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 2 

ABSTRACT 34 

 35 

Late-Onset Alzheimer’s disease (LOAD) is a common, complex genetic disorder well-36 

known for its heterogeneous pathology. The genetic heterogeneity underlying common 37 

complex diseases poses a major challenge for targeted therapies and the identification of 38 

novel disease-associated variants. Case-control approaches are often limited to examining 39 

a specific outcome in a group of heterogenous patients with different clinical characteristics. 40 

Here, we developed a novel approach to define relevant transcriptomic endophenotypes 41 

and stratify decedents based on molecular profiles in three independent human LOAD 42 

cohorts. By integrating post-mortem brain gene co-expression data from 2114 human 43 

samples with LOAD, we developed a novel quantitative, composite phenotype that can 44 

better account for the heterogeneity in genetic architecture underlying the disease. We 45 

used iterative weighted gene co-expression network analysis (WGCNA) analysis to reduce 46 

data dimensionality and to isolate gene sets that are highly co-expressed within disease 47 

subtypes and represent specific molecular pathways. We then performed single variant 48 

association testing using whole genome-sequencing data for the novel composite 49 

phenotype in order to identify genetic loci that contribute to disease heterogeneity. Distinct 50 

LOAD subtypes were identified for all three study cohorts (two in ROSMAP, three in Mayo 51 

Clinic, two in Mount Sinai Brain Bank). Single variant association analysis identified a 52 

genome-wide significant variant in TMEM106B (p-value < 5×10-8, rs1990620
G

) in the 53 

ROSMAP cohort that confers protection from the inflammatory LOAD subtype. Taken 54 

together, our novel approach can be used to stratify LOAD into distinct molecular subtypes 55 

based on affected disease pathways. 56 

  57 
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 3 

INTRODUCTION 58 

 59 

Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia in the 60 

elderly. The clinical features associated with LOAD are an amnesic type of memory 61 

impairment, deterioration of language, and visuospatial deficits. In the later stages of the 62 

disease, symptoms may include motor and sensory abnormalities, gait disturbances, and 63 

seizures. Without advances in therapy, the number of symptomatic cases in the United 64 

States is predicted to rise to 13.2 million by 20501.  65 

 66 

Many common, complex diseases such as LOAD present with heterogeneous phenotypes 67 

due to interactions between genetic and environmental factors affecting a range of 68 

pathways and processes. LOAD has no simple form of inheritance and is governed by a 69 

common set of risk alleles across multiple genes that, in combination, have a substantial 70 

effect on disease predisposition and age of onset2. Genome-Wide Association Studies 71 

(GWAS) have become an important tool for identifying variants in complex diseases3,4. 72 

GWAS for LOAD have identified variants in over 500 genes as potential risk factors with the 73 

ε4 variant in APOE as the strongest contributor to overall disease risk2,5. LOAD has a 74 

strong polygenic component and an estimated heritability of up to 80%6. It has been 75 

challenging to transition from the identification of associated genetic variants to the 76 

molecular mechanisms that lead to the accumulation of amyloid plaques and helical tau 77 

filaments7. Furthermore, there is mounting evidence that the observed heterogeneity in 78 

LOAD is associated with multiple distinct subtypes8,9. 79 

 80 

Gene co-expression modules tend to consist of genes that belong to the same cellular 81 

pathways or programs and help explain the global properties of the transcriptome as it 82 
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relates to disease risk10. Networks-based co-expression module approaches have been 83 

used to identify causal variants in Late-Onset Alzheimer's disease7,11. However, such 84 

studies have failed to account for the heterogeneity of mechanisms that lead to complex 85 

diseases. Here, we analyze whole genome sequencing (WGS) and whole transcriptome 86 

data from three independent human cohorts from the Accelerating Medicines Partnership - 87 

Alzheimer's Disease (AMP-AD) Consortium. We use gene co-expression modules to 88 

develop quantitative phenotypes that account for the complex genetic architecture and 89 

heterogeneity of LOAD to more effectively map associated variants using genome-wide 90 

assocation. Furthermore, the method presented in this paper can be used to identify 91 

variants in other complex diseases. 92 

 93 

METHODS 94 

 95 

Whole genome sequencing and RNA sequencing data  96 

We obtained whole-genome sequencing and RNA sequencing (RNA-Seq) data from 97 

Synapse (https://www.synapse.org/) for three cohorts from the AMP-AD consortium, from 98 

the Mayo Clinic, Mount Sinai Brain Bank, and Rush University. The Mayo Clinic (Mayo) 99 

cohort consists of 276 temporal cortex (TCX) samples from 312 North American Caucasian 100 

subjects consisting of cases characterized with LOAD, pathological aging (PA), progressive 101 

supranuclear palsy (PSP), or elderly controls12 (Synapse:syn5550404). The Mount Sinai 102 

Brain Bank (MSBB) cohort consists of 214 frontopolar prefrontal cortex (FP), 187 inferior 103 

temporal gyrus (IFG), 160 parahippocampal gyrus (PHG), and 187 superior temporal gyrus 104 

(STG) samples characterized with LOAD, elderly control, or mild cognitive impairment 105 

(MCI) (Synapse: syn3159438). The Rush University's Religious Orders Study and Memory 106 

and Aging Project (ROSMAP) cohort consists of 623 dorsolateral prefrontal cortex (DLPFC) 107 
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samples of individuals from 40 groups of religious orders from across the United States 108 

(ROS) and older adults in retirement communities in the Chicago area (MAP), 109 

characterized with LOAD, elderly control, or MCI7,13 (Synapse:syn3219045). A summary of 110 

samples from each of the cohorts is provided in Table S1 and Table S2. Sex, age of death, 111 

and batch were used as covariates for normalization in the ROSMAP and Mayo data. Sex, 112 

age of death, race, and batch were used as covariates for normalization in the MSBB data. 113 

Details on post-mortem brain sample collection, tissue and RNA preparation, sequencing, 114 

and sample quality control can be found in published work related to each cohort12,14,15. 115 

 116 

Co-expression modules and iterativeWGCNA  117 

Data on human AMP-AD co-expression modules were obtained from Synapse (Synapse: 118 

syn11932957.1). The modules derive from the three independent LOAD cohorts used in 119 

this study. A detailed description on how co-expression modules were identified can be 120 

found in a recent study that identified the human co-expression modules as part of a 121 

transcriptome wide LOAD meta-analysis16. In brief, a modified procedure using five 122 

different co-expression analysis protocols followed by merging by graph clustering methods 123 

was performed to obtain 30 modules across all three cohorts (Synapse: syn2580853), 26 of 124 

which corresponded to the six tissue regions used in this study. A summary of these 125 

modules is provided in Table S3. We focused on tissues from the frontal cortex, temporal 126 

cortex, and hippocampus due to their relevance to LOAD neuropathology17. These modules 127 

are generally large, containing thousands of genes that represent multiple functions16. In 128 

order to construct more functionally-specific submodules from these AMP-AD co-129 

expression modules, we subjected them to a repeated pruning process called 130 

iterativeWGCNA18. Briefly, iterativeWGCNA performed WGCNA on each AMP-AD co-131 

expression module independently. The gene sets produced by this process were then 132 
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pruned to ensure that only highly correlated genes remained by evaluating the connectivity 133 

of the genes to the gene set eigengene. The resulting gene sets, containing highly 134 

correlated genes, were combined and the process was repeated until the gene sets 135 

converged. The algorithm then attempted to reclassify genes from the residual gene set. 136 

We specified a soft-threshold power of six, a minimum eigengene connectivity of 0.6, and a 137 

required module size of 100 to promote the generation of submodules that capture 138 

pathway-level signals. The final set of 68 submodules consisted of highly correlated and 139 

cell-type specific genes. The submodules were mutually exclusive for a given cohort but 140 

overlapped with submodules from other cohorts. A summary of these submodules is 141 

provided in Table S4. An eigengene for a given submodule is defined as the first principle 142 

component of gene expression data within each submodule. 143 

 144 

Stratification of LOAD cases based on clustering of human co-expression 145 

submodules 146 

Eigengene expression data for TCX, PHG, FP, and DLPFC regions was used to stratify 147 

LOAD cases in separate analyses. Clustering was performed on submodule eigengenes to 148 

determine subtypes of LOAD cases in each brain region. The NbClust R package 149 

determined the optimal number of clusters for different clustering methods by polling with 150 

the majority rule across 30 indices19. We tested agglomerative hierarchical approaches 151 

(Ward, UPGMA, WPGMA) and a reallocation approach (K-means) on the eigengene 152 

expression data and evaluated the within-cluster similarity of cases using silhouettes. The 153 

silhouette for a given object is a measure that simultaneously assesses how similar the 154 

object is to its cluster and how different the object is from all the other clusters20. Prior 155 

analysis of simulated genome-wide methylation data suggests that no one clustering 156 

method outperforms the other consistently and that mean silhouette widths can be used to 157 
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pick the ideal clustering method21. The silhouette plots revealed that different methods were 158 

required for the different regions to generate clusters with the largest average silhouette 159 

widths. We determined that K-means was an optimal approach for DLPFC, Ward was 160 

optimal for PHG and TCX, and UPGMA was optimal for FP after analyzing silhouette plots 161 

of clusters generated by each method for each region. An example of silhouettes used to 162 

determine the ideal clustering method for the DLPFC region is shown in Figure S1. A 163 

summary of the clusters for each brain region, considered case subtypes, is provided in 164 

Table S5. In the subtypes generated for the DLPFC region from the ROSMAP cohort, we 165 

assessed each subtype for enrichment of cognitive and pathological measures. We used 166 

Braak stages as a measure of neurofibrillary tangle burden and CERAD scores as a 167 

measure of neuritic plaque burden22,23. We also assessed the rate of decline in memory, 168 

executive function, visuospatial function, and language across the subtypes. Definitions, 169 

collection, and standardization of these decline measures can be found in previously 170 

published work24. 171 

 172 

Differential expression analysis of case subtypes 173 

For differential expression analysis, control decedents were defined as cognitively-normal 174 

and MCI decedents for PHG, FP, and DLPFC. In the case of TCX, control decedents were 175 

defined as cognitively normal, PSP, and PA decedents. For each of the regions used to 176 

stratify LOAD cases (TCX, PHG, FP, and DLPFC), we performed differential expression 177 

analysis to compare gene expression in case subtypes with control decedents as described 178 

above. We used the limma R package to perform the differential expression analysis 179 

between subtype and control decedents25. We used the clusterProfiler R package to 180 

perform KEGG and Reactome pathway analysis on differentially expressed genes to 181 

determine the signal captured by clustering on eigengene expression data26. 182 
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 183 

Single-variant association of eigengene expression and subtype specificity 184 

We used EMMAX, a variance component linear mixed model, to perform single-variant 185 

association of our newly derived quantitative traits27. Each submodule eigengene was used 186 

as a quantitative trait in single-variant association for its respective brain region. For each 187 

region, we also developed a subtype specificity metric by calculating the Euclidean 188 

distance between the eigengene expression profile of each decedent and the centroid of 189 

each subtype cluster. This resulted in a vector of scores for each subtype that was mapped 190 

separately. All quantitative trait mapping results had a genomic inflation factor near one, 191 

indicating that there was no significant population substructure effect on the mapping. QQ 192 

plot analysis on the p-values showed no evidence of population substructure or 193 

confounding effects (Figure S2). 194 

 195 

Replication of suggestive and significant SNPs in other cohorts 196 

The ROSMAP cohort represented the most adequately powered cohort in the study and 197 

was used as a baseline for assessing replication of suggestive and significant SNPs in the 198 

other cohorts. SNPs were considered suggestive if quantitative trait mapping with either the 199 

submodule eigengenes or the subtype specificity metric resulted in a p-value smaller than 200 

1×10-5 and genome-wide significant if they resulted in a p-value smaller than 5×10-8, which 201 

are standard cutoffs for GWAS. Suggestive and significant SNPs from the DLPFC region in 202 

ROSMAP were considered replicated in the TCX, FP, and PHG regions if the SNPs were 203 

associated with the submodule eigengenes or subtype specificity metric of the given region 204 

at a p-value of 0.05. Summary statistics of prior association studies were obtained from the 205 

NHGRI-EBI catalog28. Loci were considered replicated if suggestive and significant SNPs 206 

from the ROSMAP cohort were reported in these studies at a p-value smaller than 5×10-8. 207 
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A summary of the entire analysis is provided in Figure S3. 208 

 209 

RESULTS 210 

 211 

Refinement of 26 human co-expression modules identifies disease-associated 212 

transcriptomic signals 213 

We performed an iterative gene list pruning process using the iterativeWGCNA approach to 214 

refine the 26 human co-expression modules from the AMP-AD consortium. This resulted in 215 

subsets, or submodules, of highly correlated genes that were exclusive to each module. 216 

Genes that were not highly correlated to any submodule were removed since they are less 217 

likely to contribute to the overall signal of the submodule and more likely to introduce noise. 218 

We compared the submodules and detected specific LOAD-associated molecular pathways 219 

and processes that are shared across the three post-mortem brain cohorts and six brain 220 

regions (Figure S4). Furthermore, incorporating information from previously defined cell-221 

type specific markers derived from bulk RNA-Seq and single cell RNA-Seq29 showed that 222 

pruning the 26 co-expression modules into 68 submodules resulted in multiple novel cell-223 

type specific submodules (Figure 2, Figure S5). Taken together, these novel 68 224 

submodules reflect 15 specific functional consensus clusters that are associated with 225 

distinct pathways and processes related to LOAD (Figure S4).  226 

 227 

Submodule gene sets capture biological signals specific to LOAD pathology 228 

We annotated submodules using GO term enrichment, KEGG pathway enrichment, and 229 

Reactome pathway enrichment to highlight the biological specificity of co-expression 230 

signals captured by the different submodules (Table S6, Table S7, Table S8). While the 26 231 

harmonized co-expression modules were associated with five distinct consensus clusters 232 
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that captured a broader signal, the submodule associations were more specific in terms of 233 

functional enrichment (Figure S4). The 15 functional consensus clusters associated with 234 

the 68 submodules revealed cell-type specific signatures and elucidated gene sets for 235 

specific biological pathways, including tau-protein kinase activity, neuroinflammation, 236 

myelination, and cytoskeletal reorganization (Figure S4).  237 

 238 

Single-variant association mapping of submodule eigengenes 239 

To map the genetic drivers of biological disease-associated signals resolved by 240 

submodules, we performed single-variant association mapping of submodule eigengenes. 241 

Eigengenes were defined as the first principle component of the gene expression data 242 

associated with each submodule. They capture the variation of gene co-expression and 243 

reduce noise associated with the transcriptomic data. Genome-wide suggestive and 244 

significant loci were detected for submodules in all four brain regions (Table S9, Table S10, 245 

Table S11, Table S12). We identified multiple loci that were replicated across the cohorts at 246 

a genome-wide significant level. For instance, rs1990620 is a known variant in TMEM106B 247 

that was identified as genome-wide significant in the DLPFC region from the ROSMAP 248 

cohort was replicated (p < 5×10-2) in all other brain regions from the Mayo and MSSM 249 

cohorts. 250 

 251 

Stratification of LOAD cases based on 68 AMP-AD co-expression submodules 252 

Clustering LOAD cases in subtypes based on eigengenes provided a method of assessing 253 

genetic drivers of heterogeneity in the transcriptome of LOAD cases. The NbClust package 254 

chose between two and three clusters for each region and the number of cases in each 255 

cluster was balanced (Table S5). The subtypes were not enriched for common LOAD-256 

associated covariates, such as sex, APOEε4 genotype, or years of education (Figure 4). 257 
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Eigengene expression profiles for each subtype were used to assess the association of 258 

each subtype with molecular and biological pathways associated with submodules. An 259 

example for the ROSMAP cohort is shown in Figure 4. We observed no significant 260 

enrichment of cognitive or neuropathological measures between the subtypes for the 261 

DLPFC region (Figure S6). 262 

 263 

ROSMAP subtypes differ in inflammatory response 264 

In order to better understand the underlying molecular differences across the novel LOAD 265 

associated subtypes in the ROSMAP cohort and to identify potential subtype specific 266 

candidate markers, differential expression analysis was performed for each of the 267 

previously defined subtypes against a set of controls (Figure 5a). Each of the two subtypes 268 

was compared to a set of 471 decedents from the ROSMAP cohort that were either 269 

cognitively normal or had mild cognitive impairment. The Venn diagram in Figure 5b depicts 270 

the comparison across the different subtypes. Interestingly, cases associated with Subtype 271 

A showed a stronger transcriptional response with 127 differentially expressed genes 272 

(adjusted p-values < 0.05, absolute log fold change > 0.5) when compared with controls. Of 273 

these genes, 86 were up-regulated and 41 were down-regulated. Among the most 274 

significantly down-regulated genes associated with Subtype A cases was the stress-275 

response mediator corticotropin-releasing hormone (CRH). Overacting CRH signaling has 276 

been implicated in inflammatory disorders and LOAD where it has been proposed as a 277 

therapeutic target to reduce the negative effects of chronic stress related to memory 278 

function and amyloid beta (Aβ) production30. Cases associated with Subtype B had 40 279 

differentially expressed genes (adjusted p-values < 0.05, absolute log fold change > 0.5), 280 

39 of which were down-regulated when compared to controls. Notably, two key pro-281 

inflammatory mediators of amyloid deposition (S100A8, S100A9) were among the most 282 
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significantly down-regulated genes in Subtype B decedents when compared to controls 283 

(Figure 5a). Both genes, which are established inflammatory biomarkers, are part of a 284 

complex that serves as a critical link between the amyloid cascade and inflammatory 285 

events in LOAD31. Furthermore, multiple pathways linked to S100A8/9 activation, including 286 

IL-10 signaling and complement activation were enriched across down-regulated genes in 287 

Subtype B but not in Subtype A decedents as highlighted in Figure 5c. In addition, 288 

molecular pathways linked to microglia activation (Figure S8), the immune response, and 289 

the stress response were found among the most significant pathways and gene sets (Table 290 

S13, Table S14) that differ across subtypes. Gene set enrichment analysis revealed a 291 

subset of genes linked to the KEGG osteoclast differentiation pathway (Figure S8), 292 

including known AD risk markers such as TREM2, TYROBP, and CCL2 among others 293 

which were highly up-regulated in Subtype A cases compared to Subtype B cases. This 294 

highlights that both molecularly defined LOAD subtypes differ in their immune response 295 

and that known LOAD biomarkers, including S100A8/A932, TREM2, and CCL2 might be 296 

used to stratify patients based upon their inflammatory response to the observed disease 297 

state. These results were consistent with the functional annotations of the previously 298 

defined submodules that define both subtypes (Figure 4C). 299 

 300 

Single variant association mapping for ROSMAP decedents 301 

Genome wide association mapping revealed a differential enrichment of significant variants 302 

across subtypes (Figure 6, Table S9, Table S10, Table S11, Table S12). Loci were 303 

associated with one or more submodule eigengenes, as shown in Figure 6. One genome-304 

wide suggestive allele in TMEM106B was identified for Subtype B (p-value < 4×10-6, 305 

rs1990620
G

). This association was replicated at a genome-wide suggestive level in 306 

association with the DLPFCbrown_2 eigengene and at a genome-wide significant level with 307 
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the DLPFCbrown_1 and DLPFCyellow_2 eigengenes (Figure 3). DLPFCbrown_1 contains 308 

genes related to myelination and lysosomal activity (KEGG pathways hsa00600 and 309 

hsa04142), while DLPFCyellow_2 contains genes related to endocytosis and potassium 310 

channel activity (KEGG pathway hsa04144 and Reactome pathway R-HSA-1296071).  311 

TMEM106B is a known modifier of neurodegenerative disease and cognitive aging, which 312 

has been previously linked with cognitive performance33. Loss of TMEM106B function has 313 

been shown to rescue lysosomal phenotypes related to frontotemporal dementia34. The 314 

identified protective allele rs1990620
G

 is a known CCCTC-binding factor (CTCF) site, which 315 

has been shown to modify the inflammatory response in the course of aging35. Besides the 316 

association with TMEM106B in Subtype B, protective variants near MTUS2 were identified 317 

which are in close vicinity to HMGB1, a locus that has been previously implicated in brain 318 

atrophy36. A differential expression analysis of haplotype carriers of the protective 319 

rs1990620
G

 variant in TMEM106B showed an up-regulation of neuroactive ligand receptor 320 

interactions, while decedents carrying the risk variant showed significant up-regulation for 321 

pathways related to Osteoclast differentiation (KEGG pathway hsa04380) and 322 

neuroinflammation (data not shown).  323 

 324 

Suggestive SNPs in ROSMAP are replicated in other cohorts 325 

A total of 1326 unique SNPs representing 163 loci were genome-wide suggestive or 326 

significant (p-value < 1×10-5) in the DLPFC region when pooled from all 11 DLPFC 327 

eigengenes and two subtype-specific variant mapping analyses. Of these, 645 SNPs were 328 

replicated in the PHG analyses, 762 SNPs were replicated in the FP analysis, and 482 329 

SNPs were replicated in the TCX analyses (p-value < 1×10-2). The TMEM106B variant 330 

associated with dementia, rs1990620, was replicated in all cohorts. Of the 163 loci, 29 loci 331 
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across 27 studies had been previously reported in the NHGRI-EBI catalog such that the 332 

most significant SNP from the prior study was a suggestive SNP in the DLPFC region 333 

(Table S15, Table S16, Table S17, Table S18). 334 

 335 

DISCUSSION 336 

 337 

Common complex diseases such as LOAD are characterized by phenotypic heterogeneity 338 

and the presence of multiple common variants affecting disease risk. In this study, we 339 

present an analysis that uses transcriptomic co-expression data and whole-genome 340 

sequencing from multiple cohorts to dissect phenotypic heterogeneity and identify potential 341 

genetic drivers of complex trait pathology in LOAD. 342 

 343 

Here, we used an iterative pruning approach based on 26 human post-mortem co-344 

expression modules to generate 68 novel submodules that contained genes associated 345 

with LOAD specific biological pathways and molecular processes. Indeed, we observed 346 

that genes in the novel submodules are enriched for functional terms that were specific to 347 

pathways associated with LOAD, such as lipid modification, the TREM2/TYROBP pathway, 348 

and tau-protein kinase activity. Furthermore, submodules from all six brain regions 349 

clustered independently of the co-expression module of origin and brain region, suggesting 350 

that the genes captured in each submodule represented signals that were associated with 351 

LOAD pathology rather than cohort- or tissue-specific factors. Notably, submodules were 352 

much more specific for markers of different brain cell types, suggesting that the processes 353 

associated with submodules represent the pathological signals from these specific cell 354 

types. This is in line with recent studies showing that different cell types in the brain play 355 

specific roles at different stages in the pathogenesis of LOAD37. Taken together, our results 356 
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demonstrate that the novel human co-expression submodules identified in this study 357 

capture cell-type specific pathways associated with LOAD pathogenesis in the brain. 358 

 359 

Mapping the eigengene expression for individual submodules represents a pathway- or 360 

process-level alternative to expression quantitative trait locus (eQTL) mapping for each 361 

individual transcript. Since the human co-expression submodules represented pathological, 362 

cell-type specific pathways in LOAD brain tissue, mapping eigengene expression for 363 

decedents was expected to identify genetic drivers of LOAD pathology. RNA-Seq data from 364 

post-mortem brain tissue in human cohorts contains a strong immune signal, as evidenced 365 

by repeated identification of genetic loci related to microglial response in meta-analyses 366 

with increasingly large cohorts5,38. Using submodule eigengenes as quantitative traits for 367 

single-variant association provided an opportunity to identify genetic drivers of biological 368 

processes that are known to be drivers of early LOAD pathogenesis, such as astrogliosis, 369 

neuronal plasticity, myelination, and vascular blood brain barrier interactions37. Suggestive 370 

variants identified were unique to subsets of submodules. For instance, the TMEM106B 371 

locus was associated at a genome-wide significant level with the DLPFCbrown_1 and 372 

DLPFCyellow_2 eigengenes (Figure 3), representing processes related to oligodendrocytic 373 

myelination, lysosomal activity, endocytosis, and potassium channel activity. The 374 

TMEM106B locus has been implicated in cognitive aging, with functional consequences in 375 

frontotemporal dementia related to lysosomal activity33–35. A submodule of particular 376 

interest is the microglia-associated submodule DLPFCblue_3, which contains genes 377 

related to the TREM2/TYROBP cascade. The FAM110A locus is close to rs1014897 and 378 

the CNTNAP5 locus is close to rs76854344, both variants have been previously associated 379 

with posterior cortical atrophy and LOAD39. The NTM locus is close to rs1040103, a variant 380 

that has been associated with white blood cell count40. Thus, quantitative trait mapping of 381 
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single variants using eigengene expression for submodules presented in this study can 382 

elucidate genetic factors specific to associated pathological pathways. 383 

 384 

Furthermore, eigengenes represent a dimensional reduction of transcriptomic data onto 385 

axes of pathological relevance. Thus, we expected that clustering on the eigengene 386 

expression of LOAD cases would generate pathway-level profiles of putative molecular 387 

LOAD subtypes based on case heterogeneity. As anticipated, we observed that average 388 

eigengene expression was enriched by subtype for multiple submodules in all four brain 389 

regions tested. Strikingly, these enrichments were diametric in the subtypes generated for 390 

LOAD cases, an example of which is presented for the DLPFC region in Figure 4. Similar 391 

enrichment patterns were identified in the other three brain regions. These results suggest 392 

that the biological programs identified by submodules in this study align themselves along 393 

the heterogeneity of transcriptomic data present in LOAD cases across multiple cohorts 394 

rather than differentiating solely based on cases and controls. Furthermore, the 395 

stratification of patients based on submodule expression profiles demonstrated that there is 396 

significant variation in immune response in post-mortem brain tissue, a process that is 397 

considered a hallmark of LOAD pathogenesis (Figure 5, Figure S8). Variants associated 398 

with the subtype specificity metric overlapped with the variants associated with individual 399 

submodule eigengenes (Figure 6). This suggests that the genetic factors that influenced 400 

subtypes can be dissected into loci driving specific submodules. Furthermore, the 401 

deconstruction of genetic loci can provide the basis for more targeted treatment of 402 

dysfunctional pathways that contribute to different subtypes of LOAD. 403 

 404 

Our subtypes in the DLPFC brain region of the ROSMAP cohort represent differences in 405 

transcriptomic profiles of LOAD cases derived from post-mortem RNA-Seq data. A lack of 406 
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temporal data makes it challenging to decisively interpret these profiles. The subtypes may 407 

represent distinct LOAD endpoints, differences in disease severity, environmental effects, 408 

or phases of molecular pathology. Neither subtype was associated with cognitive or 409 

neuropathological outcome (Figure S6). Furthermore, covariates such as sex, APOE 410 

genotype, and years of education were not significantly enriched in any given subtype 411 

(Figure 4). This suggests that the transcriptomic profiles do not represent transitions in 412 

disease severity and that there are overall risk factors not reflected in transcriptomic 413 

subtypes. Furthermore, both subtypes are associated with unique loci that belong to the 414 

same community of loci detected by submodule mapping (Figure 6), indicating that the 415 

subtypes capture various combinations of genetic elements that lead to LOAD pathology. 416 

While suggestive, these transcriptomic LOAD subtypes will require further validation in 417 

cohorts that adequately control for disease progression.  418 

 419 

The methodology presented in this study is not limited to RNA-Seq data and can be 420 

performed on other omics, such as proteomics or metabolomics. As such data become 421 

available for the decedents in these cohorts, this analysis can be expanded across these 422 

additional informative dimensions. 423 

 424 
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Figure 2: Cell-type specificity of modules is refined in submodules. (A) Cell type specific592 

cells, microglia, neurons, and oligodendrocytes. The top 100 marker genes for each cell type593 
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Figure 3: Manhattan plots of single-variant association of select submodule eigengene599 

mapping. These Manhattan plots were generated for select DLPFC region submodule eigeng600 

dotted line). Loci of interest are annotated with the gene closest to the region. Some SNPs w601 
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Figure 4: Clustering on eigengene expression in ROSMAP data generates 2 subtypes.608 
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Figure 5: Differential expression analysis of ROSMAP subtypes reveals heterogeneity in inflammatory response in LOAD cases. (A) Differential expression analysis comparing each subtype to control 617 

decedents for the DLPFC region was performed using the limma R package. We show up-regulated (red, p < 0.05, log fold change >0.5) and down-regulated (blue, p < 0.05, log fold change < -0.5) genes in the 618 

volcano plot and label genes that have an absolute log fold change of greater than 1 (dotted lines). (B) Differentially expressed genes (p < 0.05, absolute log fold change > 0.5) from the analysis show a partial overlap 619 

between subtypes. (C) Top Reactome pathways for differentially expressed genes for both subtypes are reported. Subtype A demonstrates an enrichment of immune and stress-response related pathways across up-620 

regulated genes, while Subtype B demonstrates a down-regulation of a set of specific immune-related pathways linked to S100A8/A9 activation. 621 

 622 
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Figure 6: Network of phenotypes and associated loci. We created a directed network des624 

Red nodes represent phenotypes. An edge from a phenotype to a genetic locus signifies that625 

the loci detected in this study. The module eigengenes (yellow edges), submodule eigengene626 
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escribing the loci detected from the multiple analyses in this study. Blue nodes represent loci associate
at the locus is associated with the specified phenotype. Diagnostic phenotypes (red edges) were asso
nes (green edges), and subtypes (blue edges) were associated with overlapping and unique loci (cent
othelial cells, astrocytes, and oligodendrocytes (center). A small community of loci was associated with
tive diagnosis, and case-control association.  
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