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The allocation of a sequencing budget when designing single cell RNA-seq experiments requires consideration of the 
tradeoff between number of cells sequenced and the read depth per cell. One approach to the problem is to perform a power 
analysis for a univariate objective such as differential expression. However, many of the goals of single-cell analysis requires 
consideration of the multivariate structure of gene expression, such as clustering. We introduce an approach to quantifying 
the impact of sequencing depth and cell number on the estimation of a multivariate generative model for gene expression that 
is based on error analysis in the framework of a variational autoencoder. We find that at shallow depths, the marginal benefit 
of deeper sequencing per cell significantly outweighs the benefit of increased cell numbers. Above about 15,000 reads per cell 
the benefit of increased sequencing depth is minor. Code for the workflow reproducing the results of the paper is available at 
https://github.com/pachterlab/SBP_2019/.

Introduction
The design of single-cell RNA-seq experiments requires numerous 

choices including allocation of a budget for sequencing, determina-
tion of how many cells will be assayed, the technologies to be used, 
and choices on how to extract and prepare cells. When the source 
of cells is plentiful, and there is a fixed budget for a single-cell RNA-
seq (scRNA-seq) experiment, the key choice is whether to aim for 
an experiment with more cells and fewer reads per cell, or less cells 
but each cell sequenced more deeply. An analysis of this important 
tradeoff has been investigated in the context of learning parameters 
for single genes, and it was shown that more cells are preferable to 
higher read depth per cell [1].

Furthermore, for typical univariate supervised inference problems 
such as regression, tools for power analysis exist to assess what pa-
rameter values in models can be reliably inferred from data of vary-
ing sizes [2,3]. However, questions of interest in single-cell RNA-seq 
analysis do not have a structure where performance can be directly 
quantified and appropriate subsampling and quantification of per-

Figure 1) Outline of the workflow for subsampling reads and cells, fitting models with a variational autoencoder, evaluating validation error, and visualization.

formance is nontrivial. While there has been some work examining 
the dependence of principal components analysis on read depth [4,5], 
the methods used do not extend quantitatively to other multivariate 
analyses.

Key analysis tasks in scRNA-seq studies such as cell type discov-
ery and assignment, or trajectory inference, make use of low-dimen-
sional representations of the cells. As a result a number of generative 
models that identify low-dimensional representations have been pro-
posed [6–8]. One recent development is the introduction of gener-
ative models with hidden representations in the form of variational 
autoencoders [9–13]. Since variational autoencoders are parametric 
they can easily be used to evaluate performance on held-out unseen 
validation data using the comparable and quantitative measure of log 
likelihood: the probability of seeing the data given the trained mod-
el (see methods). Negative log likelihood is also referred to as recon-
struction error and here we refer to the reconstruction error of the 
held-out validation data as validation error.
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Results
To investigate the effect of sequencing depth and cell numbers on 

the ability to learn reproducible representations of scRNA-seq data, 
we performed a subsampling analysis of three datasets produced with 
the 10x Genomics Chromium platform (V3) [14]. The datasets were 
selected for their high sequencing depth and each dataset consisted of 
approximately 10,000 cells (Supplementary Table 1).

The kallisto bustools workflow [15–17] was used to obtain UMI 
[18] gene count matrices at different sampled read depths to mimic 
datasets sequenced at varying depths. From these subsamples, sub-
sets of cells were sampled to emulate the sequencing of fewer cells 
(Figure 1).

For each of the gene count matrices with different reads per cell 
and cell numbers, an scVI variational autoencoder model was fit. A 
set of cells were held-out prior to subsampling and for later use as a 
validation set. Each of the scVI models were applied to the held-out 
data, and reconstruction error was calculated to give validation error 
values for each point in the sampling grid of cell numbers and reads 
per cell numbers (Figure 2).

We found that there exists an inflection point below which increas-
ing sequencing depth rapidly reduces validation error. When there 
are less than 15,000 reads per cell, doubling the sequencing depth 
decreases the error by 35-40%. This can be directly compared to dou-
bling the number of cells, which decreases validation error by only 
10-15%. The advantage of more sequencing in the shallow sequenc-
ing regime is much greater than the advantage realized with assaying 
more cells. This trend tapers off with increasing sequencing depth: 
with more than 15,000 reads per cell, doubling the number of cells or 
reads offers comparable marginal improvement, with error decreas-
ing by at most 1-3% (Table 1, Figure 3).

Reconstruction error of the held out validation sets allow for quan-

titative analysis of the performance of models trained with different 
sets of data. To assess the implication of reconstruction error for 
downstream analyses, we performed t-SNE on the low-dimensional 
representation encoded by the scVI models for each read depth and 
cell sampling size. While the resultant plots are subjective in nature, 
the grid of t-SNE plots provides intuition for the loss of structure in 
the data corresponding to varying levels of reconstruction error. For 
all datasets, groupings of cells appear more distinct as read and cell 
numbers increase (Figure 4).
Discussion

In this work we introduced the concept of autoencoder based 
“power analysis”. We implemented it to evaluate how sequencing 
depth and cell numbers affect the ability to learn generalizable rep-
resentation models for single cell RNA-seq data. We found that in-
creasing depth up to about 15,000 reads per cell has a substantially 
higher marginal benefit than increasing the number of cells. Beyond 
that, increasing either depth or cell numbers provides comparable 
marginal improvement. This constitutes a quantitative description of 
the tradeoff between sequencing depth per cell, and number of cells 
assayed.

We note that different protocols may have different efficiency in 
converting reads to UMIs due to different levels of PCR duplication. 
This may affect the slopes of marginal gain for number of cells or 
reads per cell. In the data used here, the duplication rate was consis-
tently around 2.5 (Supplementary Figure 1). Examining the relation-
ship between reads per cell and validation error with UMIs per cell 
and validation error, we found that results are identical up to multi-
plication by the duplication rate (Supplementary Figures 2-4). We 
note that this analysis does not take into account other experimental 
objectives that may be important. For example, if the goal of an ex-
periment is to capture and characterize rare cells, the number of cells 
assayed should take into account the probability of capturing these 
cells of interest.

Our study yields some insights in terms of experimental design 
strategies utilizing a machine learning method. This approach may be 
also be productive for other tasks where tradeoffs in data generation 
cost must be considered. Our concept of autoencoder based power 
analysis using held-out log likelihood on augmented data may there-
fore be of use for other problems in learning representations. Some 
examples are machine learning models for text-to-speech, image 
recognition problems, or biological sequence data. Our workflow 
is available at https://github.com/pachterlab/SBP_2019/ and can be 
readily applied to any other scRNA-seq dataset that can be processed 
using kallisto bus (https://kallistobus.tools).

Figure 2) Held-out log likelihood for each read sampling depth and cell sampling 
number for all three datasets. Gray dots indicate validation error could not be 
evaluated due to division by zero errors.

Below 15,000 reads per cell Above 15,000 reads  per cell

Doubling 
number of 
cells

Doubling 
reads per 
cell

Doubling 
number of 
cells

Doubling 
reads per 
cell

heart10k
(decrease in 

validation 
error)

15% 39% 1% 2%

neurons10k
(decrease in 

validation 
error)

16% 41% 3% 2%

pbmc10k 
(decrease in 

validation 
error)

10% 35% 2% 5%

Table 1) Effect on held-out validation error when doubling number of cells or 
doubling number of reads per cell for the three datasets investigated. Effects 
stratified by when cells have below 15,000 reads per cell or above. A larger de-
crease in error is better.
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Figure 3) Validation error as a function of total reads. (left) Datasets grouped by reads per cell. (right) Datasets grouped by number of cells. (top) pbmc10k data, 
(middle) neurons10k data, (bottom) heart10k data. Grey and black lines are predictions from linear regression model, grey for < 15,000 reads per cell, black for 
>= 15,000 reads per cell. Each line is the prediction on a corresponding group of data.
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Figure 2) t-SNE visualization of the learned scVI representation for each read depth and cell count number for all three datasets. Plots with single dots correspond to 
representations where t-SNE failed to optimize due to small gradients. (top) pbmc10k data, (middle) neurons10k data, (bottom) heart10k data.
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Methods
Data

Three datasets made available by 10x Genomics were analyzed: 
pbmc10k, heart10k and neurons10k. They are summarized in 
(Supplementary Table 1). 
Training data evaluation using held-out log likelihood

In typical study design, power calculations are used to estimate 
the amount of required sampling for satisfactory type II error in a 
hypothesis testing framework. In many situations, it may also be im-
portant to assess the extent and nature of sampling needed to accu-
rately estimate parameters for a (pre-registered) statistical model, or 
the data needed to select a model. Such calculations have direct bear-
ing on the budget needed to perform the study. 

One approach to quantifying accuracy when fitting or selecting 
models is to estimate goodness-of-fit by performing holdout valida-
tion (also known as out-of-sample validation). With this approach, a 
dataset is divided into two: a training set, and separately a validation 
set, which is held-out during training procedures and used only to 
assess results after parameters have been estimated.

Formally, we denote the dataset by , and partition it into a train-
ing set  and a validation set . The latter is held-out from all pro-
cesses of estimating a generative model  with parameters . The 
log-likelihood of held-out data is defined as the integral

Here  is the posterior probability of parameters of the 
model  after it has been fitted with . When point estimates of  are 
considered, we have that

If  is the maximum likelihood point estimate of  for  given  
then the integral above reduces to 

By calculating the held-out log likelihood for two alternative mod-
els  and , the models can be directly compared. In the pub-
lication describing scVI ([9]), this approach is used to compare the 
models of scVI with those obtained by factor analysis (principal com-
ponent analysis), ZIFA [7], and ZINB-WaVE [19].

We use the same strategy to evaluate different sources of training 
data . A fixed set of validation data  is pre-determined, and  
different alternate data samples  are generated. For ex-
ample, the data could be generated from different annotation services, 
different scientific instruments, or with different sampling strategies. 
The model  is fixed, but for each alternate training data set , a 
maximum likelihood parameter estimate  is estimated. This allows 
for the comparison of  different goodness-of-fits .

A simple instance of this procedure that is of interest in virtually 
any modeling setting is the question of the generalizability of a model 
as a function of the amount of data observed. By subsampling data 
points from  to different levels , the return on investment from 
increased sample sizes can be examined using the directly compara-
ble  likelihoods. This provides a tool for study design that 
can be applied in the same way as power and sample size calculations 
are used in classical statistical analysis. Generating data for models 
can be expensive, and it is not uncommon to have a choice between 
different sources of data at different prices. Thus, this framework al-
lows researchers to investigate how a data collection budget can be 
efficiently allocated.
Subsampling scRNA-seq data

The result of a scRNA-seq experiment is a cDNA library which 
contains multiple copies of labeled mRNA transcript fragments, al-
lowing for counting and identification of cell of origin. The count of 

molecules for each gene and cell make up a gene count matrix .
For sequencing, the cDNA library is  sampled and the molecules 

in that sample are distributed over an imaging array which is used to 
read out the DNA sequence of amplified products of each molecule. 
The density and size of the array determines how many “reads” the 
DNA sequencing instrument will deliver. It is possible (and common) 
to take multiple samples from the cDNA library which get sequenced 
on multiple imaging arrays or even different instruments. This allows 
fine control over the total depth (total number of reads) of the result-
ing data that is used to obtain the gene count matrix. 

To simulate sequencing a cDNA library at a lower depth, random-
ly subsampling reads from the output of a DNA sequencer faithfully 
simulates generating data with a lower density imaging array, or us-
ing fewer imaging arrays. For a given simulated depth, after the gene 
count matrix with all cells was obtained, a dataset emulating the input 
of fewer cells can be generated by randomly sampling cells, which are 
treated as observations.

By first varying the ‘reads per cell’ through subsampling the list 
of reads, then subsampling cells conditional on this, a collection of 
alternative training datasets  representing different resource al-
location strategies can be created. Here  refers to the number of cells 
and  the ‘reads per cell’ in each dataset. The sampled cells are exclud-
ing a fixed set of validation cells making up the validation gene count 
matrix .
scVI variational autoencoder

The variational autoencoder implementation in scVI parametriz-
es a negative binomial distribution for each gene  in a cell  based 
on a low dimensional latent representation  which is “decoded” as 

. The generative model of a gene count matrix  is

In this framework  is a scaling factor for the read depth and  is 
a vector of scale values for the gene expression levels which are trans-
formed to the count rates . In scVI, amortized inference is used to 
learn variational distributions  approximating the posterior 
distribution  using a pair of neural networks  parametrized 
by :

We refer to the full scVI model including its variational distribu-
tions as  with parameter set .

Parameters  in an scVI variational autoencoder model , and 
variational encoder parameters , are found through optimizing the 
(approximate) marginal likelihood using a sample of data  of de-
sired reads per cell   and number of cells  from training sets:

A held-out validation dataset  is then used to calculate the held-
out marginal log likelihood, which allows direct comparison between 
alternative models, in this case differing by fitted values for  and ,

The approximate marginal likelihood of the scVI autoencoder is 
calculated by first sampling  from the variational distribution of 
the representation, then decoding from each  the parameters  
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Finally the approximate marginal log likelihood is computed using

where

 
Workflow description

The fastq files were subsampled at equal (multiplicatively) 
spaced intervals starting with 100,000 reads, and going up by a fac-
tor of √2 for each sampled point until the total number of reads in 
the dataset was reached. FASTQ subsampling was done using se-
qtk v1.3 (https://github.com/lh3/seqtk) with the random seed = 
100. For each subsample, UMI count matrices were produced us-
ing kallisto v0.46.0 (https://pachterlab.github.io/kallisto/) and bus-
tools v0.39.3 (https://bustools.github.io). Ensembl release 96 was 
used for the mouse and human transcriptomes and annotation 
(https://uswest.ensembl.org/info/data/ftp/index.html). 

The scVI program (https://github.com/YosefLab/scVI) was used 
to create a 10-dimensional representation for each dataset using two 
hidden layers, each with 128 nodes. Negative binomial reconstruction 
loss was used to ascertain error. A set of 1,000 highly variable genes 
were determined using the full dataset, and these genes were used 
for each subsampled dataset. For each model, training was done with 
an 80% train-test ratio. The number of epochs was set to 27 * 10000 
/ (number of cells). This training rule was used based on empirical 
evidence of the convergence behavior of scVI.

Before subsampling cells, a random set of cells that were quantified 
without subsampling reads were removed from the dataset (valida-
tion set): 1,770 out of 11,769 for PBMCs (15%); 1,844 out of 11,843 
for neurons (16%); 714 out of 7,713 for heart (9%). These cells were 
excluded from all subsampled count matrices before sampling cells 
and training the models.

Linear regression was performed on log2(validation error) using 
log2(number of cells) and log2(reads per cell) as covariates with the 
statsmodels package v0.9.0. Separate models were fit for points hav-
ing reads per cell above and below 15,000. Evaluating different thresh-
olds from 15,000 resulted in similar effect sizes for number of cells 
and reads per cell (Supplementary Table 2).

Each of the 10-dimensional representations learned by scVI 
for the different subsampled data was visualized using t-SNE. 
This was performed using the openTSNE package v0.3.10 
(https://github.com/pavlin-policar/openTSNE) with random initial-
ization, approximate nearest neighbor calculation, FFT based nega-
tive gradient calculations, and was run for 1,000 iterations with the 
default perplexity parameter of 30.
Code availability

A Snakemake [20] file used to subsample and process the data, 
together with Python notebooks used for downstream analyses are 
available on GitHub at https://github.com/pachterlab/SBP_2019/. 
Scripts and notebooks used to create the figures and results, together 
with  gene count matrices outputted by kallisto bus and H5AD files 
with the UMI counts for all the subsampled read depths are available 
on CaltechDATA (https://doi.org/10.22002/d1.1276).
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Supplemental material

Supplementary Figure 1) Reads vs UMIs for all datasets 
at subsampled depths. 
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Supplementary Figure 2) pbmc10k composition
Top left: Total reads vs validation error. 
Top right:  Total UMIs vs validation error. 
Bottom left: Sampled cells vs validation error, plotted 
over reads. 
Bottom right: Sampled cells vs validation error, plotted 
over UMIs. 

Supplementary Figure 3) neurons10k composition
Top left: Total reads vs validation error. 
Top right:  Total UMIs vs validation error. 
Bottom left: Sampled cells vs validation error, plotted 
over reads. 
Bottom right: Sampled cells vs validation error, plotted 
over UMIs. 

Supplementary Figure 4) heart10k composition
Top left: Total reads vs validation error. 
Top right:  Total UMIs vs validation error. 
Bottom left: Sampled cells vs validation error, plotted 
over reads. 
Bottom right: Sampled cells vs validation error, plotted 
over UMIs. 
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effect sizes (fraction of validation error)
Above or below threshold Effect name Threshold heart10k neurons10k pbmc10k

Below Cells 1000 0.77 0.82 0.9
Below Cells 2000 0.76 0.81 0.89
Below Cells 5000 0.78 0.81 0.89
Below Cells 10000 0.81 0.83 0.9
Below Cells 12000 0.81 0.83 0.9
Below Cells 15000 0.82 0.83 0.9
Below Cells 18000 0.82 0.84 0.91
Below Cells 20000 0.83 0.84 0.91
Below Cells 25000 0.83 0.84 0.91

Below Depth 1000 0.53 0.87 0.87
Below Depth 2000 0.52 0.76 0.8
Below Depth 5000 0.55 0.66 0.73
Below Depth 10000 0.58 0.63 0.69
Below Depth 12000 0.58 0.63 0.69
Below Depth 15000 0.6 0.63 0.69
Below Depth 18000 0.6 0.63 0.68
Below Depth 20000 0.62 0.63 0.68
Below Depth 25000 0.62 0.64 0.69

Above Cells 1000 0.88 0.83 0.89
Above Cells 2000 0.91 0.87 0.91
Above Cells 5000 0.95 0.93 0.95
Above Cells 10000 0.96 0.95 0.97
Above Cells 12000 0.96 0.95 0.97
Above Cells 15000 0.96 0.96 0.98
Above Cells 18000 0.96 0.97 0.98
Above Cells 20000 0.96 0.97 0.98
Above Cells 25000 0.96 0.98 0.98

Above Depth 1000 0.79 0.66 0.72
Above Depth 2000 0.85 0.72 0.76
Above Depth 5000 0.93 0.85 0.87
Above Depth 10000 0.95 0.92 0.94
Above Depth 12000 0.95 0.92 0.94
Above Depth 15000 0.96 0.88 0.96
Above Depth 18000 0.96 0.86 0.99
Above Depth 20000 0.97 0.86 0.99
Above Depth 25000 0.97 1.68 0.99

1

Supplementary Table 1) Summary of the three datasets analyzed.

10x Dataset name Short name Number of 
cells

Total reads Reads per 
cell

Download link

10k PBMCs from a Healthy 
Donor (v3 chemistry) pbmc10k 11,769 638,901,019 54,286

https://support.10xgenomics.com/sin-
gle-cell-gene-expression/datasets/3.0.0/pb-
mc_10k_v3

10k Heart Cells from an E18 
mouse (v3 chemistry) heart10k 7,713 290,439,571 37,655

https://support.10xgenomics.com/sin-
gle-cell-gene-expression/datasets/3.0.0/
heart_10k_v3

10k Brain Cells from an E18 
Mouse (v3 chemistry) nearons10k 11,843 357,111,595 30,153

https://support.10xgenomics.com/sin-
gle-cell-gene-expression/datasets/3.0.0/neu-
ron_10k_v3

Supplementary Table 2) Effect sizes for number of cells and reads per cells for different values of the reads per cell threshold for the three datasets.
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