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Deep learning methods for digital pathology analysis have proved an effective way            

to address multiple clinical questions, from diagnosis to prognosis and the           

prediction of treatment outcomes. They have also recently been used to predict            

gene mutations from pathology images, but no comprehensive evaluation of their           

potential for extracting molecular features from histology slides, has yet been           

performed. We propose a novel approach based on the integration of multiple data             

modes, and show that our deep learning model HE2RNA can be trained to predict              

systematically RNA-Seq profiles from whole-slide images alone, without the need          

for expert annotation. The model facilitates the virtual spatialization of gene           

expression, as validated by double-staining in an independent dataset. The results           

can therefore be interpreted in detail and this model opens up new opportunities             

for virtual staining. Finally, the transcriptomic representation learned by the model           

could be could be used to improve performances for other clinical tasks,            

particularly for small datasets. For example we studied the problem of predicting            

microsatellite instability from Hematoxylin & Eosin (H&E)-stained images. Greater         

prediction ability was achieved in such a realistic framework. 

 
 

Histological analyses of tumor biopsy sections have been important tools in oncology for             
more than a century, providing a high-resolution map of the tumor that helps pathologists              
to determine both diagnosis and grade 1,2. The development of new, more powerful            
technologies, and the curation of larger datasets, have made it possible to train             
increasingly sophisticated algorithms, which can to process and learn from very           
high-definition whole-slide digital images (WSI). Deep convolutional neural networks         
(CNNs) have recently emerged as an important image analysis tool accelerating the            
work of pathologists. They have shattered performance benchmarks in many challenging           
medical applications, including mitosis detection 3,4, the quantification of tumor immune          
infiltration 5, cancer subtypes classification 6,7 and grading 8,9. Ultimately, they enhance the          
practices of pathologists, improving the prediction of patient survival outcomes and           
response to treatment10,11 and presenting exciting opportunities in clinical and biomedical           
fields12,13.  
 
However, while it is becoming clearer that the application of deep learning models             
applied to tissue-based pathology can be very useful, few attempts have been made to              
connect specific molecular signatures directly to morphological patterns within cancer          
subtypes. Several recent studies have shown how models of this class can connect             
histological images to tumor-specific mutations or tumor mutational burden in lung 10,           
prostate 14, brain cancers15 and melanoma 16,17,18. Massive changes in gene expression          
are known to occur in many human cancers secondary to activating/silencing mutations            
or epigenomic modifications, and the comprehensive characterization of disease-related         
gene networks/signatures can help to clarify potential disease mechanisms and prioritize           
targets for novel therapeutic approaches19,20. Various next-generation sequencing        
techniques have been developed for the reconstruction of gene information in           
carcinogenesis21,22 together with specific bioinformatic tools for their analysis23,24,25.         
However, despite the continual decrease in the cost of such next-generation           
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sequencing 26, these technologies are not consistently routinely used by all medical           
centers. Moreover, they are associated with several challenges such the need for            
sufficiently high DNA quality and quantity, and they are time-consuming and difficult to             
incorporate into routine clinical practice. An ability to predict gene expression from            
histology slides would therefore greatly facilitate patient diagnosis and prediction of           
response to treatment and survival outcome 27.  
 
We have begun to fill this gap, with the development of HE2RNA, a new deep learning                
algorithm, specifically customized for the direct prediction of gene expression from WSI            
(Fig. 1). For the training and testing of our model, we collected WSIs for which the                
corresponding RNA-Seq data were available, from the public dataset The Cancer           
Genome Atlas (TCGA). We then investigated how HE2RNA learned to recognize           
important histological patterns within the slides to predict genes expression by using our             
model to generate heatmaps corresponding to the most predictive tiles used to predict a              
gene’s expression. This model also sets the stage for possible future applications such             
as virtual staining in predicting level of expression of a specific molecular marker from              
the WSI. Such approaches could also be used to detect histological subtypes10, genetic             
mutations28 or to map the infiltration of tumors by tumor-infiltrating lymphocytes (TILs)29            
or other immune cells (e.g. macrophages, NK cells) based on cell-specific gene            
signatures. Such models have also been used to predict molecular profiling from            
pathology slides, particularly for the prediction of the hormonal status of breast cancer             
cases30. 
  
Finally, the information linking the WSI to RNA-Seq data, extracted during the            
transcriptomic learning on a large dataset, such as the TCGA, and encoded in the              
internal representation of the model, which we refer to as transcriptomic representation ,            
could be transfer to improve the performance of other predictive tasks, such as the              
prediction of microsatellite instability (MSI) status. We validated our hypothesis in a            
realistic setup, in which only a small dataset was available for the learning phase of the                
MSI status, built directly from histological images obtained from patients with colorectal            
adenocarcinomas (COAD), although a transcriptomic representation was available from         
a larger dataset of COAD patients. This is aspect is particularly important, as it has               
recently been demonstrated that MSI-H (MSI-High) status is a good predictive biomarker            
for potential responders to immunotherapy, resulting in a better overall prognosis relative            
to that of patients with microsatellite stable disease (MSS) in gastric adenocarcinoma            
(STAD) and colorectal cancer31. However, not all patients are screened for MSI status             
outside of high-volume tertiary care centers. The possibility of inferring MSI status            
directly from biopsies would therefore potentially improve the diagnosis and medical care            
of this subgroup of patients.  

Results 

A deep learning model for the prediction of gene expression. Gene expression is             
highly variable and influenced by cell-type, proliferation and differentiation status32,33.          
However, the possibility of quantifying the expression levels of specific genes based on a              
visual observation of hematoxylin & and eosin (H&E)-stained WSI from tissue biopsies            
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has never been investigated in detail. We aimed to tackle this problem, for multiple              
cancers, by developing HE2RNA, a deep learning model based on a multi-task            
weakly-supervised multiple-instance learning approach 34 (architecture explained in the        
Methods section). We data from 8,725 patients with matched WSIs and RNA-Seq            
profiles, corresponding to 28 different cancer types, from the TCGA network (see            
Methods for details about the dataset). The model was trained to use WSIs as inputs to                
predict FPKM-UQs (the outputs). We performed a 5-fold cross-validation strategy. The           
slides were thus randomly assigned to five different sets, and each set was used in turn                
as the validation set, the other four sets being used for training in the run concerned. For                 
each cancer type, the patients were split 80%-20% between the training/validation sets            
in each run and the final results are expressed as a mean for all five runs (see the                  
Methods section for more details).  
 
For RNA-Seq data-preprocessing, we selected the 30,839 (coding or non-coding) genes           
with positive median FPKM-UQ values and considered their expression levels on a            
logarithmic scale, using an approach similar to previously existing bioinformatic tools35           
for differential gene expression analysis (see Methods for more detail). WSIs are            
high-definition digital images (up to 100,000 x 100,000 pixels). We therefore           
preprocessed the slides, to facilitate the development of our model, by partitioning them             
into “tiles”, corresponding to small squares of 112 x 112 μm (224 x 224 pixels). The tiles                 
were then aggregated into clusters, called super-tiles. The number and size of the             
super-tiles were optimized, for each specific task, at the preprocessing level. In            
particular, for the transcriptome prediction task, 100 super-tiles were created for each            
WSI. A multilayer perceptron was then applied to the ensemble of super-tiles to generate              
a predicted value per gene and per super-tile. For comparison of the model predictions              
with the real RNA-Seq data, the predictions per-super-tile were finally aggregated by            
calculating a weighted mean to give a final prediction per-WSI (see details in Methods              
and Supplementary Fig. S1). 
Finally, we evaluated the results for each gene , by calculating Pearson’s coefficient R for              
the correlation over samples between the model predictions and the real data. This             
correlation was assessed for each preselected gene, separately for each different type of             
cancer. We considered a prediction for a given gene to be significantly different from the               
random baseline value if the p -value associated with its coefficient R was below 0.05,              
after correction to account for the testing of multiple hypotheses. We considered            
Holm-Šidák (HS) correction and Benjamini-Hochberg (BH) correction, with significance         
level α =0.05 in each case. For the total set of 30,839 selected genes, an average of                
3,627 genes (including 2,797 protein-coding) per cancer type were actually predicted           
with a statistically significant correlation under HS correction, while an average of 12,853             
genes (among which 8,450 protein-coding genes) per cancer type were predicted to            
display a statistically significant correlation under HS correction (Fig. 2), whereas an            
average of 12,853 genes (including 8,450 protein-coding genes) were predicted to           
display a statistically significant correlation following BH adjustment (Supplementary Fig.          
S2). 
 
The number of significantly well-predicted genes considerably between cancer types,          
mostly due to the size of the dataset considered (Fig. 2a): the smaller the number of                
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samples in the dataset, the higher the coefficient correlation R required for statistical             
significance. For example, only seven genes were accurately predicted for the forty-four            
available cases of Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), (          

), whereas 15,391 genes were correctly predicted for the 1,046 cases of.64R > Rsign = 0             
lung carcinoma (indicated as LUNG, including 535 WSI for lung adenocarcinoma - LUAD             
- and 511 slides for lung squamous cell carcinoma - LUSC) ( ). The           .20R > Rsign = 0   
correlation coefficients obtained for the well-predicted genes were often well above the            
threshold value for significance threshold, particularly for the largest datasets (Fig. 2a). 
 
We compared the list of genes well-predicted in each cancer, to analyze the consistency              
of the predictions. None of the genes were well-predicted in all 28 available cancer types               
(Fig. 2b), but larger numbers of genes were consistently above the significance threshold             
when considering smaller subsets of cancer. In particular, C1QB expression was           
strikingly well-predicted in 17/28 different cancer datasets (R = 0.39 ± 0.15). Similarly,             
another four genes, NKG7 , ARHGAP9 , C1QA and CD53 were accurately predicted           
among 15/28 datasets (R ranging from 0.38 to 0.46 for the various cancer types). CQ1               
(A and B) are proteins of the complement known to be involved in T-cell activation               
following antigen presentation by antigen presenting cells (APC)36, whereas CD53 37 and           
NKG7 38 are known to be expressed by T and NK cells respectively.  
 
Longer lists of genes were consistently well-predicted by HE2RNA in smaller subsets of             
cancer types and we used Ingenuity Pathway Analysis (IPA) software to identify the             
corresponding biological networks. For example, we performed a functional annotation of           
the 156 genes with prediction performances above the significance threshold in 12/28            
different cancer types (Fig. 2c).  
This analysis revealed an enrichment in genes involved in the immune system and             
T-cell regulation/activation in the various cancer types, as already suggested by the            
genes mentioned above. Indeed, the most significant functional network was the Th1            
and Th2 activation pathway (p-value = 7.94 × 10 -15) and other networks with similar              
levels of significance included (iCOS-iCOSL signaling in T helper cells, T-cell receptor            
signaling and CD28 signaling in T helper cells). Gene expression profiles differ            
considerably between types of cancer. We therefore performed a similar analysis on two             
specific examples, liver hepatocellular carcinomas (LIHC) and invasive breast carcinoma          
(BRCA). In LIHC the genes for which expression was most accurately predicted were             
associated with mitosis and cell-cycle control (Cell cycle control of chromosomal           
Replication, Mitotic Roles of Polo-Like Kinase) well-known hallmarks of cancer (Fig. 2d).            
Liver fibrosis, a known risk factor for the development of LIHC39, was also among the               
most significantly well-predicted network (Hepatic Fibrosis/Hepatic Stellate Cell        
Activation network). Similarly, we found that in BRCA samples (Fig. 2e), for the             
prediction of expression levels for genes involved in cell-cycle regulation (Cell Cycle:            
G2/M DNA Damage Checkpoint Regulation, Cell cycle control of chromosomal          
Replication, Mitotic Roles of Polo-Like Kinase), but also for the prediction of expression             
levels for CHEK2 (a gene known to be mutated in breast cancer40 and involved in its                
progression 41) and Cyclin E (known to be overexpressed in breast cancer42). These            
results demonstrate that HE2RNA, despite training on a diverse range of cancer types,             
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was able not only to predict expression levels for genes involved in immune regulation,              
but also to detect pathways deregulated in specific types of cancer. 
 
Finally, we investigated whether known gene signatures dysregulated in a majority of            
cancer types and implicated in carcinogenesis could be accurately predicted by           
HE2RNA. We focused on the hallmarks of cancer corresponding to the six biological             
capabilities acquired during the multistep development of human tumors43,44: sustaining          
proliferative signaling, resisting cell death, evading growth suppressors, enabling         
replicative immortality, inducing angiogenesis, and activating invasion and metastasis.         
Based on these hallmarks, we defined a subset of genes known to be involved in the                
changes required for a normal cell to become cancerous: increased angiogenesis,           
increased hypoxia, deregulation of the DNA repair system, increased cell cycle activity,            
immune response mediated by B cells and adaptive immune response mediated by T             
cells. We combined several gene signatures from Gene Set Enrichment Analysis           
(GSEA) software for each of these biological networks, to obtain six gene signatures             
deregulated in several types of cancers (see Methods and full lists in Table S4). 
 
For each of these pathways and for each cancer type, we compared the predictions              
obtained for the genes in the signatures with those obtained for 10,000 different random              
lists of genes of the same length. For each pathway length, we collected the              
corresponding distributions of gene prediction correlations . We then compared      (R)P     
(Fig. 3a) the mean correlation coefficient for the pathway to the average of the mean         Rp        
correlation coefficients for the random lists . The model provided better predictions for      Ro        
all the pathways considered, with the vast majority of points lying above the identity line               
(Fig. 3a). Moreover, for each cancer type, we calculated the p-value required to obtain              
the signature correlation value in the relative random distribution . We found    Rp       (R)P    
that, in 50% of cancer types for angiogenesis, and 54% for hypoxia, DNA repair and               
cell-cycle pathways, signatures were significantly better predicted by HE2RNA than          
random lists of genes (cumulating all levels of significance), with these proportions            
reaching 75% and 86% for B cell-mediated immunity and T cell-mediated immunity,            
respectively (Fig. 3a). We obtained similar results when comparing the proportion of            
well-predicted genes in cancer-specific pathways to the proportion of well-predicted          
genes in random sets of gene. In this case, the HE2RNA predictions were significantly              
better than those for a random set of genes on 36% (angiogenesis), 29% (hypoxia), 25%               
(DNA repair), 39% (cell-cycle), 36% (B cells-mediated immunity) and 50% (T           
cells-mediated immunity) of cancer types (Fig. 3b).  
As expected, the proportion of well-predicted genes from these six pathways increased            
with the size of the dataset for each cancer type (as in Fig. 2a). Indeed, the largest                 
datasets (BRCA and LUNG) hat higher proportions of genes accurately predicted per            
pathway and for the six defined pathways than smaller datasets (Supplementary Fig.            
S3). Nevertheless, HE2RNA predicted a significant proportion of gene expressions          
within these pathways in some of the smallest datasets: for example 18% of the cell               
cycle pathway genes were accurately predicted in pancreatic adenocarcinoma (PAAD),          
together with 29% of the angiogenesis network and 23% of the hypoxia pathway genes              
in pheochromocytoma and paraganglioma (PCPG). Moreover, these results confirmed         
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our previous analysis (Fig. 2e) in which genes involved in cell cycle regulation were              
among the most accurately predicted for the BRCA dataset.  
As a control experiment, we used HE2RNA to predict levels of expression of             
housekeeping genes (HK, list in Supplementary Table 4). We did not expect the model              
to perform well on this subset of genes known to be expressed at similar levels in                
diverse cell types under normal and pathological conditions. As expected          
(Supplementary Fig. S4), in most cases, the predictions for this gene set were similar to               
those for randomly selected genes. Indeed, when the procedure described above was            
followed, the correlation for the HK signature was significantly better than that for a              
random set of genes in only 14% of cancer types, and this percentage dropped to zero                
for measurements of the proportion of well-predicted genes. This analysis validated our            
normalization procedure and the ability of HE2RNA to focus on specific cancer-related            
molecular information when trained on TCGA tissue images. 
 
 
HE2RNA, a tool for virtual spatialization. The HE2RNA model assigns a score to all              
super-tiles contributing to gene prediction and is therefore interpretable by design. Once            
a predictive model has been trained, it can identify the specific regions predictive of the               
expression level of a given gene on each WSI. The larger the number of super-tiles               
chosen for the model, the higher the definition of the spatialization will be. The limit is                
reached when all the tiles of the training WSIs are treated separately (k=8,000)             
(Supplementary Fig. S1). Previous studies28,29,42 have demonstrated that a virtual          
spatialization map (VSM), covering the entire WSI can be defined on the basis of CNN               
models. These heatmaps reflect the importance score assigned to each tile used in the              
algorithm. For validation of the accuracy of such VSMs, we considered the subset of              
genes encoding the human CD3 protein complex (CD3D, CD3E, CD3G and CD247 )45,46,            
as an example of a well-predicted marker, for which we obtained a spatialization map              
(Fig. 4a). CD3 is a transmembrane receptor glycoprotein specifically expressed at the            
surface of T lymphocytes, involved in their activation 47 and constituting an interesting            
biomarker of immune infiltration of the tumor microenvironment48. First, we applied the            
CD3 gene expression prediction model, trained as described above on TCGA, to an             
external H&E-stained image from a LIHC sample, to generate a full VSM. Our             
cross-validation procedure generated five models, each producing four predictions per          
tile (one for each gene). The expression levels of the four genes considered are strongly               
correlated (with inter-gene correlation coefficients exceeding 0.78 on TCGA-LIHC). We          
therefore averaged their expressions as well as the model predictions and obtained an             
overall mean correlation of R=0.43 for the TCGA-LIHC dataset. For the generation of the              
final VSM, we averaged the predictions obtained with the five models trained in             
cross-validation. We validated this VSM on the same LIHC sample that was washed and              
then stained with an anti-CD3 antibody. This procedure generated two WSIs with            
different staining patterns from the same slide (Fig. 4a-b). We calculated the correlation             
between the predicted mean activity per tile and the actual number of T cells obtained by                
using QuPath software on the CD3-stained slide. We obtained a correlation coefficient of             
R=0.54. Moreover, as HE2RNA focuses particularly on histological regions associated          
with higher levels of gene expression, we analyzed the 100 tiles for which the model               
predicted the highest value for the expression of CD3 genes. The median number of T               
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cells in those tiles was 42.5 cells, whereas the median number of T cells on all 28,123                 
tiles of the slide was 4, confirming the accurate spatial interpretability of the predictive              
model (Fig. 4c). These results were also confirmed visually, by focusing on the tiles with               
the highest and lowest scores associated with CD3 gene expression (Fig. 4d-e). 
Overall, these results demonstrate that our model can efficiently predict the spatial            
expression profile of a subset of genes. Such predictions are possible even for RNA-Seq              
data obtained for bulk cells rather than in single-cells transcriptomic approaches.  
 
HE2RNA for microsatellite instability status prediction. In addition to predicting gene           
expression and making it possible to generate VSMs, our HE2RNA model also provides             
a novel transcriptomic representation of the histological images, of potential utility for            
several different clinical and medical situations. In this approach, while learning the            
transcriptome, HE2RNA transformed each WSI into a vector of P features corresponding            
to the dimensionality of the last hidden representation of the neural network. We             
considered the other extreme of the preprocessing strategy (a single super-tile,           
corresponding to the mean of all tiles) and a last hidden layer of 256 neurons. As an                 
example within the landscape of possibilities allowed by this new type of representation,             
we studied the problem of microsatellite Instability (MSI) status prediction directly from            
H&E-stained WSIs. DNA mismatch repair deficiency (MMRd) is more frequently          
observed in adrenocortical, rectal, colon, stomach, and endometrial tumors49, but it may            
also occur in cancers of the breast, prostate, bladder, and thyroid 50. Tumors harboring             
this phenotype develop both point and frameshift mutations at an abnormally high rate             
and are often described as “hypermutated”51. The failure of mismatch repair to correct             
replication errors at tandem repeats of short DNA sequences known as microsatellites            
can lead to the phenomenon of high-level MSI (MSI-H)51. MSI-high status was recently             
identified as a predictor of the efficacy of anti-PD-1/PD-L1 immunotherapy31,52. MSI           
status can be determined by immunohistochemistry (staining for MLH1, MSH2, MSH6,           
PMS2) or genetic analyses (polymerase chain reaction (PCR)-based analysis of MSI           
markers)53. However, such screening is systematically performed only at high-volume          
tertiary care centers. There is, therefore, a great need to screen standard WSIs from              
patients with solid tumors with a high probability of MSI-H directly, to facilitate access to               
immunotherapy. A recent study54 showed that CNNs can learn to predict MSI status             
directly from histology slides for stomach adenocarcinoma and colorectal cancer. Based           
on their results, we collected, from the TCGA-COAD dataset, RNA-Seq measurements,           
WSIs and the corresponding MSI status of each patient from the dataset, to investigate              
the effects of integrating RNA-Seq information on the prediction of MSI status from             
pathology images. We divided the dataset in two classes, MSI-H and MSI-non high             
(MSI-NH), corresponding to both the MSI-Low and MSI-stable status subsets. In total,            
441 patients matched these criteria, with a MSI-H/MSI-NH ratio of 0.18. We considered a              
setup in which the COAD dataset was randomly split between two different hospitals. In              
Hospital A, the first subset of WSIs was used to train a simplified version of HE2RNA (in                 
which a mean over the tiles was also applied during the learning phase) to predict               
RNA-Seq data but not MSI status (Fig. 5a). In Hospital B, the second subset of WSIs                
was used to train a binary classifier MSI-H vs. MSI-NH (without transcriptomic data).             
This use case corresponds to situations frequently encountered when a research center            
develops models for predicting treatment outcomes from a small dataset, with access to             
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additional external data but not the corresponding biological status of interest. The            
approach proposed here could constitute a new paradigm in transfer learning in the field              
of medicine. First, to test the robustness of our model, we considered different relative              
size splits for the different data subsets used in the two hospitals, ranging from ⅙-⅚               
(corresponding to 73 - 368 patients), to the inverse proportion. Moreover, each            
experiment for a given ratio of Hospital A / Hospital B subset sizes, was repeated 50                
times with different random splits, to generate robust performance estimates (Fig. 5b).            
For each split, we trained and compared two binary classifiers on the Hospital B dataset,               
each evaluated with a 10-times-bootstrapped 3-fold cross validation to predict MSI           
status. The first classifier consisted of a feed-forward neural network with two hidden             
layers (with 256 and 128 neurons, respectively) and was trained directly on WSIs from              
Hospital B. The second had a similar architecture, with a feed-forward neural network             
with one hidden layer (with 128 neurons), and was trained with the 256-dimensional             
transcriptomic representation learned from Hospital A and transferred to Hospital B           
WSIs. The performances of the two models are shown in Fig. 5b (AUC, area under the                
ROC curve) as a function of the proportion of samples in the two subsets. Two different                
regimes emerged. On one side (to the right of the figure), when only a few samples were                 
used to learn the transcriptomic representation (Hospital A) and most patients were used             
to train the model for MSI prediction, the classifier trained directly on the WSIs (or more                
precisely on their 2048-dimensional ResNet representations) outperformed that based         
on the 256-dimensional transcriptomic representation of the WSI, learned through          
experience at Hospital A. At the other extreme, when only a few examples were              
available to train the classifiers at Hospital B (left side of the figure), the opposite pattern                
was observed. In this regime (in the example, for a split 3/4 - 1/4 of the samples between                  
the two hospitals), the transcriptomic-based model gave more accurate predictions than           
the WSI-based model (two-tail Wilcoxon test: p <0.0001; Fig. 5c). Finally, to confirm that             
the improvement in performances was not due purely to the dimensionality of the             
representation, but to the specific internal transcriptomic representation, we also          
considered the same MSI classifier trained with the 256-dimensional representation          
given by two different autoencoders, respectively trained on Hospital A and Hospital B             
subsets. A two-tailed Wilcoxon test confirmed (p <0.0001) that the classifier based on the             
transcriptomic representation of WSI slides outperformed that based on the other           
reduced dimension representations. 
 

Discussion 

 
Our results demonstrate that CNNs, such as HE2RNA, can be used to predict the              
expression of a large subset of coding and non-coding genes, in various cancer types,              
after training on the corresponding histological images. They confirm that the           
transcriptomic information is actually encoded in tissue biopsy specimens and that a            
deep learning model can learn and predict it. HE2RNA robustly and consistently            
predicted subsets of genes as expressed in different cancer types, including genes            
involved in immune cell activation status and signaling in particular. One possible reason             
for this is that the algorithm can recognize immune cells and correlate their presence              
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with the expression of a subset of protein-coding genes (such as CQ1B). Major             
breakthroughs in cancer therapy are driven by discoveries of treatment targets for            
immunotherapy in many types of cancer. Such machine-learning tools could, therefore,           
be used to predict immune infiltration in some tumor types on the basis of biopsy slides                
only, without the need to for next-generation sequencing, which would help to broaden             
access to these new therapies. In the future, it would be interesting to determine whether               
similar models could be trained to predict patient response to immunotherapy, making it             
possible to identify histology-based biomarkers of treatment response. 
We have shown that HE2RNA can also correctly predict the expression of genes             
involved in more cancer type-specific pathways, such as fibrosis in hepatocellular           
carcinoma, or CHK gene expression in breast cancers. The accuracy of our model for              
detecting biological changes, and molecular and cellular modifications within cancer          
cells, was also confirmed by the greater prediction accuracy for defined gene signatures             
than for lists of random genes. In the last decade, studies have increasingly shown that               
biopsy specimens and tissue sections contain tremendous amounts of information 55,56,57.          
Our model might be able to recognize more subtle structures in the tissue images and               
more interesting histological patterns might emerge, shedding light on the specific           
tumoral regions important for the development of specific cancer types. Strikingly, even            
with RNA-Seq profiles obtained from bulk cells isolated from whole histological slides            
rather than sorted single cells, our model was still able to predict the spatial              
concentration of CD3 expression from the H&E-stained slide alone. Such methods could            
be extended to other genes, including genes related to immune activity in particular, the              
expression levels of which were well predicted by our model, and which could represent              
a major tool for medical diagnosis and prediction, by providing virtual multiplexed            
staining for all samples stained with H&E alone. These new approaches may help to              
overcome technical issues in IHC, such as fixation or antigen retrieval, together with the              
high level of variability between observers.  
  
CNNs for image recognition make use of an internal representation of the original data              
that they infer. The features of this latent space encode the statistics of natural images               
and the information of importance for image recognition. Similarly, the internal           
transcriptomic representation, learned by HE2RNA during the prediction of RNA-Seq          
data, may constitute an important step towards understanding the biological descriptors           
required for medical/clinical classification problems and the link between the information           
contained at the tissue and molecular levels. Finally, we have shown that the             
lower-dimensional transcriptomic representation learned during the RNA-Seq prediction        
task can be very powerful when transferred to other datasets used for a different task, as                
frequently observed when deep learning is applied to digital pathology (i.e. the use of              
transfer learning from CNN trained on ImageNet datasets to questions related to            
histological images, such as prediction of patient survival or response to treatment). This             
seems to be particularly true for small WSI datasets, for which even partial information              
about the connection between histological and molecular information can significantly          
improve the performance of deep learning models. We used MSI status prediction from a              
small dataset of H&E-stained images as a representative case study. We showed that             
the use of a transcriptomic representation in a transfer learning framework outperformed            
similar models based on less informative representations, such as WSI only. It has             
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recently been shown that the MSI status of patients affects their response to             
immunotherapy31,52. Our HE2RNA model could therefore be used in the future to            
facilitate the definition of patient MSI status and to provide easier access to             
immunotherapies for a larger number of eligible patients. The practical implications of            
predicting gene expression level from H&E slides should not be underestimated. In the             
future, the performance of this model may improve considerably, through the use of             
larger, richer datasets for training, and this model could also be used in different              
scenarios, to determine gene signatures or immune infiltration on the basis of histologic             
slides only. It would therefore constitute an interesting tool for enabling patients to gain              
access to personalized medicine even in hospitals that do not yet have access to              
next-generation sequencing technologies.  
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Methods 

 
TCGA Pan-Cancer Dataset. This study was based on publicly available data from            
TCGA. We selected samples from primary tumors only, for which both RNAseq and WSI              
data were available. Transcriptomic data (FPKM-UQ) were extracted from frozen          
tissues, and the slides analyzed were digitized HE-stained formalin-fixed,         
paraffin-embedded (FFPE) histology slides, referred to here as whole-slide images          

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760173doi: bioRxiv preprint 

https://doi.org/10.1101/760173


 

(WSIs). WSIs were available for the following cancer types (and corresponding           
abbreviations):  

Project ID   #Patients # Samples 

BRCA Invasive breast carcinoma 1057 1131 

LUNG Lung adenocarcinoma (LUAD) 944 1046 

Lung squamous cell carcinoma 
(LUSC) 

KIDN Kidney chromophobe carcinoma 
(KICH) 

843 882 

Kidney renal clear cell carcinoma 
(KIRC) 

Kidney renal papillary cell carcinoma 
(KIRP) 

LGG Brain lower-grade glioma 485 843 

SARC Sarcoma 252 597 

UTER Uterine carcinosarcoma (UCS) 558 673 

Uterine corpus endometrial 
carcinoma (UCEC) 

THCA Thyroid carcinoma 497 509 

COAD Colon adenocarcinoma 445 463 

HNSC Head and neck squamous cell 
carcinoma 

423 462 

BLCA Bladder urothelial carcinoma 383 456 

PRAD Prostate adenocarcinoma 399 451 

LIHC Liver hepatocellular carcinoma 359 373 

STAD Stomach adenocarcinoma 350 371 

CESC Cervical squamous cell carcinoma 
and endocervical adenocarcinoma 

267 279 

TGCT Testicular germ cell tumors 149 245 

ACC Adrenocortical carcinoma 55 224 
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GBM Glioblastoma multiforme 96 212 

PAAD Pancreatic adenocarcinoma 175 195 

PCPG Pheochromocytoma and 
paraganglioma 

175 194 

THYM Thymoma 116 176 

READ Rectum adenocarcinoma 159 160 

ESCA Esophageal carcinoma 133 135 

SKCM Skin, cutaneous melanoma 97 108 

MESO Mesothelioma 74 94 

UVM Uveal melanoma 80 80 

OV Ovarian serous cystadenocarcinoma 74 75 

DLBC Lymphoid neoplasm diffuse large B 
cell lymphoma 

44 44 

CHOL Cholangiocarcinoma 36 36 

Table 1: TCGA dataset, detailed information. A matched WSI-RNASeq data pair is            
considered here to be a sample. 
 
Cleaning. Gene expression data were available for 60,483 fragments, many          
corresponding to non-coding genomic regions. We chose to exclude genes with a            
median expression of zero (i.e. not expressed in more than half the samples             
considered), to improve the interpretability of the results. After the application of this             
filter, 30,839 genes remained, 17,759 of which encoded proteins (all Ensembl genes            
associated with a corresponding Ensembl protein ID, for the Hg19 human genome            
sequence). Our selection included almost 90% of known protein-coding genes.  
 
Preprocessing. The application of deep learning algorithms to histological data is a            
challenging problem, particularly due to the high dimensionality of the data (up to             
100,000 x 100,000 pixels for a single whole-slide image) and the small size of available               
datasets. We divided the whole-slide images into squares of 112 x 112 μm (224 x 224                
pixels) called “tiles”, and used the Otsu algorithm to select only those containing tissue,              
excluding the white background. We sampled a maximum of 8,000 such tiles from each              
slide. We then extracted 2,048 features from those tiles with a 50-layer ResNet             
pretrained on the ImageNet dataset, such that a slide could be represented as a 8,000 x                
2,048 matrix. 
 
For the first phase of this work (transcriptome prediction), we accelerated the training of              
our models through a simple preprocessing step inspired by simple linear iterative            
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clustering (SLIC)58: we used the k-means algorithm to create 100 clusters (super-tiles) of             
tiles on the basis of tile location on the slide, and we averaged the features of the tiles                  
within each cluster. The use of these super-tiles, reduces the dimensions of a slide to               
100 x 2,048. The model was first trained on this reduced dataset, with all the TCGA data.                 
Then, for specific organs, fine-tuning was achieved with full-scale data from the organs             
concerned only. 
 
Gene expressions values covered several orders of magnitude. Thus, regression          
analysis directly on raw RNA-Seq data would lead the model to focus only on the most                
strongly expressed genes, which would dominate the mean squared error. We overcame            
this problem by an a → log 10(1 + a) transformation on gene expressions. 
 
 
 
Model architecture. The HE2RNA model is a multilayer perceptron (MLP), applied to            
every tile (or super-tile) of the slide. For practical purposes, this is equivalent to applying               
successive 1D convolutions of kernel size 1 and stride 1 to slide data. The activation               
function is a rectified linear unit and dropout is applied between consecutive layers. For              
an input matrix of size n tiles x 2,048 (with n tiles = 100 or n tiles = 8,000), the output of this                    
neural network is a matrix of size n tiles x n genes, where n genes is the number of genes for                  
which expression is to be predicted. Thus, the model produces one prediction per gene              
and per tile, but the real value is available only at the scale of the slide. For this reason,                   
tile predictions must be aggregated for model training and the calculation of metrics.  
During the training phase, the model selects a number k at every iteration and for every                
gene, and averages only the k highest tile predictions, to produce the slide-level             
prediction. The number k is selected from the list (1, 2, 5, 10, 20, 50, 100) for                 
SLIC-preprocessed data, and from the list (10, 20, 50, 100, 200, 500, 1000, 2000, 5000)               
for full-scale data. This increases the difficulty of the task and thus reduces overfitting.              
During inference, slide-level predictions obtained with every possible value of k are            
averaged. This is equivalent to calculating a weighted mean of per-tile predictions for             
every gene, with a greater weight for tiles for which the model predicts high levels of                
expression.  
 
 
Training and evaluation. HE2RNA was trained with a five-fold cross-validation          
designed to meet the following requirements: every sample from a patient should be in              
the same fold, and, when training on all TCGA data, TCGA projects should be evenly               
distributed between folds. When training a model on a single subset (e.g. BRCA), we              
ensured that the folds used for cross-validation were consistent with those used for all              
the TCGA data. The model simultaneously predicting all genes for all types of cancers              
was trained on all TCGA data (10514 samples), with SLIC preprocessing. 
When specific sets of genes and organs (such as CD3 in the liver) were used to produce                 
a precise heatmap of gene expression, the model was trained at the finest scale.  
To optimize the trade-off between achieving optimal performance using full-scale TCGA           
data (10,514 slides x 8,000 tiles x 2,048 features) and minimizing the machine time for               
training, we first trained the model for 200 epochs on all SLIC-preprocessed TGCA data              
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(10,514 slides x 100 tiles x 2,048 features), before fine-tuning it for 50 epochs on               
full-scale data for the organ of interest (373 slides x 8,000 tiles x 2,048 features for                
LIHC). 
The performance metric was always calculated separately for each organ considered, to            
prevent bias. Gene expression levels can differ considerably between organs and a            
good performance for gene expression could be achieved simply through recognition of            
the organ of origin. 
 

 

GSEA signatures. Using Gene Set Enrichment Analysis (GSEA) software and          
Molecular Signatures Database v6.2, we obtained the following signatures for the           
following pathways. For each pathway we then selected the genes present in at least              
two of the chosen signatures. (See Table S4 for a complete list of the genes retained for                 
each pathway).  
 

Angiogenesis HALLMARK_ANGIOGENESIS, 
BIOCARTA_VEGF_PATHWAY, 

KEGG_VEGF_SIGNALING_PATHWAY, 
GO_ANGIOGENESIS 

Hypoxia HALLMARK_HYPOXIA, 
BIOCARTA_HIF_PATHWAY, 

GO_REGULATION_OF_CELLULAR_RESP
ONSE_ 

TO_HYPOXIA 

DNA repair  HALLMARK_DNA_REPAIR, 
REACTOME_DNA_REPAIR, 

GO_DNA_REPAIR 

Cell cycle BIOCARTA_CELLCYCLE_PATHWAY, 
KEGG_CELL_CYCLE, 

REACTOME_CELL_CYCLE, 
GO_CELL_CYCLE 

B cell-mediated immunity GO_B_CELL_MEDIATED_IMMUNITY 

T cell-mediated immunity REACTOME_ADAPTATIVE_IMMUNE_ 
SYSTEM 

GO_ADAPTATIVE_IMMUNE_RESPONSE 
GO_REGULATION_OF_ADAPTATIVE_IMM

UNE_RESPONSE 

Table 2: List of signatures from GSEA combined to define the six cancer             

pathways.  
 

 

 

Visual spatialization and double staining. Features were extracted from every tile           
containing matter, with the ResNet50 algorithm. The model was then used to calculate a              
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score for each tile. Finally, the heatmap at the scale of the whole slide was obtained by                 
weighting each tile by its score. For instance, for the double-stained HE-CD3 slide, we              
extracted a total of 23,123 tiles to generate the heatmap shown in  Fig. 3.  
The tissue section was first stained with hematein, eosin and saffron, coverslipped and             
scanned using a Leica Aperio Scanner. The coverslip and the mounting reagents were             
removed using acetone, and the slide was further unstained using an alcohol/acid            
solution (1%). Immunostaining was performed using a Leica Bondmax Autostainer          
(Leica Biosystems, Wetzlar, Germany) with a anti-CD3 antibody (Dako, Santa Clara,           
California, Clone, F7.2.38, dilution 1/50), according to manufacturer's instructions.         
Antigen retrieval was performed with E2 reagent, and Immunodetection was performed           
using Polymer and 3,3’ di-aminobenzidine (Bond Polymer Refine Detection Kit, Leica           
Biosystems).The immunostained slide was further scanned. 
For comparison of the predicted heat-map and the CD3-stained WSI, we used QuPath             
software on the WSIs to estimate the actual number of T cells per tile, and then                
calculated the correlation between this number and the score per tile. 
 
MSI status and patient cohort. We used the histology images for n = 441 patients with                
colorectal carcinoma (COAD) (diagnostic slides, FFPE tissue) from the TCGA dataset,           
together with the corresponding MSI status data. For transcriptomic learning at Hospital            
A, we used the simplest version of HE2RNA, in which the input for each slide was the                 
mean value over the ResNet50 representation of every tile (see Fig. S1).  
We also set the MLP architecture as follows: two hidden dense layers of 1024 and 256                
neurons with sigmoid activation followed by the last prediction layer with 28334 output             
neurons and linear activation (28334 being the number of coding or non-coding genes             
with non-zero median expression levels over the samples of COAD dataset). The model             
was trained for 50 epochs without hyperparameter tuning. For the MSI classifier at             
Hospital B, we compared two different models. The first one was an MLP with two               
hidden dense layers of 256 and 128 neurons and a one-neuron output layer, all with               
sigmoid activation, also fed with the all-image average of the ResNet50 representation of             
the tiles and trained for 50 epochs. The second consisted of a neural network with the                
same architecture, without the first hidden layer of 256 neurons; this second classifier             
was trained on the 256-dimensional representations of Hospital B WSIs, given by the             
transcriptomic representation learned at Hospital A, or by an autoencoder (with a mirror             
architecture and three hidden dense layers of 1024, 256 and 1024 neurons, with ReLU              
and linear activations), trained on either the Hospital A or Hospital B subset. We              
performed different experiments, for different ratios of sample size between the Hospital            
A and B subsets. We performed a three-fold cross-validation on the Hospital A task, and               
the transcriptomic representation for the Hospital B dataset was obtained by averaging            
the three corresponding inferences for the Hospital B subset. MSI status was also             
predicted in a three-fold cross-validation setup. Moreover, for each A-/B-subset size           
ratio, the random split between the two hospitals was bootstrapped 50 times to generate              
robust performance estimates.  
 
Statistics and reproducibility. We determined whether the correlation between the          
prediction of the RNA-Seq expression levels for a given gene and the real values was               
statistically significant, by comparison with the distribution of correlations predicted by a            

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760173doi: bioRxiv preprint 

https://doi.org/10.1101/760173


 

model with the same architecture as HE2RNA but untrained. The estimated p-values for             
tests against the null hypothesis of random correlations were then corrected by the             
Holm-Šidák method, to account for multiple comparisons. A gene was considered           
significantly well predicted, for a given cancer type, if its corrected p-value was below              
0.05. The IPA analysis in Fig. 1c, 1d and 1e is based on Fisher’s exact tests. The                 
direction of the change in gene expression is not taken into account in this calculation.               
For the analysis on LIHC and BRCA, given the large number of genes with p -value               
below 0.05, we focused on genes for which the coefficient of the correlation between the               
predicted and true value was greater than 0.4: 786 genes for BRCA and 765 for LIHC.  
For the analysis of the hallmark of cancer pathways, we selected, for each pathway and               
cancer type, 10,000 different random lists of genes of the same length as the pathway               
list. We then determined the correlation for all genes and the number of genes for which                
expression was well predicted (in terms of the Holm-Šidák corrected p-value), for all             
these lists.  
We compared the mean correlation over the pathway gene list, with the distribution of     Rp          
the mean correlation over the random gene lists. We plotted against the mean over          Rp   Ro  
all the 10,000 averages of for the random list (Fig. 3). We considered a given     Rr            
pathway for a given cancer type to be better predicted than a corresponding random set,               
when the probability p of  was <0.05.Rr > Rp   
We adopted the same approach for the percentage of well predicted genes as a              
measure, but compared the percentages of well-predicted genes in the pathway, with     f p        
the distribution  over the 10,000 random lists.f o   
The MSI prediction scores are expressed as area under the ROC curve (AUC) and a               
two-tailed Wilcoxon test was used to compare the different distributions of scores. 
 

 

Data availability The TCGA dataset is publicly available via the TCGA portal 
(https://portal.gdc.cancer.gov). All other relevant data are present in the article or 
supplementary files, or are availa ble from the author upon request. 
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Fig. 1: Graphical abstract: Transcriptome learning for digital pathology.         

Hematoxylin & eosin (H&E)-stained histology slides and RNA-Seq data (FPKM-UQ          
values) for 28 different cancer types and 10,514 patients were collected from The             
Cancer Genome Atlas (TCGA) and used to train the neural network HE2RNA to predict              
transcriptomic profile from the corresponding high-definition whole-slide images (WSI).         
During this task, the neural network learned an internal representation encoding both            
information from tiled images and gene expression levels. This transcriptomic          
representation can be used to: 1. Transcriptome prediction from images without           
associated RNA sequencing. 2. The virtual spatialization of transcriptomic data. For           
each predicted coding or non-coding gene a score is calculated for each tile on the               
corresponding WSI. These predictive scores can be used to generate heatmaps for each             
gene for which expression is significantly predicted. 3. Improving predictive          

performances for different tasks, in a transfer learning framework, as shown here            
for a realistic setup, for microsatellite instability (MSI) status prediction from           
non-annotated WSIs. 
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Fig. 2: Gene expression prediction results. a. Distribution of Pearson correlation           
coefficients R (left axis, blue violin plots) and the number of coding and non-coding              
genes (right axis, red squares) with Holm-Šidák corrected p -values <0.05, for 28 cancer             
types from the TCGA. Black triangles indicate the minimum correlation coefficient           
required for significance in any given dataset. b. Number of coding and non-coding             
genes significantly well-predicted for a given number of cancer types, as a function of the               
number of cancers. c. Computational pathway analysis with Ingenuity Pathway Analysis           
(IPA) software of the 156 best predicted genes Pan TCGA showing an enrichment in              
genes associated with immunity and tumor immune infiltration/activity: TCR: T-cell          
receptor- NK: Natural killer. d. IPA-based analysis of the more accurately predicted            
protein-coding genes in the LIHC dataset. showing an enrichment in genes associated            
with cell cycle and DNA damage response. LIHC: Liver hepatocellular carcinoma . e.            
IPA-based analysis of the more accurately predicted protein-coding genes in the BRCA            
dataset showing an enrichment in genes associated with cell cycle and DNA damage             
response. Th Cell differentiation: Th1 and Th2 cell differentiation. BRCA: Breast cancer.            
Th activation pathway: Th1 and Th2 activation pathway, 1ry: Primary. 
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Fig. 3: Prediction of signatures for cancer hallmarks. a. Comparison of correlation            
scores for each gene pathway defined in Table S4 and involved in angiogenesis, Rp             
hypoxia, DNA repair, cell cycle, and immune responses mediated by B- and T-cells, with              
the mean coefficient correlation obtained for 10,000 random lists of the same number    Ro          
of genes, for all twenty eight cancer types from the TCGA dataset. The indicated              
statistical significance refers to the probability of obtaining a correlation in the          R > Rp   
distribution of correlations for random lists, for each given cancer type. Insets show the              
percentages of the different cases of statistical significance between cancer types. The            
dotted line is the identity line = b. As in a , but in terms of percentages of genes      Rp .Ro             
concidered well-predicted (as defined in the text and in Fig. 2).  
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Fig. 4: Virtual spatialization of CD3 expression based on HE2RNA prediction,           

confirmed by CD3 immunohistochemistry. a. Upper Image: HE-stained slides were          
obtained for LIHC patients from a French hospital. Lower image: Computed heatmap for             
the expression of CD3 +-encoding genes expression predicted by our model. b. CD3            
immunohistochemistry (IHC) results for the same slide were obtained by washing out            
H&E stain and staining the same slide for IHC. c. Pearson’s coefficient (R= 0.54) for the                
correlation between the percentage cells with higher levels of CD3 expression predicted            
by our model and the percentage of CD3 + cells actually detected on the IHC slide. d.                

Extraction of the tiles associated with the highest score for CD3 +-encoding genes            
expression predicted from the slide. S = Score corresponding to the log expression             
score of each tile; #T= Number of T cells per tile as determined with QuPath. e. As in d                   

but for the tiles with the lowest score for CD3 expression. 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760173doi: bioRxiv preprint 

https://doi.org/10.1101/760173


 

 

 

Fig. 5: Prediction of microsatellite instability status using transfer learning from           

transcriptomic representation. a. Schematic diagram of the set-up studied. In Hospital           
A, a neural network is trained on COAD H&E slides for the prediction of gene               
expression. The internal lower-dimensional transcriptomic representation is then used in          
Hospital B to improve the prediction of microsatellite instability (MSI) status. b. Change             
in area under the curve (AUC) (solid lines: mean, shaded area: 68% confidence interval)              
for the model based on the transcriptomic representation learned in Hospital A and             
trained on Hospital B (blue) and the model directly based on WSI images from Hospital               
B (red), as a function of the fraction of the COAD subset used in the two hospitals. c .                  
Violin plots for the distribution of AUC values for the neural network MSI status classifier               
at Hospital B, trained on the 256-dimensional transcriptomic representation, WSI          
images, and a 256-dimensional representation given by two different autoencoders,          
respectively, trained on the hospital A and B subsets. Significance for the two-tailed             
Wilcoxon: * (p <0.05), *** (p <0.001) and **** (p <0.0001). For each case, we indicate                
the median (white dot), mean (red triangle), and quartiles (black bar). WSI: whole-slide             
image. COAD: colorectal adenocarcinoma.  
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