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ABSTRACT 

 

Genetic studies provide valuable information to assess if the effect of genetic variants 

varies by the non-genetic (“environmental”) variables, what is traditionally defined to be 

gene-environment interaction. A common complication is that multiple disease states 

present with the same set of symptoms, and hence share the clinical diagnosis. 

Because 1) disease states might have distinct genetic bases; and 2) frequencies of the 

disease states within the clinical diagnosis vary by the environmental variables, 

analyses of association with the clinical diagnosis as an outcome variable might result in 

false positive or false negative findings. We develop estimates for assessment of GxE in 

a case-only study and compare the case-control and case-only estimates. We report 

extensive simulation studies that evaluate empirical properties of the estimates and 

show the application to a study of Alzheimer’s disease. 
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INTRODUCTION 

 

Numerous genome-wide association studies (GWAS) have been conducted to estimate 

how the effect of genetic variants varies by non-genetic (environmental) variables, what 

is traditionally referred to as gene-environment interactions (GxE). A major and 

commonly overseen complication is that multiple distinct pathophysiologic mechanisms 

might present with the same set of symptoms and hence the same clinical diagnosis. 

Frequencies of the disease states within the clinically diagnosed set often vary by the 

environmental variables, such as age, race/ethnicity. The pathophysiologic mechanisms 

underlying the disease states might have distinct genetic bases. Hence the analyses 

with the clinical diagnosis as an outcome variable might miss important associations or 

result in spurious findings (Carroll et al, 2016).  

 

Our study is motivated by the setting of Alzheimer’s disease (AD) where approximately 

30% of patients clinically diagnosed with AD do not have evidence of amyloid deposition 

as measured by positron emission tomography (PET) (Ossenkoppele et al, 2015). 

Hence two disease states – symptoms of AD with amyloid evidence and symptoms of 

AD with no amyloid evidence – are within the clinical diagnosis of AD. We define the 

disease state of AD with amyloid evidence to be the disease state of interest (Potter and 

Wisniewski, 2012).  Frequencies of the disease states within the clinical diagnosis are 

estimated to vary by age and Apolipoprotein (ApoE) �4 status (Ossenkoppele  et al, 

2015). Interestingly, ApoE �4 status is the most potent genetic factor found thus far. 

Genetic studies that define the clinical diagnosis as an outcome variable found that risk 
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of AD increases and the age at onset decreases with the number of ApoE �4 alleles 

(Corder et al, 1993; Farrer et al, 1997), thus suggesting a GxE. Because the disease 

states of AD with and without the amyloid evidence might have distinct genetic bases 

and the mechanism of ApoE �4 action might be relevant to the amyloid deposition, we 

are interested to assess the GxE in the relationship to the disease state of AD 

underlined by the amyloid evidence. 

 

Our previous studies showed both empirically and theoretically that ignoring 

heterogeneity of AD diagnosis can lead to severely biased estimates of GxE (Lobach et 

et al, 2018; Lobach et al, 2019). 

 

We are interested to estimate the GxE from the set of clinically diagnosed cases only, 

assuming that G and E are distributed independently in the population. This interest is 

supported by the prior statistical literature showing that when the genotype and 

environment are distributed independently in the population and when the disease is 

rare, the GxE can be estimated from a case-only study more efficiently than from a 

case-control study (Piegorsch et al, 1994). This result, however, is not applicable to our 

setting both because the disease state and the clinical diagnoses are common, and 

because the clinical diagnosis is not a surrogate of the disease state. We, therefore, are 

interested to derive what types of GxE can be estimated from the set of clinically 

diagnosed cases and compare variability of case-control vs. case-only estimates. 
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Our paper proceeds as follows. We first describe the setting and derivations in the 

Case-control vs. case-only Estimates section. Next, we evaluate the estimates in 

empirical studies and describe the setting and results in the Simulation Studies section. 

The application of the methods is then shown on a large-scale study of Alzheimer’s 

disease. We conclude the paper with brief discussion. 

 

Materials and Methods 

Case-control vs. case-only estimates 

We consider a study consisting of �� cases with a clinical diagnosis and �� controls. 

The data are collected using retrospective sampling scheme, i.e. cases are collected 

from the population of clinically diagnosed cases and controls are collected from the 

population of the clinically diagnosed controls. Suppose that what measured is a set of 

genotypes � and environmental variables � that are distributed independently in the 

population. We define the observed clinical diagnosis be ��� � 	0,1 and the true 

disease state to be � � 	0,1. We let ���� be frequency of the clinical diagnosis in the 

population, and �� �the frequency of the disease state in the population. We define 

frequencies of the disease state of interest within the clinical diagnosis as 

���� � 1|��� � 1, � � �, � � �� � ���, ��. For clarity of the presentation we will assume 

that the set of controls is homogeneous, i.e. ���� � 0|��� � 0, � � �, � � �� � 1. For 

clarity of the presentation we suppose that all variables are binary.  

 

We define ���|�� be the distribution of genotype in the population according to Hardy-

Weinberg Equilibrium.  
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We define frequencies of the genotype and environment within the clinical diagnosis 

and the disease states to be ������ � ���� � �, � � �|��� � ���� and ���� � ���� �
�, � � �|� � ��. 

 

We are interested to assess GxE. The traditional analyses are based on the logistic 

regression model, where GxE is a multiplicative interaction capturing the deviation from 

the sum of main effects of G and E. We hence start by considering a logistic regression 

models with the disease state of interest as an outcome variable, where the interaction 

term is of the primary interest. In the context of this study we are not interested in 

estimating the main effects and hence the risk model itself, we are just aiming to assess 

if the data provides sufficient evidence for an interactive effect. Hence consider a model 

logit	����� � 1|�, �� � !� " !	 # � " !
 # � " !	�
 # � # �.                   (1) 

The disease states, however, are not observed directly, instead what is measured is a 

clinical diagnosis ��� defined based on the set of observed symptoms. Hence the 

observed data allows us to estimate an interaction term from the following model 

logit	������� � 1|�, �� � $� " $	 # � " $
 # � " $	�
 # � # �.                   (2) 

If the clinical diagnosis is a surrogate of the disease state of interest, i.e. 

pr���� � ��|� � �, � � �, � � �� � pr���� � ��|� � ��, then $	�
'  is a consistent 

estimate of !	�
. In this setting ������� � ��|�, �� � ∑ pr���� � ��|� � ��� #��

����� � ��|), ��, hence if there is no relationship between ��, �� and �, neither there is 

one between ��, �� and ���. Otherwise, the probabilities of the clinical diagnosis are 
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weighted sums of frequencies of the true diagnosis, 

pr���� � ��� � ∑ pr���� � ��|� � ��� # pr�� � ����� , and ������� � ��|�, �� �
∑ ������� � ��|� � ��, � � �, � � �� # ����� � ��|�, ���� . Then if there is no 

relationship between ��, �� and �, there might be the relationship between ��, �� and 

���. 
 

The seminal work by Piegorsch er al (1994) developed a multiplicative interaction for a 

rare disease assuming independence between � and �, i.e. for !	�
 , as follows. An 

odds ratio (OR) for � in � � 0 is then *+�� � ���������
���������

, for � in � � 0 is *+�� �
���������
���������

 and for � � 1, � � 1 vs. � � 0, � � 0 *+�� � ���������
���������

. A multiplicative 

interaction is then Ψ � ����
���������

 and can be estimated in a case-control study as  

!��
� � log -�������������������

�������������������
..                                         (3) 

The case-only estimate is  

!��
� � log -���������

���������
.,                                                  (4) 

which is not applicable to our study for two reasons. First, because the disease states 

and the clinical diagnosis are not rare. Second, because some of the clinically 

diagnosed cases are misdiagnosed controls.   

 

Because ���� � �, � � �|� � �� # ���� � �� � ∑ ���� � �|��� � ���, � � �, � ����

�� # ���� � �, � � �|��� � ���� # ������ � ����, the GxE interaction in (1), i.e. see (3), 

becomes 
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!	�
,��
� � log /�����������

����������,�����������
���������������

�� �������,�����������
���

���������������������,������������������������������������,��������������
#

���,������,��
���,������,�� # ���������

���������
0.                                                                                         (5) 

The case-control GxE estimate (5) cannot be seamlessly reduced to a case-only 

estimate following the arguments of Piegorsh et al (1994) mainly because the disease 

state and the clinical diagnosis are not rare.  

 

Hence, we are interested to derive other estimates that characterize how the effect of 

genotype varies by the environment and that can be estimated in a set of clinically 

diagnosed cases. We aim to derive estimates of GxE that are necessary and might not 

be sufficient for evaluating whether or not GxE is present.  

 

It can be easily seen that the environment-specific odds of genotype among cases with 

the disease state of interest is 

log 	*��1	��� � 23� 4�!�	"�|�"�,
"��
�!�	"�|�"�,
"��5 � 23� 4���,�����,��5 " 23� 4�!�	"�|���"�,
"��

�!�	"�|���"�,
"��5.              (6) 

Recall that � � ���� � 1� and then the environment-specific risk ratio attributable to 

genotype is 

log 	++	�� � �� � 23� 4�!��"�|	"�,
"��
�!��"�|	"�,
"��5 �  23� 4���,�����,��5 � log - $

��$. " 23� 4�!�	"�|���"�,
"��
�!�	"�|���"�,
"��5. 

(7)        

 

From the statistical literature, including the study by Piegorsh et al  (1994), we know that 

a case-only estimate for GxE can be obtained from regressing the environment on the 
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genotype within the set of cases. i.e. a case-only estimate of GxE is the coefficient 6
 

from the logistic model 

 23� 4�!�	"�|�"�,
"��
�!�	"�|�"�,
"��5 � 6� " 6
 # �.                                    (8) 

The coefficient 6
 defines GxE on the relative risk scale.  Then this model in 

combination with (6) arrives at  

23� 4�!�	"�|���"�,
"��
�!�	"�|���"�,
"��5 �  log - $

��$. � 23� 4���,�����,��5 " 6� " 6
 # �                 (9) 

The analog of model (8) with the clinical diagnosis as an outcome variable is 

 23� 4�!�	"�|���"�,
"��
�!�	"�|���"�,
"��5 � 7� " 7
 # �.                                (10) 

Hence the case-only GxE coefficient 6
 can be estimated from the set of clinically 

diagnosed cases as 

6
 � 7
 "  23� 4���,�����,��5 � 23� 4���,�����,��5                                    (11) 

We assume that frequency of genotype, �, and frequencies of the disease states within 

the clinical diagnosis, ���, ��, are known. We define 8���� � #�� � �|��� � 1, � � ��. 

Then variance of the risk ratios (7) and (11) is  

:;�<log 	++= �� � ��> � �
	���

" �
	���

.                        (12) 

Similarly, variance of the odds (6) is 

:;�<log 	*��1	? ���> � �
���,���	���

" �
���,���	���

.                 (13) 

Remarks: 

1. If the clinical diagnosis is rare in the population, i.e. ���� @ 0, then we can see 

from (5) that the estimate with the clinical diagnosis as an outcome variable is not 

an unbiased estimate of the GxE for the disease state of interest. That is for rare 
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diseases ignoring misclassification of the diagnosis does not lead to unbiased 

estimates of GxE. 

2. In Alzheimer’s disease study that motivated this work, frequencies of the disease 

states within the clinical diagnosis are a function of both the genotype and the 

environment, i.e. ���� � 1|��� � 1, � � �, � � �� � ���, ��.  

3. If the frequency is only a function of the genotype, i.e. ���, �� � ����, or the 

environment, i.e. ���, �� � ����; then 6
 � 7
 but the estimate (5) does not 

reduce to the estimate (3). This setting occurs when the main effect of the 

environment or genotype is null. 

4. We’ve derived the case-control GxE estimate (5) and proposed three measures 

to assess how the effect of genotype varies by the environment from a set of 

clinically diagnosed cases: environment-specific odds of genotype within the 

subset with the disease state of interest 23� 4�!�	"�|�"�,
"��
�!�	"�|�"�,
"��5 (6), environment-

specific risk ratio attributable to the genotype 

log 	++	�� � �� � 23� 4�!��"�|	"�,
"��
�!��"�|	"�,
"��5 (7), and the coefficient 6
  (9). 

5. All the risk ratios and odds ratios that we discussed can be easily redefined to be 

genotype-specific, for example the genotype-specific odds of the environment 

log 	*��1
��� � 23� 4�!�
"�|�"�,	"��
�!�
"�|�"�,	"��5 � 23� 4���,�����,��5 " 23� 4�!�
"�|���"�,	"��

�!�
"�|���"�,	"��5. 

 

Simulation Studies 

We conduct a series of simulation studies to asses bias and false discovery rates of the 

estimates that ignore presence of the nuisance disease state within the clinical 
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diagnosis, i.e. estimates (3) and (4) with the clinical diagnosis in place of the disease 

state. We also assess performance of the odds (6), the risk ratio (7), and the estimate 

(11); and their variances (12), (13). 

 

In all settings we simulate 500 samples of with  ��  clinically diagnosed controls and �� 

clinically diagnosed cases. We let the genetic variant be Bernoulli(0.10) and the 

environmental variable be Bernoulli(0.14). We then simulate the disease state � 

according to the risk model (1) with values of the coefficients !�, !	 , !
 , !	�
 that vary. 

We next simulate the clinical diagnosis according to frequencies of the nuisance 

disease state within the clinical diagnosis with ���� � 1|��� � 1, � � �, � � �� � ���, ��. 
 

We let !� � �0.5, !	 � log�1� , log�2� , log�5� , !
 � log�2�. We let 	���� � 1|��� � 1, � �
0�, �� �� � 1|��� � 1, � � 1� be {0.64, 0.94}; {0.64, 0.84}; {0.84, 0.94}, i.e. we vary 

both the proportion of the nuisance disease states within the clinically diagnosed set of 

cases and the difference in the proportion by �. 

 

Setting 1: Null effect, i.e.  C%�& � D. We first consider a setting when there is no GxE, 

i.e.  !	�
 � 0. Shown in Table 1A are biases, SDs in the estimates, as well as false 

discovery rates (FDR). We note that the FDR in the estimates that use the clinical 

diagnosis as an outcome variable ranges between 0.06 and 0.40 across the settings we 

considered. Hence these inferences can be substantially inflated. The estimates with 

the disease state as an outcome variable, i.e. (5) and (11), are nearly unbiased. The 

case-only estimates tend to have variability that is less or equal to the variability of the 
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case-control estimates, with relative efficiency varying from 1 to 2.4.  Shown in Table 

1B are the odds (6) and risk ratio (7). The estimates are nearly unbiased with empirical 

variability that is approximately the same as the theoretical variance (12), as shown in 

Table 1C. 

 

Setting 2: C%�& � EFG�H�. We then consider a setting where  !	�
 � log �3�. Estimates 

shown Table 2A can be substantially biased when the clinical diagnosis is used in place 

of the outcome variable, while the bias in nearly removed when the disease state is the 

outcome. The case-only estimates tend to have variability that is smaller than the 

variability of the case-control estimates with relative efficiencies varying between 1 and 

1.7. Risk ratio estimates in Table 2B are nearly unbiased with empirical variability that is 

close to the theoretical as shown in Table 2C. 

 

Alzheimer’s disease study 

We applied the proposed analyses to a dataset collected as part of the Alzheimer’s 

Disease Genetics Consortium (Naj et al, 2011). The data consists of 1,245 controls and 

2,785 cases. The average age (SD) of cases and controls are 72.1 (9.1) and 70.9 (8.8) 

years, respectively. Among cases, 1,458 (52.4%) are men; among controls, 678 

(63.9%) are men. At least one ApoE �4 allele is present in (64.5%) of cases and 365 

(29.1%) of controls.  

 

We are considering late-onset AD, hence focus on the subpopulation aged 65 years or 

older. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/760322doi: bioRxiv preprint 

https://doi.org/10.1101/760322
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Recent biomarker studies (Ossenkoppele et al, 2015) estimate that 95% of ApoE �4 

carriers and 78% of ApoE �4 non-carriers aged 65-75 diagnosed with AD have evidence 

of amyloid deposition. Similarly, 90% of ApoE �4 carriers and 63% of ApoE �4 non-

carriers aged 75+ clinically diagnosed with AD have evidence of amyloid deposition. We 

assume that 1 in 10 is diagnosed with AD 

(https://www.alzheimers.net/resources/alzheimers-statistics/). We will perform sensitivity 

analyses by assuming these rates and also varying the rates to see how the estimates 

of ApoE �4-by-age interaction might change.  

 

In Table 3 we present various estimates of how the effect of ApoE �4 varies by age with 

95% Confidence Intervals (CI) obtained based on 1,000 permutations. We first note that 

the case-control estimate with the clinical diagnosis as an outcome variable is not 

statistically significant (-0.08; 95% CI (-0.30, 0.29)), while the case-control estimate with 

the disease state as an outcome variable is statistically significant (-0.69; 95% CI (-0.76, 

-0.58)). Across all the settings we considered, length of the 95% CI for the case-only 

estimates tend to be shorter than the length for the case-control estimate. Setting 1 

presented in Table 3 corresponds to the estimates of the disease states obtained in 

Ossenkoppele et al, 2015; while Settings 2-4 are slight deviations. We note that the 

estimates and their 95% CIs are similar across all the settings showing robustness of 

the conclusions to the slight derivations in the estimates of the disease states within the 

clinical diagnosis. 
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Discussion  

We’ve derived case-control and case-only estimates of GxE with respect to the AD 

disease state underlined by amyloid deposition in the setting when the disease state is 

not measured, instead frequencies of the disease state within the clinical diagnosis are 

estimated in a reliability study. We also evaluated bias and false discovery rates for 

when the misclassification of the clinical diagnosis is ignored. The setting we consider is 

unique in that the disease states and the clinical diagnosis are common and that rates 

of the disease state of interest within the clinical diagnosis vary by G and by E.  

 

The development of our study is motivated by the need to assess presence of GxE, as 

opposed to estimating all parameters in a risk model, e.g. (1). We are interested to 

estimate the degree to which the effect of genotype varies by the “environment”, such 

as age, sex, education, race/ethnicity, etc. The setting that we’ve developed offers an 

advantage of not having to rely on the estimates of main effects. 

 

In simulation experiments we showed that ignoring misclassification of the clinical 

diagnosis can result in substantial inflation of false positive rates in GxE. Similarly to the 

original study by Piegorsch et al (1994), we note that the variability of case-only 

estimates is generally smaller than the variability of the case-control estimates. 

 

The derivations that we’ve developed rely on estimates of the population frequencies of 

the disease states of interest within the clinical diagnosis that vary by G and E. These 

estimates are often available. We advocate for sensitivity analyses by assuming the 
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estimates obtained in reliability studies and varying the values slightly to see if the GxE 

estimates change.  

 

While our study is motivated by the setting of Alzheimer’s disease, the general 

development is applicable to other complex diseases and other settings, e.g. analyses 

of association in the context of the electronic health records, or other types of genetic 

data, e.g. gene expression. For example, studies of diabetes (Manchia et al, 2013) and 

analyses of electronic health records (Hubbard et al, 2017). 
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Clinical diagnosis as an outcome variable Disease state is the outcome variable 
Case-control 

estimate 
Case-only estimate  Case-control 

estimate 
Case-only estimate 

 
Bias 

 
SD 

False 
positive 
rate 

 
Bias 

 
SD 

False 
positive 
rate 

 
Bias 

 
SD 

 
True 
value 

 
Bias 

 
SD 

0.64 0.94 Log(1)=0 0.21 0.15 0.29 0.20 0.12 0.40 -0.12 0.13 0.00 -0.0002 0.12 
Log(2)=0.69 0.21 0.16 0.30 -0.21 0.12 0.14 -0.11 0.12 -0.12 0.01 0.12 
Log(5)=1.61 0.21 0.18 0.22 -0.03 0.10 0.07 0.09 0.11 -0.25 0.05 0.10 

0.64 0.84 Log(1)=0 0.14 0.14 0.15 0.14 0.12 0.22 -0.08 0.12 0.00 -0.0007 0.12 
Log(2)=0.69 0.15 0.16 0.16 0.03 0.11 0.09 -0.02 0.10 -0.13 0.02 0.11 
Log(5)=1.61 0.17 0.27 0.08 -0.10 0.10 0.20 0.12 0.16 -0.24 -0.004 0.10 

0.84 0.94 Log(1)=0 0.07 0.15 0.08 0.07 0.11 0.09 -0.03 0.14 0.008 0.003 0.11 
Log(2)=0.69 0.07 0.16 0.09 -0.04 0.11 0.09 -0.002 0.14 0.02 -0.11 0.11 
Log(5)=1.61 0.08 0.20 0.06 -0.17 0.09 0.47 0.07 0.14 -0.24 0.001 0.09 

Table 1A: Biases and standard deviations (SD) of case-control and case-only estimates when the clinical diagnosis is 

used in place of the disease state ((3) and (4)) and when the outcome variable is the disease state ((5) and (11)). We 

simulated 500 datasets with 3,000 clinically diagnosed cases and 3,000 clinically diagnosed controls where the disease 

state is simulated according to model (1) with coefficients  ���� � log �0�, �� � �0.5, �� � log�1� , log�2� , log�5� , �� �
log�3� and the clinical diagnosis is then simulated according to frequencies ���� � 1|��� � 1, 	 � �, � � ��.  
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Disease state is the outcome variable 

Log(Odds), ��� ���	�
�|
�,��
��	�
�|
�,��

� via (6) Log(Risk Ratio) ��� ���	
�|�
�,��
��	
�|�
�,��

� via (7) 

� � 0 � � 1 � � 0 � � 1 
True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

0.64 0.94 Log(1)=0 -1.8 -1.82 0.09 -1.8 -1.82 0.08 0 -0.001 0.09 0 -0.003 0.08 
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Log(2)=0.69 -1.44 -1.45 0.08 -1.56 -1.56 0.07 0.37 0.37 0.08 0.26 0.25 0.07 
Log(5)=1.61 -1.17 -1.12 0.07 -1.36 -1.36 0.07 0.69 0.69 0.07 0.45 0.45 0.07 

0.64 0.84 Log(1)=0 -1.81 -1.82 0.09 -1.81 -1.82 0.08 0 -0.0006 0.09 0 -0.0013 0.08 
Log(2)=0.69 -1.44 -1.45 0.08 -1.57 -1.56 0.07 0.37 0.37 0.08 0.26 0.26 0.07 
Log(5)=1.61 -1.13 -1.12 0.07 -1.37 -1.36 0.07 0.45 0.69 0.07 0.69 0.45 0.07 

0.84 0.94 Log(1)=0 -1.82 -1.82 0.08 -1.82 -1.82 0.07 -0.008 -0.005 0.08 -0.004 -0.002 0.07 
Log(2)=0.69 -1.44 -1.45 0.07 -1.57 -1.56 0.07 0.37 0.37 0.07 0.26 0.26 0.07 
Log(5)=1.61 -1.13 -1.12 0.07 -1.37 -1.37 0.06 0.69 0.69 0.07 0.45 0.45 0.06 

Table 1B: True values, empirical averages and standard deviations (SD) of case-only odds (6) and risk ratio (7) when the 

outcome variable is the disease state. We simulated 500 datasets with 3,000 clinically diagnosed cases and 3,000 

clinically diagnosed controls where the disease state is simulated according to model (1) with coefficients  ���� � log �0�, 
�� � �0.5, �� � log�1� , log�2� , log�5� , �� � log�3� and the clinical diagnosis is then simulated according to frequencies 

���� � 1|��� � 1, 	 � �, � � ��.  
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Disease state is 
the outcome 

variable 
 

� � 0 � � 1 
 

Theoretical SD 
0.64 0.94 Log(1)=0 0.09 0.08 

Log(2)=0.69 0.08 0.07 
Log(5)=1.61 0.07 0.07 

0.64 0.84 Log(1)=0 0.09 0.08 
Log(2)=0.69 0.08 0.07 
Log(5)=1.61 0.07 0.07 

0.84 0.94 Log(1)=0 0.08 0.07 
Log(2)=0.69 0.07 0.07 
Log(5)=1.61 0.07 0.06 

Table 1C: Empirical averages of the theoretical standard deviations (SD) as described in (12). We simulated 500 datasets 

with 3,000 clinically diagnosed cases and 3,000 clinically diagnosed controls where the disease state is simulated 

according to model (1) with coefficients  ���� � log �0�, �� � �0.5, �� � log�1� , log�2� , log�5� , �� � log�3� and the clinical 

diagnosis is then simulated according to frequencies ���� � 1|��� � 1, 	 � �, � � ��. 
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outcome variable 
Case-control 

estimate 
Case-only 
estimate  

Case-control 
estimate 

Case-only estimate 

 
Bias 

 
SD 

 
Bias 

 
SD 

 
Bias 

 
SD 

 
True 
value 

 
Bias 

 
SD 

0.64 0.94 Log(1)=0 -0.14 0.15 -0.60 0.12 -0.10 0.12 0.36 0.07 0.12 
Log(2)=0.69 0.14 0.17 -0.85 0.10 -0.14 0.13 0.10 0.02 0.10 
Log(5)=1.61 0.18 0.21 -1.08 0.10 0.13 0.12 -0.14 0.00. 0.21 

0.64 0.84 Log(1)=0 -0.04 0.16 -0.78 0.11 0.02 0.11 0.36 -0.01 0.11 
Log(2)=0.69 -0.02 0.18 -1.02 0.10 -0.02 0.10 0.09 0.006 0.10 
Log(5)=1.61 -0.95 0.10 -1.22 0.10 -0.008 0.03 0.14 0.03 0.10 

0.84 0.94 Log(1)=0 -0.58 0.06 -1.36 0.09 -0.06 0.05 0.17 -0.02 0.09 
Log(2)=0.69 -0.68 0.05 -1.36 0.05 0.04 0.05 0.10 -0.07 0.09 
Log(5)=1.61 -0.58 0.06 -1.36 0.08 0.12 0.05 -0.14 -0.14 0.08 

Table 2A: Biases and standard deviations (SD) of case-control and case-only estimates when the clinical diagnosis is 

used in place of the disease state ((3) and (4)) and when the outcome variable is the disease state ((5) and (11)). We 

simulated 500 datasets with 3,000 clinically diagnosed cases and 3,000 clinically diagnosed controls where the disease 

state is simulated according to model (1) with coefficients  ���� � log �3�, �� � �0.5, �� � log�1� , log�2� , log�5� , �� �
log�3� and the clinical diagnosis is then simulated according to frequencies ���� � 1|��� � 1, 	 � �, � � ��. 
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Odds ��� ���	�
�|
�,��
��	�
�|
�,��

�   via (6) Risk Ratio ��� ���	
�|�
�,��
��	
�|�
�,��

� via (7) 

� � 0 � � 1 � � 0 � � 1 
True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

True 
value 

 
Estimate 

 
SD 

0.64 0.94 Log(1)=0 -1.81 -1.82 0.09 -1.45 -1.46 0.07 0.0013 -0.0004 0.09 0.36 0.36 0.07 
Log(2)=0.69 -1.44 -1.44 0.07 -1.34 -1.35 0.07 0.37 0.38 0.07 0.47 0.47 0.07 
Log(5)=1.61 -1.13 -1.12 0.07 -1.13 -1.27 0.07 0.69 0.69 0.07 0.55 0.55 0.07 

0.64 0.84 Log(1)=0 -1.82 -1.82 0.09 -1.45 -1.46 0.07 -0.004 -0.002 0.09 0.36 0.36 0.07 
Log(2)=0.69 -1.44 -1.44 0.07 -1.33 -1.35 0.07 0.38 0.38 0.07 0.47 0.47 0.07 
Log(5)=1.61 -1.17 -1.17 0.07 -1.28 -1.28 0.07 0.65 0.65 0.07 0.54 0.54 0.07 

0.84 0.94 Log(1)=0 -1.82 -1.98 0.06 -1.45 -1.24 0.06 0.001 0.04 0.06 0.36 0.57 0.06 
Log(2)=0.69 -1.34 -1.24 0.06 -1.44 -1.24 0.06 0.37 0.38 0.06 0.47 0.58 0.06 
Log(5)=1.61 -1.13 -1.13 0.06 -1.27 -1.27 0.06 0.69 0.87 0.06 0.55 0.58 0.06 

Table 2B: True values, empirical averages and standard deviations (SD) of case-only odds (6) and risk ratio (7) when the 

outcome variable is the disease state. We simulated 500 datasets with 3,000 clinically diagnosed cases and 3,000 

clinically diagnosed controls where the disease state is simulated according to model (1) with coefficients  ���� � log �3�, 
�� � �0.5, �� � log�1� , log�2� , log�5� , �� � log�3� and the clinical diagnosis is then simulated according to frequencies 

���� � 1|��� � 1, 	 � �, � � �� .  
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Disease state is 
the outcome 

variable 
 

� � 0 � � 1 
 

Theoretical SD 
0.64 0.94 Log(1)=0 0.09 0.09 

Log(2)=0.69 0.07 0.07 
Log(5)=1.61 0.07 0.07 

0.64 0.84 Log(1)=0 0.09 0.07 
Log(2)=0.69 0.07 0.07 
Log(5)=1.61 0.07 0.06 

0.84 0.94 Log(1)=0 0.06 0.06 
Log(2)=0.69 0.06 0.06 
Log(5)=1.61 0.07 0.06 

Table 2C: Empirical averages of the theoretical standard deviations (SD) as described in (12). We simulated 500 datasets 

with 3,000 clinically diagnosed cases and 3,000 clinically diagnosed controls where the disease state is simulated 

according to model (1) with coefficients  ���� � log �3�, �� � �0.5, �� � log�1� , log�2� , log�5� , �� � log�3� and the clinical 

diagnosis is then simulated according to frequencies ���� � 1|��� � 1, 	 � �, � � ��. 
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diagnosis by age 

���� � 1|��� � 1, ��� � 65 � 75,  4" � 95% 95% 90% 100% 

���� � 1|��� � 1, ��� � 75",  4" � 90% 90% 85% 95% 

���� � 1|��� � 1, ��� � 65 � 75,  4� � 78% 78% 73% 83% 

���� � 1|��� � 1, ��� � 75",  4� � 63% 63% 58% 68% 

������ � 1� 10% 7% 10% 10% 

Clinical diagnosis is the outcome variable 

Case-control estimate  -0.08 (-0.30, 0.29) 

Case-only estimate -0.69 (-0.76, -0.58) 

Disease state is the outcome variable 

Case-control estimate, (5) 0.89 (0.83, 0.95) 0.88 (0.82, 0.94) 0.91 (0.84, 0.96) 0.87 (0.81, 0.93) 

Case-only estimate, (11) 0.83 (0.73, 0.93) 0.82 (0.74, 0.92) 0.84 (0.75, 0.93) 0.82 (0.72, 0.90) 

Odds ��� ���	���|
�,���
������
��	���|
�,���
������

�, (6) 0.63 (0.58, 0.69) 0.63 (0.58, 0.70) 0.65 (0.59, 0.70) 0.62 (0.57, 0.68) 

Odds ��� ���	���|
�,���
����
��	���|
�,���
����

�, (6) 0.12 (0.04, 0.20) 0.12 (0.04, 0.20) 0.15 (0.08, 0.23) 0.10 (0.03, 0.18) 

Risk Ratio ��� ���	
�|���,���
������
��	
�|���,���
������

�, (7) 2.4 (2.4, 2.5) 2.4 (2.4, 2.5) 2.5 (2.4, 2.5) 2.4 (2.3, 2.5) 

Risk Ratio ��� ���	
�|���,���
����
��	
�|���,���
����

�, (7) 2.3 (1.9, 2.0) 1.9 (1.9, 2.0) 2 (1.9, 2.0) 1.9 (1.8, 2.0) 

Table 3: Estimates (95% Confidence Intervals) of how the effect of ApoE  4 varies by age in the Alzheimer’s disease 

study. Setting 1 is as estimated in the literature. The other Settings are slight deviations from the Setting 1 for analyses of 

sensitivity.  

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 9, 2019. 
; 

https://doi.org/10.1101/760322
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/760322
http://creativecommons.org/licenses/by-nc-nd/4.0/

