
 

  
GLUT1 inhibition blocks growth of RB1-positive Triple Negative Breast Cancer 
 
Qin Wu1,2,3,12, Wail ba-alawi2,3,12, Genevieve Deblois2, Jennifer Cruickshank5, Shili Duan2, 
Evelyne Lima-Fernandes1,2, Jillian Haight5, Seyed Ali Madani Tonekaboni2,3, Anne-Marie 
Fortier6, Hellen Kuasne6,  Trevor D. McKee2,7, Hassan Mahmoud2,3,11, Sarina Cameron2,3, Nergiz 
Dogan-Artun2,3, WenJun Chen1,  Ravi N. Vellanki2, Stanley Zhou2,3, Susan J. Done5, Morag Park6, 
David W. Cescon5, Benjamin Haibe-Kains2,3,8,9,10, Mathieu Lupien2,3,4*, Cheryl H. Arrowsmith1,2,3* 
 
1Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada  
2Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada 
3Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, ON, Canada  
4Ontario Institute for Cancer Research, Toronto M5G 2M9, ON, Canada 
5The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, 
Toronto, ON M5G 2M9, Canada 
6Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada 
7 Princess Margaret Cancer Centre, STTARR Innovation Facility, Toronto, ON, Canada 
8 Department of COmputer Science, Toronto, ON, Canada 
9 Ontario for Cancer Research, Toronto, ON, Canada 
10 Vector Institute, Toronto, ON, Canada 
11 Faculty of Computer and Informatics, Benha University, Egypt 
12These authors contributed equally to this work. 
 
 
 
*Correspondence should be addressed to Mathieu.Lupien@uhnresearch.ca and 
Cheryl.Arrowsmith@uhnresearch.ca. 
 
Keywords 
 
Triple negative breast cancer, GLUT1, biomarker, E2F target pathway, RB1, patient-derived 
models, organoids, explants  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/764944doi: bioRxiv preprint 

https://doi.org/10.1101/764944
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Abstract  
Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the 

development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and 
companion biomarkers are urgently needed. Recognizing the elevated expression of glucose 
transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we 
investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 
inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs 
the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative 
phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data 
implicates E2F Targets pathway activity as a surrogate of OXPHOS activity. Furthermore,  the 
protein levels of retinoblastoma tumor suppressor (RB1) are strongly correlated with the degree of 
sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 
inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis 
in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified 
according to RB1 protein expression levels. 

 
 

Introduction 
 

Breast cancer is the most common female cancer worldwide, with 1.7 million new cases 
and over 520,000 deaths recorded in 20121. Triple negative breast cancer (TNBC) is a highly 
aggressive subtype of breast cancers, that lacks the expression of the oestrogen receptor α (ERα), 
progesterone receptors (PR) and the epidermal growth factor receptor 2 (HER2). TNBC represent 
15-20% of breast cancer cases but accounts for 25% deaths2. In addition, TNBC has a higher 
metastatic rate (~2.5 fold) within five years of diagnosis and poorer overall survival rate (4.2 vs. 6 
years) compared to receptor positive breast cancer subtypes3,4. This poor outcome derives from 
the heterogeneous nature of the disease, coupled with the lack of highly recurrent and/or actionable 
biomarkers that are informative for therapy5,6. Furthermore, while some TNBC are initially 
chemosensitive, 23% of patients recur within 5 years from diagnosis and over 30% develop drug 
resistance tumours7,8. Therefore, there is an urgent need to improve our understanding of the 
molecular basis for TNBC development and progression to discover effective therapeutic targets 
and their companion test to improve the outcome in patients.  

Metabolic adaptation is inherent to tumorigenesis to meet the increased requirements for 
bioenergetic, biosynthetic, and detoxification demands of malignant cells9. An increased aerobic 
glycolysis rate is a common metabolic feature in many cancer cells, and has been under extensive 
investigation as a therapeutic focus in cancer10,11. Among breast cancers, TNBC cells have an 
elevated glycolytic gene signature and concomitant lower oxidative phosphorylation signature 
compared to other breast cancer subtypes such as the hormone-positive luminal breast cancer12. 
High expression of glucose transporter 1 (GLUT1), a key rate-limiting factor for glucose uptake, 
is significantly elevated in basal-like breast cancer subtype13 (the most common type of TNBC14). 
This suggests a key role for GLUT1 in regulating TNBC cell metabolism. Targeting GLUT1 with 
small molecules, such as STF-31, WZB-117 and BAY-876, has been investigated in various types 
of cancers with promising results15–18. GLUT1 inhibition, either by a short hairpin RNA (shRNA) 
or WZB-117 inhibitor treatment showed anti-proliferation effects in MDA-MB-231 and HS 578T 
TNBC cell lines, again supporting GLUT1 as a possible target in TNBC19,20. Hence, a more 
systematic investigation and better understanding of the mechanisms regulating GLUT1 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/764944doi: bioRxiv preprint 

https://doi.org/10.1101/764944
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

dependency is urgently needed to assess the benefits of pharmacological inhibition of GLUT1 for 
TNBC treatment in preclinical settings.  

The inherent plasticity of cellular metabolism and the high degree of metabolic 
heterogeneity in TNBCs pose great challenges for metabolism targeting therapy21. Recent work 
suggests that heterogeneous metabolic dependencies within cancer cells underline the differential 
therapeutic vulnerabilities22. Therefore, in order for GLUT1 inhibition to be a successful strategy 
for TNBC therapy, the precise contexts in which this metabolic pathway is essential needs to be 
identified. In addition to tumor microenvironment, metabolic dependencies can be driven by 
genetic lesions, such as myc amplification and Kras mutation23,24. However, this oncogene driven 
cancer metabolism is incredibly complex and context-specific across cancer types23,25-26,27. 
Reliable biomarkers for predicting GLUT1 dependence and GLUT1 inhibition sensitivity are still 
lacking in TNBC. 

In this study, we systematically assessed the vulnerability of a wide range of well-
characterized TNBC cell lines to GLUT1 pharmacological inhibition. We then identified  the 
molecular basis underlying GLUT1 dependencies, and validated our results in patient derived 
organoids and tumour explants. Finally, we identified RB1 protein levels as a predictive biomarker 
for GLUT1 sensitivity, which may potentially be used to stratify TNBC patients that would benefit 
from targeted GLUT1 therapy. 
 
Results 
Growth of a subset of TNBC relies on GLUT1 activity 

To test the GLUT1 dependency of TNBC, we first investigated whether the expression 
level of SLC2A1, the gene encoding GLUT1, was increased in TNBC by interrogating two large 
independent publicly available clinical cohorts, the TCGA and METABRIC28,29. In both cohorts 
examined, SLC2A1 mRNA expression is significantly elevated in basal-like subtype 
(corresponding to the most common subtype of TNBC13) compared to oestrogen receptor positive 
and HER2-amplified breast tumors (TCGA: p=3.33e-11; METABRIC: p=2.53e-8.) (Fig. 1a-b). 
Similarly, SLC2A1 elevated mRNA levels were observed in a smaller, independent breast cancer 
patient derived xenograft (PDX) cohort from the Princess Margaret Cancer Centre (PM-PDXs) 
(Fig 1c. p=1.67e-2). PAM50 based breast cancer subtype classification across these datasets also 
revealed increased SLC2A1 mRNA expression levels in the basal-like subtype over all other 
subtypes (Supplementary Fig. 1a-c)30.  

To further assess the function of GLUT1 as a target and the feasibility of GLUT1 inhibition 
as a therapy for TNBC patients, we treated a panel of 17 TNBC cell lines with the small molecule 
GLUT1 inhibitor BAY-876. Among the reported  GLUT inhibitors, BAY-876, is the only inhibitor 
that is both highly potent and selective for GLUT1 over other glucose transporters (Supplementary 
Table. 1). Significant growth inhibitory effects were observed in 11 of the 17 TNBC cell lines (Fig. 
1d and Supplementary Fig. 1d) based on a half maximal inhibitory concentration (IC50) value of 
less than 5 µM (range from 0.1 to 4.5 µM).  The IC50 value for BAY-876 was greater than 10 µM 
for the six ‘resistant’ TNBC cell lines, the maximum dose used in the treatment. To complement 
the results from short-term treatments, we performed long-term (14 days) colony-forming assays 
to determine if the inhibitory effects of BAY-876 are sustained over time. At BAY-876 
concentrations of 1 µM, proliferation of sensitive cell lines (HCC1806 and Hs 578T) was severely 
inhibited, whereas the resistant cell lines showed little effect (MDA-MB-436 and MDA-MB-468) 
(Supplementary Fig. 1e). These data confirm the heterogeneous response to GLUT1 
pharmacologic inhibition across TNBC cell lines. We next evaluated the effect of siRNA-mediated 
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silencing of GLUT1 on cell proliferation. Consistent with the results from pharmacological 
inhibition of GLUT1 with BAY-876, SLC2A1 silencing reduced GLUT1 protein levels (Fig. 1e) 
and significantly impaired the growth of TNBC cell lines sensitive to BAY-876 (HCC1806 and 
Hs 578T) but had no impact on the growth of BAY-876 resistant TNBC cell lines (MDA-MB-436 
and MDA-MB-468) (Fig. 1f). In agreement, partial deprivation of glucose from the culture media 
selectively impaired the growth of cell lines sensitive to BAY-876 treatment but had no significant 
effect on the BAY-876 resistant cell lines over 5 days (Fig. 1g). 

We next characterized the mechanism of BAY-876 impaired growth in TNBC cell lines by 
quantifying the impact on cell cycle and apoptosis. The BAY-876 sensitive HCC1806 and Hs 578T 
cell lines demonstrated a modest but significant decrease in the S phase, with a concurrent increase 
in G1 phase following 72 hours treatment with 3 µM BAY-876 (Fig. 1h). In contrast, MDA-MB-
436 and MDA-MB-468 cells showed no significant changes in cell cycle progression (Fig. 1h). 
Moreover, caspase 3/7 staining showed a significant increase in the number of apoptotic cells in 
BAY-876 sensitive compared to resistant cell lines upon GLUT1 inhibition (Fig. 1i-j). Taken 
together, these data showed that GLUT1 inhibition either by siRNA mediated GLUT1 silencing 
or by pharmacological inhibition using BAY-876 treatment, results in attenuated cell growth and 
proliferation, increased cell cycle arrest and increased cell apoptosis, which collectively contribute 
to growth suppression in a subset of TNBC cells. 

 
OXPHOS levels correlate with the response to GLUT1 inhibition. 
As our data indicated that BAY-876 treatment selectively impairs the growth of a subset of TNBC 
cell lines, we assessed the mechanism conferring this heterogeneous response to GLUT1 
inhibition. Because glucose is the fuel for glycolytic cellular metabolism, we reasoned that 
sensitivity to GLUT1 inhibition may be connected to the basal metabolic state of each cell line. 
Bioenergetic profiling revealed that the basal glycolytic rate as reflected by the extracellular 
acidification rate (ECAR) and mitochondrial oxygen consumption rates (OCR) indicative of 
oxidative phosphorylation (OXPHOS), discriminates between BAY-876 sensitive versus and 
resistant TNBC cell lines (Fig. 2a). Whereas resistant cell lines exhibited slightly decreased ECAR 
(glycolytic rates), they display a 3-fold higher OCR (oxygen consumption rate) compared to 
sensitive cell lines at the basal level (in absence of BAY-876) (Fig. 2a). The ratio of OCR to ECAR 
(OCR/ECAR), indicative of higher reliance on OXPHOS, was significantly higher in resistant 
compared to sensitive TNBC cell lines (Fig. 2b)31. This observation indicates that BAY-876 
resistant cells display higher levels of OXPHOS at the basal state compared to BAY-876 sensitive 
TNBC cell lines. 
 In addition to the basal metabolic bioenergetic profile, a subclass of breast cancer cells 
have also been reported to switch from aerobic glycolysis to OXPHOS under limiting glucose 
conditions, as observed in cervical cancer, glioma and pancreatic cancer cells32–34. This metabolic 
plasticity illustrates the interplay between glycolysis and OXPHOS, enabling the cells to adapt 
their bioenergetic profile to microenvironmental changes35. In agreement with BAY-876 inhibiting 
glucose uptake, the rate of glycolysis was significantly decreased upon GLUT1 inhibition as 
measured by decreased ECAR (Fig. 2c), glucose uptake (Fig. 2d) and lactate secretion 
(Supplementary Fig. 1g) in both BAY-876 sensitive and resistant TNBC cell lines. However, 
BAY-876 resistant cell lines display approximately double OCR upon GLUT1 inhibition, while 
no significant difference in OCR was observed in sensitive TNBC cell lines (Fig. 2e). This suggests 
that BAY-876 resistant cells can adopt an increased OXPHOS metabolic profile to compensate for 
decreased glucose uptake, thereby enabling continued cell growth and cell survival. Since 
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glutamine is utilized as a major energy source to drive OXPHOS, we next tested the dependence 
of both sensitive and resistant TNBC cell lines on glutamine. BAY-876 resistant TNBC cell lines 
exhibited glutamine depletion in the media (indicative of increased glutamine uptake) either upon 
SLC2A1 knockdown leading to depleted GLUT1 levels or BAY-876 treatment (Fig. 2f). In 
addition, removal of glutamine from the growth medium resulted in an increased sensitivity to 
BAY-876 in resistant TNBC cell lines, suggesting a strong dependence of resistant cells to 
glutamine-fueled OXPHOS to bypass growth suppression induced by GLUT1 inhibition (Fig. 2g). 
These results further support the ability of BAY-876 resistant TNBC cells to adapt their 
bioenergetic profile and metabolic requirements upon blocking GLUT1. 
 
RB1 protein level discriminates response to GLUT1 inhibition  

GLUT1 is known to influence a wide variety of biological processes, however, it is still 
unclear how these underlie the GLUT1 dependency of cancer cells36,37. To address this key 
question, we first examined molecular and phenotypic features that correlated with sensitivity or 
resistance to BAY-876 using the IC50 values calculated from our 17 TNBC cell lines (Fig. 1d). 
The highly reproducible responses identified in both sensitive and resistant cell lines, indicate that 
BAY-876 treatment and GLUT1 inhibition are not universally cytotoxic. To identify the molecular 
mechanism(s) for cellular drug resistance, we considered several candidate pathways. Since BAY-
876 efficiently decreased glucose uptake and glycolysis rates in highly resistant cell lines (Fig. 2c-
d), we ruled out drug-efflux pump or impaired drug metabolism mechanisms which could decrease 
the effective cellular concentration of BAY-876. Next, we examined the mRNA expression of 
SLC2A1 across all 17 cell lines. The response to BAY-876 is not correlated with SLC2A1 mRNA 
levels (Supplementary Fig. 2a). However, it is difficult to draw conclusions from this observation 
given that total SLC2A1 expression does not necessarily correlate with its protein level38. We then 
performed a systematic global profiling of the published transcriptome data for our panel of TNBC 
cell lines39. We profiled differentially expressed genes between BAY-876 responders and non-
responders (Fig. 3a) and subjected these genes to gene set enrichment analysis (GSEA). Gene sets 
associated with the OXPHOS pathway stood out in the analysis as enriched in BAY-876 resistant 
versus sensitive TNBC cell lines (Fig. 3b and Supplementary Fig. 2b), suggesting that the elevated 
functional mitochondrial output of resistant cells as shown in Fig. 2 is due to the increased 
OXPHOS gene expression signature.  

GSEA analysis also revealed that the most significantly enriched pathway in resistant 
versus sensitive cell lines is the E2F Targets pathway (Fig. 3b and Supplementary Fig. 2c), 
suggesting that elevated expression of genes involved in the E2F Targets pathway also correlates 
with resistance to GLUT1 inhibition. To further confirm this association in patient samples, we 
took advantage of the transcriptome data of patient TNBC tumors from TCGA data cohorts. Based 
on our observation of strong correlation between elevated OXPHOS metabolism and resistance to 
GLUT1 inhibition in TNBC cell lines, we used increased gene expression patterns of OXPHOS to 
discriminate BAY-876 putative-resistant samples versus putative-sensitive samples in the TCGA 
cohorts. Calculating the Pearson correlation coefficients between the OXPHOS pathway with 
other gene expression patterns revealed a strong clustering with the E2F Targets pathway, 
suggesting that high expression of genes involved in the E2F Targets pathway correlates with 
expression of OXPHOS related genes in primary TNBC tumour samples (Fig. 3c and 
Supplementary Fig. 2d).  

We next sought to identify a protein signature associated with the above gene expression 
and metabolic differences and that could predict the relative responsiveness of TNBC cells to 
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BAY-876. Using proteomics datasets from University of Texas MD Anderson Cancer Center for 
12 of our TNBC cell lines40 , we identified differential protein levels for a total of 8 proteins which 
showed a significant correlation with BAY-876 response (Fig. 3d). Most proteins (3 out of 5) 
enriched in resistant cell lines are components of the E2F Targets pathway, namely cyclin-
dependent kinase inhibitor 2A (CDKN2A), cyclin E1 (CCNE1) and checkpoint kinase 2 (CHK2). 
Among the three proteins whose levels were increased in BAY-876 sensitive lines, the top hit was 
retinoblastoma tumor suppressor (RB1) protein that functions primarily as an upstream 
transcription factor attenuating expression levels of known E2F targets41,42. We further confirmed 
the association of RB1 protein levels with BAY-876 sensitivity in an independent proteomics 
datasets from the Princess Margaret Cancer Centre39 (Fig. 3e). We also assessed RB1 protein levels 
across our 17 TNBC cell lines by immunoblotting (Fig. 3f). This further confirmed the significant 
correlation (R2=0.73) between RB1 protein levels and BAY-876 sensitivity (Fig. 3g). These results 
suggest that elevated RB1 protein levels underly sensitivity to BAY-876 treatment, while low RB1 
protein levels associates with resistance to BAY-876 in TNBC. To test this concept, we 
overexpressed RB1 in two BAY-876 resistant cell lines: MDA-MB-436 and MDA-MB-468 (Fig. 
3h and Supplementary Fig. 3a). In both cell lines, RB1 overexpression caused an increase in the 
ECAR/OCR ratio and markedly sensitized cells to BAY-876 treatment (Fig. 3i-j and 
Supplementary Fig. 3b). Conversely, RB1 knockdown in BAY-876 sensitive TNBC cell lines 
induced higher OCR/ECAR ratios and rendered the cells refractory to the anti-proliferative effects 
of BAY-876 (Fig. 3k-m and Supplementary Fig. 3c-d). Collectively, our results suggest that RB1 
protein levels can serve as a biomarker of response to BAY-876 treatment in TNBC cell lines. 
 
Pharmacological inhibition of GLUT1 impedes TNBC cancer growth in patient-derived 
models 

To better address the clinical relevance of this hypothesis, we tested the correlation of RB1 
protein level and BAY-876 sensitivity across a panel of TNBC patient derived samples. Patient-
Derived Xenograft (PDX)-Derived Organoids (PDXDOs), which are thought to better recapitulate 
features of breast histology and epithelial heterogeneity, and therefore serve as better tools to 
assess drug responses for cancer therapy43. Thus, PDXDOs from five different TNBC patients 
were cultured, of which three cases are RB1-low, and two expressed RB1 based on immunoblots 
(Fig. 3n). In agreement with our observations in TNBC cell lines, higher RB1 expression was 
predictive of sensitivity to BAY-876 in PDXDOs (Fig. 3o). Some PDXDOs (PDXDO-B64, 
PDXDO-1915 and PDXDO-1963) with low-RB1 levels showed a weakened partial response to 
BAY-876 treatment. We postulated that this could be due to heterogeneity in RB1 expression 
across sub-populations of cells found in each patient-derived tumour culture. In agreement, 
Immunostaining for RB1 protein indicates that although most of the cells are RB1 negative in 
PDXDO-1915 (85.9% cells are RB1 negative) and PDXDO-B64 (65.7% cells are RB1 negative), 
some cells showed a strong RB1 staining signal confirming a mixed population with differential 
RB1-related response to BAY-876 (Supplementary Fig. 3e-f).  
 We further tested the efficacy of GLUT1 inhibition and its association with RB1 protein 
expression in PDX derived tumor ex-vivo explant models (PDXDEs) (Fig. 4a). PDXDE models 
have been shown to  accurately predict patient-specific responses to multiple drugs and to mimic 
in vivo results in breast cancer44,45. We first established the appropriate culture conditions to 
maintain TNBC PDXDEs. As illustrated by hematoxylin and eosin (H&E) staining, tissue 
architecture and morphology of PDXDEs cultured for up to 48 hours on gelatin sponges were 
consistent with the original (T=0h) tumor tissue (Fig. 4b and Supplementary Fig. 4a). Tumor cells 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/764944doi: bioRxiv preprint 

https://doi.org/10.1101/764944
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

are present in the surrounding stroma, demonstrating maintenance of the PDX architecture 
(Supplementary Fig. 4). The proliferative capacity of explants was assessed using the 
immunohistochemistry marker ki67, with a change of 25% or more  considered to be a significant 
response46. No significant change in the number of ki67 positive cell nuclei was observed between 
T=0h and 48 hours of culture (T=48h) for matched tissues (Fig. 4c). Furthermore, as shown by 
immunohistochemistry staining for the apoptotic marker cleaved caspase-3 (CIC3), no significant 
differences in the proportion of apoptotic cells was observed in PDXDEs cultured over a 48 hours 
period (Fig. 4d). Altogether, our results demonstrate that PDXDEs are viable over the experimental 
period of 48 hours. 
 Next, we quantified the RB1 protein level by RB1 immunohistochemistry staining in 
PDXDEs from six different patients (Supplementary Fig. 5a)47,48. Each PDXDE case was assigned 
a score of 0 (<10% of cells positively stained), 1 (if >10% and <50% of cells positively stained) 
or 2 (>50% of cells positively stained), representing RB1-negative, intermediate or positive 
PDXDEs respectively, (Supplementary Fig. 5a). The RB1-positive (PDXDE-1) and RB1 negative 
explants (PDXDE-2) were then used to evaluate the efficacy of GLUT1 inhibition. Each of these 
PDXDEs expressed GLUT1 at similar levels (Supplementary Fig. 5b). RB1 and GLUT1 
expression levels in both PDXDEs were confirmed by immunoblotting (Fig. 4e). Consistent with 
our cell line and PDXDO results, BAY-876 (3 µM) treatment abrogated the proliferation in 70% 
(7/10) PDXDE-1 RB1-positive explants within 48h as measured by ki67 staining when compared 
to vehicle-treated PDXDEs (Fig. 4g, Supplementary Fig. 6). Although intertumoral heterogeneity 
to BAY-876 response was observed across these explants, PDXDE-1 explants showed a significant 
overall reduction in ki-67 proliferation (p<0.01) upon BAY-876 treatment (Fig. 4i).  Moreover, 
cleaved caspase-3 staining revealed a significant increase in apoptosis in BAY-876 treated 
PDXDE-1 (Fig. 4j and Supplementary Fig. 6). Conversely, no significant changes in cell 
proliferation or apoptotic markers were observed following BAY-876 treatment in the RB1-
negative PDXDE-2 explants (Fig. 4h, 4k-l and Supplementary Fig. 7). Collectively, our findings 
across a range of pre-clinical PDX derived models provide a strong rationale for selecting GLUT1 
inhibition as a therapeutic strategy on the basis of RB1 protein expression level and supports the 
further  evaluation of strategies to inhibit GLUT1 and/or the RB1/E2F axis in TNBC patients. 
 
Discussion 

In this study, we identify a dependency of a subset of TNBCs on GLUT1 function, and 
relate this dependency to the distinct basal cellular bioenergetic profile. Our findings suggest a 
mechanistic basis by which cells with higher glycolysis/OXPHOS rate are susceptible to GLUT1 
inhibition. These results have important implications for the design of therapeutic strategies for 
TNBC, given the known heterogeneity within TNBCs, both genetically and metabolically49. This 
is also supported by the recent observations of metabolic heterogeneity across diverse cancer cell 
lines at both the unperturbed and the perturbed states22. The latter study suggests that 
heterogeneous metabolic dependencies across cancer cell lines underly differential therapeutic 
vulnerabilities associated with specific cancer genotypes22.  Direct targeting of metabolic states in 
TNBC has shown promising results, for example, inhibitors that target glutathione biosynthesis, 
folate receptor, fatty acid oxidation as well as glutamine metabolism were shown to suppress tumor 
growth in TNBC26,27,50,51. However, successful clinical translation of these results is hampered by 
issues such as metabolic plasticity 21. 

Metabolic plasticity need not be inherent but may be adaptive, based on the stage of tumor 
progression, tumor microenvironment such as nutrient availability, and the type of treatment 
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administered52,53. It is likely that in many cases in which glycolysis is inhibited, cells will respond 
by increasing other alternative metabolic pathways54,55. Supporting this, our results demonstrated 
that GLUT1 inhibition triggered metabolic reprogramming toward OXPHOS in BAY-876 
resistant TNBC cell lines. This metabolic adaptation in conjunction with the use of alternative 
nutrients such as glutamine overcomes the inhibition of glucose metabolism in our BAY-876 
resistant TNBC cell lines. Thus, glutamine deprivation sensitizes the resistant cells to BAY-876 
inhibition. This synergism between glycolysis inhibitors combined with OXPHOS inhibition 
suggests a strong rationale using two or more drugs targeting different metabolic pathways to 
achieve superior therapeutic benefits for TNBC treatment56,57.  

Many relationships between cancer metabolism and genotypes have been established in 
which genomic alterations are used to identify metabolic differences58,59. Mutations that activate 
oncogenes or inactivate tumor suppressors can significantly affect activities of metabolic enzymes 
and have a key role in aerobic glycolysis of cancer23,24,60–62. Phosphatidylinositol 3’-kinase 
(PI3K)63, phosphatase and tensin homolog (PTEN)64, Myc65,66 and p5367 can all impact cellular 
glucose metabolism. Here, we discovered the significant correlation between RB1-E2F Targets 
pathway and OXPHOS in both cell lines and TNBC primary tumors. TNBC cells that lack RB1 
protein have increased expression of OXPHOS genes and accordingly increase mitochondrial 
respiration, ultimately leading to resistance to GLUT1 inhibition. This metabolic role of RB1 in 
TNBC is under appreciated, but consistent with recent reports suggesting that RB1 loss stimulates 
mitochondrial function rather than anaerobic metabolism by activating E2F targets68,69. These 
connections are especially interesting given the rapidly growing evidence that RB1 is needed for 
cells to maintain a normal metabolic balance, and that the loss of RB1 leads to reprogramming of 
specific pathways70–72. Metabolic adaptations are thought to enhance the ability of cancer cells to 
sustain the metabolic intermediates for cell survival during multidrug resistance73,74. Our results  
outline a clinically feasible scenario to use RB1 as a biomarker to stratify the TNBC patients for 
targeted therapy. Since RB1 is controlled by both genetic and epigenetic mechanisms, the presence 
of genetic mutations in RB1 fails to predict RB1 protein level75,76. Thus, we suggest using 
immunohistochemical assessment of RB1 protein in patient tumors to select patients suitable for 
targeted therapy in TNBC.  

In summary, we have discovered a RB1 protein-dependent metabolic addiction to GLUT1 
function in a subset of TNBCs, identifying BAY-876 as an effective agent to block growth in  
patient derived models, including explants that express RB1 protein.  
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Methods 
Cell culture. Human breast cancer cell lines were obtained from American Type Culture 
Collection (ATCC, Teddington, UK). All cells were routinely cultured in RPMI 1640 (Life 
Technologies 11965), or Dulbecco’s modified Eagle’s medium (Gibco) supplemented with 10% 
FBS recommended by suppliers. The cell lines were authenticated by short-tandem-repeat (STR) 
analysis and matched to the German Collection of Microorganisms and Cell Cultures (DSMZ) 
database, and they were used for no more than 25 passages after STR typing. Mycoplasma tests 
were routinely performed using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, 
Switzerland).  
SLC2A1 mRNA expression analysis. TCGA mRNA expression was downloaded from the Xena 
browser77. METABRIC mRNA expression was downloaded using MetaGx R package. Genefu R 
package78 was used to classify all samples into PAM50 molecular subtypes. Wilcoxon rank sum 
test was used to measure the significance of difference between TNBC vs non-TNBC samples and 
also between the different specific subtypes. 
TCGA data analysis. Breast Adenocarcinoma TCGA data was retrieved from Firehose using the 
GSVA R package79.We identified enrichment of Hallmark gene sets80 for each TNBC tumor 
sample in TCGA using their RNAseq profiles. The enrichment was conducted using ssgsea method 
as part of GSVA R package79. The correlation between the Hallmarks were then calculated using 
Spearman’s rank correlation. 
Proliferation and colony-formation assays. TNBC control and gene knocked down cells 
(500/well) were seeded in 384 well plate and transferred to Incucyte ZOOM analysis system 
(Sartorius) that was maintained at 37 °C. Growth profile was monitored by 10 X objective every 
6 h using Incucyte software 2016 A with an integrated confluence algorithm until 72h. Standard 
mode per well was used to collect images in phase-contrast mode and averaged to provide a 
representative statistical measure of the well confluence. For colony-formation assays, 500–1,000 
cells were seeded in 6-well plates. At the indicated time point (usually 10–14 days), cells were 
fixed with 80% methanol and stained with crystal violet solution overnight. All experiments were 
performed in triplicate.  
Small interfering RNA (siRNA)-mediated gene knockdown. siGENOME siRNA targeting 
SLC2A1 (L-007509-02) and a non-targeting siRNA pool (D-001206-14) control, were purchased 
from Dharmacon (Thermo Scientific, Hemel Hempstead, UK. Cells were transfected with 25 
nmol/L siRNA using Lipofectamine RNAiMax transfection reagent (Invitrogen, Life 
Technologies, Paisley, UK), following the manufacturer’s instructions.  
Western blot analysis. Cells were lysed directly in 1× lysis buffer (50 mmol/L Tris-HCl pH 6.8, 
2% SDS, 10% glycerol, 2.5% β-mercaptoethanol and 0.1% bromophenol blue). Alternatively, cells 
were lysed by scraping them into a pH 7.4 lysis buffer containing 1% NP-40 (Sigma-Aldrich, 
Gillingham, UK), 50 mmol/L Tris, 10% glycerol, 0.02% NaN3, 150 mmol/L NaCl, and a cocktail 
of phosphatase and protease inhibitors (Sigma-Aldrich, Gillingham, UK. Snap-frozen tumor 
tissues were suspended in a pH 7.4 lysis buffer containing 50 mmol/L Tris base, 150 mmol/L 
NaCl, 2% TritonX-100, 1% SDS, 10 mmol/L EDTA, and a cocktail of phosphatase and protease 
inhibitors (Sigma-Aldrich, Gillingham, UK). Tissue destruction was done with the bullet blender 
homogenizer (Next Advance, New York, USA). 20–100 µg of proteins were separated in reducing 
conditions (2.5% β-mercaptoethanol) by SDS–PAGE (SDS–polyacrylamide gel electrophoresis) 
and transferred to nitrocellulose membranes (Bio-Rad, Hemel Hempstead, UK) for further 
processing, following standard western blotting procedures.  
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Primary antibodies used in this study were: anti-GLUT1 rabbit monoclonal (EPR3915) (ab115730) 
(1:1000), anti-RB1 rabbit monoclonal (EPR) (ab181616) (1:2000), anti-beta actin (ab16039) 
(1:5000). The secondary antibodies are goat-anti rabbit (IR800 conjugated, LiCor no. 926-32211) 
and donkey anti-mouse (IR 680, LiCor no. 926-68072) antibodies (1:5000). Odyssey Licor system 
were used to scan membranes and ImageJ was used to quantify western blotting results by 
densitometry 
Cell cycle assay. Exponentially growing cells in six-well plates were treated with 3 µM BAY-876 
or DMSO for 24h before cell cycle analysis using allophycocyanin (APC) BrdU Flow kit (BD 
Pharmingen). Briefly, cells were incubated with 10 μM BrdU for 6 h before fixation, 
permeabilization, and staining with APClabeled anti-BrdU antibody and 7-aminoactinomycin D 
(7- AAD) according to the manufacturer’s instructions. Cells were then analyzed using a BD 
FACScan flow cytometer and the percentage of live cells in each cell cycle stage was determined 
using FlowJo software (version 9.3.1). Experiments were performed in duplicate and the 
percentage of cells in each stage was compared between the treated and untreated samples for 
each cell line using a two-tailed t test. P values ≤0.05 were considered significant. 
Cell apoptosis assay. For cell death assays TNBC cells (3000/ well) were seeded in 96 well plate 
and incubated for 24h at 37⁰C. The cells were then treated either with DMSO or BAY-876 for 5 
days. Post treatment, Caspase-3/7 green apoptosis assay reagent (Sartorius #4440) was added to 
the cells and transferred to Incucyte® ZOOM 2FLR system and analyzed using 2016 an integrated 
software. 
Mitochondrial respiration and glycolysis rate measurements. Bio-energetic studies (OCR: 
Oxygen Consumption Rate and ECAR: ExtraCellular Acidification Rate) were measured using a 
Seahorse XFe96 Extracellular Flux Bioanalyzer (Agilent). TNBC cells (104) were seeded and 
cultured for 24h. The medium was then replaced with DMEM (25 mM glucose, 2 mM glutamine, 
no sodium bicarbonate) pH ~7.4 and incubated for 1h at 37 ⁰C in a CO2-free incubator. For the 
mitochondrial stress test (Seahorse 101706-100), oligomycin, trifluoromethoxy carbonylcyanide 
phenylhydrazone (FCCP), and a mixture of antimycin and rotenone were injected to final 
concentrations of 2 µM, 0.5 µM and 4 µM, respectively. For the glycolysis stress test (Seahorse 
102194-100), glucose, oligomycin and 2-deoxyglucose were injected to final concentrations of 10 
mM, 2 µM and 100 mM, respectively. OCR and ECAR were normalized to cell number as 
determined by CyQUANT NF Cell proliferation assay kit (ThermoFisher Scientific, C7026). OCR 
and ECAR values were used to compute basal respiration, spare capacity, proton leak, ATP 
production, glycolysis and glycolytic capacity. Calculations from two independent experiments 
were performed using ExcelMacro Report Generator Version 3.0.3 provided by Seahorse 
Biosciences and two-sided Student’s t-test computed using GraphPad. 
Measurement of total cellular ROS. A dichlorofluorescin diacetate (DCFDA) cellular ROS 
detection assay (abcam, ab113851) was used to measure total ROS activity within the cells. A total 
of 2.5 × 104 cells per well were seeded in a 96-well plate and allowed to attach overnight. The cells 
were then stained with 25 µM DCFDA for 45 min at 37 °C. After staining, the cells were washed 
and measured using a microplate reader with fluorescence (Ex/Em=485/535 nm).  
Metabolite measurements: Glucose, Lactate and Glutamine were quantified simultaneously 
using Bioprofile Flex analyzer (Nova Biomedical). Briefly, 300 µL of the cell/debris free culture 
medium was used to measure glucose/glutamine consumption and lactate production. The values 
were normalized to the cell number. 
Gene set enrichment analysis.Transcriptome data available for our tested 17 cell lines were 
processed using Kallisto pipeline (Marcotte et al. 2016, 10.1038/nbt.3519). Drug activity were 
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extracted from growth curves produced by IncuCyte assay. IncucyteDRC R package was used to 
process the growth curves and obtain concentration and viability normalized to control near 
confluence point81 and PharmacoGx R package was then used to obtain drug activity measures 
such IC50 and Area-above-the-dose-response curve (AAC)82 . Genes were ranked based on the 
Pearson correlation coefficients between the measured drug activity (IC50) and individual gene 
expression levels over all 17 cell lines. Hallmarks gene sets were downloaded from MsigDB80 and 
piano R package was used to produce the GSEA results. Pathways enrichment plots were generated 
using fgsea R package83. 
Proteomics analysis. MD Anderson protein expression data was downloaded from40. Princess 
Margaret Cancer Centre protein expression data was downloaded from39. Pearson correlation 
coefficients between the measured drug activity (IC50) and individual protein expression levels 
over all samples. 
Inducible ectopic expression of RB1. eGFP as control or RB1 were cloned into the Rc/CMV 
vector (Addgene plasmid 1763). Electroporesis-based transfection protocol (Lonza, previously 
known as Amaxa; http://www.lonzabio.com/cell-biology/transfection/) were used for transfection 
of MDA-MB-436 and MDA-MB-468 cells. 2–3 million cells were transfected with 3 micrograms 
of plasmid DNA vector. The transfection efficiency of this procedure TNBC cells amounted to 
60%–80% and resulted in the transient expression of the transfected gene lasting up to 10–12 days. 
Lentiviral mRNA targets. Two independent shRNA vectors targeting RB1 were obtained from 
Addgene (Addgene ID: 25640 and 25641). Lentivirus was produced using standard virus 
production methods by co-transfecting target and packaging plasmids into HEK293T cells. Cell 
lines were then transduced with 0.45 µM filtered and ultracentrifuge-concentrated viral particles 
with Polybrene (8 µg ml–1). After 16 h of transduction, the media was changed for fresh regular 
growth media, and 48 h later selection started using puromycin (0.2–0.6 µg ml-1). After selection 
was complete in 72 h, cells were termed stably transduced.  
Immunohistochemistry staining. Paraffin sections at 4um thickness were dried at 60oC oven for 
2 hours before staining. The immunohistochemistry (IHC) was performed according to the 
manufacturer's guidelines using BenchMark XT-an automated slide stainer (Ventana Medical 
System). Glut1 (Roche #06419178001) IHC was done with mild antigen retrieval (CC1, pH8.0, 
#950-124), 32 min antibody incubation and Ventana iVeiw DAB Detection Kit (#760-091). The 
dilution for RB (BD #554136) was 1:1,600 with 64min antigen retrieval, 32min antibody 
incubation and Optiview Detection Kit (#860-099). Antibody  dilution for Ki67 (Dako M7240, 
clone MIB1) was 1:100 with standard antigen retrieval, 60min antibody incubation and Ultraview 
Detection kit (#760-500). Dilution for cleaved caspase 3 (CST #9661) was 1:500 with standard 
antigen retrieval, 32min antibody incubation and iView Detection Kit. The slides were 
counterstained with Harris hematoxylin, dehydrated in graded alcohol, cleared in xylene and 
coverslipped in Permount. 
Image capture and quantification of immunostaining: Stained slides were subjected to whole 
slide imaging using an Aperio ScanScope AT2 at 20x magnification. Digital images were loaded 
into Definiens TissueStudio 4.3 software (Definiens Inc., Munich Germany), and individual tissue 
slices were identified away from slide background. A machine learning classifier was trained to 
identify viable tumor tissue from stroma, necrosis, and artifact, with manual quality correction to 
re-classify any mislabeled regions. Stain separation was used to isolate hematoxylin counterstain 
from DAB antibody-specific stain, and the hematoxylin channel was subjected to computer-vision 
based segmentation algorithm to identify individual nuclei, with a watershed step to break apart 
closely-packed nuclei. Cell simulation grew a small region around each nucleus to simulate a 
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cytoplasm, and the resulting cell objects were classified into “negative”, “low” “medium’ and 
“high’ DAB intensity thresholds, based on comparison to clear positive and negative controls. Per-
cell statistics were reported for each tissue region within each slide, and used to calculate the 
proportion of positive cells for each region of interest.       
Generation and maintenance of PDXDO-1915, PDXDO-1963 and PDXDO-1986: PDX were 
generated in NSG mice as above from TNBC biopsies and used under an REB-approved research 
protocol (UHN:15-9481). PDX tumors were excised from mice at passage 2, minced and digested 
in Advanced DMEM/F12 (ThermoFisher) containing 1X GlutaMAX, 10mM HEPES, 1X 
antibiotic-antimycotic and 500ug/mL Liberase TH (Sigma-Aldrich) in Miltenyi MACS C tubes. 
Digestion was performed using the gentle MACS Octo Dissociator (Miltenyi). Digested tissue was 
processed and plated in reduced growth factor Basement Membrane Extract (BME) Type 2 
(Cultrex) in media as described by Sachs et al. (2018). The organoids were confirmed to be of 
human origin and devoid of mouse cells by flow cytometry. Organoids were passaged 
approximately every 3 weeks; they were dissociated to single cells with TrypLE Express 
(ThermoFisher) and by manual pipetting, passaged at a ratio of 1:12 and re-embedded in BME. 
For cell viability assays, organoids were dissociated and plated at 3,000 cells/well in 384-well 
plates pre-coated with 8mL BME. Cells were grown for 4 days; then, were treated with the 
indicated concentrations of BAY-876 for 5 days. Cell viability was assessed using Cell Titer Glo 
3D (Promega). 
Generation and maintenance of PDXDO-B81 and PDXDO-B64: PDX tumors were excised 
from mice, minced and digested in Advanced DMEM/F12 (ThermoFisher) containing 1X 
GlutaMAX, 10mM HEPES, 1X antibiotic-antimycotic and 500ug/mL Liberase TH (Sigma-
Aldrich) in Miltenyi MACS C tubes. Digestion was performed using the gentle MACS Octo 
Dissociator (Miltenyi). Digested tissue was processed and plated in reduced growth factor 
Basement Membrane Extract (BME) Type 2 (Cultrex) in media as described by Sachs et al. (2018). 
The organoids were confirmed to be of human origin and devoid of mouse cells by flow cytometry. 
Organoids were passaged approximately every 3 weeks; they were dissociated to single cells with 
TrypLE Express (ThermoFisher) and by manual pipetting, passaged at a ratio of 1:12 and re-
embedded in BME. 
Ex vivo tissue explant preparation and culture: When the PDXs (preferably first generation 
PDX) reached ~500 mm3, they were excised from the mice. Tumors were then cut into 2x2x2 
mm3 tissue explants and cultured on gelatine sponges in 12-well tissue culture plates for specific 
time points as indicated in the text. The DMEM culture media (Gibco) containing 20% FBS 
(Gibco), 1 mM sodium pyruvate (Biological Industries), 2 mM L-glutamine (Biological 
Industries), 1% penicillin/streptomycin/amphotericin (Biological Industries), 0.1 mM MEM non-
essential amino acids (Biological Industries), 10 mM HEPES (Biological Industries), 1% BIO-
MYC (Biological Industries) and 50 µg/ml gentamicin (Gibco). For drug treatment, the 2 × 2 × 2 
mm3 explants were treated with 3 µM BAY-876 for indicated time in 37◦C, 5% CO2. 
Data availability: The data supporting the findings of this study are available within the paper 
and its supplementary information files and are available from the corresponding authors. Code to 
reproduce the bioinformatics analyses and their related data is available at 
https://github.com/bhklab/TNBC_BAY-876. 
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Figure legends 
Fig. 1: Growth of a subset of TNBC relies on GLUT1 activity. SLC2A1 gene expression in the 
(a) TCGA Breast cancer datasets, (b) METABRIC Breast cancer datasets, and (c) Princess 
Margaret Hospital PDXs datasets (PM-PDXs). According to PAM50 classification, the cohorts 
were designated as basal and non-basal subtypes. Gene expression is reported as 
log2(TPM+0.001). The number of patients (n) per group is indicated. P values were determined 
using a Wilcoxon rank sum test. * p<0.05; ****p<0.0001. (d) Heatmap of mean IC50 values for 
the indicated 17 TNBC cell lines. Cells were treated with increasing dose of BAY-876 or its 
negative control BAY-588 for 5 days and the cell confluency was determined by Incucyte 
scanning. Data shown are mean ± s.d. of n = 4 independent biological replicates.  A two-sided 
Student’s t-test was used to derive the p values. (e) Representative immunoblots showing the 
siRNA knockdown of GLUT1 in the BAY-876 sensitive lines (HCC1806 and Hs 578T) and BAY-
876 resistant lines (MDA-MB-436 MDA-MB-468). (f) Normalized cell confluency of GLUT1 
knockdown cells or siRNA luciferase control cells for the indicated time post siRNA transduction. 
Cell confluency are normalized to T=0 time point. Data shown are mean ± s.d. of n = 4 biological 
replicates. A two-way ANOVA was used to derive the p values. *p<0.05; **p<0.01; 
****p<0.0001; n.s means not significant. (g) Cell growth of TNBC lines cultured in complete 
DMEM medium with or without glucose deprivation for 5 days.  Data shown are mean ± s.d of n 
= 4 independent experiments. P values computed using a two-way ANOVA. ****p<0.0001. (h) 
Flow cytometry cell cycle analysis for indicated cells cultured with or without BAY-876 for 72h. 
Data shown are mean ± s.d. of n = 3 independent assays. A two-way ANOVA was used to derive 
the p values. *p<0.05; **p<0.01; ***p<0.001; n.s means not significant. (i) Representative images 
of caspase 3/7 staining. scale bar represents 300 µM.  (j) Apoptotic cell counts of BAY-876 treated 
for 3 days by caspase 3/7 staining. Data shown are mean ± s.d. of n = 3 independent experiments. 
A two-way ANOVA was used to derive the p values. ***p<0.001; ****p<0.0001; n.s means not 
significant. 
 
Fig. 2: OXPHOS levels correlate with the response to GLUT1 inhibition. (a) OCR and ECAR 
were measured for each of BAY-876 sensitive lines (red) and BAY-876 resistant lines (black) 
using XF-96 analyzer.  ECAR and OCR values were normalized to total cell numbers for each cell 
line. Plots show mean values from nine wells (from three experiments) and relative ECAR and 
OCR data were plotted simultaneously to reveal overall relative basal metabolic profiles for each 
cell model. (b) OCR and ECAR ratio were calculated for each cell line. P values were derived 
from a two-sided Student’s test; ****p<0.0001. (c) ECAR values (n=4; mean ± s.d.) measurement 
of cells with or without BAY-876 treatment for 5 days. P values computed using a two-way 
ANOVA. *p<0.05; **p<0.01; ***p<0.001. (d) Glucose uptake analysis using Bioprofile Flex 
analyzer (Nova Biomedical) were performed in cells following BAY-876 treatment for the 
indicated time. Data shown are mean ± s.d. of n = 4 independent assays. P values computed using 
a two-way ANOVA. ***p<0.001; ****p<0.0001; (e) A trace of OCR values (n=4; mean ± s.d.) 
from a mitochondrial stress test of cells with or without BAY-876 treatment for 5 days. P values 
computed using a two-way ANOVA. ****p<0.0001; n.s denotes not significant. (f) Glutamine 
uptake analysis using Bioprofile Flex analyzer (Nova Biomedical) were performed in cells 
following 1 µM BAY-876 treatment (n=3) or in cells transfected with 25nM siGLUT1 (bottom) 
(n=2). (g) Growth curves of MDA-MB-468 cells (left) and MDA-MB-436 cells (right) cultured in 
complete DMEM medium with or without glutamine deprivation treated with indicated nine doses 
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of BAY-876 for 5 days.  Data shown are mean ± s.d of n = 3 independent experiments. P values 
computed using a two-way ANOVA. **p<0.01; ***p<0.001; ****p<0.0001.  
 
Fig. 3: RB1 protein level discriminates response to GLUT1 inhibition.   (a) Volcano plot of 
log2 fold change for all genes significantly upregulated (red in the left panel) or downregulated 
(blue in right panel) in sensitive compared to resistant lines. (b) Top enriched pathways in BAY-
876 resistant lines compared to BAY-876 sensitive lines based on GSEA on RNA-sequencing data 
generated from UHN cohort. (c) Heatmap of pathways correlated with OXPHOS revealed by 
GSEA analysis of TCGA RNA-sequencing data. Color grading corresponds to the positive (red) 
and negative (blue) Pearson’s correlation coefficients. Rows and columns were hierarchically 
clustered by Euclidean Distance with complete linkage. Clusters significantly related with 
OXPHOS are zoomed at the bottom. (d) Pearson’s correlation coefficients between Log2 
normalized protein expression data and response of BAY-876 showing significantly associated 
proteins (red) with BAY-876 sensitive and resistant lines based on the dataset from MD-Anderson 
Cancer Center including 12 TNBC cell lines and 452 proteins.  (e)  Pearson’s correlation 
coefficients between Log2 normalized protein expression data and response of BAY-876 showing 
significantly associated proteins (red) with BAY-876 responders and non-responders based on the 
dataset from Princess Margaret Cancer Center (PMCC) including 17 TNBC cell lines and 218 
proteins. (f) Representative western blot showing the variable RB1 expression levels in a panel of 
17 TNBC lines.  β-actin was used a loading control for normalization. (g) Relative RB1 protein 
levels in TNBC, quantified by densitometry from three independent experiments were plotted with 
the IC50 of BAY-876. (h) Representative immunoblot showing MDA-MB-436 cells expressing 
RB1 or GFP control proteins. β-actin was used as a loading control. (i) ECAR and OCR values 
were measured for MDA-MB-436 cells expressing RB1 or GFP control. Data shown are mean ± 
s.d of n = 4 independent biological replicates. P values computed using a two-sided Student’s t 
test. *p<0.05; ***p<0.001. (j) Growth curves of MDA-MB-436 cells expressing RB1 or GFP 
control in the presence of indicated concentrations BAY-876 treatment for 5 days. Data shown are 
mean ± s.d of n = 4 independent biological replicates. (k) Representative western blot showing 
HCC1806 cells transfected with two independent shRNAs targeting RB1 or shRNA targeting 
control luciferase. β-actin was used as a loading control. (l) ECAR and OCR values were measured 
for HCC1806 cells transfected with two independent shRNAs targeting RB1 or shRNA targeting 
control luciferase. Data shown are mean ± s.d of n = 4 independent experiments. P values 
computed using a two-way ANOVA. *p<0.05; ***p<0.001. (m) Growth curves of HCC1806 cells 
with control knockdown or RB1 knockdown in the presence of indicated concentrations BAY-876 
treatment for 5 days. Data shown are mean ± s.d of n = 4 independent experiments. (n) Western 
blot showing the variable RB1 expression levels in a panel of five TNBC patient-derived 
organoids.  GAPDH was used as a loading control. (o) Cell viability assays five days after 
administration of DMSO control or the indicated concentrations doses of BAY-876 across five 
independent patient-derived organoids. Data shown are mean ± s.d of n = 3 independent biological 
replicates.  
 
      
Fig. 4: RB1 levels dictates BAY-876 sensitivity in patient derived explants. (a) Schematic of 
pre-clinical PDXDE trial. PDXDEs established from TNBC patients were evaluated for response 
to BAY-876 treatment. (b) Representative images of explants during ex vivo culture time range 
assessed by proliferative index ki67 staining, H&E staining and cleaved caspase 3 (CIC3) staining. 
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Scale bars represent 500 µm in the representative IHC staining images. Indicated area is zoomed 
in 5X at the bottom. (c) Ex-vivo culture for 48 hours did not significantly change the cell 
proliferation of explants assessed by Ki-67 staining. Data shown are mean ± s.d of n = 6 
independent experiments from three biological replicates. (d) Ex-vivo culture for 48 hours did not 
significantly change the apoptosis of explants. Data shown are mean ± s.d of n = 6 independent 
experiments from three biological replicates.  (e) Representative IHC staining images of GLUT1 
and RB1 for PDXDE-1, PDXDE-2. (f) Representative immunoblotting showing RB1 and GLUT1 
expression levels in PDXDE-1 and PDXDE-2. (g) Representative IHC staining images including 
ki67 staining, H&E staining and CIC3 staining of RB1-positive PDXDE-1. Scale bars represent 
500 µm. Indicated area is zoomed in 10X at the bottom. (h) Representative IHC staining images 
including ki67 staining, H&E staining and CIC3 staining of RB1-low PDXDE-2. Scale bars 
represent 500 µm. Indicated area is zoomed in 10X at the bottom.  (i) BAY-876 treatment resulted 
in regression of PDXDE-1 growth assessed by ki67 staining. Data shown are mean ± s.d of n = 10 
independent experiments from three biological replicates. P values computed using a two-sided 
Student’s test. ****p<0.0001. (j) BAY-876 treatment resulted in increased apoptosis of PDXDE-
1 assessed by CIC3 staining. Data shown are mean ± s.d of n = 10 independent experiments from 
three biological replicates. P values computed using a two-sided Student’s test. ***p<0.001. (k) 
BAY-876 treatment did not result in significant change of PDXDE-2 growth assessed by ki67 
staining. Data shown are mean ± s.d of n = 11 independent experiments from three biological 
replicates. P values computed using a two-sided Student’s test. (l) BAY-876 treatment did not lead 
to significant changes of apoptosis of PDXDE-2 assessed by CIC3 staining. Data shown are mean 
± s.d of n = 10 independent experiments from three biological replicates. P values computed a two-
sided Student’s test.  
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Fig. 1: Growth of a subset of TNBC relies on GLUT1 activity. SLC2A1 gene expression in the (a) TCGA Breast cancer
datasets, (b)METABRIC Breast cancer datasets, and (c) Princess Margaret Hospital PDXs datasets (PM-PDXs). According to
PAM50 classification, the cohorts were designated as basal and non-basal subtypes. Gene expression is reported as
log2(TPM+0.001). The number of patients (n) per group is indicated. P values were determined using a Wilcoxon rank sum
test. * p<0.05; ****p<0.0001. (d) Heatmap of mean IC50 values for the indicated 17 TNBC cell lines. Cells were treated with
increasing dose of BAY-876 or its negative control BAY-588 for 5 days and the cell confluency was determined by Incucyte
scanning. Data shown are mean ± s.d. of n = 4 independent biological replicates. A two-sided Student’s t-test was used to
derive the p values. (e) Representative immunoblots showing the siRNA knockdown of GLUT1 in the BAY-876 sensitive
lines (HCC1806 and Hs 578T) and BAY-876 resistant lines (MDA-MB-436 MDA-MB-468). (f) Normalized cell confluency
of GLUT1 knockdown cells or siRNA luciferase control cells for the indicated time post siRNA transduction. Cell confluency
are normalized to T=0 time point. Data shown are mean ± s.d. of n = 4 biological replicates. A two-way ANOVAwas used to
derive the p values. *p<0.05; **p<0.01; ****p<0.0001; n.s means not significant. (g) Cell growth of TNBC lines cultured in
complete DMEM medium with or without glucose deprivation for 5 days. Data shown are mean ± s.d of n = 4 independent
experiments. P values computed using a two-way ANOVA. ****p<0.0001. (h) Flow cytometry cell cycle analysis for
indicated cells cultured with or without BAY-876 for 72h. Data shown are mean ± s.d. of n = 3 independent assays. A two-way
ANOVA was used to derive the p values. *p<0.05; **p<0.01; ***p<0.001; n.s means not significant. (i) Representative
images of caspase 3/7 staining. scale bar represents 300 µM. (j) Apoptotic cell counts of BAY-876 treated for 3 days by
caspase 3/7 staining. Data shown are mean ± s.d. of n = 3 independent experiments. A two-way ANOVA was used to derive
the p values. ***p<0.001; ****p<0.0001; n.s means not significant.
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Fig. 2: OXPHOS levels correlate with the response to GLUT1 inhibition. (a) OCR and ECAR were measured for each of
BAY-876 sensitive lines (red) and BAY-876 resistant lines (black) using XF-96 analyzer. ECAR and OCR values were
normalized to total cell numbers for each cell line. Plots show mean values from nine wells (from three experiments) and
relative ECAR and OCR data were plotted simultaneously to reveal overall relative basal metabolic profiles for each cell
model. (b) OCR and ECAR ratio were calculated for each cell line. P values were derived from a two-sided Student’s test;
****p<0.0001. (c) ECAR values (n=4; mean ± s.d.) measurement of cells with or without BAY-876 treatment for 5 days. P
values computed using a two-way ANOVA. *p<0.05; **p<0.01; ***p<0.001. (d) Glucose uptake analysis using Bioprofile
Flex analyzer (Nova Biomedical) were performed in cells following BAY-876 treatment for the indicated time. Data shown
are mean ± s.d. of n = 4 independent assays. P values computed using a two-way ANOVA. ***p<0.001; ****p<0.0001; (e) A
trace of OCR values (n=4; mean ± s.d.) from a mitochondrial stress test of cells with or without BAY-876 treatment for 5
days. P values computed using a two-way ANOVA. ****p<0.0001; n.s denotes not significant. (f) Glutamine uptake analysis
using Bioprofile Flex analyzer (Nova Biomedical) were performed in cells following 1 µM BAY-876 treatment (n=3) or in
cells transfected with 25nM siGLUT1 (bottom) (n=2). (g) Growth curves of MDA-MB-468 cells (left) and MDA-MB-436
cells (right) cultured in complete DMEM medium with or without glutamine deprivation treated with indicated nine doses of
BAY-876 for 5 days. Data shown are mean ± s.d of n = 3 independent experiments. P values computed using a two-way
ANOVA. **p<0.01; ***p<0.001; ****p<0.0001.
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Fig. 3: RB1 protein level discriminates response to GLUT1 inhibition. (a) Volcano plot of log2 fold change for all genes significantly
upregulated (red in the left panel) or downregulated (blue in right panel) in sensitive compared to resistant lines. (b) Top enriched pathways in
BAY-876 resistant lines compared to BAY-876 sensitive lines based on GSEA on RNA-sequencing data generated from UHN cohort. (c)
Heatmap of pathways correlated with OXPHOS revealed by GSEA analysis of TCGA RNA-sequencing data. Color grading corresponds to the
positive (red) and negative (blue) Pearson’s correlation coefficients. Rows and columns were hierarchically clustered by Euclidean Distance
with complete linkage. Clusters significantly related with OXPHOS are zoomed at the bottom. (d) Pearson’s correlation coefficients between
Log2 normalized protein expression data and response of BAY-876 showing significantly associated proteins (red) with BAY-876 sensitive and
resistant lines based on the dataset from MD-Anderson Cancer Center including 12 TNBC cell lines and 452 proteins. (e) Pearson’s
correlation coefficients between Log2 normalized protein expression data and response of BAY-876 showing significantly associated proteins
(red) with BAY-876 responders and non-responders based on the dataset from Princess Margaret Cancer Center (PMCC) including 17 TNBC
cell lines and 218 proteins. (f) Representative western blot showing the variable RB1 expression levels in a panel of 17 TNBC lines. β-actin
was used a loading control for normalization. (g) Relative RB1 protein levels in TNBC, quantified by densitometry from three independent
experiments were plotted with the IC50 of BAY-876. (h) Representative immunoblot showing MDA-MB-436 cells expressing RB1 or GFP
control proteins. β-actin was used as a loading control. (i) ECAR and OCR values were measured for MDA-MB-436 cells expressing RB1 or
GFP control. Data shown are mean ± s.d of n = 4 independent biological replicates. P values computed using a two-sided Student’s t test.
*p<0.05; ***p<0.001. (j) Growth curves of MDA-MB-436 cells expressing RB1 or GFP control in the presence of indicated concentrations
BAY-876 treatment for 5 days. Data shown are mean ± s.d of n = 4 independent biological replicates. (k) Representative western blot showing
HCC1806 cells transfected with two independent shRNAs targeting RB1 or shRNA targeting control luciferase. β-actin was used as a loading
control. (l) ECAR and OCR values were measured for HCC1806 cells transfected with two independent shRNAs targeting RB1 or shRNA
targeting control luciferase. Data shown are mean ± s.d of n = 4 independent experiments. P values computed using a two-way ANOVA.
*p<0.05; ***p<0.001. (m) Growth curves of HCC1806 cells with control knockdown or RB1 knockdown in the presence of indicated
concentrations BAY-876 treatment for 5 days. Data shown are mean ± s.d of n = 4 independent experiments. (n) Western blot showing the
variable RB1 expression levels in a panel of five TNBC patient-derived organoids. GAPDH was used as a loading control. (o) Cell viability
assays five days after administration of DMSO control or the indicated concentrations doses of BAY-876 across five independent patient-
derived organoids. Data shown are mean ± s.d of n = 3 independent biological replicates.
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Fig. 4: RB1 levels dictates BAY-876 sensitivity in patient derived explants. (a) Schematic of
pre-clinical PDXDE trial. PDXDEs established from TNBC patients were evaluated for
response to BAY-876 treatment. (b) Representative images of explants during ex vivo culture
time range assessed by proliferative index ki67 staining, H&E staining and cleaved caspase 3
(CIC3) staining. Scale bars represent 500 µm in the representative IHC staining images.
Indicated area is zoomed in 5X at the bottom. (c) Ex-vivo culture for 48 hours did not
significantly change the cell proliferation of explants assessed by Ki-67 staining. Data shown
are mean ± s.d of n = 6 independent experiments from three biological replicates. (d) Ex-vivo
culture for 48 hours did not significantly change the apoptosis of explants. Data shown are
mean ± s.d of n = 6 independent experiments from three biological replicates. (e)
Representative IHC staining images of GLUT1 and RB1 for PDXDE-1, PDXDE-2. (f)
Representative immunoblotting showing RB1 and GLUT1 expression levels in PDXDE-1 and
PDXDE-2. (g) Representative IHC staining images including ki67 staining, H&E staining and
CIC3 staining of RB1-positive PDXDE-1. Scale bars represent 500 µm. Indicated area is
zoomed in 10X at the bottom. (h) Representative IHC staining images including ki67 staining,
H&E staining and CIC3 staining of RB1-low PDXDE-2. Scale bars represent 500 µm. Indicated
area is zoomed in 10X at the bottom. (i) BAY-876 treatment resulted in regression of PDXDE-1
growth assessed by ki67 staining. Data shown are mean ± s.d of n = 10 independent
experiments from three biological replicates. P values computed using a two-sided Student’s
test. ****p<0.0001. (j) BAY-876 treatment resulted in increased apoptosis of PDXDE-1
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