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FIG. 4. Test-retest reliability of the identified thought patterns and the associated functional connectomic
organisation. A second session of resting state fMRI scanning and thought sampling was carried out for a total of 40
participants. (a) For important/specific thoughts, while individual component scores on this thought pattern did not show a
significant intraclass correlation (ICC = .14, CI [-.18, .43], p = .20), the associated brain connectivity pattern (natural log of
fractional strength) was largely consistent between the two repeated assessment sessions (ICC = .60, CI [.36, .76], p < .0001).
Moreover, the change in thought pattern was positively related to the change in brain connectivity (Pearson r = .40, p = .011).
(b) For deliberate/verbal thoughts, both the component scores on this thought pattern (ICC = .48, CI [.21, .69], p = .00065)
and the associated brain connectivity (ICC = .61, CI [.38, .55] p < .0001) showed significant intraclass correlations. However,
there was no significant link between the change in this thought pattern and the change in brain connectivity between the two
assessment sessions (Pearson r = .24, p = .14).

ment sessions (Pearson r = .40, p = .011) (Fig. 4a).
Together this pattern is broadly consistent with a more
transient state.

For “deliberate verbal thoughts about the future”(i.e.
future plans) on the other hand, individual variability on
both the thought pattern (ICC = .48, CI [.21, .69], p
= .00065) and the associated brain connectivity (ICC =
.61, CI [.38, .55] p < .0001) were consistent across the
two assessment sessions. However, there was no signifi-
cant correlation between the change in component scores
on this thought pattern and the change in brain connec-
tivity (Pearson r = .24, p = .14) (Fig. 4b). Collectively,
these analyses show that the patterns of thought cap-
tured by “deliberate and verbal thoughts about the fu-
ture”and their neural representations show greater trait-
like stability over time than the participants state-like

“important specific thoughts about the self and others”.

Distinct patterns of thought mediate the effect of
brain connectivity on well-being

Finally, having identified two patterns of ongoing
thought, each with an associated profile of complex
brain functional interactions at rest, we tested whether
these neurocognitive metrics derived from our study
had mediatory influences on measures of mental health
and well-being in daily life, as indicated by a cross-
culturally validated World Health Organization question-
naire (i.e. WHOQOL-BREF). Incorporating the relative
importance of both positive and negative connections
[48, 49], we first assessed the predictive power of frac-
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FIG. 5. Model of the functional connectome as a pre-
dictor of psychological and social well-being, medi-
ated by patterns of thought. While brain connectiv-
ity refers to the natural log of the fractional strength, pat-
tern of thought represents the individual scores on the identi-
fied thought pattern, and the psychological/social well-being
measures are self-reported ratings on the WHOQOL-BREF
questionnaire. Only a subset of the participant cohort who
fully completed the well-being questionnaire (n = 169) was
utilised in this analysis. The calculation of confidence inter-
vals (CI) for the indirect effect was based on the percentile
bootstrap estimation approach with 5,000 samples. (a) A sig-
nificant indirect effect of brain connectivity on psychological
well-being was observed, mediated through the participants
important/specific thoughts, broadly related to their current
concerns. (b) There was no significant indirect effect of brain
connectivity on social well-being, mediated through the par-
ticipants deliberate/verbal thoughts on their future plans.

tional strength on psychological and social well-being via
linear regressions, followed by mediation analyses to ex-
amine the indirect influence of brain connectivity on well-
being, mediated by the participants reported patterns of
thought.

For “important and specific thoughts about the self
and others”(i.e. current concerns), the fractional
strength (natural log) of the associated brain connec-
tivity component significantly predicted the participants’
psychological well-being score β = .52, r = .19, p = .014),
while no significant link was observed with social well-
being β = .075, r = .030, p = .699). A mediation anal-
ysis indicated that there was a significant indirect effect
of brain connectivity on psychological well-being, medi-
ated by the individuals’ scores on the identified pattern
of thought β' = .35, 95% CI [.029, .68]) (Fig. 5a). For
“deliberate and verbal thoughts about the future ”(i.e.
future plans) on the other hand, the fractional strength
(natural log) of the identified component of brain connec-
tivity significantly predicted the participants social well-
being score on the WHOQOL-BREF β = .38, r = .17, p =
.024), while no significant link was observed with psycho-
logical well-being β = -.069, r = .028, p = .718). More-
over, a mediation analysis revealed no evidence for an
indirect effect of brain connectivity on social well-being
through the individuals’ scores on the identified thought
pattern β' = .11, 95% CI [-.071, .32]) (Fig. 5b).

DISCUSSION

The aim of this study was to examine whether account-
ing for the patterns of ongoing thoughts that individuals
experience during periods of wakeful rest (e.g. resting
state fMRI scanning) could allow for a more nuanced
understanding of the relationships between aspects of
psychological functioning, patterns of neural organisation
and mental health. To achieve this goal, we first iden-
tified patterns of neural connectivity at rest that varied
with aspects of self-reported experience during this pe-
riod. One dimension of variation was along patterns of
thinking that was indicative of a focus on current con-
cerns, which was dominated by connections from the mid-
dle frontal gyrus, a region within the salience network.
This neural pattern was a stable feature of the assessed
individuals, while the pattern of thinking did not depict
such reliability. Nevertheless, both neural and self-report
patterns changed together across time, indicating that
this neurocognitive profile described a transient mapping
between brain and experience. A second pattern, asso-
ciated with deliberate thoughts about the future, was
dominated by functional connections from the superior
frontal gyrus, situated within the default mode network.
Both neural and experiential features of this mode were
consistent across individuals and showed little evidence of
common changes over time, suggesting a neural pattern
that was a relatively stable trait. Importantly, these neu-
ral components had differential associations with mea-
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sures of mental health and well-being. The transient
neurocognitive component, linked to the participants fo-
cus on current concerns, was significantly associated with
aspects of self-reported psychological well-being. Media-
tion analysis indicated that this brain-behaviour relation-
ship was fully mediated by the associated descriptions of
ongoing experience. In contrast, while the dimensions of
variation linked to deliberate problem solving was asso-
ciated with social well-being, this relationship was inde-
pendent of the associated patterns of experience.

Together these analyses indicate that important as-
pects of the commonly reported relationships between
brain and behaviour can be understood through their
associations with patterns of ongoing thoughts that par-
ticipants experience during fMRI scanning. First, our
study shows that neural profiles, identified through their
association with self-reported experience, have differen-
tial associations with aspects of well-being. Self-reports
are obviously subject to factors that impact upon their
credibility, however, neural patterns activity identified
in this fashion have the advantage that they are em-
bedded in a cognitive context without the need for re-
verse inference [50]. Thus, experience sampling provides
a complimentary method for determining whether the
source of observed neural patterns are cognitive in na-
ture, or emerge for other reasons, such as cardiovascular
function or motion related confounds [51]. Second, our
study demonstrates that experience sampling is sensitive
to patterns of neural activity that are stable across time
and others that are transient. Our approach, therefore,
may have direct relevance to studies that aim to explore
the long-term stability of patterns of functional organi-
sation, or those that explore long-term changes in neural
function. Based on the current data, for example, expe-
rience sampling may provide a reasonably direct way to
test hypotheses into why certain neural patterns vary in
their consistency across time. Despite the inherent weak-
ness associated with retrospective experience sampling
[52], our study shows that the information it provides
can address important shortcomings of the conceptual in-
terpretations placed on functional connectivity patterns
derived from resting state analysis. Given the negligible
cost associated with acquiring descriptions of experience
after resting state scans, and their prevalence as a tool of
cognitive neuroscience, we see no reason why this method
should not be employed as a community standard in sim-
ilar studies moving forward.

As well as highlighting the value of experience sam-
pling to studies investigating the relationship between
functional organisation and behaviour, our study pro-
vides valuable information into the neural processes that
contribute to different types of self-generated thought.
Current concerns, either in the form of unfulfilled goals
or personally relevant information, occupy a significant
portion of the thoughts we experience in our daily lives,
potentially constituting a determining factor in the func-
tional outcomes of our ongoing cognition [28, 46]. In line
with these results, a key dimension of thought pattern

that was reported by the participants in our cohort was
related to “important and specific thoughts about the
self and others”or more generally their current concerns.
Our results revealed that important functional connec-
tions was observed in the salience network, commonly
implicated in the detection of behaviourally important,
internal or external stimuli for the coordination of neu-
ral resources [53]. This neural system has been shown
to causally influence the functional interaction between
default mode and fronto-parietal networks that are com-
monly anti-correlated at rest [54]. We recently combined
momentary experience sampling with online neural ac-
tivity and found that a pre-frontal region of this network
was associated with the ability to prioritise patterns of
episodic social thoughts during periods when external de-
mands were reduced [55]. Together with such evidence
our study suggests that the role of the saliency network
in patterns of ongoing thought emerges from its general
capacity for prioritizing patterns sensory, memorial and
affective content [52] that is motivated by their contex-
tual relevance [56, 57].

A second component of “deliberate and verbal
thoughts about the future”was linked to the connectiv-
ity of a limited number of nodes in transmodal cortices
including regions of the default mode, cingulo-opercular,
salience and fronto-parietal networks. This neural pat-
tern was dominated by connections from a region of the
superior frontal gyrus, within the default mode network.
A deliberate focus on future goals reflects our ability to
simulate and envision the consequences of our actions
based on our prior experiences [58]. Importantly, similar
interactions between the default mode network and sys-
tems linked to executive control (e.g. fronto-parietal and
salience networks) are observed when participants engage
in tasks that mimic this type of thought, such as creative
problem-solving [37], visuospatial [59] as well as autobio-
graphical planning [38], and imagining reward outcomes
[60]. This pattern of thought was predictive of better
social well-being, an observation consistent with stud-
ies linking patterns of ongoing thought to social prob-
lem solving [18], and our ability to infer the actions and
mental states of others [61]. This component was also
characterised by both positive as well as negative brain
connections. Negative or anti-correlations have been his-
torically assumed to arise from the analysis techniques
employed, and head-motion that is thought to lead to
spurious connectivity measures [62]. However, recent re-
ports suggest a neurophysiological basis and a potential
cognitive importance of such anti-correlations in healthy
brain processing [48, 49, 63], and our results raise the
possibility that the tuning of interactions between neu-
ral systems may give rise to different types of ongoing
experience a hypothesis which requires further investi-
gation. Furthermore, recent perspectives on the genera-
tion and maintenance of thought patterns highlight the
vital importance of considering the dynamic nature of
ongoing cognition and the within individual variation in
this process [52]. Although retrospective thought sam-
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pling methods provide the advantage of acquiring mea-
sures related to an undisrupted period of unconstrained
cognition, online thought sampling and the assessment of
the link between neural and experiential dynamics might
constitute a fruitful route in deciphering the within and
between-individual variability in ongoing cognition and
the underlying neural mechanisms [64].

In summary, we have shown that distinct patterns of
thought are reflected in the underlying brain functional
connectomes at rest and that certain types of these ex-
periences may mediate the influence of intrinsic brain
connectivity organization on well-being. Our results
highlight the importance of considering thought patterns
when establishing predictive relationships between func-
tional connectomes and complex traits, but also suggest
that taking this aspect of human cognition into consider-
ation may lead to better characterization of neural finger
prints of the connectome, with the potential for more
useful clinical markers. In the future, it may be possi-
ble to tailor self-reported questions based on their neural
associations, allowing development of measures targeting
particular psychiatric populations with well-established
neural hypotheses, such as mood and neurodegenerative
disorders [65]. Furthermore, the analysis method we em-
ployed could be useful in studies that test psychologi-
cal or pharmacological interventions designed to improve
well-being [66], allowing these investigations to disentan-
gle whether their intervention targets the underlying neu-
ral architecture, changes in patterns of thought, or a com-
bination of both.

METHODS

Participant Demographics

In accordance with the Declaration of Helsinki on the
conduct of research involving human participants, eth-
ical approval was obtained for this study from the De-
partment of Psychology and York Neuroimaging Centre,
University of York ethics committees. Following a stan-
dard informed consent procedure, a total of 226 healthy,
right-handed (one left-handed), native English speaker
undergraduate or post-graduate students with normal to
corrected vision were recruited from the University of
York. All volunteers received monetary compensation or
course credit for their participation in line with the de-
partmental policies. As per the exclusion criteria, none
of the participants had a history of psychiatric or neu-
rological illness, severe claustrophobia, anticipated preg-
nancy or drug use that could alter cognitive functioning.
Moreover, an extensive motion correction procedure was
followed (described in detail below) that resulted in the
exclusion of 12 participants due to excessive head motion
inside the scanner, and three participants were removed
due to the impartial completion of the thought sampling
method. In total, 211 participants imaging and thought
sampling data were used in this analysis. The average

age for this group was 20.85 years (range = 18 - 31, SD
= 2.44) with a 129/82 female to male ratio.

Decomposition of Thought Patterns

To ascertain the principal dimensions of variation in
the thought patterns of this participant cohort, a ret-
rospective thought sampling questionnaire was adminis-
tered immediately after the resting state fMRI scanning.
In this session, the participants were asked to subjec-
tively rate their thoughts during the resting state scan
on a 4-choice Likert scale from “Not at all”to “Com-
pletely”based on a randomly presented set of questions
that probed the content and form of thoughts. This
set of questions and the accompanying analysis tech-
niques have been extensively utilized in various thought
sampling reports previously published in the literature
(Supplementary Table S1) [18, 30, 33, 39, 42]. First,
the ratings from each participant were hierarchically
clustered based on the similarity of responses using
the Ward linkage method (Supplementary Fig. S1a).
This technique was utilized in order to partition the
thought ratings into two distinct groups, thus reducing
the number of variables to be decomposed into inter-
pretable patterns of thought [67]. Subsequently, both
groups of ratings were reduced to three factors each (six
in total) using principal component analysis (PCA) in
SPSS (Version 23) (https://www.ibm.com/products/
spss-statistics).The number of components was cho-
sen based on scree-plots indicating the eigenvalue of each
subsequent decomposition, and its ability to explain vari-
ability in the data (Supplementary Fig. 1b). The com-
ponent loadings for the total number of six decomposi-
tions were then rotated using the Varimax method and
the resulting factors were visualized on heat maps (Sup-
plementary Fig. 2a-b) and word clouds (Fig. 2). The
component scores of each participant on these patterns
of thought were then used as between-subject covariates
of interest in the subsequent analyses.

Well-being Assessment

For the assessment of the participants self-perceived
well-being, we employed the brief version of a health
questionnaire previously established by the World Health
Organization Quality of Life (WHOQOL) group [40].
Termed WHOQOL-BREF, this quality of life assessment
has been developed to provide a more comprehensive in-
dex of overall health of nations that extends beyond mea-
sures of mortality and morbidity, hence, it was designed
to be readily administered across cultures and countries
with different economic status. Extensively validated in a
large number of centres, WHOQOL-BREF consists of 26
questions that broadly group into four domains of phys-
ical, psychological, social and environmental health. All
participants were asked to complete this questionnaire
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at a separate session administered outside the scanner.
Out of 211 participants, 169 fully completed the question-
naire. The standardized responses for the psychological
and social health domains were then used as covariates
of interest in subsequent linear regression and mediation
analyses.

MRI Data Acquisition

All MRI data acquisition was carried out at the York
Neuroimaging Centre, York with a 3T GE HDx Excite
Magnetic Resonance Imaging (MRI) scanner using an
eight-channel phased array head coil. A single run of
9-minute resting state fMRI scan was carried out using
single-shot 2D gradient-echo-planar imaging. The pa-
rameters for this sequence was as follows: TR = 3 s, TE
= minimum full, flip angle = 90, matrix size = 64 x 64,
60 slices, voxel size = 3 x 3 x 3 mm3, 180 volumes. Dur-
ing resting state scanning, the participants were asked
to focus on a fixation cross in the middle of the screen.
Subsequently, a T1-weighted structural scan with 3D fast
spoiled gradient echo was acquired (TR = 7.8 s, TE =
minimum full, flip angle= 20, matrix size = 256 x 256,
176 slices, voxel size = 1.13 x 1.13 x 1 mm3),

MRI Data Preprocessing

All preprocessing and denoising steps for the MRI
data were carried out using the SPM software package
(Version 12.0) (http://www.fil.ion.ucl.ac.uk/spm/)
and Conn functional connectivity toolbox (Version 17.f)
(https://www.nitrc.org/projects/conn) [68], based
on the MATLAB platform (Version 16.a) (https://
uk.mathworks.com/products/matlab.html). The first
three functional volumes were removed in order to
achieve steady state magnetization. The remaining data
was first corrected for motion using six degrees of freedom
(x, y, z translations and rotations), and adjusted for dif-
ferences in slice-time. Subsequently, the high-resolution
structural images were co-registered to the mean func-
tional image via rigid-body transformation, segmented
into grey/white matter and cerebrospinal fluid probabil-
ity maps, and were spatially normalized to Montreal Neu-
rological Institute (MNI) space alongside with all func-
tional volumes using the segmented images and a priori
templates. This indirect procedure utilizes the unified
segmentationnormalization framework, which combines
tissue segmentation, bias correction, and spatial normal-
ization in a single unified model [69]. No smoothing was
employed, complying with recent reports on the negative
influence of this procedure on the construction of func-
tional connectomes and graph theoretical analyses [70].

Furthermore, a growing body of literature indicates
the potential impact of volunteer head motion inside the
scanner on the subsequent estimates of functional connec-
tivity and network neuroscience metrics [71–74]. In order

to ensure that motion and other artefacts did not con-
found our data, we have employed an extensive motion-
correction procedure and denoising steps, comparable to
those reported in the literature [75, 76]. In addition
to the removal of six realignment parameters and their
second-order derivatives using the general linear model
(GLM) [77], a linear detrending term was applied as
well as the CompCor method that removed five principle
components of the signal from white matter (WM) and
cerebrospinal fluid (CSF) [78]. Moreover, the volumes
affected by motion were identified and scrubbed based
on the conservative settings of motion greater than 0.5
mm and global signal changes larger than z = 3. A to-
tal of 12 participants, who had more than 15% of their
data affected by motion was excluded from this study
[76]. Though recent reports suggest the ability of global
signal regression to account for head motion, it is also
known to introduce spurious anti-correlations, and was
thus not utilized in our analysis [62, 79, 80]. Never-
theless, the composite motion score (i.e. percentage of
invalid scans) for each participant was also added as a
covariate in group-level analyses to further account for
the potential influence of head motion on functional con-
nectome estimations. Finally, a band-pass filter between
0.009 Hz and 0.08 Hz was employed in order to focus
on low frequency fluctuations [81, 82]. The maximum,
and mean motion parameters and global signal change,
the percentage invalid volumes that were scrubbed, and
the distribution of correlation coefficients before and af-
ter denoising steps are provided in Supplementary Figure
S4.

Functional Connectome Analysis

Brain Parcellation We adopted a set of 264 regions
based on the Power et al. 2011 brain parcellation scheme
that has been previously shown to produce reliable net-
work topologies at rest and task conditions [44, 83, 84].
The network partitions outlined by Cole et al. 83 were
utilized to pre-assign each one of the 264 ROIs to one
of the 13 LSNs documented in the original publication
[44]. Namely, 10 well-established networks covering dor-
sal (DAN) and ventral attention (VAN), salience (SAN),
cingulo-opercular (CON), fronto-parietal control (FPN),
default mode (DMN), visual (VN), auditory (AN), so-
matomotor (hand and mouth) (SMN), subcortical net-
works (SCN); as well as 3 networks that fall into memory
retrieval, cerebellum, and a network of uncertain function
were used as the 13 network partitions [44].
Connectome Construction. Fully-connected, undi-

rected and weighted matrices (264 ROI x 264 ROI) of
bivariate correlation coefficients (Pearson r) were con-
structed for each participant using the average BOLD sig-
nal time series obtained from the 6 mm (radius) spheres
placed on the MNI coordinates of all the 264 ROIs de-
scribed above. The matrices reflected both positive and
negative weighted correlations. The arbitrary thresh-
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olding and binarization processes in graph theoretical
analysis often lead to loss of information, especially in
the case of negative correlations [85]. Given recent re-
ports suggesting a neurophysiological basis and potential
cognitive importance of such anti-correlations in healthy
brain function [48, 49, 86], we focused on fully connected,
weighted connectomes.

Network-Based Statistics. Next, we aimed to ascer-
tain components of individual functional connectomes
that significantly predicted the participants between-
subject variation on the identified patterns of thought.
For that purpose, we employed the Network-Based
Statistics (NBS) toolbox (Version 1.2) (https://www.
nitrc.org/projects/nbs/) [45], which provides en-
hanced power to identify connected brain components
formed by suprathreshold edge links that are associated
with a covariate of interest, while controlling for Family-
Wise Error (FWE) at the component-level. Utilizing this
method, we entered the individual component scores for
all six patterns of thought as variables of interest, while
accounting for the effects of mean connectivity, age, gen-
der and percentage of motion-related invalid scans identi-
fied by the scrubbing procedure. Using these regressors,
T-tests were first carried out on fully connected whole-
brain network edges for each pattern of thought to assess
the relationship between the strength of an edge link
and component scores on patterns of thought, storing
the size of the connected components that survived the
chosen T threshold. Next, over a total of 5,000 permuta-
tions in which the outcome measures were randomised,
random null distributions of maximal component size
above the chosen threshold was generated. The num-
ber of permutations in which the maximal component
size was greater than the empirical component size, nor-
malised by the total number of permutations, was used
to estimate p-values (.05 level of significance). While the
initial Tthreshold = 3.2 was used for the main analysis,
comparable results for Tthreshold = 3.1 and Tthreshold =
3.3 are reported in the Supplementary Results section
(Supplementary Fig. S5). The resulting connected brain
components, the links of which showed a significant rela-
tionship with individual variability in thought patterns,
were then defined as mask graphs to threshold individual
functional connectomes, which were then carried forward
onto graph theoretical analyses [87].

Network Neuroscience Analysis. Graph theoretical
metrics in this study were calculated using MATLAB
functions obtained from the publicly available Brain Con-
nectivity Toolbox (https://sites.google.com/site/
bctnet/). Commonly used in the identification of hub re-
gions that greatly influence the efficiency of a network in
distributing information [88], network strength denotes
one of the most fundamental measures in weighted func-
tional connectomes and thus formed the basis of our net-
work neuroscience analysis approach. Calculated as the
sum of all neighbouring link weights [88], we measured
the strength of connected components across all partic-
ipants that were previously identified as illustrating sig-

nificant relations to individual variability in thought pat-
terns. Based on recent reports suggesting the importance
of anti-correlations, we calculated positive, negative as
well as total strength for each individual. Furthermore,
given recent evidence suggesting a contribution of the
balance between both positive and negative correlations
to healthy brain processing [48, 49, 86], we aimed to uti-
lize a metric that incorporated the importance of the
interplay between these links when assessing its predic-
tive power for explaining individual variability in self-
reported mental well-being. Thus, we defined fractional
strength as the ratio of the sum of positive to negative
links, which was later used as the graph metric of inter-
est in subsequent linear regression and mediation analy-
ses. Finally, to identify central nodes in the functionally
connected components that significantly related to the
thought structures, betweenness centrality, i.e. the frac-
tion of all shortest paths in the network that pass through
a given node, was calculated. The average positive and
negative links and the employed graph theoretical met-
rics were visualized on circular plots using Circos [89].

Test-Retest Reliability Analysis. Our next aim in this
analysis was to determine the reliability of the identi-
fied patterns of thought and brain connectivity measures.
This would not only establish the generalizability of our
results but would also allude to the potential differences
in the state versus trait-level variability of our neurocog-
nitive measures. For that purpose, a second session of
resting state scan and experience sampling was carried
out for 44 participants using the same parameters out-
lined above. This behavioural and imaging data were
preprocessed using the same procedures, resulting in the
exclusion of four participants due to excessive motion.
For the thought decomposition scores, the hierarchical
clustering and PCA decompositions obtained from the
initial cohort was imposed on the ratings obtained from
the second session [90]. Intraclass correlation coefficients
(ICC) were employed to assess the reliability of thought
component scores and the associated brain connectivity
(as denoted by fractional strength) from the first and sec-
ond sessions. Furthermore, we assessed a potential link
between the change in thought patterns between the two
sessions and the change in the associated brain functional
connections using Pearson correlations.

Mediation Analysis. Finally, we used linear regres-
sions to identify the relationship between component
scores on the identified patterns of thought, the frac-
tional strength (natural log) of connected components
and the participants self-reported scores on the psycho-
logical and social domains of the WHOQOL-BREF ques-
tionnaire. The relationships with health were Bonferroni
corrected for multiple comparisons across the two health
domains. After establishing linear relationships between
all three measures, subsequent mediation analyses were
carried out with the aim of determining the indirect effect
of brain connectivity on psychological and social well-
being through participants thought patterns. As it is
suggested for small to medium sample sizes [91], the per-
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centile bootstrap estimation approach with 5,000 samples
were used to ascertain the presence of a mediation effect.
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