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Figure S1. Phylogenetic placement of the 16S rRNA gene sequences recovered from Costa
Rica metagenomes. The maximum likelihood phylogenetic tree was calculated using ARB.
Numbers in the parentheses are the number of 16S rRNA gene sequences recovered from CR

metagenomes included in each phylogenetic group.
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Figure S2. (A) Phylogenetic placement of the Costa Rica Bathyarchaeota and Lokiarchaeota
MAGs. The maximum-likelihood phylogenetic tree was calculated based on the concatenation of
16 ribosomal proteins (L2, L3, L4, L5, L6, L14, L15, L16, L18, L.22, L.24, S3, S8, S10, S17, and
S19). “Bathyarchaeota CR1” and “Bathyarchaeota CR2” represent two novel classes within the
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phylum Bathyarchaeota. The relationships were inferred using the best fit substitution model

(WAG+F+R6) and nodes with bootstrap support >80% were marked by black circles. Scale bar

indicates substitutions per site.
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Figure S3. Coverage and GC (%) range of the contigs within Lokiarchaeota (CR_06)
MAG. CR 06 Contig-100 3495 encodes for the BCR operon and is highlighted by the black

dot.
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Figure S4. Maximum likelihood tree of the benzoyl-CoA reductase subunit A. The tree was
calculated using the best fit substitution model (LG+R6) that describes the evolutionary
relationships between BCRA families implemented in IQ-Tree [1]. The tree was made using
reference sequences under the KEGG entry (K04114) collected from AnnoTree [2] and branch
location was tested using 1000 ultrafast bootstraps and approximate Bayesian computation,
branches with bootstrap support >80% were marked by black circles. Blue and green clades
highlight sequences belong to Bzd Q and BCR_A subfamilies, respectively. Scale bar indicates
substitutions per site. Sequences from CR _Lokiarchaeota MAGs were marked with red circles,
and CR_Heimdallarchaeota was marked with green. Candidate novel clades present in the Costa

Rica metagenomic datasets were colored red.
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Figure S5. Gibbs free energy of the proposed catabolic reactions of Lokiarchaeota
(CR_06) under the near in situ condition. Gibbs free energy of benzoate oxidation coupled
to the reduction of nitrate (brown line), nitrite (orange line), and sulfite (green line), with the
benzoate concentration varying in a wide range (104-10 uM). Benzoate oxidation coupled to
sulfate reduction was calculated to be thermodynamic unfavorable, both under standard
condition and the in-situ condition in subseafloor sediments at Costa Rica Margin. The red

dashed line indicate the theoretical minimal energy quantum of life [-10 kJ mol'][3]
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Figure S6. Maximum likelihood phylogenetic tree of the [NiFe] hydrogenases recovered
from CR_MAG:s. The relationships were inferred using the best fit substitution model (LG+R6)
and nodes with bootstrap support >80% were marked by black circles. Scale bar indicates
substitutions per site. Hydrogenase protein sequences from CR_MAGS are highlighted with red

branches. Reference sequences used were collected from (Greening et al. 2016)[4].
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Figure S7. (Left panel) Relative densities (numbers per 1 Mb) of peptidases in the CR. MAGs

with >60% completeness. (Right panel) abundance percentages of each peptidase class within

different Costa Rica MAGs.



Table S1. Gibbs free energy of couple redox reactions proposed for the CR_Lokiarchaeota MAG (CR _06).

Reaction

Equation

AG® (k] mol™)

Benzoate oxidation coupled to nitrate
reduction to nitrite

[C7H50*] + 3[NO*] + 9[H,0] -> 3[NO: ] + 7[CO,] + 24 ¢

-119.9

Benzoate oxidation coupled to nitrite
reduction to ammonia

[C7H50%] + 3[NO, ] + 6[H,0] -> 3[NH, ]+ 7[CO2] + 12 ¢

-1206.3

Benzoate oxidation coupled to sulfate
reduction

[C7H50%] + 3[SO42] + 9[H,0] > 3[SO52] + 7[CO.] + 24 &

416.1

Benzoate oxidation coupled to sulfite
reduction to hydrogen sulfide

[C7Hs0*] + 3[SO5?] + 3[H20] -> 3[H,S] + 7[CO2] + 12 &

-373.6

Benzoate oxidation to acetate

2[C7Hs0%] + 10[H20] -> 7[C.H30%] +2 ¢

196.3




Table S2. ANI Comparisons between Costa Rica Bathyarchaeota MAG CR_14 against reference Bathyarchaeota MAGs.

CR genome Reference genome Distance Similarity
CR 14 B23 0.295981 0.704019
CR 14 B25 0.295981 0.704019
CR 14 B63 1 0
CR 14 BA2 0.295981 0.704019
CR 14 B24 0.295981 0.704019
CR 14 B26 1 0
CR 14 BAI 1 0
CR 14 B26 1 0

Table S3. ANI comparisons between CR MAGs

Table S4. Function annotation of CR 06 proteins using KEGG database

Table S5. Function annotation of CR 14 proteins using KEGG database

Table S6. HMM searches against key metabolic genes to validate the presence/absence of the pathways in CR-metagenomes

Tables S3, S4, SS and S6 are provided as a separate excel spreadsheet.
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