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Abstract  

The volumetric and morphometric examination of hippocampus formation subfields in 

a longitudinal manner using in vivo MRI could lead to more sensitive biomarkers for 

neuropsychiatric disorders and diseases including Alzheimer's disease, as the 

anatomical subregions have different roles. Longitudinal processing allows for 

increased sensitivity due to reduced confounds of inter-subject variability and higher 

effect-sensitivity than cross-sectional designs. We examined the performance of a new 

longitudinal pipeline (Longitudinal Automatic Segmentation of Hippocampus Subfields 

[LASHiS]) against three freely available, published approaches. LASHiS automatically 

segments hippocampus formation subfields by propagating labels from cross-

sectionally labelled time-point scans using joint-label fusion to a non-linearly realigned 

‘single subject template’, where image segmentation occurs free of bias to any 

individual time-point. Our pipeline measures tissue characteristics available in in vivo 

ultra-high resolution MRI scans and differs from previous longitudinal segmentation 

pipelines in that it leverages multi-contrast information in the segmentation process. 

LASHiS produces robust and reliable automatic multi-contrast segmentations of 

hippocampus formation subfields, as measured by higher volume similarity 

coefficients and Dice coefficients for test-retest reliability and robust longitudinal 

Bayesian Linear Mixed Effects results. All code for this project including the automatic 

pipeline is available at https://github.com/thomshaw92/LASHiS. 
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1. Introduction 

The hippocampus formation is a brain structure generating large interest and research 

activity due to its implication in memory, psychiatric and neurological disorders 

including Alzheimer’s Disease (AD; Daulatzai, 2013; Fotuhi, Do, & Jack, 2012), Motor 

Neurone Disease (Machts et al., 2018) and depression (Sapolsky, 2001), and 

especially its functional and structural changes in ageing (Fraser, Shaw, & Cherbuin, 

2015). Due to the hippocampus formation’s vulnerability in neurodegenerative 

disease, and its reported involvement in neurogenesis in the dentate gyrus (DG; 

Eriksson et al., 1998), precise volumetric and morphometric measurements of 

hippocampus formation are highly important for clinical studies and ageing research. 

Recent work has focussed on the hippocampus formation subfields or laminae, which 

are impacted differentially in neurodegeneration and disease (e.g., Machts et al., 

2018). Volumetric and morphometric examination of these hippocampus subfields, 

especially in longitudinal studies, may lead to more sensitive biomarkers of disorder 

and the progress of the diseases (Boutet et al., 2014; Henry et al., 2011; Kerchner et 

al., 2012; La Joie et al., 2013; Maruszak & Thuret, 2014; Pluta, Yushkevich, Das, & 

Wolk, 2012). 

 

Hippocampus subfields are functionally and cytoarchitectonically disparate (Andersen, 

2007; Daulatzai, 2013; Fotuhi et al., 2012) with heterogeneous cellular composition. 

The four Cornu Ammonis (CA) subfields each have regional variations in pyramidal 

cells, creating structural differences between these subfields, which can be reflected 

to a degree in differing contrast and intensity signals in magnetic resonance imaging 

(MRI) scans with sufficient sensitivity and spatial resolution, i.e., at high enough field 

strengths (3 Tesla [T] and above; e.g., Duvernoy, Cattin, Risold, Vannson, & Gaudron, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/759217doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Ug7nMi
https://www.zotero.org/google-docs/?5KLLTu
https://www.zotero.org/google-docs/?nmuQnM
https://www.zotero.org/google-docs/?6BpO5v
https://www.zotero.org/google-docs/?6BpO5v
https://www.zotero.org/google-docs/?HVRjRs
https://www.zotero.org/google-docs/?e8l5eY
https://www.zotero.org/google-docs/?e8l5eY
https://www.zotero.org/google-docs/?Sy4y9d
https://www.zotero.org/google-docs/?Sy4y9d
https://www.zotero.org/google-docs/?Sy4y9d
https://www.zotero.org/google-docs/?wmOP4r
https://www.zotero.org/google-docs/?wmOP4r
https://www.zotero.org/google-docs/?T2yFHj
https://doi.org/10.1101/759217
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

2013; Naidich et al., 2003). As distinct cellular differences between subfields are only 

observable ex vivo and translate into only subtle differences in the MR signal, it is 

difficult to characterize these tissue classes at lower field strengths and routine MRI 

sequences due to low signal to noise ratio (SNR) and imaging artefacts (Wang & 

Doddrell, 2005). 

 

Following from the above challenges, changes in small brain structures have been 

successfully studied using Ultra-High Field (UHF) MRI sequences with different 

contrasts (multi-contrast MRI) and allowed remarkable details for imaging in vivo 

(Fracasso et al., 2016). UHF MRI enables the increased spatial resolution necessary 

to characterize tissue differences in vivo, and in reasonable acquisition times. Previous 

UHF in vivo hippocampus subfield segmentation studies (for review, see Giuliano et 

al., 2017) utilise ‘dedicated’ sequences (e.g., single- or multi-echo Gradient Echo, 

Turbo-Spin Echo [TSE]) that exhibit different intensity and contrast characteristics for 

different tissue classes due to multiple refocusing pulses. Consequently, the laminae 

of the hippocampus are observable in these dedicated sequence types (Marques & 

Norris, 2018; Winterburn et al., 2013).  

 

Advances in MRI acquisition techniques and image analysis methods have made 

automatic segmentation of hippocampus subfields possible. More recently, fully 

automatic hippocampus subfield pipelines including Freesurfer’s hippocampus 

subfields method (Iglesias et al., 2015) and Automatic Segmentation of Hippocampus 

Subfields (ASHS; Yushkevich et al., 2015) have been developed using open-source 

segmentation software that combine several computational methods to achieve more 

reliable and precise results. 
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While both Freesurfer and ASHS have been applied in various studies (Andrea 

Chiappiniello, 2018; Iglesias et al., 2016; Pluta et al., 2012; Yushkevich et al., 2015), 

generally, segmentation errors cannot be avoided in practice. A study from Wisse et 

al. (2014) found that Freesurfer’s method may be unreliable, with segmentations 

differing substantially from anatomical truths (e.g., CA2 and 3 consistently being 

reported as larger than CA1). The cross-sectional variant of Freesurfer accounts for 

contrast differences in input images while leveraging a combination of T1w and T2w 

contrasts for defining hippocampus segmentation. The underlying assumption of the 

Freesurfer scheme is that the spatial distribution of brain structures will be consistent 

with the ex vivo data in the atlas package, and spatial distributions of brain structures 

are homogenous within all scanned populations. A longitudinal variant of the 

hippocampus subfield method from Freesurfer (Iglesias et al., 2016) has also been 

introduced, which decreases residual (within-subjects) variability by allowing each 

participant to act as their own control. However, this method does not incorporate T2w 

information for labelling. It has been shown previously that T1w information generally 

does not contain signal that differentiates hippocampus subfields (Winterburn et al., 

2013), including - in T2w contrast - the hypointense band of cells that separates the 

dentate gyrus (DG) from the CA regions known as the stratum radiatum lacunosum 

moleculare. 

 

Longitudinal processing allows for increased sensitivity (Fitzmaurice, Laird, & Ware, 

2011) due to reduced confounds of inter-subject variability and higher effect-sensitivity 

than cross-sectional designs. In image processing pipelines, longitudinal processing 

avoids many issues of secular trends inherent to cross-sectional designs, as 

participants act as their own control. These designs often exploit the knowledge that 
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within-subject anatomical changes over time are usually significantly smaller in scale 

than changes on an inter-subject morphological scale (Reuter, Schmansky, Rosas, & 

Fischl, 2012). Longitudinal designs have been used to successfully characterise 

changes in brain morphometry over time with greater accuracy than their cross-

sectional counterparts (Reuter et al., 2012; Tustison et al., 2017). In particular, these 

designs avoid many types of image processing bias by transforming images into an 

intermediate space between time points where interpolation-related blurring is 

common across the time points. 

 

Currently, using ASHS to measure volumes of hippocampus subfield in a single 

participant at multiple time-points does not account for the inherent variability present 

in cross-sectional methods. The Freesurfer longitudinal hippocampus subfields 

pipeline is the only dedicated longitudinal pipeline for measuring the volume of 

hippocampus subfield automatically. However, this method does not utilise the signal 

and tissue information available with multi-contrast MRI, and in particular, the 

‘dedicated’ T2w scan commonly used in measuring the laminae of the hippocampus. 

We aimed to develop a longitudinal automatic hippocampus subfield segmentation 

pipeline that incorporates multi-contrast information while being robust to 

computational errors inherent to purely cross-sectional methods. We then examined 

the performance of our new longitudinal pipeline (Longitudinal Automatic 

Segmentation of Hippocampus Subfields [LASHiS]) against three published 

approaches viz; cross-sectional (FS Xs) and longitudinal (FS Long) Freesurfer 

hippocampal subfields (V6.0 Dev20181125; Iglesias et al., 2016), and ASHS cross-

sectional (ASHS Xs; Yushkevich et al., 2015). 
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We developed an open-source multi-contrast pipeline that shares commonalities with 

existing pipelines, but is able to capture multi-contrast information from MRI scans 

automatically, while avoiding errors common to cross-sectional processing. We 

integrate a number of open-source software packages and programs to construct 

LASHiS, and propose the usage of multi-atlas fusion techniques to bootstrap 

automatic segmentation performance. Our pipeline is implemented with existing tools 

available through ANTs (ANTs Version: 2.2.0.dev116-gabc03; 

http://stnava.github.io/ANTs/; Avants, Tustison, & Song, 2010) and ASHS 

(https://sites.google.com/site/hipposubfields/; Yushkevich et al., 2015). Our pipeline 

and all associated code can be found at https://github.com/thomshaw92/LASHiS.  

 

2. Methods and materials 

2.1 Towards Optimising MRI tissue ChAracTerisation (TOMCAT) imaging data 

Seven healthy participants (age: M = 26.29, SD = 3.35) were scanned using a 7T 

whole-body research scanner (Siemens Healthcare, Erlangen, Germany), with 

maximum gradient strength of 70 mT/m and a slew rate of 200 mT/m/s and a 7 T Tx/32 

channel Rx head array (Nova Medical, Wilmington, MA, USA) in three sessions with 

three years between session one and two, and 45 minutes between two and three, 

allowing for a scan-rescan condition. Participants were scanned using a 2D TSE 

sequence (Siemens WIP tse_UHF_WIP729C, variant: tse2d1_9), TR: 10300ms, TE: 

102ms, FA: 132°, FoV: 220mm, voxel size of 0.4 x 0.4 x 0.8mm3 Turbo factor of 9; 

iPAT (GRAPPA) factor 2, acquisition time (TA) 4 minutes 12 seconds. The scan was 

repeated thrice over a slab aligned orthogonally to the hippocampus formation. An 

anatomical whole-brain T1w using a prototype MP2RAGE sequence (WIP 900; 

Marques et al., 2010; O’Brien et al., 2014) at 0.75mm isotropic voxel size was also 
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acquired (TR/TE/TIs = 4300ms / 2.5ms / 840ms, 2370 ms, TA = 6:54). At the first time-

point, the nominal resolution was 0.5mm isotropic with the same parameters. For all 

subsequent processing, all MP2RAGE images for the first time-point were resampled 

to 0.75mm isotropic using b-spline interpolation. TSE images were resampled to 

0.3mm isotropic and motion-corrected using non-linear realignment (Shaw et al., 

2019) to ensure all segmentation strategies had the best and equivalent chance of 

succeeding.  

 

2.2 Longitudinal Assessment of Hippocampal Subfields (LASHiS)  

2.2.1 Atlas Construction 

The entire LASHiS pipeline is described in Figure 1. Optionally, the ASHS pipeline can 

be optimised through the incorporation of a group-specific atlas. Similarly, creation of 

a group-specific atlas is a boon to our proposed method. This atlas is comprised of a 

representative pool of subjects (approximately 20-30 participants), manually labelled, 

and passed through the ASHS_train pipeline that is detailed in Yushkevich et al. 

(2015). Essentially, the manual segmentations are used as inputs (priors) for the joint-

label fusion (JLF) algorithm in subsequent segmentations, and to train classifiers for 

the ASHS cross-sectional pipeline. Creating a group-specific atlas (of 20-30 subjects) 

would be beneficial for large longitudinal studies, as segmentation training would be 

performed on group-specific characteristics. However, having a group specific atlas is 

generally not necessary for robust performance of ASHS (Xie et al., 2018). 

 

2.2.2 Preprocessing and cross sectional processing 

The ASHS Xs pipeline has been previously proposed and discussed (Yushkevich et 

al., 2015). Briefly, the pipeline labels hippocampus subfields of a given T1w and 
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dedicated T2w scan covering the hippocampus subfields. This approach leverages a 

multi-atlas segmentation method and corrective learning techniques to segment 

(usually 3T or 7T) MRI data. The process involves first training existing manually 

labelled in vivo atlases of T2w scans. These trained atlas packages inform label  for 

new in vivo T1w and dedicated T2w scans. ASHS provides many of these atlases at 

https://www.nitrc.org/projects/ashs. These publically available atlases may be 

replaced with a group-specific atlas as in 2.1.1. The T2w input scan is usually acquired 

anisotropically with reduced resolution along the major axis of the hippocampus 

subfield and high in-plane resolution. The spiral structure of the hippocampus 

formation does not change rapidly along its major axis, which motivates this parameter 

choice (Iglesias et al., 2016). ASHS Xs employs similarity-weighted voting for learning 

segmentation priors and JLF for multi-atlas segmentation prior classification. In the 

segmentation protocol, weighted voting at the voxel level derives ‘strong’ 

segmentation choices for the target image (Yushkevich et al., 2015).  

For preprocessing of all data, we included modified preprocessing steps based on the 

ANTs cortical thickness pipeline (Tustison et al., 2014) and our previous work (Shaw 

et al., 2019). These steps were incorporated to ensure consistent segmentation results 

across participants and included: 

 

I. Skull stripping (i.e., ROBEX; Iglesias, Liu, Thompson, & Tu, 2011) of the 

T1w scan for removal of background tissue and artefacts that may result 

in registration errors further downstream 

II. N4 bias correction ( ANTS version 2.20.dev116-gabc03; Tustison et al., 

2010) of the T1w scan that mitigates low spatial frequency variations in 

the data 
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III. Rician denoising of T1w and T2w scans (Manjón, Coupé, Martí-Bonmatí, 

Collins, & Robles, 2010), which has been shown to reduce high-

frequency Rician noise in MRI scans (Tustison et al., 2017) 

IV. Intensity normalisation of T1w and T2w scans. We utilized ‘NiftiNorm’  

(https://github.com/thomshaw92/nifti_normalise), a nifti implementation 

of ‘mincnorm’ from the medical imaging network common (MINC) data 

toolkit (Vincent et al., 2016) that normalises image intensities between 

two percent-critical thresholds, removing outlying intensity values 

V. If multiple repetitions of the dedicated T2w scan are available, non-linear 

realignment of these scans to reduce motion artefacts and increase the 

sharpness of the scans as in Shaw et al. (2019). 

 

LASHiS derives initial segmentations of each time point cross-sectionally using the 

ASHS pipeline with an atlas package similar to the subject pool’s intensity and spatial 

characteristics. This yields an atlas-defined number of hippocampus subfield labels. 

Due to our small sample size, it was not possible to create a bespoke atlas for 

validation. Therefore, we utilized ASHS (V2.0) with the Penn Memory Center 3T ASHS 

Atlas (Yushkevich et al., 2015). Despite the difference in field strength between our 

data and the atlas data, Xie et al (2018) has found that atlas composition does not 

significantly affect segmentation between 7T and 3T, and the contrast and intensity 

profiles of the scans in the 3T atlas are similar to the TSE scans we collected in the 

present study. 
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2.2.3 Single-subject template (SST) 

In parallel to cross-sectional processing, a minimum deformation average (MDA) multi-

contrast template of average intensity and shape is created in accordance with Avants 

et al. (2010). This template serves as an intermediate between any n time points of a 

subject and is biased equally to any given time-point. All subsequent processing of 

hippocampus volumes is done in the space of the SST in order to treat all time points 

in the same way. We have also found previously that combining scans in this way 

increases segmentation consistency and image sharpness (Shaw et al., 2019).  

 

2.2.4. Joint-Label Fusion (JLF) and longitudinal estimations of segmentations 

Following SST creation and labelling, and cross-sectional labelling, individual time-

point multi-contrast scans and their cross-sectionally defined segmentation labels then 

act as multi-contrast atlases to compute SST labels using JLF. The intended usage of 

JLF is to propagate manually derived labels to a target image. However, we used JLF 

with the atlases being automatically labelled. We also include the automatically 

labelled SST as an extra input to increase the power of the method. JLF assigns the 

spatially varying atlas (input) weights to the SST in a way that accounts for error 

correlations (Wu et al., 2017) between every n pairs of atlases. In this way, no single 

time point is biased towards the segmentation of the SST, and the SST is labelled 

based on a weighted vote of the segmentations from each time-point and the SST. In 

our scheme, a working region of interest (ROI) is defined roughly around the 

hippocampus, non-linearly warped to the space of the SST ROI, and JLF applied with 

parameters chosen based on Wang et al., (2013). The inverse of these non-linear 

transformations is later used for labelling the input images. This approach, therefore, 

bootstraps cross-sectional segmentations of hippocampus subfield to the SST, and 
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the best fitting labels are chosen based on the intensity and shape characteristics of 

the SST, not the individual time-points. 

 

Subsequently, the inverse of each of the time-point to SST transformations calculated 

by the registration from time-point to SST in the JLF piecewise registration is applied 

to the newly generated SST hippocampus subfield labels individually, warping the SST 

labels to each individual time-point. Provided the time-point-to-SST registrations are 

accurate (Avants et al., 2011) and invertible, the reverse normalisation of the labels 

can be considered a robust and reliable method for transforming the labels to the 

space of the subject’s time-point hippocampus subfield labels. Finally, we used 

Convert3D (Yushkevich et al., 2006) to measure the new subfield volumes in time-

point space. 
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Figure 1. Longitudinal Automatic Segmentation of Hippocampus Subfields (LASHiS) 

pipeline. The pipeline consists of the following steps with the input of any number of 

T1w and T2w individual time points per participant: 1) (In red) (optional) preprocessing 

of both T1w and T2w scans. 2) (In yellow) Offline construction of a sample-specific 

atlas for LASHiS. 3) Labelling of individual time points of each subject using ASHS 

and a representative atlas (or an atlas created in [2]) to yield hippocampus subfield 

estimates. 4) Construction of a multi-contrast Single Subject Template (SST). 4) JLF 

of each of the individual time point labels to the SST using both contrasts and individual 

hippocampus subfield labels to produce a labelled SST. 5) Application of the inverse 

subject-to-SST transformations to SST labels. 6) Measurement and calculation of 

subfield labels in subject-space. 
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2.3 Statistical Evaluation 

2.3.1. Hippocampus subfield segmentation methods 

We compared the performance of our LASHiS strategy (as detailed above) with three 

other established strategies, and one other exploratory strategy detailed below, 

examples of the output of each segmentation strategy are given in Figure 2: 

1. Cross-sectional ASHS (ASHS Xs) The segmentation strategy described in 

Yushkevich et al. (2015) used to compute segmentations for each timepoint 

independently in a cross-sectional manner for each time-point. We utilised 

segmentation results that incorporated the high-resolution T2w scan 

information. We modified certain parameters in ASHS to account for our 7T 

high-resolution and preprocessed (isotropic) inputs to account for resolution 

and image size. We used the Penn Memory Centre atlas 

https://www.nitrc.org/frs/?group_id=370 (Yushkevich et al., 2015) for 

segmentation due to input-atlas contrast similarities and an increased number 

of subfield label outputs compared to the available 7T atlases. 

2. Cross-sectional Freesurfer hippocampus subfield segmentation (FS Xs): the 

method described in Iglesias et al., (2015) was used to compute segmentations 

for each timepoint independently in a cross-sectional manner. Due to skull strip 

failures in recon-all and mri_watershed, the brain mask was replaced with the 

brain mask created in the preprocessing steps using ROBEX (Iglesias et al., 

2011) in order to give Freesurfer the best chance of succeeding. 

3. Freesurfer longitudinal hippocampal subfields (FS Long): This pipeline, 

described by Iglesias et al. (2016) utilises intensity and contrast information 

from an ex vivo manually traced atlas of hippocampal subfields to delineate in 

vivo subfield information. The ex vivo atlas is supplemented by an in vivo 
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Freesurfer atlas (as described in Kennedy, Filipek, & Caviness, 1989), which 

informs segmentation of the geometric priors surrounding the hippocampus. In 

this way, the generative model that classifies hippocampal subfields in vivo is 

calculated from the spatial distribution of the hippocampus and its surrounding 

brain regions as described in the atlas priors. 

4. JLF-free LASHiS (Diet LASHiS): This method is similar to LASHiS, though does 

not utilise the JLF bootstrapping step or cross sectional processing, thus 

reducing processing time by approximately 20%. Instead, the SST is created, 

labelled using ASHS and a representative atlas package, and labels were 

reverse-normalised to time-point space using the transformations calculated in 

the template building procedure, as distinct from the subject-SST 

transformations derived in the JLF step. We incorporated this method to 

determine the relative importance of the JLF bootstrapping step in our pipeline. 

This was considered a standard reverse normalisation segmentation pipeline. 

 

2.3.2 Evaluation methods 

Here, we evaluate our strategy in line with previously published methods in order to 

quantify reliability, reproducibility and precision. We reproduced analyses employed 

by both the FS Long hippocampus segmentation strategy (i.e., test-retest reliability) 

and longitudinal Bayesian Linear Mixed Effects (LME) modelling (Sorensen, 

Hohenstein, & Vasishth, 2016).  

 

2.3.3 Experiment one: Test-retest reliability 

We evaluated the test-retest reliability of all methods through testing differences 

between the second and third acquired time-point scans in the TOMCAT dataset. For 
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each participant, we segmented each scan-rescan session with the five segmentation 

methods and assessed performance based on two metrics: 1) absolute differences in 

volume estimates for each hippocampus subfield label between scan-rescan 

acquisitions, and 2) Dice overlap (Dice, 1945). We first measured the volume similarity 

coefficient, which does not rely on segmentation locations (Taha & Hanbury, 2015). 

This metric does not implicitly rely on overlaps in segmentations (such as Dice 

overlaps, which can be difficult to measure without bias when comparing between 

analysis strategies, as in Iglesias et al., [2016]). For completeness, and to have a direct 

comparison with Iglesias et al. (2016), we also assessed Dice overlaps between time-

point two and three in all pipelines. The Dice coefficient between two binary masks is 

defined in its simplest form as “twice the number of elements common to both 

segmentations divided by the sum of the elements in the segmentations”, and is 

described as: 

1. 𝐷𝐷𝐷𝐷𝐷𝐷 =  2|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|

 

where a perfect overlap between two segmentations (X and Y) is 1, and no overlap is 

0 (Taha & Hanbury, 2015). In LASHiS, Diet LASHiS, FS Xs, and ASHS Xs, the final 

result of hippocampus subfield labels occurs in a native (input) space. We linearly 

resampled all labels in these four pipelines to an intermediate space (SST space), and 

calculated Dice overlaps in these cases with the fuzzy Dice counterpart using the freely 

available EvaluateSegmentation tool (Taha & Hanbury, 2015). There is a bias towards 

FS Long for having superior Dice overlap evaluation due to the extra interpolation 

required in these linear realignments, which are not necessary in FS Long. We discuss 

the implications of this in section 4.1. 
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We leveraged Bayesian paired t-tests in accordance with Rouder, Speckman, Sun, 

Morey, and Iverson (2009) to assess the differences in subfield changes across the 

second and third time-point using Jamovi, R, and the BayesFactor plugin (Morey & 

Rouder, 2019; R Core Team, 2019; The Jamovi Project, 2019). In our analyses, BF10 

> 3 was taken as substantial evidence for the alternative hypothesis, with BF10 > 10 

taken as strong evidence, and BF10 greater than 100 were considered decisive. BF10 

values between 1 and 3 were considered anecdotal evidence for the alternative 

hypothesis. In contrast, BF10 < 0.33 (or BF01 > 3) was considered as substantial 

evidence for the null, with BF10 between 0.33 and 1 providing anecdotal evidence for 

the null hypothesis in accordance with Lee & Wagenmakers (2013). 

 

2.3.4 Experiment two: Bayesian Longitudinal Linear Mixed Effects Modelling 

To assess relationships between cross-sectional and longitudinal results while 

accounting for subject-specific trends (Tustison et al., 2017), we quantify between, and 

within (residual) variability of hippocampus subfield volume. In this experiment, we 

aimed to assess the utility of each pipeline for measuring each hippocampus subfield 

and detecting potential biomarkers therein. It is possible to quantify the relative 

performance of cross sectional and longitudinal pipeline variants with bayesian LME 

models (Tustison et al., 2017). Intuitively, the best longitudinal method maximises both 

within-subject reproducibility and between-subjects variability (to distinguish between 

sub-groups). Good performance is quantified by maximising the ratio between 

between-subject variability and residual variability. A summary measure of this is the 

variance ratio, which shows the linear relationship between within- and between-

subjects variability, which is a useful measure of performance for longitudinal 
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pipelines. Higher variance ratios indicate optimised prediction and confidence intervals 

for the segmentation quality. 

 

Freesurfer and ASHS provide different outputs in terms of subfield names. To 

overcome difficulties computing variance values relating to non-overlapping regions, 

we have concatenated several subfields that share commonalities across all pipelines 

and present these in Table 1. Subfields that did not share any commonalities across 

pipelines were excluded from analysis.  

 

Table 1. Label names for all hippocampus subfields that share similarities between 

Freesurfer and ASHS pipelines. 

Combined label 
name for 
analysis 

Freesurfer label names 
(FS Xs, FS Long) 

ASHS label names 
(ASHS Xs, Diet 
LASHiS, LASHiS) 

CA1 CA1-head & CA1-body CA1 

CA2-3 CA3-head & CA3-body† CA2 & CA3 

DG GC-ML-DG-head, GC-ML-DG-body, 
CA4 head, & CA4 body 

DG‡ 

SUB Presubiculum-head, presubiculum-tail, 
subiculum head, & subiculum tail 

SUB 

†Freesurfer combines estimates of CA2&CA3 as label CA3 in their algorithm. 

‡ASHS combines estimates of DG and CA4 as label DG in their algorithm. 
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The subfields chosen in our analysis include Cornu Ammonis (CA) region 1 (CA1), CA 

region 2 and 3 (which was combined in Freesurfer’s method; CA2-3), Subiculum (SUB; 

comprising presubiculum and subiculum in the Freesurfer pipeline), and dentate gyrus 

(DG; comprising of CA4 and DG in the ASHS atlas package). These four subfields are 

measured for all analyses for left and right sides for a total of eight subfields. Note that 

LASHiS computes as many labels as are included in the initial atlas package (usually 

14 per side).  For consistency of subfield volumes that may be influenced by 

intracranial volume (ICV), and to obtain more internally consistent measures of 

volume, we normalised all raw volume values by total hippocampus formation volume 

(e.g., CA + DG + SUB). We examined subfield results for all comparisons, but report 

significant differences only between the most relevant comparisons: namely between 

LASHiS and FS Long, as these are the two longitudinal pipelines of interest. 
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 Figure 2. Hippocampus subfield segmentation results 

(coloured) for a single representative subject for the five 

tested methods at the same slice in a coronal view. Each 

segmentation result is overlaid on the high-resolution T2w 

scan save for FS Long, which utilises a T1w scan for 

segmentation. Green arrows denote a possible under-

segmentation, orange for a possible over-segmentation of 

a subfield where subfield information is not available. 

 

 

 

 

 

 

 

 

 

3.0 Results 

3.1 Experiment one: test-retest reliability 

We conducted a series of Bayesian paired-sample t-tests in order to test absolute 

volume differences between the second and third time-point. Figure 3 shows 

differences between methods for volume similarity in the test-retest experiment. We 

found that LASHiS and Diet LASHiS showed significantly higher volume similarity in 

all subfields than other methods. Specifically, We found LASHiS to have decisively 

higher (BF10 > 100) volume similarity coefficients compared to FS Long in all subfields. 
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ASHS Xs also showed high volume similarity in DG subfields compared to the 

Freesurfer variants, though with high variability; we observed larger variability in the 

volume similarity in all other methods compared to LASHiS variants (see 

Supplementary Figure 1 for subfield variance breakdowns). All other comparisons with 

LASHiS are detailed in Supplementary Figure 1 and 2.  

 

We next conducted Bayesian paired-sample t-tests for Dice overlaps between the 

segmentation labels in the second and third time-point. Figure 3 shows Dice overlap 

values of each subfield for each method. Note, that Dice scores for LASHiS, Diet 

LASHiS, Freesurfer Xs and ASHS Xs are negatively affected by the resampling 

needed to compute the registrations between the two time-points, which is not present 

in the FS Long method. Interestingly, our results do not directly replicate Iglesias et al. 

(2016) in terms of mean Dice overlap scores for test-retest reliability. We found slightly 

lower Dice overlaps for all subfields in our sample in the Freesurfer methods compared 

to Iglesias et al. (2016).  

 

In terms of subfield differences, we will detail comparisons only for LASHiS and FS 

Long, with all method comparisons included in Supplementary Figure 3 and 4. We 

found that Dice overlaps for LASHiS were higher than FS Long for test-retest reliability 

decisively in Left-DG and Right-DG (BF10 > 100) and anecdotally in Left-CA1 (BF10 > 

1). We found no difference between LASHiS and FS Long in Right-CA1, and Right-

SUB (BF10 < 1). FS Long had substantially higher scores than LASHiS for Right-CA2-

3, Left-CA2-3, and Left-SUB (BF10 > 10).  
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Figure 3. Box plots of volume similarity coefficients (left) and Dice coefficients (right) 

of each hippocampus subfield (left, black filled shapes, and right, white filled shapes) 

from time-point two and time-point three for each method, where a value of 1 

represents perfect overlap between time-points, and 0 represents no overlap. Error 

bars represent overall standard deviation. Freesurfer Xs, ASHS Xs, Diet LASHiS and 

LASHiS all require resampling to a common space before overlap calculation of Dice 

overlaps. Higher scores between time-points denote higher subfield overlap between 

test-retest time-points. 

 

3.2 Experiment Two: Bayesian longitudinal Linear Mixed Effects modelling 

We compared the performance of five hippocampus subfield segmentation processing 

approaches using longitudinal LME modelling to quantify between and residual 

variability, and the variance ratio of these. Figure 4 provides the 95% confidence 

intervals for the variance ratios in each subfield for each of the pipelines. As noted in 

Tustison et al. (2017), “superior methodologies are designated by larger variance 

ratios”. Across subfields, LASHiS has higher variance ratios for Left-CA1, Left-SUB, 

Right-DG, and Right-SUB. FS Long out-performs LASHiS for Left-CA2-3 and Right-
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CA1 and ASHS Xs performs best for Right-CA2-3 and Left-DG (followed closely by 

LASHiS and diet LASHiS). We also note lower values in CA2-3 subfield variance ratios 

in LASHiS in both hemispheres. 

 

 

Figure 4. Box plots of (from left to right) residual variability, between-subject variability, 

and the variance ratio between the two variabilities of each method for the three time-

points. Error bars denote the 95% confidence intervals. Shapes with black and white 

fill represent individual left, and right hippocampus subfields, respectively. Lower 

residual, and higher between-subject variabilities are preferred for longitudinal 

pipelines. The variance ratio is a summary statistic of the two variability values, with 

higher values indicating improved discrimination between within- and between-subject 

variance. 

 

We found overlapping confidence intervals for all pipelines, with obvious trends 

towards LASHiS as having the highest variance ratios. Figure 4 (right) shows the 

relative distributions of variabilities (between and within variability, and variance ratio) 

collapsed across subfields for each of the assessed pipelines. A trend towards higher 

variance ratio for LASHiS compared to the other methods can be observed, and that 
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the contributions of the residual and between subject variability accounts for the 

variance ratios observed. We also note that variance ratios for Diet LASHiS are 

comparable to FS Long. Figure 4 shows variance ratios of each pipeline broken down 

by subfield. There are clear trends towards LASHiS having the superior variance ratios 

in Left and Right CA1, Left and Right SUB, and Right DG regions. LASHiS has low 

variance ratio values in Right CA2/3. LASHiS therefore has higher variance ratios than 

all other methods in 5 of 8 subfields. We also provide within and between subject 

variability for each subfield in Supplementary Figure 5 and 6, respectively, and the 

subfield variance breakdowns for the variance ratio in Supplementary Figure 7. 

 

4.0 Discussion 

4.1 Experiment One, test-retest reliability 

The test-retest results highlight the reliability of the LASHiS pipeline. Capitalising on 

the availability of data from multiple time-points to increase SNR in the SST improves 

the inherent regularisation and prior information for segmentation, as proposed for 

LASHiS. LASHiS and Diet LASHiS show excellent test-retest reliability for volume 

similarity coefficients. Deformable registration has been previously used successfully 

to segment hippocampus structures in groups of participants (Hammers et al., 2007; 

Hogan et al., 2000). LASHiS benefits from deformable registration-based image 

segmentation, as the hippocampus is segmented only in SST space. We contrast 

LASHiS with FS Long, which utilises an SST in order to compute time-point 

segmentations. However, the FS Long SST uses only T1w information, potentially 

limiting the reliability of the time-point to SST registration, and therefore decreasing 

the volume similarity. Indeed, Iglesias et al. (2016) found an average of 4.5% 

difference in absolute volume similarity in their test-retest condition. In terms of Dice, 
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all other methods were at a disadvantage to FS Long for this metric due to the 

interpolation step required to realign the scans. This effect was mitigated through the 

utilisation of a fuzzy Dice coefficient in all other methods. However, despite the 

disadvantage, LASHiS shows comparable Dice overlaps in the test-retest condition to 

FS Long, except for in the smaller subfields (e.g., CA2/3). Coupled with the results of 

volume similarity, we can assert that LASHiS is a reliable method for longitudinal 

hippocampus subfield segmentation.  

 

4.2 Experiment Two, Bayesian longitudinal Linear Mixed Effects modelling  

Many evaluation strategies employ manual segmentations (e.g., Berron et al., 2017) 

to provide a gold standard for evaluation of any segmentation strategy. However, 

manual hippocampus subfield segmentation is time and labour intensive, taking up to 

eight hours initially, and two hours after five months of training (Wisse et al., 2016) and 

is prone to inter- and intra-rater variability (Boccardi et al., 2011; Hsu et al., 2002; 

Mulder et al., 2014). We explored the usefulness of LASHiS in the examination of the 

variance ratio in our longitudinal Bayesian LME modelling experiment. Higher variance 

ratios that are characterised by both lower residual variability and larger between-

subjects variability are beneficial for longitudinal cohort studies. We found the highest 

variance ratios in LASHiS, underscoring the usefulness of our approach in maximising 

between subject differences. We note outliers in variance ratios in LASHiS and FS 

Long, which are driven by results in CA2-3, and SUB, respectively. For LASHiS, high 

residual variability was found for right CA2-3, driving this outlier. 

 

We want to note here, that LASHiS is potentially negatively biased by limitations in 

subfield selection. All Freesurfer schemes combine CA2 & CA3 estimates in their 
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algorithms. In calculating our subfield estimates, we summed CA2 and CA3 volumes 

offline, potentially biasing our estimates of residual variability. We note a similar 

residual variability outlier in the ASHS Xs scheme in the left CA2-3 combined subfield 

regions. Volume estimates of CA2 and CA3 regions were generally reported less 

precisely than other subfields, as measured by the low test-retest statistics and low 

within-subject variability in the LME experiment. Previous research (Dalton, Zeidman, 

Barry, Williams, & Maguire, 2017; Pipitone et al., 2014; Wisse et al., 2016; Yushkevich 

et al., 2015) has repeatedly shown discrepancies in reporting these subfield 

boundaries in vivo. This is largely due to their small size and the reliance on heuristic 

geometric rules for segmenting CA2/3 subfields on in vivo MRI, rather than visible 

contrast differences in the scan. Thus, inter- and intra-rater reliability are often low for 

these subfields (Xie et al., 2018). Our automatically derived subfield estimates are 

likely influenced by discrepancies in the manual labels that inform segmentations. 

Notably, FS Long also suffers from a low variance ratio in CA2-3, suggesting either i) 

a homogeneous participant pool leading to low between-subject variability, or ii) large, 

unexpected differences in time-points in these subfields, or iii) a combination of these.  

 

4.4 Benefits and advantages of LASHiS 

Both LASHiS and the FS Long scheme segment hippocampus subfield and derive 

volume estimates from MRI images. However, only a T1w scan of an individual is 

processed through the longitudinal stream of ‘recon-all’ before longitudinal processing 

of hippocampus subfields, potentially explaining the FS Long results compared to 

LASHiS.  Our design utilises multi-contrast information from MRI scans and 

importantly, our design allows for information that can only be captured by multi-
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contrast MRI (i.e., the laminae of the hippocampus subfield) to be included in the 

labelling. 

 

LASHiS derives its power from its ability to decrease random errors in the labelling 

procedure, and through increasing the likelihood for correct labelling to occur when 

the SST is created, which, due to the non-linear realignment between the time-points, 

implicitly increases SNR and sharpness of the SST compared to the individual time 

points through the template building procedure (Shaw et al., 2019). Our inclusion of 

Diet LASHiS highlights the contributions of the JLF step from the simple labelling of 

the SST, which may be subject to both random and systematic errors. In LASHiS, 

these random errors may be mitigated in part due to the bootstrapping of JLF from the 

individual time-point to the SST. It is possible this step decreases the likelihood of 

random errors in the labelling scheme because of JLFs ability to vote on labels that fit 

best to the SST. Therefore, random variance caused by mislabelling at any individual 

time-point may be ameliorated by the JLF step. In turn, this is the likely cause for the 

low residual variability found in LASHiS in Experiment Two. Our inclusion of JLF 

labelling using automatically generated labels is a novel consideration in the field of 

hippocampus subfield segmentation, and relies on the assumption that automatically 

generated subfield labels are considered accurate. 

 

We included a computationally less expensive and faster approach to multi-contrast 

hippocampus subfield segmentation, namely Diet LASHiS. This method performs all 

steps save for the initial cross-sectional segmentations and the bootstrapping of these 

segmentations to the SST using JLF. Diet LASHiS performed well in the volume 

similarity portion of Experiment 1, and in Experiment 2 in comparison to the other 
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methods examined, though to a lesser degree than LASHiS. As the steps taken to 

complete LASHiS and Diet LASHiS are the same save for the additional JLF 

bootstrapping method in the former, we propose the increased sensitivity and 

robustness in the LASHiS scheme was due to the JLF step. Indeed, despite the 

disadvantage of potentially increasing systematic errors with the JLF bootstrapping 

step, it is evident that these systematic errors are largely overcome in the initial cross-

sectional labelling of the hippocampus subfield with ASHS Xs.  

 

Processing time for LASHiS depends largely on compute infrastructure, T2w image 

size, and the number of time-points. Our testing on three time-points with large 

(0.3mm3) T2w images ran in the order of 24 hours on a single CPU core, and 6 hours 

on 12 cores without parallelisation. Many steps, including the initial cross-sectional 

segmentations and SST creation, can be run in parallel using job scheduling software 

(PBS, Sun Grid Engine, Slurm, etc.) and parallelised across cores, decreasing the 

time required in orders of magnitude less commensurate with the number of cores 

employed. Diet LASHiS is estimated to decrease compute time by approximately 20%, 

as neither the cross-sectional, nor the JLF steps are required. ASHS Xs takes between 

1-2 hours on a single core, while FS Xs takes approximately 40 minutes after 48 hours 

of preprocessing using a single core 

(https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes). Fs Long takes 

approximately 60 minutes on a single core after 48 hours of cross-sectional processing 

per time-point, and further creation of an SST. The great advantage of LASHiS is the 

flexibility of computational processing options for each step, allowing for scalable 

processing for larger datasets.  
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Our incorporation of a Bayesian approach to the widely used longitudinal LME method 

for examining differences in method performance aids in discrimination of subtle 

differences between participants with small variability (as in the present study). This 

technique allowed us to simultaneously examine small differences between 

participants, while also capturing longitudinal within-subject changes; both of which 

are especially important in examination of change in clinical subpopulations and other 

low-n studies, where small longitudinal changes need to be captured precisely. 

Notwithstanding the robustness of our analysis technique, larger studies with more 

variable neuroanatomy are required to show the true robustness of this pipeline. 

 

4.5 Limitations 

The design of our pipeline decreases random variability in any session due to the SST 

registration and JLF labelling scheme. A limitation of our scheme is that label errors 

(i.e., systematic errors) in subjects will propagate to the SST, despite the sophisticated 

JLF algorithm employed that does not independently compute similarity weights 

between the pairs while voting (Wang et al., 2013). Therefore, it is important to note 

that LASHiS is never free from labelling errors that occur in all image segmentation 

pipelines. These systematic errors can be avoided through quality assurance of scans 

and labels at the cross-sectional level (i.e., before the JLF bootstrapping step), which 

is essential in any volumetric labelling scheme, regardless. 

 

We here report a small healthy cohort of young adults with no known psychological or 

neurological disorders. We assumed no difference between time-point two and three, 

and very small differences between time-point one and two due to the age and health 

of the participants. We concede this limitation in our interpretation of test-retest 
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analyses and further work is needed to examine LASHiS’ ability to detect differences 

in larger cohorts of clinical and healthy subjects. The Bayesian nature of our 

longitudinal LME modelling accounts for small sample sizes (Sorensen et al., 2016), 

and the results of Experiment One and Two should therefore not be affected by our 

small sample size.  

 

Our test-retest statistics show that LASHiS has improved metrics compared to other 

longitudinal methods, with obvious differences to previous work reporting the same 

methods (Iglesias et al., 2015), where Dice overlaps were considerably higher overall 

for the Freesurfer methods. We note this limitation of having such a small sample size 

in the present study, which was the likely reason for the higher variability in the Dice 

overlap scores in the Freesurfer method. However, as LASHiS shows a consistent 

improvement compared to all other methods, we are confident LASHiS is a robust and 

reliable method for longitudinal multi-contrast hippocampus subfield segmentation.  

 

4.6 Conclusions 

Here, we present a technique for automatically and robustly segmenting hippocampus 

subfield volumes using UHF multi-contrast MRI in healthy subjects. We found that 

LASHiS shows marked improvements across a number of relevant measures, such 

as Dice similarity and volume similarity coefficients for test-retest reliability, and 

Bayesian LME modelling, compared to other methods used for cross-sectional and 

longitudinal hippocampus segmentation. This is likely due to its utilisation of multi-

contrast information that better captures hippocampus subfield tissue characteristics 

and its ability to decrease random errors in the labelling procedure.  
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