown by Facchinello and colleagues to hamper the transcriptional activity linked to immune-response (i.e. of cytokines Il1β, Il8 and Il6 and of the metalloproteinase Mmp-13) (Facchinello et al., 2017). Finally, glucocorticoid receptor has been also found to synergistically activate proinflammatory genes by interacting with other signalling pathways (Langlais et al., 2008, 2012; Dittrich et al., 2012; Xie et al., 2019).

In the present study, we utilised both a genetic and pharmacological approach to alter these two pathways during the first 120 hours post fertilisation of zebrafish embryos. In particular, we took advantage of two different mutant lines we have generated (hif1βsh544 (Arnt1) and grsh543 (nr3c1) respectively), coupled to an already existing vhlhu2117/+;phd3::EGFPi144/i144 hypoxia reporter line (Santhakumar et al., 2012), to study the effect of HIF response on GCs signalling and vice-versa, via a “gain-of-function/loss-of-function” approach. Phenotypic and molecular analyses of these mutants have been accompanied by optical and fluorescence microscope imaging.

Importantly, we not only confirm that betamethasone is able to increase the expression of phd3:eGFP, a marker of HIF activation in our zebrafish HIF-reporter line, but we also show that BME-driven HIF response requires Hif1β/Arnt1 action to occur. Furthermore, our results also demonstrate that both Gr and Mr loss of function are able to partially rescue vhl phenotype, allowing us to confirm the importance of glucocorticoids in assuring a proper HIF response.

Our results also demonstrate that in the presence of upregulated HIF pathway (by mutating vhl), both glucocorticoid response and the endogenous cortisol levels are repressed in 5 dpf larvae, whereas when HIF pathway is suppressed (by mutating hif1β) they are significantly increased. Finally, qPCR analysis on GCs target genes, in situ
hybridisation on the expression of steroidogenic genes and cortisol quantification on the aforementioned mutant lines confirmed our hypothesis.

Taken together, these results allow us to deepen the knowledge of how the cross-talk between HIF and glucocorticoid pathway occurs in vivo and to underscore a new model of interaction between these two major signalling pathways.

Materials and methods

Zebrafish husbandry and maintenance:
Zebrafish (Danio rerio) lines were raised and maintained under standard conditions (14 hours of light and 10 hours of dark cycle, at 28°C) in the Aquaria facility of the University of Sheffield. Zebrafish embryos used for experiments were reared in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM MgCl2, 0.33 mM CaCl2, pH 7.2) with or without methylene blue (Sigma-Aldrich) and staged according to standard methods (Kimmel et al., 1995) for up to 5.2 days post fertilisation (dpf) in accordance with UK Home Office legislation. Experiments performed on zebrafish embryos conformed to UK Home Office regulations.

Zebrafish strains:
The following zebrafish lines were used: wild-type (wt) strain AB (ZDB-GENO-960809-7), vhlhu2117/+;phd3:eGFP1144/1144 (ZDB-GENO-090611-18), hif1βh544/+;hif1βh544/+;vhlhu2117/+;grsh543/+; grsh543/+;vhlhu2117/+; grsh543/+;hif1βh544/+; and grsh543/+;hif1βh544/+;vhlhu2117/+ lines were generally maintained in a phd3:EGFP1144/+ background. The following 4x gRNAs CRISPR-injected G0 null mutant lines were created according to Wu et al., 2018 protocol and raised up to to 5.2 dpf: mr;grsh543/+;vhlhu2117/+;phd3:eGFP1144/+, hif1β2;1hif1βh544/+;vhlhu2117/+;phd3:eGFP1144/+ and lamb1b;vhlhu2117/+;phd3:eGFP1144/+ (used as CRISPR injection control).

Generation of gr (nr3c1) and hif1β (arnt1) null zebrafish lines:
Both nr3c1 mutant line (grsh543/+ and arnt1 mutant line (hif1βh544/+ were generated using the CRISPR/Cas9-based mutagenesis method. A gene-specific guide RNA (sgRNA) sequence was identified using the CHOPCHOP website (Montague et al., 2014; Labun et al., 2016). To design both gr and arnt1 sgRNA, an 18 nucleotides sequence upstream to a selected PAM site (grsh543: CCAGCTGACGATGTGGCAG; hif1βh544: TCGGTGCTGGTGTTCGCCAG) was inserted into a scaffold sequence (Hruscha et al., 2013),
containing a promoter for the T7 Polymerase. The sgRNA was amplified via PCR, purified from agarose gel and in vitro transcribed using MEGAscript T7 kit (Ambion). 1 nl of CRISPR mixture containing 2,4 µg/µl of gRNA and 0,5 µl Cas9 protein (NEB) was injected in one-cell stage embryos and raised for 24 hours. Wild-type (wt), strain AB embryos were used to generate the gr mutant line, whereas vhlu2117+/++;phd3:eGFPi44/+ incross-derived embryos were used to create the hif1β mutant line. Efficiency was verified via whole-embryo PCR-based genotyping, by a diagnostic restriction digest. Injected embryos were raised to adulthood. Embryos collected from transmitting G0 founders crossed with WT(AB) fish were raised and genotyped to confirm germline transmission of the mutation (F1 generation). Heterozygous mutants, carrying the same mutation, were selected and crossed to obtain homozygous mutant embryos (F2 generation).

Generation of CRISPR/Cas9-mediated mutants (CRISPANTs):

To generate G0 knockout embryos we used the method developed by Wu et al., 2018. In short, a pool of four guide-RNAs (25µM each, Sigma Aldrich) were co-injected with 0,5 µl Cas9 protein (NEB, M0386, 20µM), diluted 1:10 and 1 µl tracrRNA (100µM) in one-cell stage embryos. This method was used to create G0 CRISPANTs for the following genes of interest: mineralocorticoid receptor (mr, nr3c2), aryl hydrocarbon receptor nuclear translocator 2 (arnt2, hif1β2) and laminin, beta 1b (lamb1b). The latter was used as CRISPR-injection control. The gRNA target sequences used in this study are as follows: arnt2: gRNA1- ACGGCCCTACAAAACCTCC, gRNA2- GGCGGATGGCTTCTTGTTCG, gRNA3- TTACGCCACAATTCGGATG, gRNA4- GTGCAGGTGGCGGTAAAAACA; nr3c2: gRNA1- GCATTGTGGGGTCACCTCCA, gRNA2- AAGGGGATTAAACAGGAAAC, gRNA3- CAACCAGCTCGCGGAACCA, gRNA4- ATATCTGACGCCGTCCGTCT; lamb1b gRNA1- TTGTTAATAGCATAGTACATTGG, gRNA2- GGAGAACAAGCAAAACGATGAGG, gRNA3- GCGTGGTGCCAGGGTTTAG, gRNA4- TCACAATGACATGTGTGCG. The success of the injection was determined via phenotypic analysis, followed by quantification of phd3:eGFP related brightness and whole-embryo PCR-based genotyping performed on a fraction of injected embryos at 5 dpf.

Whole-mount in situ hybridisation:

Whole-mount in situ hybridization (WISH) was performed according to standard protocols (Thissee and Thisse, 2008). The following antisense RNA probes were used: proopiomelanocortin a (pomca) created as previously described (Muthu et al., 2016);
Cytochrome P450 family 17 polypeptide 2 (cyp17a2), created as previously described (Eachus et al., 2017), both prolyl hydroxylase 3 (phd3; BC066699), and lactate dehydrogenase A (ldha1; BC067188) probes, generated as previously described (van Rooijen et al., 2009; Santhakumar et al., 2012).

Embryos harvesting, drug treatment and fixation for WISH:
Embryos intended for whole-mount in situ hybridisation were treated with 16.8 µl of 1-phenyl 2-thiourea (PTU, stock concentration 75mg/ml) diluted into 35 ml E3 medium to inhibit melanogenesis, according to Karlsson et al., 2001. GR agonist treatment was performed on batches of 15 embryos each, at 4 dpf, treated in 6-well plates, with 30 µM Betamethasone 17,21-dipropanoate (BME) and with 1% DMSO (Sigma-Aldrich), as control, for 24 hours (Griffiths et al., 2012). Inside the 6-well plates, embryos were incubated in 3 ml total volume of E3 medium, without methylene blue. Afterwards, up to 30 embryos at 5 dpf were collected in 1.5 ml Eppendorf tubes and anaesthetized using Tricaine Solution (MS-222, Sigma Aldrich) prior to fixation in 1 ml 4% PFA solution overnight, at 4°C. Embryos were then washed twice for 10 minutes in PBST and post-fixed in 1 ml 100% MeOH. Finally, samples were stored at -20°C.

gr^{sh543} mutants sorting by visual background adaptation (VBA):
Visual background adaptation (VBA) is a glucocorticoid receptor-dependent neuroendocrine response which causes zebrafish melanocytes to shrink when exposed to bright illumination (Kramer et al., 2001; Kurrasch et al., 2009). To identify gr^{sh543} mutants from siblings and to confirm the absence of a functional VBA response, 5dpf larvae were exposed to 30 minutes darkness and then transferred onto a white background under bright, whole-field illumination, using a 30W fluorescent lamp mounted 50 cm above the dish (Muto et al., 2005; Hatamoto and Shingyoji, 2008).

Cortisol extraction and quantification:
Cortisol quantification was carried out according to the protocol published by Eachus et al., 2017. Three biological replicates of 150 larvae at 5dpf each of hif1β^{sh544} mutants, hif1β^{sh544} siblings, vhlhu2117 mutants and vhlhu2117 siblings, respectively, were used for steroid hormone extraction and quantification.
RNA isolation, cDNA synthesis and qPCR analysis:

Transcript abundance of target genes was measured by quantitative real-time PCR (RTqPCR). Three biological replicates of 10 larvae at 4 dpf each, were treated for 24 hours with 30 μM Betamethasone 17,21-dipropanoate and with 1% DMSO, used as control, prior to RNA isolation. Total RNA was extracted from pools of 10 larvae at 5dpf with TRIzol reagent (Invitrogen by Thermo Fisher Scientific, 15596026). RNA extracted was quantified using a Nanodrop ND-1000 spectrophotometer. cDNA was then synthesized from 1μg RNA template through reverse transcription using Protoscript II First Strand cDNA Synthesis Kit (New England Biolabs), as recommended by manufacturer's instructions. All RTqPCR reactions were performed in triplicate using TaqMan probes™ in combination with CFX96 Touch™ Real-Time PCR Detection System (BioRad), paired with CFX Maestro™ Analysis Software. Each reaction mixture (20μl) reaction mixture containing 1 μl cDNA template (100ng/ml), 1 μl FAM™ probe and 10 μl TaqMan Universal Master Mix (Applied biosystems by Thermo Fisher Scientific, Epsom, UK) was amplified as follows: denaturation at 95°C for 10 minutes and 39 cycles at 95°C for 15 seconds, 60°C for 30 seconds. Four hypoxia-inducible factor pathway-dependent genes (egln3: Dr03095294_m1, pfkfb3: Dr03133482_m1, vegfab: Dr03072613_m1 and slc2a1a: Dr03103605_m1) and four glucocorticoid pathway-dependent target genes (fkbp5: Dr03114487_m1, il6st: Dr03431389_m1, pck1: Dr03152525_m1 and lipca: Dr03113728_m1) were quantified in the present study (Applied biosystems by Thermo Fisher Scientific, Epsom, UK). Expression levels for each gene were normalized to eef1a1 (Dr03432748_m1) and/or rps29 (Dr03152131_m1) and fold change values were generated relative to wild-type DMSO treated control levels, according to ΔΔCT method (Livak and Schmittgen, 2001). All data were expressed as fold change mean ± s.e.m and P ≤ 0.05 was considered statistically significant.

Quantifying phd3:eGFP-related brightness:

Images were acquired using Leica Application Suite version 4.9, which allowed the capture of both bright-field and GFP fluorescent images. To quantify the phd3:eGFP-related brightness of live embryos derived from each incrossed mutant line used in this project, Fiji (ImageJ) software v.2.0.0 was used. Images were converted into a grey scale 8-bit format and subsequently analysed by the software, by summing the grey values of all the pixels in the selected area, divided by the number of pixels. By default, since values equal 0 are assigned to black and values equal to 255 to white, the quantified mean grey
values are proportional to the intensity of the eGFP-related brightness expressed in the embryos. In particular, head, liver and tail (from the anus to the caudal peduncle) related brightness were selected and measured in all the mutant lines used in this study.

Statistical analysis:
GraphPad Prism version 8.0 for MacOS (GraphPad Software, La Jolla, California, USA, www.graphpad.com) was used to perform statistical analysis on all the samples analysed. Unpaired t tests were used to test for significant differences between two sample groups (i.e cortisol quantification). One-way ANOVA was used for assessing mean grey values data quantification, whereas two-way ANOVA was used to evaluate qPCR data. As post-hoc correction tests, Sidak’s method for multiple comparisons was used on normally distributed populations following one-way ANOVA, while Dunnett’s correction was used for comparing every mean to a control mean, on normally distributed populations following two-way ANOVA.

Results

Generating arnt1 and arnt1;vhl knockout in zebrafish:

To study the interplay between HIF and GC signalling in vivo, using a genetic approach, we required an Hif1β/Arnt1 mutant line (in a phd3:eGFP;vhl^{+/−} background) to enable the downregulation HIF signalling. Hif-1β (hypoxia-inducible factor 1 beta, Arnt1) is a nuclear receptor that is targeted by and bound to Hif-α subunits, when the latter migrate into the nucleus after its stabilization in the cytoplasm. It represents the most downstream protein in the HIF pathway and for this reason it is the most suitable target. Using CRISPR mutagenesis we obtained a 7 bp insertion in exon 5 (coding bHLH DNA binding domain (DBD) of the Hif-1β protein; allele name sh544) in vhl heterozygote embryos (Fig.1a). The resulting frameshift mutation was predicted to lead to a premature stop codon at the level of the DNA-binding domain, which would result in a severely truncated protein. The resulting line hif1β_{sh544/+};vhl_{hu2117/+;phd3:eGFP^{144/144}} will be called arnt₁+/−;vhl₊/−, whereas the vhl_{hu2117/+;phd3:eGFP^{144/144}} line will be called vhl₊/− hereafter.

Initial analysis performed on arnt₁+/−;vhl₊/− incross-derived 5 dpf larvae (F1 generation) confirmed the suppressive effect that arnt1 mutation was expected to have on vhl mutants. Overall, arnt₁+/−;vhl₊/− larvae showed a substantially attenuated vhl
phenotype, characterized by a reduced phd3:eGFP related brightness, especially in the liver, with the absence of pericardial edema, excessive caudal vasculature and normal yolk usage compared to vhl−/− larvae (Fig.1b). In particular, this was quantified as a 39% downregulation (P<0.0017) at the level of the head, a 75% downregulation (P<0.0001) in liver and a 58% downregulation (P<0.0001) in the rest of the body (from the anus to the caudal peduncle), in terms of phd3:eGFP-related brightness, compared to vhl−/− larvae (Fig.1c and Fig.EV1a).

Furthermore, since homozygous vhl mutants are lethal by 8-10dpf (van Rooijen et al., 2009), to analyze the efficacy of arnt1 mutation in rescuing vhl phenotype, we attempted to raise arnt1+/−;vhl−/− after day 5 post fertilization. Notably, double mutants were able to survive beyond 15 dpf, but failed to grow and thrive when compared to their wild-type siblings, which led us to euthanise them due to health concerns at 26 dpf (Fig.EV1b). Of note, arnt1 homozygotes, in a vhl−/+ or wt background, were morphologically indistinct and adults were viable and fertile. In contrast, the previously published arnt2−/− zebrafish larvae were embryonic lethal around 216 hpf (Hill et al., 2009).

Arnt1 and Arnt2 are mutually involved in assuring HIF response in zebrafish:

As arnt1;vhl double mutants still activate the phd3:eGFP HIF reporter, we examined the importance of Arnt2 isoform in the HIF response. Phenotypic analysis was carried out on 5 dpf Arnt2 CRISPANTs, created both in a vhl−/+ and arnt1+/−;vhl−/− background, according to the protocol of Wu et al., 2018. By analysing the expression of the phd3:eGFP transgene, we observed that arnt2 CRISPR injected vhl mutants were characterized by a significant downregulation of phd3:eGFP-related brightness at the level of the head (equals to 53%, P<0.0001), in the liver (equals to 54%, P<0.0001) and in the rest of the body (equals to 46%, P<0.0001), compared to uninjected vhl mutant larvae (Fig.1d,e).

Furthermore, when both arnt1 and arnt2 isoforms were simultaneously knocked-out, the downregulation was even stronger at the level of the head (equals to 74%, P<0.0001), liver (equals to 86%, P<0.0001) and in the rest of the body (equals to 83%, P<0.0001) (Fig. 1d,e). Overall, these data allow to confirm that Arnt1, even if not fundamental for survival, is the main isoform required for HIF signaling at the hepatic level in zebrafish larvae, whereas Arnt2 is more expressed in the developing central nervous system (CNS), as reported by Hill et., al 2009. Of note, since both isoforms can
form a functional complex with HIF-α and appear to function in the same organs, this allows us to confirm that they have partially overlapping functions in vivo and to show that they synergistically contribute to the HIF response.

Modulation of HIF signalling affects GR signalling:

To investigate the interaction between HIF and glucocorticoid response, RTqPCR analysis was performed on 5 dpf larvae to quantify the expression of four glucocorticoid target genes (fkbp5, il6st, pck1 and lipca) both in a HIF upregulated (vhl−/−), attenuated (arnt1+/−;vhl−/−) and downregulated scenario (arnt1−/−). Collectively, this analysis showed that the expression of fkbp5 and pck1 (two of the main glucocorticoids target genes) is downregulated (fold change=0.1; P=0.0035 and fold change=0.16; P=0.041, respectively) in the presence of a strongly activated HIF pathway (vhl−/−), whereas only fkbp5 expression is significantly downregulated (fold change=0.3; P=0.0164) in a HIF attenuated scenario (arnt1−/−;vhl−/−), compared to wild-type larvae. In contrast, when HIF levels are suppressed (arnt1−/−), basal GC signalling (mainly fkbp5 expression) is upregulated (fold change=8.2; P=0.0004), compared to wild-type levels (Fig.2a and Fig. EV2).

To further examine the ability of HIF in repressing GCs response, we performed betamethasone (BME) treatment [30 µM] on the aforementioned mutant lines, followed by RTqPCR analysis. Interestingly, both in the presence of upregulated and partially attenuated HIF levels (vhl−/− and arnt1−/−;vhl−/−, respectively), BME was not able to significantly increase the expression of all the four glucocorticoid target genes analysed (Fig. 2a and Fig. EV2). In contrast, when the HIF pathway was suppressed (arnt1−/−), BME was able to further upregulate mainly the expression of fkbp5 (fold change=14.5; P<0.0001), pck1 (fold change=11.1; P=0.0040) and il6st (fold change=5.73; P=0.0041) (Fig. 2a and Fig. EV2). Collectively, these results indicate that upregulated HIF is somehow able to repress glucocorticoid response and can strongly blunt or abolish the response to an exogenous GR agonist. Interestingly, although HIF activity is expected to be low in wild-type larvae in a normoxic environment, its function is detectable with respect to suppression of GR activity.

HIF signalling acts as negative regulator of steroidogenesis:

To investigate the relationship between HIF signaling and steroidogenesis, we initially performed in situ hybridization on embryos from our arnt1+/− mutant line, using
both pro-opiomelanocortin (pomca) and Cytochrome P450 family 17 polypeptide 2 (cyp17a2) as probes. Expression of pomca, at the level of the anterior part of the pituitary gland, is a well-established readout of Gr function in zebrafish larvae. Indeed, it is negatively regulated by increased blood cortisol levels via GC-GR signalling, as part of the HPI axis feedback loop (Griffiths et al., 2012; Ziv et al., 2014). Previous work also suggested that HIF promotes POMC activity in the mouse hypothalamic region (Zhang et al., 2011). On the other hand, Cyp17a2 is an enzyme involved in steroid hormone biosynthesis at the level of interrenal gland, which is activated upon ACTH stimulation (Ramamoorthy and Cidlowski, 2016; Eachus et al., 2017; Weger et al., 2018).

We found that 5 dpf arnt1-/- larvae, which were characterized by an upregulated glucocorticoid response, showed upregulated cyp17a2 expression coupled to downregulated pomca. As expected, arnt1 siblings showed normally expressed pomca and cyp17a2, which were observed to be downregulated only as a consequence of BME treatment (Fig. 2b and 2d). Therefore, we speculate that in the absence of arnt1, pomca downregulation is most likely to occur as a consequence of GC-GR induced negative feedback loop, triggered by an upregulated glucocorticoid response (Fig. 2b’).

We subsequently examined both pomca and cyp17a2 expression in the opposite - HIF upregulated- scenario, by performing in situ hybridization on the vhl mutant line. Interestingly, 5 dpf vhl/- larvae, which were characterized by a downregulated glucocorticoid response, displayed downregulated cyp17a2 expression, coupled to downregulated pomca expression. On the other hand, vhl siblings showed normally expressed pomca, which was observed to be downregulated after BME treatment, as expected (Fig. 2c and 2e).

As both fkbp5 and pck1 (GCs target genes) are downregulated in vhl mutants (Fig. EV2a), we speculate that by upregulating HIF (vhl knock-out larvae), glucocorticoid response is effectively repressed as a consequence of HIF-mediated downregulation of pomca expression (Fig. 2c’). Cumulatively, if this is true, we predict to observe reduced levels of endogenous cortisol in vhl/- and normal or even increased levels in arnt1-/- at 5 dpf.

Impaired steroidogenesis in vhl mutant zebrafish:

To confirm this hypothesis, we performed cortisol quantification on the aforementioned vhl and arnt1 mutant lines. Indeed, cortisol concentration was significantly reduced (P value <0.0028) in vhl mutant larvae (13.9 pg/150 larvae),
compared to vhl siblings (48.2 pg/150 larvae). Conversely, cortisol was significantly increased (P value <0.0001) in arnt1 mutants (66.8 pg/150 larvae), compared to arnt1 siblings (48.7 pg/150 larvae) (Fig. 2f). Taken together, these data show the presence of a strong HIF-induced negative regulation of steroidogenesis and GR activity.

Generating gr and gr;vhl knockout in zebrafish:

To further investigate the reverse role of glucocorticoids on HIF response, we created a novel glucocorticoid receptor (gr, nr3c1) mutant line and we crossed it with the vhl^hu2117/2117;phd3::EGFP^144/144 hypoxia reporter line (this line will be called gr^+/-;vhl^+/- hereafter). We created this line because the existing gr^s357 allele may still have some activity via non-genomic pathways or tethering, promoting HIF activation upon GC treatment (Griffiths et al., 2012; Ziv et al., 2012; Vettori et al., 2017). Of note, gr mutants are hypercortisolemic (Facchinello et al., 2017; Faught and Vijayan, 2018). This is due to the inability of glucocorticoids to bind to a functional receptor (GR). As a result, they fail to provide negative feedback and are not able to shut down GC biosynthesis (Facchinello et al., 2017; Faught and Vijayan, 2018). We generated an 11 bp deletion at the level of gr exon 3, which is predicted to truncate the DNA binding domain, lacks the C-terminal ligand binding domain and is predicted to be a true null (Fig. 3a). The homozygous gr/nr3c1 mutants, characterized during the first 5dpf, were morphologically similar to control siblings and adult fish were viable and fertile, as predicted (Facchinello et al., 2017).

To confirm loss-of-function, we initially subjected larvae to a visual background adaptation (VBA) test, as VBA is linked to impaired glucocorticoid biosynthesis and action (Griffiths et al., 2012; Muto et al., 2013). Larvae derived from gr^+/- incross were VBA analyzed and sorted according to melanophore size at 5 dpf. PCR-based genotyping on negative VBA-response sorted samples revealed that most larvae were homozygous for the gr allele, whereas positive VBA-response samples were always gr siblings (Fig.3b). Furthermore, WISH analysis performed on 5 dpf DMSO and BME treated gr^+/- incross derived larvae, using pomca as probe, showed the presence of upregulated pomca expression at the level of the anterior part of the pituitary gland, compared to wild-type siblings (Fig. 3b'). Of note, BME treatment was not able to downregulate pomca levels of gr^+/-, via negative feedback loop, due to the absence of a functional gr allele. Finally, the loss of function was also determined in 5 dpf gr mutants by the strong downregulation of fkbp5 mRNA levels quantified via RTqPCR, both in the presence (fold change=0,01;
P<0.0001) and in the absence of BME treatment (DMSO treated, fold change=0.01; P<0.0001) (Fig. 3b’).

gr mutation partially rescues vhl phenotype:

We next analyzed the effect of gr loss of function on vhl phenotype. Phenotypic analysis carried out on 5dpf larvae, derived from gr+/--;vhl+/-- incross, revealed that nr3c1 mutation was able to cause an efficient, but not complete rescue of vhl phenotype, in a way which resembled arnt1 mutation (Fig. 3c).

In particular, 5dpf gr+/--;vhl+/-- larvae showed a 43% downregulation at the level of the head (P<0.0001), a 66% downregulation in the liver (P<0.0001) and a 51% downregulation in the tail (from the anus to the caudal peduncle) (P=0.0020), in terms of phd3::EGFP-related brightness, compared to vhl+/-- larvae (Fig. 3d and EV3a). As expected, 5 dpf double mutant larvae were unable to respond to BME [30 µM] treatment (Fig. 3d and EV3a), as also confirmed via RTqPCR analysis on HIF and GCs target genes (Fig. 3c’).

Rescue was also apparent by morphology. Indeed, even if gr+/--;vhl+/-- showed reduced yolk usage, they displayed a reduction in ectopic vessel formation at the level of the dorsal tailfin, no pericardial edema, and developed air-filled swim bladders (Fig. 3c). Of note, whereas vhl single mutants are inevitably deceased by 10 dpf (van Rooijen et al., 2009), we were able to raise all selected double mutants beyond 15 dpf, but then (similarly to arnt1+/--;vhl+/--) they failed to grow and thrive when compared to their siblings. This led us to euthanise them due to health concerns at 21 dpf (Fig. EV3b). Together, these data indicate for the first time, in our in vivo animal model, that GR function is essential to assure a proper HIF response in zebrafish larvae, in particular at the level of the head and the liver.

gr loss of function effect is stronger when HIF-response is attenuated:

The similarity of gr and arnt1 mutations could mean they work in a single linear “pathway”. If true, mutation of both should not lead to a further attenuation of the reporter expression. To test this, we bred gr in the arnt1;vhl double mutant line and we crossed gr+/--;arnt1+/--;vhl+/-- triple mutant carriers. Phenotypic analysis performed on 5 dpf phd3:eGFP positive larvae (n=488) showed a small class of larvae with even stronger downregulation of phd3:eGFP related brightness, compared to both arnt1+/--;vhl+/-- and gr+/--;vhl+/-- double mutants (Fig. 4a). Of note, 7 putative very weak GFP+ larvae were selected and genotypic analysis confirmed that 5 out of 7 were indeed gr+/--; arnt1+/--;vhl+/--. In
particular, these triple mutants showed a 54% downregulation at the level of the head, a 71% downregulation in the liver and a 72% downregulation in the tail region, in terms of phd3:eGFP-related brightness compared to vhl\(^{-}\) (Fig.4a and EV4). Thus, these data suggest that GCs are likely to interfere with both Arnt1 and Arnt2 mediated HIF signalling pathway.

BME-induced HIF response is Arnt1 dependent:

To further examine the effect of glucocorticoids on HIF response, we performed BME [30 \(\mu\)M] treatment on all the available mutant lines. As expected, 5 dpf wild-types larvae showed a mild upregulation of phd3:eGFP-related brightness at the hepatic level, compared to untreated controls (Fig.1b and 3d). BME treatment was also able to further increase phd3:eGFP-related brightness at the level of the head and the liver of 5dpf vhl\(^{-}\), as also confirmed by WISH, using both lactate dehydrogenase A (ldha) (Fig. 5a) and prolyl hydroxylase 3 (phd3) as probes (Fig. 5b). As predicted, gr\(^{-}\);vhl\(^{-}\) mutants were unaffected (Fig.3d). Interestingly, both arnt1\(^{-}\);vhl\(^{-}\) and arnt1\(^{-}\) phd3:eGFP-related brightness was unaffected after BME treatment (Fig.1c). RTqPCR analysis carried out on these mutant lines confirmed these data (Fig.3c').

This suggests that in vhl\(^{-}\) larvae, BME treatment can increase HIF response by overriding HIF-mediated pomca negative regulation. However, in arnt1\(^{-}\) and arnt1\(^{-}\);vhl\(^{-}\) larvae, even if BME can act downstream of pomca, it is not able to trigger HIF response due to arnt1 loss of function.

gr mutation overrides HIF-mediated pomca suppression in gr\(^{-}\);vhl\(^{-}\):

To examine the effect of gr loss of function on steroidogenesis in gr\(^{-}\);vhl\(^{-}\), we performed WISH analysis on 5 dpf gr\(^{-}\);vhl\(^{-}\) incross derived larvae, using pomca as probe. As expected, vhl\(^{-}\) showed downregulated pomca expression, whereas gr\(^{-}\) displayed upregulated pomca. Notably, a strong upregulation of pro-opiomelanocortin a gene was observed in the double mutants, suggesting that gr mutation overrides HIF-mediated pomca suppression (Fig.4b). PCR-analysis performed post-WISH allowed to determine the presence of genotype-phenotype correlation.

These data suggest that in gr\(^{-}\);vhl\(^{-}\) the uncontrolled upregulation of pomca, triggered by gr loss of function, cannot be counteracted with the same efficiency by HIF action. Furthermore, even if steroidogenesis is upregulated, endogenous cortisol cannot act via Gr to stimulate the HIF response any longer. Nevertheless, since there is still a
clear upregulation of HIF signaling in \(gr^{-/-};vhl^{-/-} \) larvae compared to wild-types (Fig.3d), we considered that the Mr may also able to promote HIF activity.

Both Gr and Mr are directly required for assuring proper HIF response:

Cortisol has high affinity both for Gr and Mr and they have been recently shown to be differentially involved in the regulation of stress axis activation and function in zebrafish (Faught and Vijayan, 2018). Therefore, we analysed the role of mr in the HIF response. To achieve this, we knocked-out mr in \(gr^{+/+};vhl^{+/-};phd3:eGFP \) incrossed derived embryos using CRISPant technology (Wu et al., 2018). Interestingly, phenotypic analysis performed on 5 dpf injected and uninjected larvae revealed that mr CRISPR injected vhl mutants were characterized by a significant downregulation of \(phd3:eGFP \)-related brightness at the level of the head (equals to 49\%, P<0.0001), in the liver (equals to 56\%, P<0.0001) and in the rest of the body (equals to 47\%, P<0.0001), compared to \(vhl^{-/-} \) mutant uninjected larvae (Fig.6a and 6b). Moreover, when both \(gr \) and mr were knocked-out, the downregulation was even stronger at the level of the head (equals to 62\%, P<0.0001), in the liver (equals to 77\%, P<0.0001) and in the rest of the body (equals to 63\%, P<0.0001) (Fig.6a and 6b).

To confirm the specificity of Wu et al., 2018 method, we chose to target a gene which was not involved in the HIF pathway. \textit{Laminin, beta 1b (lamb1b)}, which codes for an extracellular matrix glycoprotein, was injected as CRISPR-injection control in \(vhl^{+/-} \) incross derived embryos at 1 cell stage. Genotypic analysis carried out on these larvae confirmed that these guides were effective. Finally, quantification of \(phd3:eGFP \)-related brightness performed on 5 dpf injected and uninjected larvae, showed no significant differences between the two groups (Fig.6c and 6d). Overall, these data indicate that both glucocorticoid and mineralocorticoid receptor play a pivotal role in assuring HIF response \textit{in vivo} in zebrafish.

Discussion

HIF and glucocorticoid induced transcriptional responses play a pivotal role in tissue homeostasis, glucose metabolism and in the regulation of cellular responses to various forms of stress and inflammation (Chrousos and Kino, 2009; Revollo and Cidlowski, 2009; Wilson et al., 2016). Previous \textit{in vitro} studies highlighted the potential for cross-talk between HIF and glucocorticoid pathways, however there are still
controversial data on how the interaction between these two major signalling pathways occurs in vivo. In this regard, we have presented a novel in vivo study using zebrafish larvae, focusing on elucidation of genetic control of one pathway over the other. In contrast to in vitro cell culture studies, a whole animal study allows us to take into account the interactions that occur between various tissues and provide novel insights. To do this, we generated arnt1 and gr null mutants to downregulate HIF and GR signalling respectively, as a basis for a genetic analysis of this crosstalk.

Comparison between arnt1 and arnt2 in the overall HIF response:

As a prelude to this, we had to establish the relative importance of arnt1 and arnt2 in the overall HIF response. To achieve this, a discriminative test was devised to place them in a vhl mutant background, where HIF-α is strongly stabilized (van Rooijen et al., 2011; Santhakumar et al., 2012). Phenotypic analysis performed on 5 dpf arnt1−/−;vhl−/− double mutants showed reduced phd3:eGFP related brightness, normal yolk usage, properly developed and air-filled swim bladder as well as by the absence of pericardial edema and excessive caudal vasculature. However, beyond 5 days, the double mutants exhibited only partial recovery from the vhl phenotype, they developed well till 15 dpf, but subsequently failed to grow and thrive when compared to their siblings. In addition, arnt1 homozygous mutants were found to be viable and fertile, in contrast to both homozygous vhl and arnt2 mutants, which are embryonic lethal by 8-10 dpf (Hill et al., 2009; van Rooijen et al., 2009).

Of note, the use of a rapid state-of-the-art method aimed to generate CRISPants (Wu et al., 2018) allowed to confirm that Arnt1, even if not fundamental for survival, is predominantly required in the liver and in organs outside the central nervous system for HIF-α function. Conversely, Arnt2 is mainly required in the developing central nervous system (CNS), as also reported by Hill et al. in 2009. However, the similarities observed in terms of phd3:eGFP-induced brightness in both arnt1−/−;vhl−/− and arnt2 CRISPR injected vhl mutants, suggests there is no strong functional separation. Therefore, both Arnt2 and Arnt1 have partially overlapping functions in vivo and both contribute to the HIF response.

The effect of HIF overexpression on glucocorticoid response:

We next investigated the interplay between HIF and glucocorticoid response, by performing RTqPCR analysis on 5 dpf larvae. Collectively, we show that the presence of
strongly activated (vhl\(^{-/-}\)) and partially attenuated HIF response (arnt1\(^{-/-};vhl\(^{-/-}\)) appears to blunt glucocorticoid signaling, whereas arnt1 loss of function increased endogenous glucocorticoid response. Furthermore, betamethasone treatment on the aforementioned mutant lines was unable to significantly increase glucocorticoid target genes expression both in vhl\(^{-/-}\) and in arnt1\(^{-/-};vhl\(^{-/-}\), whereas it was able to do it in arnt1\(^{-/-}\) larvae. Together, these results indicate that upregulated HIF levels are somehow able to repress glucocorticoid response and that low normoxic HIF activity nevertheless suffices to attenuate GR activity.

To test whether this was due to any potential effect of overexpressed HIF response on steroidogenesis (Tan et al., 2017), we quantified the expression of steroidogenesis-related genes (pomca and cyp17a2) both in vhl\(^{-/-}\) and in arnt1\(^{-/-}\) larvae, via whole-mount in situ hybridization (WISH). Surprisingly, both lines showed downregulation of pomca. However, arnt1\(^{-/-}\) larvae, which were characterized by an upregulated glucocorticoid response, showed upregulated cyp17a2, whereas vhl\(^{-/-}\) larvae, which showed a downregulated GC response, were characterized by downregulated cyp17a2 expression levels. Consequently, we speculate that in an arnt1 knock-out scenario, pomca downregulation occurs as a consequence of glucocorticoid induced negative feedback loop (aimed to shutdown cortisol biosynthesis). In contrast, as upregulated HIF levels appear to repress pomca expression, we speculate that this occurs in a way that resembles the GR-mediated negative feedback loop.

Indeed, as hypoxia represents a potential stressful condition, we speculate that it is initially perceived as a stress by the hypothalamus, which is able to stimulate cortisol biosynthesis and release. In turn, a cortisol-enhanced HIF response activates a series of cellular pro-inflammatory responses aimed to restore homeostasis. As a consequence, to shut down HIF response itself and to avoid an uncontrolled systemic HIF pathway overexpression, HIF might negatively regulate steroidogenesis. Our data would also be in accordance with a previous study that showed that hypoxia exposure resulted in downregulation of steroidogenic genes (StAR, cyp11c1, hmgrc, hsd17b2, cyp19a, cyp19b) in 72 hpf larvae, whereas zHIF-\(\alpha\) loss of function triggered the upregulation specifically of StAR, cyp11b2 and cyp17a1 (Tan et al., 2017).

Cumulatively, if this is true, we predicted to observe reduced levels of endogenous glucocorticoids in vhl\(^{-/-}\) and normal or even increased levels in arnt1\(^{-/-}\). Indeed, we found that cortisol levels were significantly reduced in vhl mutant larvae (where HIF pathway...
is overexpressed), whereas they were significantly increased in arnt1 mutants (where HIF pathway is suppressed).

Together, these data allow us to show the presence of a HIF-induced negative feedback, aimed to blunt steroidogenesis in order to regulate HIF activity itself. By the way, HIF-mediated negative feedback seems to be a logic homeostatic response aimed to avoid a further GCs-induced upregulation of HIF pathway, since hypoxia has been shown to trigger glucocorticoid response (Leonard et al., 2005) and consequently, cortisol was shown to increase HIF expression (Vettori et al., 2017).

The effect of glucocorticoids on the HIF response:

To investigate the role of glucocorticoids on the HIF response, we initially analyzed the effect of gr loss of function on vhl phenotype. Surprisingly, we observed that gr mutation was able to cause an efficient, but not complete rescue of the vhl phenotype, which resembled arnt1 mutation. Notably, gr−/−vhl−/− survived much longer than vhl−/− (≥21 dpf compared to max. 10 dpf), but then similarly to arnt1−/−;vhl−/−, they failed to grow and thrive when compared to siblings.

Together, these data indicate for the first time in an in vivo animal model that Gr is essential to assure a proper HIF response. Of note, our model based on the negative regulatory effect played by HIF on pomca expression, may provide a reliable explanation of this phenotype. In particular, we speculate that in gr−/−;vhl−/−, the absence of GC-GR negative feedback loop triggers a strong upregulation of pomca (Fig.4b), which cannot be counteracted with the same efficiency by upregulated HIF levels (via HIF-mediated negative feedback). In this scenario, the elevated endogenous cortisol levels cannot interact with Gr any longer. Consequently, since cortisol acts via glucocorticoid receptor as an enhancer of the HIF response (Kodama et al., 2003; Vettori Andrea et al., 2016), gr loss of function results in an attenuated HIF pathway activation.

If this is true, we predicted to obtain an even more rescued phenotype by knocking-out gr in an attenuated HIF scenario. Phenotypic analysis performed on gr+/−;arnt1+/−;vhl−/−;phd3:EGFP triple mutant line confirmed this. To further examine the role of
glucocorticoids on HIF response, we next analysed the effect of betamethasone treatment on gr\(^{-/-}\);vhl\(^{-/-}\);phd3:eGFP, arnt1\(^{-/-}\);phd3:eGFP and arnt1\(^{-/-}\);vhl\(^{-/-}\);phd3:eGFP mutants. Our results indicate a key role for Arnt1 in regulating BME-induced HIF response. This is evident by the lack of phd3:eGFP-related brightness increase observed both in arnt1\(^{-/-}\) and in arnt1\(^{-/-}\);vhl\(^{-/-}\) larvae, after BME administration.

Cumulatively, we suggest that HIF-mediated negative feedback on pomca expression can occur both via Arnt1 and Arnt2, whilst BME-induced HIF upregulation mainly requires functional Arnt1.

Evaluation of mineralocorticoid receptor contribution to HIF response:

Previous work published by Faught and Vijayan, 2018 showed that both Gr and Mr are differentially involved in the regulation of zebrafish stress axis activation and function. In addition, our results suggest that both glucocorticoids and Gr exert a pivotal role in the HIF response. Since nothing was known about mineralocorticoid receptor contribution to the HIF response, we tested the effect of mr knock-out in gr\(^{+/+}\);vhl\(^{-/-}\);phd3:EGFP incrossed derived embryos. Both in mr injected- vhl\(^{-/-}\) and gr\(^{+/+}\);vhl\(^{-/-}\) 5 dpf larvae, we showed a significant reduction of phd3:eGFP-related brightness. These data suggest that in fish not only the glucocorticoid receptor, but also the mineralocorticoid receptor is involved in promoting HIF pathway activation, as a consequence of cortisol stimulation. Indeed, in contrast to mammals, teleosts lack aldosterone and cortisol is the primary glucocorticoid hormone which can interact with both Gr and Mr to assure the correct HPI axis functioning (Cruz et al., 2013; Baker and Katsu, 2017). Of note, our hypothesis is supported by Faught and Vijayan, 2018 recent work, showing that both Gr and Mr signalling is involved in the negative feedback regulation of cortisol biosynthesis during stress.

In conclusion, although Mr contribution to HIF response in other organisms remains unclear, our work suggests research into its function is warranted.

Conclusion

Our present study stresses the importance of the glucocorticoid pathway in driving HIF response. In addition, we uncovered a negative regulatory role played by overexpression of HIF in regulating steroidogenesis as demonstrated via RTqPCR and steroid hormone quantification. We also report a novel key role for Arnt1 in regulating
BME-induced HIF response and identify a possible mineralocorticoid receptor contribution to HIF-GC crosstalk. Finally, we presented novel gr^{+/−};vhl^{+/−}, arnt1^{+/−};vhl^{+/−} and arnt1^{+/−};gr^{+/−};vhl^{+/−} zebrafish mutant lines which helped to better understand how the interplay between HIF and glucocorticoids occur <i>in vivo</i>. For these reasons, we believe that this work could pave the way for further <i>in vivo</i> analysis to precisely identify the extensive crosstalk behind these two major signalling pathways.

Data availability

All data are available on request.

Author contribution

Financial support: BB/R015457/1; BB/M02332X/1, TUoS; Investigation, validation and data curation: DM, FVE; Formal visualization and analysis: DM; Resources: FVE, EM, KS, NL, HE, VTC, NK; Project Administration: DM, FVE; Writing-Original Draft: DM and FVE; Writing -Review and Editing: all authors contributed equally.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

We thank the University of Sheffield aquarium staff for the excellent care of fish stocks. We are grateful to Rosemary Kim, Helen Eachus, Emily Noël, Chris Derrick, Jack Paveley and Dheemanth Subramanya for useful discussions contributing to this study and for sharing chemical compounds. We also thank Elisabeth Kugler for her technical support for image analysis. This work was supported by a University of Sheffield, Biomedical Science department studentship awarded by DM and by two BBRSC grants to FVE (BB/R015457/1; BB/M02332X/1). N.K was funded by the Deutsche Forschungs grant (KR3363/3-1).
References

10. Cruz, S. A. et al. (2013) 'Glucocorticoid Receptor, but Not Mineralocorticoid Receptor, Mediates Cortisol Regulation of Epidermal Ionocyte Development and Ion Transport in Zebrafish (Danio Rerio)', PLOS ONE. Public Library of Science, 8(10), p. e77997. Available at: https://doi.org/10.1371/journal.pone.0077997.

52. Thisse, C. and Thisse, B. (2008) 'High-resolution in situ hybridization to whole-mount

Figure 1. arnt1 and arnt2 has partially overlapping functions and synergistically contribute to HIF response.

A. Schematic representation of zebrafish hif1b(arnt1) gene. Exons are shown as black boxes, whereas introns as lines. The red arrowhead shows the position of a +7 bp insertion in exon 5 (encoding the bHLH DNA binding domain). In the arnt1 wt and mutant sequence. CRISPR target site: bold. Protospacer-adjacent-motif (PAM) sequence: red.

B. Magnified picture of a representative 5 dpf vhl−/− larva compared to 5dpf arnt1−/−;vhl−/−. Among the 120 GFP+ embryos derived from arnt1−/−;vhl−/− (phd3:eGFP) x arnt1−/−;vhl−/− (phd3:eGFP), 15 larvae were characterized by the absence of pericardial oedema, no ectopic extra vasculature at the level of the tail, no bright liver and a reduced brightness in the rest of the body (black and white arrowheads). Genotyping post phenotypic analysis on sorted larvae confirmed genotype-phenotype correlation. Fluorescence, exposure = 2 seconds. Scale bar 200 µm.

C. Representative picture of phenotypic analysis performed on DMSO and BME [30 µM] treated 5 dpf larvae, derived from arnt1−/−;vhl−/− (phd3:eGFP) x arnt1−/−;vhl−/− (phd3:eGFP) (n=540). Among the 405 GFP+ larvae, all the 25 arnt1−/−;vhl−/− showed the aforementioned partially rescued vhl phenotype (B). Fluorescence, exposure = 2 seconds. Scale bar 500 µm.

D. Representative pictures of 5 dpf CRISPANT mutants created by redundantly targeting arnt2 gene via co-injection of 4x gRNAs in arnt1−/−;vhl−/− (phd3:eGFP) x arnt1−/−;vhl−/− (phd3:eGFP) derived embryos (n=300). Uninjected embryos were used as control (n=120). Fluorescence, exposure = 991.4 ms. Scale bar 500 µm.

E. Statistical analysis performed on mean grey values quantification (at the level of the head, liver and tail), after phenotypic analysis on 5 dpf arnt2 4x gRNAs injected and un.injected larvae. vhl−/+ uninjected n = 8 larvae: head 93.1 ± 2.33 (mean ± s.e.m); liver 99.65 ± 3.49 (mean ± s.e.m); tail 29.58 ± 0.73 (mean ± s.e.m). arnt1−/−;vhl−/− uninjected n = 10 larvae: head 56.49 ± 3.36 (mean ± s.e.m); liver 24.7 ± 2.36 (mean ± s.e.m); tail 12.39 ± 0.75 (mean ± s.e.m). vhl−/+ injected n = 12 larvae: head 43.69 ± 3.25 (mean ± s.e.m); liver 45.31 ± 4.57 (mean ± s.e.m); tail 16.09 ± 1.27 (mean ± s.e.m). arnt1−/−;vhl−/− injected n = 11 larvae: head 24.66 ± 1.63 (mean ± s.e.m); liver 13.88 ± 0.66 (mean ± s.e.m); tail 5.16 ± 0.33 (mean ± s.e.m). Ordinary One-way ANOVA followed by Sidak's multiple comparison test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
A

<table>
<thead>
<tr>
<th>HIGH HIF LEVELS</th>
<th>ATTENUATED HIF LEVELS</th>
<th>SUPPRESSED HIF LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>DMSO</th>
<th>BME [30 μM]</th>
<th>DMSO</th>
<th>BME [30 μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B' *amnt*^{−/−} suppressed HIF → GCs response → GC-GR negative feedback → *pomca*

C

<table>
<thead>
<tr>
<th>DMSO</th>
<th>BME [30 μM]</th>
<th>DMSO</th>
<th>BME [30 μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C' *vhl*^{−/−} upregulated HIF → HIF negative feedback? → *pomca* → GCs response

D

<table>
<thead>
<tr>
<th>DMSO</th>
<th>BME [30 μM]</th>
<th>DMSO</th>
<th>BME [30 μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>DMSO</th>
<th>BME [30 μM]</th>
<th>DMSO</th>
<th>BME [30 μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>vhl mutant line</th>
<th>amnt mutant line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. HIF levels inversely correlate with GC response and cortisol biosynthesis.

A. Schematic view of RTqPCR analysis on fkh5 expression performed on the following mutant lines at 5 dpf: vhl\(^-\)/phd3\(^+\)gfp, arnt1\(^-\)/vhl\(^-\)/phd3\(^+\)gfp, and arnt1\(^-\)/vhl\(^-\)/phd3\(^+\)gfp. Upregulated (in vhl\(^-\)) and attenuated high (in arnt1\(^-\)/vhl\(^-\)) HIF levels downregulate GC response, whereas arnt1 loss of function sensitises larvae to glucocorticoids. Statistical analysis was performed on ANOVA values, whereas data are shown as fold change values for RTqPCR analysed samples; ordinary Two-way ANOVA followed by Dunnett’s multiple comparison test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

B. Representative pictures of WISH performed on DMSO and BME [30 μM] treated arnt1 mutant line, at 5 dpf, using pomca as probe.

arnt1 wt DMSO treated (n=30/30 larvae) showed normal pomca expression; arnt1 wt BME treated (n=30/30) showed downregulated pomca expression. In contrast, arnt1\(^-\)/DMSO treated (n=28/30) and arnt1\(^-\)/BME treated (n=30/30) larvae showed downregulated pomca expression. Chi-square test (****P < 0.0001). Scale bar 50 μm.

C. Representative scheme of the putative effect of downregulated HIF levels on GC response. In the presence of high HIF levels, pomca expression is downregulated. We speculate that this is due to the upregulated GC response, as previously shown by RTqPCR analysis, which triggers the GC-GR negative feedback loop in arnt1\(^-\) larvae.

E. Steroid quantification results showed a significantly reduced cortisol concentration (P value <0.0028) in vhl mutants (13.9 pg/150 larvae, in triplicate), compared to vhl\(^+\)siblings (48.2 pg/150 larvae, in triplicate) at 5 dpf. Moreover, a significantly increased cortisol concentration (P value <0.0001) was measured in arnt1 mutants (66.8 pg/150 larvae, in triplicate), compared to arnt1 wild-types (48.7 pg/150 larvae, in triplicate) at 5 dpf; unpaired t-test (**P < 0.01; ****P < 0.0001).
Figure 3. *gr* mutation partially rescues *vhl* phenotype.

A. Schematic representation of zebrafish *gr* (*nr3c1*) gene. Exons are shown as boxes, introns as lines. The red arrowhead shows the position of a -11 bp deletion in exon 3 (encoding the DNA binding domain). *gr*wt and mutant sequence. CRISPR target site: bold. PAM sequence: red.

B-B”. Tests performed on *gr* mutant line to verify loss of function.

B. VBA test performed on *gr*−/+ incross-derived 5 dpf larvae (n=240), followed by genotyping. Statistical analysis was performed on melanocytes average area (mean ± s.e.m.) of 5 dpf larvae post VBA test. Scale bar 200 µm. Wild-type melanocytes size 0.0009 ± 0.0001 mm² (P=0.0123, n=6 larvae), heterozygous: 0.0015 ± 0.0001 mm² (P=0.0001, n=8 larvae) and mutant: 0.0028 ± 0.0002 mm² (P < 0.0001, n=5 larvae). Ordinary One-way ANOVA followed by Sidak’s multiple comparisons test.

B’. Representative pictures of WISH performed on DMSO and BME [30 µM] treated *gr* mutant line, at 5 dpf, using pomca as probe. Scale bar 100 µm. *gr* siblings DMSO treated (n=30/30 larvae) showed normal expression; *gr* siblings (n=29/30 larvae) showed downregulated pomca expression after BME treatment. Both DMSO treated (n=30/30) and BME treated (n=30/30) *gr*−/− larvae showed upregulated *pomca* expression.

B”. RTqPCR analysis performed on *gr*wt (n=10; 3 repeats) and *gr*−/− (n=10; 3 repeats) larvae at 5 dpf, using *fbp5* as probe. Statistical analysis was performed on ΔΔCt values, whereas data are shown as fold change values. Ordinary Two-way ANOVA followed by Dunnett’s multiple comparison test (****P < 0.0001).

C. Magnified picture of representative *gr*−/−; *vhl*−/− larvae compared to *arnt1*−/−; *vhl*−/− larvae. Both double mutants are characterized by the absence of pericardial oedema, no ectopic extra vasculature at the level of the tail, no bright liver and a reduced brightness in the rest of the body (white and black arrowheads). Fluorescence, exposure = 2 seconds. Scale bar 200 µm.

C’. RTqPCR analysis performed on both HIF and GC target gene expression carried out on both *gr*−/−; *vhl*−/− and sibling, at 5 dpf, (n=10 larvae, per group, in triplicate) compared to *arnt1*−/−; *vhl*−/− larvae and siblings, at 5dpf (n=10 larvae, per group, in triplicate). Statistical analysis was performed on ΔΔCt values, whereas data are shown as fold change values. Ordinary Two-way ANOVA followed by Dunnett’s multiple comparison test.

D. Representative picture of phototypic analysis performed on DMSO and BME [30 µM] treated *gr*−/−; *phd3a:EGFP* incross-derived 5 dpf larvae (n=600). Among the 450 GFP+ larvae analysed, 28 showed a partially rescued *vhl* phenotype which resembled the *arnt1*’s one. Three experimental repeats. In all panels: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Fluorescence, exposure = 2 seconds. Scale bar 500 µm.
Figure 4. *gr* loss of function effect is stronger when HIF-response is attenuated.

A. Representative picture of the main differences between vhl^{-/-}, arnt1^{-/-}, gr^{-/-} and triple gr^{-/-}; arnt1^{-/-}; vhl^{-/-} larvae at 5 dpf. Among the 488 phd3:eGFP expressing larvae analysed, 7 larvae were characterized by the absence of pericardial oedema (black arrowheads, left), no ectopic extra vasculature at the level of the tail (black arrowheads, right), no visible *phd3*:EGFP:HIF reporter in the liver (white arrowheads, left) and even more reduced levels of this marker in the head and in the rest of the body (white arrowheads, right). Genotypic analysis allowed to confirm the presence of a genotype-phenotype correlation in 5 out 7 samples and to prove that they were triple mutants. Fluorescence, exposure = 2 seconds. Scale bar 200 µm.

B. Representative pictures of WISH performed on *gr^{-/-;} vhl^{-/-}* incross derived larvae, at 5 dpf, using *pomca* as probe. Of note, *gr^{-/-;}vhl^{-/-}* showed upregulated *pomca* expression (20/20 larvae), as observed in *gr^{-/-}* (20/20 larvae); *vhl* mutants showed downregulated *pomca* expression (20/20 larvae), whereas wildtypes showed normal *pomca* expression (19/20). Chi-square test (**P < 0.0001**). Scale bar 50 µm.
Figure 5. BME treatment is able to induce HIF response in vhl/-.

A. Representative pictures of WISH performed on DMSO and BME [30 μM] treated vhl +/- incross derived larvae, at 5 dpf, using ldha as probe. DMSO treated vhl siblings showed basal ldha expression (34/35 larvae), which showed to be upregulated after BME treatment (33/35 larvae). On the other hand, DMSO treated vhl-/ show upregulated ldha expression (32/35 larvae), which was further upregulated after BME treatment (34/35 larvae). Chi-square test (****P < 0.0001). Scale bar 200 μm.

B. Representative pictures of WISH performed on DMSO and BME [30 μM] treated vhl +/- incross derived larvae, at 5 dpf, using phd3 (egln3) as probe. As expected, vhl siblings DMSO treated (n= 30/30 larvae) showed basal phd3 expression, which was mildly increased after BME treatment (n= 27/30 larvae). Vhl-/ DMSO treated (n= 28/30 larvae) showed upregulated phd3 expression, which was further increased after BME treatment (n= 26/30 larvae). Chi-square test (****P < 0.0001). Scale bar 200 μm.
Figure 6. Both Gr and Mr are directly required for assuring proper HIF response.

A. Representative pictures of 5 dpf CRISPANT mutants created by redundantly targeting \(nr3c2\) (mr) gene via co-injection of 4x gRNAs in \(gr^{+/+}\)\(vhl^{+/+}\)(phd3:eGFP) \(gr^{-/-}\)\(vhl^{+/+}\)(phd3:eGFP) derived embryos (n=344). Uninjected embryos were used as control (n=170). Fluorescence, exposure = 991.4 ms. Scale bar 500 \(\mu\)m.

B. Statistical analysis performed on mean grey value quantification (at the level of the head, liver and tail), after phenotypic analysis, on 5 dpf \(mr^{-/-}\)4x gRNAs injected and uninjected larvae. \(vhl^{-/-}\) uninjected n = 17 larvae: head 48.28 ± 2.99 (mean ± s.e.m); liver 46.47 ± 3.55 (mean ± s.e.m); tail 16.15 ± 1.06 (mean ± s.e.m). \(gr^{-/-}\)\(vhl^{+/+}\) uninjected n = 8 larvae: head 35.48 ± 2.03 (mean ± s.e.m); liver 23.56 ± 1.72 (mean ± s.e.m); tail 10.98 ± 0.75 (mean ± s.e.m). \(vhl^{-/-}\) injected n = 15 larvae: head 24.62 ± 0.97 (mean ± s.e.m); liver 20.67 ± 1.1 (mean ± s.e.m); tail 8.57 ± 0.39 (mean ± s.e.m). \(gr^{-/-}\)\(vhl^{-/-}\) injected n = 16 larvae: head 18.33 ± 0.46 (mean ± s.e.m); liver 10.71 ± 0.56 (mean ± s.e.m); tail 6.07 ± 0.26 (mean ± s.e.m); ordinary One-way ANOVA followed by Sidak’s multiple comparison test.

C. Representative pictures of 5 dpf CRISPANT mutants created by redundantly targeting \(lamb1b\) gene via co-injection of 4x gRNAs in \(vhl^{-/-}\)(phd3:eGFP) incross-derived embryos (n=400). Uninjected embryos were used as control (n=470). Fluorescence, exposure = 991.4 ms. Scale bar 500 \(\mu\)m.

D. Statistical analysis performed on mean grey values quantification (at the level of the head, liver and tail), after phenotypic analysis, on 5 dpf \(lamb1b^{-/-}\)4x gRNAs injected and uninjected larvae. \(vhl^{-/-}\) uninjected n = 24 larvae: head 54.83 ± 3.68 (mean ± s.e.m); liver 77.86 ± 6.46 (mean ± s.e.m); tail 19.56 ± 1.43 (mean ± s.e.m). \(vhl^{-/-}\) injected n = 25 larvae: head 59.74 ± 4.05 (mean ± s.e.m); liver 83.23 ± 5.92 (mean ± s.e.m); tail 19.9 ± 1.38 (mean ± s.e.m); unpaired t-test (all panels: *P < 0.05; **P < 0.01; ***P <0.001; ****P < 0.0001).