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ABSTRACT (337 words) 18 

Sputum induction is a non-invasive method to evaluate the airway environment, particularly for asthma. RNA 19 

sequencing (RNAseq) can be used on sputum, but it can be challenging to interpret because sputum contains 20 

a complex and heterogeneous mixture of human cells and exogenous (microbial) material. In this study, we 21 

developed a methodology that integrates dimensionality reduction and statistical modeling to grapple with the 22 

heterogeneity. We use this to relate bulk RNAseq data from 115 asthmatic patients with clinical information, 23 

microscope images, and single-cell profiles. First, we mapped sputum RNAseq to human and exogenous 24 

sources. Next, we decomposed the human reads into cell-expression signatures and fractions of these in each 25 

sample; we validated the decomposition using targeted single-cell RNAseq and microscopy. We observed 26 

enrichment of immune-system cells (neutrophils, eosinophils, and mast cells) in severe asthmatics. Second, 27 

we inferred microbial abundances from the exogenous reads and then associated these with clinical variables -28 

- e.g., Haemophilus was associated with increased white blood cell count and Candida, with worse lung 29 

function. Third, we applied a generative model, Latent Dirichlet allocation (LDA), to identify patterns of gene 30 

expression and microbial abundances and relate them to clinical data. Based on this, we developed a method 31 

called LDA-link that connects microbes to genes using reduced-dimensionality LDA topics. We found a number 32 

of known connections, e.g. between Haemophilus and the gene IL1B, which is highly expressed by mast cells. 33 

In addition, we identified novel connections, including Candida and the calcium-signaling gene CACNA1E, 34 

which is highly expressed by eosinophils. These results speak to the mechanism by which gene-microbe 35 

interactions contribute to asthma and define a strategy for making inferences in heterogeneous and noisy 36 

RNAseq datasets. 37 

INTRODUCTION 38 

Linking high-dimensional, heterogeneous datasets 39 

RNA sequencing (RNAseq) has become a standard method of analyzing complex communities. Depending on 40 

the sample type, these data can be very heterogeneous. A key problem tackled in this paper is dealing with the 41 

heterogeneity and noise in RNAseq data in complex samples such as sputum. This can be appreciated by 42 
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comparing sputum RNAseq to a more traditional experiment, e.g. blood RNAseq, where the sample can be 43 

collected consistently and that contains relatively well-defined cell types (Figure 1). In blood, the vast majority 44 

of RNAseq reads align to the human genome, and the goal is often to relate the expression of the genes to a 45 

phenotype. By contrast, sputum may be less consistently collected, its cell types are less defined, and it may 46 

contain RNA from microbes and other organisms that act as cryptic indicators of the environment. This 47 

combination of variables and dimensions often requires researchers to collapse the dimensions to 48 

appropriately de-noise the analysis. Here, we present such a strategy that uses a number of supervised and 49 

unsupervised techniques such as single-cell signatures and latent Dirichlet allocation (LDA). These techniques 50 

can produce a low-dimensional representation of common groups of genes, microbes, or other features that 51 

tend to increase or decrease in abundance together. Our approach is useful when the heterogeneity comes 52 

from the sample type (e.g., sputum) and especially when the samples derive from a heterogeneous population 53 

of individuals, such as patients with asthma.  54 

Interactions between the host and microbes in the lung 55 

Asthma is a disease of the airway that can present with many clinical phenotypes. Much work has focused on 56 

identifying subgroups of the disease and how each subgroup responds to treatment. For example, Yan et al. 57 

introduced transcriptional endotypes of asthma and the Severe Asthma Respiratory Phenotype consortium 58 

defined five subtypes of asthma [1]. Some of these subgroups respond differently to environmental and 59 

microbial triggers, such as fungal spores. Some fungi have well-defined effects in asthma, but the role of many 60 

microbes remains contentious. A simplified model assigns microbes to one of three categories: pathogenic 61 

organisms that cause inflammation, beneficial organisms that reduce inflammation, and those that have no 62 

effect on inflammation. The majority of the organisms in the lungs are expected to have no effect, and severe 63 

asthmatics are expected to have more pathogenic and fewer beneficial microbes.  64 

Inferring immune cell fractions from RNAseq data 65 

The pathology of microbes is often inferred by the number and type of immune cells observed in samples, such 66 

as sputum total leukocyte counts [2, 3]. A standard method for counting immune cells in sputum samples uses 67 

microscopy, but the resolution is limited to a few cell types [4]. Other cell-counting methods such as flow-68 

sorting can be challenging because of the viscosity and highly variable cell numbers in sputum. An alternative 69 

strategy uses cell-type specific expression patterns to deconvolve RNAseq reads from mixtures of cells into 70 

fractions of different immune cells [5]. This deconvolution also effectively de-noises heterogeneous datasets by 71 

greatly reducing the number of dimensions. Importantly, the RNA needed for this analysis can be purified 72 

without poly-A enrichment– here, we use human ribosomal RNA knockdown – which allows for the 73 

simultaneous analysis of microbial and human transcripts. 74 

Supervised deconvolution and the microbiome 75 

While deconvolution to cell fractions effectively de-noises human RNAseq data, an equivalent method does not 76 

exist for microbes. Although we can map microbe reads onto their genomes, this approach is imperfect 77 

because the genome databases are incomplete and assigning a read to a single genome can be complicated if 78 

it matches more than one equally well. One can reduce the dimensions by collapsing microbial strains to 79 

different taxonomic ranks (e.g., genus or family); however, taxonomy is notoriously imprecise at defining 80 

behavior. For example, many bacteria in the genus Escherichia are human commensals, whereas Escherichia 81 

coli OH157:H7 causes hemorrhagic colitis. Alternatively, one can group sequences by the metabolic pathways 82 

observed, although this requires high-depth sequencing. Here, we propose a method to reduce the 83 
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dimensionality of microbes by first linking the microbes to human genes, and then applying the relatively well-84 

defined gene dimensionality-reduction methods (e.g., deconvolution to cell types). 85 

 86 

In this paper, we use RNAseq of sputum samples from asthmatic patients to demonstrate dimensionality-87 

reduction strategies and identify microbe-host relationships. We map RNAseq reads onto human or microbial 88 

genomes and relate the resulting abundance matrices to each other and to clinical data. Further, we 89 

deconvolve the human reads into fractions of the various cell types that make up sputum. Finally, we relate the 90 

human genes and microbes using a method we call LDA-link, which identifies relationships between genes, 91 

microbes, and cell types. These methods represent a general strategy for dealing with heterogeneous RNAseq 92 

data that is applicable to other sample types beyond sputum.  93 

 94 

RESULTS 95 

Sequencing and processing with the extracellular RNA processing toolkit (exceRpt) pipeline 96 

We collected induced sputum samples from 115 patients with heterogeneous asthma phenotypes and 97 

sequenced these sample using RNAseq. The median read depth per sample was 47.5 million, which meets 98 

depth recommendations for analyses of this type [6]. We processed these reads through the exceRpt pipeline 99 

[7], which conservatively matches reads to genomes in a sequential order designed to reduce experimental 100 

artifacts. In brief, we first aligned the quality filtered reads to the UniVec database of common laboratory 101 

contaminants 2, and then aligned the remaining reads to human ribosomal sequences before aligning them to 102 

the human genome. We excluded samples with a low ratio of transcript alignments to intergenic sequence 103 

alignments, and then aligned the remaining reads to the comparably large sequence space of non-human 104 

genomes. We first aligned reads to the relatively well-curated ribosomal databases of bacteria, fungi, and 105 

archaea (e.g., Ribosomal Database Project3) and then to curated genomes of bacteria, fungi, viruses, plants, 106 

and animals. The percent of reads mapping to different biotypes was highly heterogeneous; a median of 60% 107 

of the reads aligned to the human reference genome and 50% to annotated transcripts (Figure 1, green bars). 108 

A median of 0.7% of the input reads aligned to exogenous sources, with some samples containing as much as 109 

28.1% exogenous reads. As a control, we applied the same protocol to blood samples, which demonstrated 110 

more homogeneity than sputum (Figure 1, top, “blood”). 111 

Overview of the analysis approach 112 

The goal of the analysis was to infer meaningful relationships between the numbers and origins of the RNAseq 113 

reads and relate them to clinical phenotypes. We conceptualized the clinical information and RNAseq 114 

alignments as a series of tables (Figure 1). The clinical table includes patient data collected at the clinic, C, 115 

including age, weight, lung function tests, etc, with rows indexed by patient (p) and roughly 200 clinical 116 

variables (𝑁𝑐). Alignments to human protein-coding regions created the gene table, G, with 𝑁𝑝 rows, as above, 117 

and roughly 20,000 genes (𝑁𝑔). Alignments to exogenous genomes created the microbe table (M) with 𝑁𝑝  118 

rows and roughly 1,000 microbes (𝑁𝑚). Given these three tables (C, G, and M), the basic analysis framework 119 

is to correlate columns or rows within or between tables. We represent this by a matrix of correlations, R(𝑿∙,𝒊,, 120 

𝒀∙,𝒋), where 𝑿∙,𝒊 is the ith column of table X and 𝑿∙,𝒋 is the jth column of table Y. This correlation is summed over 121 

the other index, usually p. For example, we test the relationship between age and the abundance of each 122 

microbe R(𝑪∙,𝒂𝒈𝒆, 𝑴∙,𝒎) across all patients. Similarly, we correlate the expression of a gene (e.g., TLR4) with 123 

microbe Candida R(𝑮∙,𝑻𝑳𝑹𝟒, 𝑴∙,𝑪𝒂𝒏𝒅𝒊𝒅𝒂 ). 124 

 125 
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Individual correlations can be difficult to interpret, particularly in heterogeneous, sparse, or noisy datasets. 126 

Organizing the genes into relevant pathways or cell types can reduce the dimensionality and de-noise the 127 

analysis. To this end, we deconvolved G (𝑵𝒑 ×  𝑵𝒈) into a cell-type fraction table, F (𝑵𝒑 ×  𝑵𝒇) , and a cell-type 128 

signatures table, S (𝑵𝒇 × 𝑵𝒈) . However, an analogous supervised method does not exist for the microbes. 129 

Therefore, we applied an unsupervised dimensionality-reduction approach, latent dirichlet allocation (LDA), 130 

which provides a topic distributions in patients (θG, 𝑵𝒑 ×  𝑵𝒌 ) across a smaller number (𝑵𝒌=10) of topics and 131 

gene topic (and φG, 𝑵𝒌 ×  𝑵𝒈). This can also be done to the microbe table M and get θM and φM, and the gene 132 

and microbe topic can be correlated (e.g. R(𝜽∙,𝒈
𝑮 , 𝜽∙,𝒎

𝑴  ) over all patients). 133 

 134 

The framework described above is useful for identifying linear relationships, but non-linear relationships are 135 

also possible. For example, a microbe sensed by a human immune cell could lead to the activation of a 136 

transcription factor and the expression of several genes, each of which would have a non-linear relationship to 137 

microbe abundance. To identify such relationships, we applied a non-linear ensemble learning algorithm [8, 9], 138 

using the de-noised inputs for each gene and microbe (φG and φM). We call this method LDA-link. Further, we 139 

relate the gene and microbe links identified to cell fractions and thereby relate how the host is responding to 140 

microbes with regards to immune cell type response with a particular gene. 141 

Analysis of human-aligned reads 142 

Working toward the hypothesis that we can conceptualize human-aligned sputum RNAseq reads as a mixture 143 

of immune cell types, each with a distinct expression profile, we deconvolved the Gene table (G) into a table of 144 

fractions of component cells type (F) and cognate cell-type signatures (S) by solving the formula G ~ F * S. 145 

This method relies on knowing the signature gene-set in each cell type, which derived from the blood immune 146 

cell high quality profiles. To validate that we could apply these cell expression profiles to sputum, we generated 147 

several additional datasets including single-cell RNAseq (scRNAseq), microscopy, and unsupervised 148 

decomposition, and then compared the results to the deconvolution table F. (Figure 2A, schema).  149 

Evaluation of deconvolution results by scRNAseq  150 

First, we performed scRNAseq on a cohort of similar sputum samples (five control and five asthmatic patients). 151 

The single-cell sequences clustered into four groups (Figure 2B, first and second panels). To determine 152 

whether the reference profiles that we used to deconvolve the bulk RNAseq recapitulate those found in the 153 

single-cell clusters, we co-clustered the reference profiles with the scRNAseq data (Figure 2B, third panel). 154 

The reference profiles split into the groups by lineage; for example, those in the lymphoid progenitor line co-155 

clustered with cluster 2, and the myeloblast progenitor line co-clustered with cluster 4. This result suggests that 156 

the reference profiles accurately represent the cell types in sputum. The myeloid lineage cluster showed a 157 

significant difference in the number of cells between asthmatics and controls (Figure 2C). From this analysis, 158 

we concluded that (1) the blood-derived cell profiles appropriately fit the sputum cell types and (2) no additional 159 

cell types are needed to deconvolve the sputum bulk RNAseq data. 160 

Evaluation of deconvolution results by microscopy 161 

Second, we evaluated a subset of the samples by microscopy and manually counted the number of 162 

neutrophils, eosinophils, lymphocytes, and macrophages. We found good agreement with F , when cell counts 163 

could be directly compared, i.e. neutrophils and eosinophils were both present in F and counted by 164 

microscopy. In cases where the deconvolution method gave higher resolution, (e.g., M0, M1, and M2 165 
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macrophages versus one type of macrophage by microscopy), the aggregation of the relevant columns in Ff 166 

correlated well with the microscopy counts (Figure 2D). 167 

 168 

Association of cell fractions with clinical features 169 

Having validated the deconvolution of sputum samples (table F), we then correlated the cell fractions with 170 

clinical features (R(𝑭∙,𝒇, 𝑪∙,𝒄) for all patients). We found that the changes in fractions of several cell types were 171 

highly correlated with clinical features (Figure 2E). For example, the fraction of T-regulatory cells negatively 172 

correlated with the number of hospitalizations per year, suggesting a beneficial role of these cells in the 173 

management of asthma. 174 

 175 

Evaluation of deconvolution results by unsupervised decomposition 176 

We compared the signal captured by cell-type deconvolution to an unsupervised decomposition method: LDA. 177 

Using LDA, we factored the gene expression table into ten topics that conceptually represent gene expression 178 

programs. This resulted in a gene-topic-fraction-in-patients table, θG
 ( 𝑵𝒑 × 𝑵𝒌) with 𝑁𝑘=10 topics, as well as 179 

corresponding gene-topic table, φG (𝑵𝒌 × 𝑵𝒈), that are analogous to the supervised deconvolution tables F and 180 

S. We correlated the cell-type fractions table with the gene topics fraction table (R(𝑭∙,𝒇, 𝜽∙,𝒌 ) for all patients, and 181 

found agreement between LDA and the cell-signature-based deconvolution for only the most prominent cell 182 

type, neutrophils (Figure 2D, topic 4). The top genes associated with topic 4 were enriched in the neutrophil 183 

chemotaxis pathway (Figure S8 B).  184 

 185 

However, the remaining topics were comprised of multiple cell types. This suggests that LDA can identify 186 

distinct but partially overlapping features in G. According to the clustering of θG , a subgroup of severely 187 

asthmatic patients was highly correlated with topic four (Figure S8A). The top-weighted genes in topic 4 were 188 

enriched for the pathways “neutrophil chemotaxis” and “asthma-related genes” (Figure S8B). These pathways 189 

were not enriched in the analogous cell-type-signatures table S, suggesting that LDA topics are distinct from 190 

the cell-type signatures, but are also clinically relevant. Moreover, the top-weighted genes in topic 1 of the 191 

gene topic components table were mitochondrial genes, and topic 1 was strongly correlated with age. This link 192 

shows strong support in the literature, as reactive oxygen species produced by the mitochondria reduce their 193 

function over time [10]; however, we did not observe this relationship for any cells in the cell-type-fractions 194 

table (F). Another method using a very different algorithm than LDA, non-negative matrix factorization (NMF), 195 

showed strong agreement with LDA (Figure S2, Nmf.1). This supports the use of supervised deconvolution 196 

methods as picking out interpretable signals that are different than those identified by unsupervised methods. 197 

Unsupervised decomposition should be considered a set of features distinct from those found through 198 

deconvolution. 199 

 200 

Analysis of exogenous reads  201 

After filtering out contaminants and human reads, we assembled the set of reads that aligned to exogenous 202 

genomes into a Microbe table (M). The exogenous sequences aligned to mostly bacteria and fungi, although 203 

we also observed a few arthropod and helminth reads (Supplemental Table X). The dominant phyla observed 204 

were from the bacterial kingdom: Proteobacteria, Firmicutes, and then Bacteroidetes. The abundance of 205 

Proteobacteria is in contrast to observations from the gut where Bacterioidetes predominate [11]. Also notable 206 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

6 

was the presence of two phyla of fungi among the eight most abundant overall, although this was in lower 207 

abundance than many of the bacterial phyla. 208 

Microbes correlations with clinical information and cell fractions 209 

We correlated the microbe abundances to clinical information (R(𝑴∙,𝒎, 𝑪∙,𝒄) for all patients) (Figure 3A). 210 

Haemophilus was associated with increased total white blood cell numbers, as has been described previously 211 

[12]. Candida was associated with worse lung function test results (e.g., forced expiratory volume and forced 212 

vital capacity), which supports the association with a severe form of asthma characterized by eosinophilia [13]. 213 

 214 

We next correlated microbe abundances to human immune cell fractions (R(𝑴∙,𝒎, 𝑭∙,𝒇) for all patients) (Figure 215 

3B). Several correlations demonstrated results with strong literature precedence. For example, studies have 216 

previously shown that Haemophilus associates with eosinophilia [14], and we observed a significant correlation 217 

between Haemophilus and the fraction of eosinophils. We also observed a significant correlation between 218 

Haemophilus and activated mast cells, suggesting an alternative route to Haemophilus-induced inflammation 219 

[15]. Moreover, the fungal genus Candida was also significantly correlated with eosinophils, even more 220 

strongly than Haemophilus. Pulmonary candidiasis has long been associated with allergic bronchial asthma 221 

and inflammation [16], however few lung microbiome studies have examined both bacterial and fungal signals. 222 

This highlights the need for a more comprehensive search of the lung microbiome and demonstrates the power 223 

of an RNAseq-based method that can report on all kingdoms with the same sample preparation. 224 

Dimensionality reduction for microbes: clustering and networks 225 

We attempted to de-noise the microbe table (𝑴𝒑𝒉𝒚𝒍𝒖𝒎) with a variety of dimensionality-reduction techniques. 226 

First, we collapsed the microbes by taxonomy, grouping them to the rank of phylum, and then hierarchically 227 

cluster the patients based on their phylum abundance (Figure 3C HierClust(𝑴𝒑𝒉𝒚𝒍𝒖𝒎)). The hierarchical 228 

clustering showed that the phylum distributions formed three clusters of patients. We related these clusters to 229 

the clinical variable “asthma severity” and observed that cluster 2 was enriched for patients identified as having 230 

moderate or severe asthma. This cluster was characterized by the highest relative abundance of the phylum 231 

Proteobacteria (Figure 3C). Notably, the genus Haemophilus belongs to this phylum, consistent with the 232 

correlations observed at the genus rank (Figures 3A, 3B).  233 

 234 

Similarly, we could de-noise the microbe table using a co-abundance network, by correlating the genus-level 235 

abundances (R(𝑴∙,𝒎, 𝑴∙,𝒎) and identifying significant modules (Supplemental Figure Z). An interpretation of 236 

these modules is that they define metabolic niches, where microbes either directly compete for metabolites or 237 

there is interdependency in metabolite production. Such networks could be created from other tables, such as 238 

the topic distribution of microbes (R(𝝋∙,𝒎
𝑴 , 𝝋∙,𝒎

𝑴 ) for all the topics) (Figure 3D). These modules represent 239 

another unit that could be related to the clinical information (C) and the cell-type fractions (F). 240 

LDA-link for the identification of links between genes and microbes 241 

How much cross-talk exists between microbes and human cells in the airway remains contentious [17]. We feel 242 

this is partly due to the heterogeneous and noisy data from airway samples, where it is often difficult to find 243 

strong correlations using standard algorithms. We therefore sought to link genes to microbes via a new method 244 

called LDA-link. 245 

 246 

LDA-link connects genes to microbes using a combination of linear correlation, unsupervised decomposition 247 

and an ensemble learning classifier. We hypothesized that the only strongest gene and microbe correlations 248 
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would be observable through the noise in the RNAseq data. Therefore, we used these strong links as a training 249 

set to find other links, after taking steps to reduce the noise in the data. We reduced the noise using LDA and 250 

then identified links using a random forest classifier, described in more detail below and in the methods 251 

section. 252 

 253 

To define the training, set we first related columns between the gene and microbe tables (R(𝐺∙,𝑔, 𝑀∙,𝑚)), 254 

yielding many low-scoring correlations. However, a relatively small number were strong (R > 0.4) and highly 255 

significant (p < 1E-5 after FDR correction) (Figure 4A). We selected the very strong correlations as true-256 

positive links between genes and microbes in the training set, and non-correlated pairs (-0.05 < R < 0.05) as 257 

true-negative links. The genes involved in these strong correlations were enriched for pathways related to 258 

microbial interactions in the airway, including “Asthma & Bronchial Hypersensitivity” and “Respiratory Syncytial 259 

Virus Bronchiolitis” (Figure 4B), suggesting that the small set of strong linear correlations were relevant to 260 

asthma.  261 

 262 

 Next, we trained a random forest classifier on the linear correlations described above. To reduce the noise in 263 

the data, the features used as inputs to the classifier were the LDA topics for each gene and microbe 264 

(𝜑∙,𝑔
𝐺 , 𝜑∙,𝑚

𝑀 ). That is, for each gene-microbe pair, we concatenated the gene and microbe topics into a single 265 

vector (length 20). The Gini index showed the most important features in defining links between genes and 266 

microbes were gene topics #7 and #8, and microbe topic #1 (Figure 4 C-F). The genes that comprise the most 267 

influential gene topic #8, are enriched for the pathway “Inflammatory Response”, and specifically the cytokines 268 

IL2 and IL6. It is tempting to speculate that these genes are strong predictors of a link between genes and 269 

microbes because they indicate when the presence of a microbe has triggered an inflammatory response.  270 

Cross-talk between genes and microbes defined by LDA-link 271 

LDA-link identified connections between genes and microbes reported elsewhere in the literature as well as 272 

novel observations. A bipartite graph summarizes a subset of the connections, showing in most cases several 273 

genes linked to each microbe (Figure 5A, for a complete list see Supplemental Table X). Notably, both fungi 274 

and bacteria showed these links, further highlighting the need to evaluate more than bacteria when performing 275 

microbiome experiments in the airway. The gene lactotransferrin was linked to Aeromonas, which has been 276 

associated with gastroenteritis and skin infections and has been previously reported to bind lactoferrin [18]. 277 

Burkholderia, a gram-negative bacterial genus, is recognized as an important pathogen in the mucus-filled 278 

lungs of patients with cystic fibrosis; it was linked to gene MUC6, which encodes a secreted protein 279 

responsible for the production of mucin [19]. Haemophilus was observed to be linked to NFKB Inhibitor Zeta, 280 

which is induced by the bacterial cell wall component lipopolysaccharide [20]. In addition, Haemophilus was 281 

linked to the cytokine interleukin 1 beta (IL1B), an important mediator of the inflammatory response. IL1B 282 

hypersensitivity is a hallmark of the asthma phenotype. Pasteurella was also linked to IL1B, and its toxin has 283 

been shown to induce expression of IL1B [21]. In addition to single gene-microbe pairs, we layered on pathway 284 

and cell deconvolution data to identify larger-scale effects of microbes.  285 

 286 

Microbes were linked to genes that are enriched in pathways relating to auto-immunity and inflammation as 287 

well as cytokine receptors and their interactions (Figure 5B). The microbes associated with cytokine pathways 288 

included Synechococcus, Lactococcus, Dialister, Psychrobacter, Moraxella, Brenneria, Proteus, Haemophilus, 289 

and Pasteurella. In addition, we related the cell-type signatures table (Sf,g) to identify the immune cell types that 290 

are related to each microbe (Figure 5C). We observed the Haemophilus-IL1B linkage in monocytes and mast 291 

cells. Samples containing Haemophilus triggered more activated mast cells according to its cell fraction 292 

(Figure 5C inset) [22-25]. Similarly, the fungal genus Candida was linked to the gene GCSAML, which was 293 
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highly expressed by eosinophils. The presence of Candida was associated with increased numbers of 294 

Eosinophils in the airway.  295 

 296 

DISCUSSION 297 

Heterogeneity and noise are common problems in biological datasets. Heterogeneity can derive from mixtures 298 

of different cell types, such as in sputum, or from sparsity, such as in microbiome or single-cell RNAseq data. 299 

Unsupervised methods of dimensionality reduction can effectively eliminate these issues, but suffer from 300 

decreased interpretability. That is, variables are collapsed together for reasons that are often opaque. 301 

Supervised dimensionality reduction maintains interpretability because variables are collapsed using prior 302 

knowledge, such as the genes in a pathway or the expression patterns of a cell type. Here, we combined 303 

unsupervised and supervised approaches to de-noise the data while retaining interpretability. 304 

 305 

The field is increasingly appreciating the role of the airway microbiome in the development of disease. 306 

Commensal microbiota have been shown in other contexts to be strong regulators of host immune system 307 

development and homeostasis [26]. Disturbances in the composition of commensal bacteria can result in 308 

imbalanced immune responses and affect an individual's susceptibility to various diseases, including those that 309 

are inflammatory (e.g., inflammatory bowel disease and colon cancer), autoimmune (e.g., celiac disease and 310 

arthritis), allergic (e.g., asthma and atopy), and metabolic (e.g., diabetes, obesity, and metabolic syndrome) 311 

(reviewed in [27]). Investigating the microbiota in the lower respiratory tract is a relatively new field in 312 

comparison to the extensive work on the intestinal tract. In fact, the lung was excluded from the original Human 313 

Microbiome Project because it was not thought to have a stable resident microbiome [11]. A limited number of 314 

reports have investigated the changes in the lung microbiota between healthy, non-smoking and smoking 315 

individuals as well as in patients suffering from cystic fibrosis, chronic obstructive pulmonary disease, or 316 

asthma [2, 28-30]. Despite emerging data on the airway microbiota, little is known about the role of the lung 317 

microbiome in modulating pulmonary mucosal immune responses. LDA-link can find relationships between 318 

microbes and genes and link them to immune cells and their responses.  319 

 320 

The linkages identified here suggest major processes by which lung immune cells respond to microbes. We 321 

found that mast cells respond to Haemophilus and Pasteurella via IL1B and that eosinophils respond to 322 

Candida via GCSAML. While experimental validation of these linkages is needed, these results represent 323 

observations that would be missed by analyses that do not deconvolve RNAseq data into cell fractions, or that 324 

analyze only human RNAseq reads. We expect LDA-link to be broadly useful in relating heterogeneous or 325 

noisy RNAseq data.  326 

METHODS 327 

Sample collection and sequencing 328 

Sputum induction was performed with hypertonic saline, the mucus plugs were dissected away from the saliva, 329 

the cellular fraction was separated, and the RNA was purified as described previously [1]. Briefly, RNA was 330 

purified using the All-in-One purification kit (Norgen Biotek) and its integrity was assayed by an Agilent 331 

bioanalyzer (Agilent Technologies, Santa Clara, CA). Ribosomal depletion was performed with the RiboGone-332 

Mammalian kit (Clontech Cat. Nos. 634846 & 634847 ) and cDNA was created with the SMARTer Stranded 333 

RNAseq Kit (Cat. Nos. 634836). Samples were sequenced using an Illumina HiSeq 4000 with 2x125 bp reads, 334 

with an average of 47.5 million reads per sample. 335 
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RNAseq processing by exceRpt 336 

An adapted version of the software package exceRpt [7] was used to process the sputum RNAseq data. 337 

Briefly, RNAseq reads were subjected to quality assessment using FastQC software v.0.10.1 338 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) both prior to and following 3' adapter clipping. 339 

Adapters were removed using FastX v.0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). Identical reads were 340 

counted and collapsed to a single entry and reads containing N's were removed. Clipped, collapsed reads 341 

were mapped directly to the human reference genome (hg19) and pre-miRNA sequences using STAR [31]. 342 

Reads that did not align were mapped against a ribosomal reference library of bacteria, fungi, and archaea, 343 

compiled by the Ribosome Database Project [32], and then to genomes of bacteria, fungi, plants, and viruses, 344 

retreived from GenBank [32]. In cases where RNAseq reads aligned equally well to more than one microbe, a 345 

“last common ancestor” approach was used, and the read was assigned to the next node up the phylogenetic 346 

tree, as performed by similar algorithms [7, 33]. 347 

 348 

Data tables notation 349 

We use the following notation to define matrices associated with p patients (115) (Figure 1): 350 

C: Clinical table (𝑁𝑝 × 𝑁𝑐), c is the clinical index 351 

G: Gene table (𝑁𝑝 × 𝑁𝑔), bulk-RNA seq table before deconvolution,  352 

M: Microbe abundance table (𝑁𝑝 × 𝑁𝑐) 353 

F:  Cell fractions table (𝑁𝑝 × 𝑁𝑓), resulting from the deconvolution of Gp,g  354 

S:  Cell signatures table (𝑁𝑓 × 𝑁𝑔), resulting from the deconvolution of Gp,g 355 

θG : Patient topic table (𝑁𝑝 × 𝑁𝑘) after LDA inference based on gene table Gp,g 356 

φ G : Gene topic table (𝑁𝑘 × 𝑁𝑔) after LDA inference based on gene table Gp,g 357 

θM : Patient topic table (𝑁𝑝 × 𝑁𝑘) after LDA inference based on microbe table Mp,m 358 

φM : Microbe topic table (𝑁𝑘 × 𝑁𝑚) after LDA inference based on table Mp,m 359 

L: gene microbe linkage table (𝑁𝑔 × 𝑁𝑚) predicted by LDA-link 360 

 361 

Dimensionality Reduction 362 

Supervised, deconvolution 363 

The gene table (G) was deconvolved using the transcriptomes from 22 flow cytometry-sorted and sequenced 364 

immune cell types (lm22) using the CIBERSORT tool [5]. Briefly, a pre-defined set of characteristic gene 365 

expression patterns for each cell type was used to identify the fraction of each cell type given a mixture of 366 

expression by solving for the equation:  367 

 368 

G = F * E 369 

 370 

Where G is the Gene table of human protein-coding gene expression from the exceRpt pipeline, F is the Cell 371 

Fraction table, and E is the characteristic gene expression calculated within CIBERSORT. Support Vector 372 

Regression was used to perform variable selection, reducing the number of characteristic genes used to 373 

distinguish cell types and thereby reducing overfitting. The above equation was then solved to provide an 374 

estimate of F. P-values for the fit of E and F to G demonstrated that all samples were significant at α = 0.05. 375 
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Following the solution of F, a Cell Signature table S was calculated to estimate the expression of g genes, as 376 

opposed to the reduced set appropriate for the characteristic expression evaluation, by solving the equation: 377 

 378 

S = G * F 379 

Decomposition though a generative model 380 

The Gene table G was decomposed using LDA and Non-negative Matrix Factorization (NMF).  381 

For LDA, the abundance values for bulk RNAseq and exogenous RNA were scaled down to reduce 382 

computation intensity during sampling. More simply, the RPM expression values were converted to integers, 383 

and then divided by 10. The max value was set to 1,000.  384 

 385 

Given each patient (𝑝), all of the genes and microbes were treated like corpus of words in the traditional LDA 386 

application. The word (𝑤) was gene or microbe, and the word count was gene expression or microbe 387 

abundances. We built LDA models for genes and microbes, respectively.  388 

 389 

 390 

 391 

 392 
 393 

 394 

Given  𝑝, 𝑤, 𝑘, 𝑣, 𝑁𝑝, N𝑤 , 𝑁𝑘, 𝑁𝑣, α, β, Z, θ, φ, W,   where  𝑝, 𝑤, 𝑘, 𝑣 denote a patient, a word in a document, a topic 395 

and a word in the corpus respectively;  𝑁𝑝 is the number of documents(patients ), N𝑤 is the number of words 396 

(gene or microbe) in a document, N𝑘 is the number of topics (set as 10), 𝑁𝑣 is the corpus for all the documents; 397 

α  (𝑁𝑘  dimensional vector)and β (𝑁𝑣-dimensional vector) are the hyper parameters for θ (𝑁𝑝  ×398 

 𝑁𝑘 , the distributoin of topics in documents ) and φ (𝑁𝑘 × 𝑁𝑣 , the distribution of word for topics)  W is an 𝑁𝑤-399 

dimensional vector that denotes the word (gene or microbe expression) in a document (patients). Z is the 𝑁𝑤-400 

dimensional vector of integers between 1 and 𝑁𝑘 for the topic of word in a document.  401 

 402 

The joint distribution of the LDA model is 𝒫(𝑍, 𝑊;  𝛼, 𝛽) and φ and θ are integrated out as: 403 

 404 

𝒫(𝑍, 𝑊;  𝛼, 𝛽) =  ∫ ∏ 𝒫(𝜑𝑖; 𝛽)

𝑁𝑘

𝑖=1 φ

∏ ∏ 𝒫 (𝑊𝑗,𝑡|𝜑𝑍𝑗,𝑡
) 𝑑φ

𝑁𝑤

𝑡=1

∫ ∏ 𝒫(𝜃𝑖; 𝛼)

𝑁𝑝

𝑖=1 θ

∏ 𝒫(𝑍𝑖,𝑗|𝜃𝑖)𝑑θ

𝑁𝑤

𝑗=1

𝑁𝑝

𝑗=1

 405 

  406 

= ∏
∆(𝑛∙,𝑘 + 𝛽)

∆(𝛽)
∏

∆(𝑛𝑠,∙ + 𝛼)

∆(𝛼)

𝑆

𝑠=1

𝐾

𝑘=1

 407 

Where ∆(𝛼) =  
∏ Γ(𝛼𝑘)𝐾

𝑘=1

Γ(∑ 𝛼𝑘
𝐾
𝑘=1 )

 408 

 409 

Gibbs sampling equation can be derived from 𝒫(𝑍, 𝑊;  𝛼, 𝛽) to approximate the distribution of 𝒫(𝑍|𝑊;  α, β) 410 

because 𝒫( 𝑊;  𝛼, 𝛽) is invariant to 𝑍.  Given 𝑍𝑚,𝑛 denotes the  topic of the  𝑛th word token in the 𝑚th document, 411 

𝜑𝑘  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛽) 

        𝜃𝑝 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝑎)  

        𝑍𝑝,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜃𝑝) 

       𝑤𝑝,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜑𝑧𝑝,𝑛
) 

 

𝜑𝑘  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛽) 

                                                  

𝜃𝑝 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝑎)  

                      

 𝑍𝑝,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑟𝑚𝑖𝑎𝑙 (𝜃𝑝) 

                   

𝑤𝑝,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑟𝑚𝑖𝑎𝑙 (𝜑𝑧𝑝,𝑛
) 
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and also assume that its word symbol is the 𝑣th word in the vocabulary, the conditional probability can be inferred 412 

as follows:   413 

 414 

        415 

 𝒫(𝑍𝑚,𝑛 = 𝑘|𝑍¬(𝑚,𝑛), 𝑊;  α, β) =
𝒫(𝑍,𝑊;α,β)

𝒫(𝑍¬(𝑚,𝑛),𝑊; α,β)
=

𝒫(𝑤,𝑧)

𝒫(𝑤𝑚,𝑛, 𝑤¬(𝑚,𝑛),   𝑧¬(𝑚,𝑛))
=

𝒫(𝑤,𝑧)

𝒫(𝑤¬(𝑚,𝑛),   𝑧¬(𝑚,𝑛))
∙

1

𝒫(𝑤𝑚,𝑛=𝑡)
  416 

∝
𝒫(𝑤, 𝑧)

𝒫(𝑤¬(𝑚,𝑛),   𝑧¬(𝑚,𝑛))
 417 

                        =
∏

∆(𝑛∙,𝑘 + 𝛽)

∆(𝛽)
𝐾
𝑘=1 ∏

∆(𝑛𝑝,∙ + 𝛼)

∆(𝛼)
𝑃
𝑝=1

∏
∆(𝑛¬(𝑚,𝑛),𝑘 + 𝛽)

∆(𝛽)
𝐾
𝑘=1 ∏

∆(𝑛𝑝, ¬(𝑚, 𝑛) + 𝛼)

∆(𝛼)
𝑃
𝑝=1

 418 

=  
∆(𝑛∙,𝑘 + β)

∆(𝑛 ¬(𝑚,𝑛),𝑘 + β)
 ∙  

∆(𝑛𝑝,∙ + α)

∆(𝑛𝑝,¬(𝑚,𝑛) + α)
 419 

  420 

 421 

After sampling, the expectation of the θ (doc → topic) and φ(topic → word) matrix can be inferred as follows 422 

given the symmetric hyper-parameters 𝛼 and 𝛽 were used: 423 

 424 

θ𝑝,𝑘 =   
𝑛𝑝,𝑘 + α

∑ 𝑛𝑝,𝑖 + 𝑁𝑘α𝐾
𝑖=1

 425 

φ𝑘,𝑣 =   
𝑛𝑘,𝑣 + β

∑ 𝑛𝑘,𝑖 + 𝑁𝑣β𝑉
𝑖=1

 426 

 427 

We instantiated the variables θ and φ to θ𝑝,𝑡
𝐺  , θ𝑝,𝑡

𝑀  ,  and 𝜑𝑘,𝑔
𝐺 , 𝜑𝑘,𝑚 

𝑀 , where θ𝑝,𝑡
𝐺  , θ𝑝,𝑡

𝑀  denotes the gene and 428 

microbe topic fraction in patient ;  𝜑𝑘,𝑔
𝐺 , 𝜑𝑘,𝑚 

𝑀  denotes the gene and microbe topic. 429 

Single-cell RNAseq 430 

Sputum cells were separated on a Fluidigm C1 medium-sized channel. The mRNA was purified from 431 

approximately 500pg-1ng of total RNA using the Clontech SMARTer Ultra Low RNA Kit and poly-dA-selected 432 

using SPRI beads and dT primers. Full-length cDNA was sheared into 200-500bp DNA fragments by 433 

sonication (Covaris, Massachusetts, USA), and then indexed and size validated by LabChip GX. Two nM 434 

libraries were loaded onto Illumina version 3 flow cells and sequenced using 75bp single-end sequencing on 435 

an Illumina HiSeq 2000 according to Illumina protocols. Data were cleaned, processed, aligned, and quantified 436 

following the SINCERA pipeline [34].  437 

Pathogen-to-host linkage identification  438 

Microbe relative abundances and gene TPM values were correlated as follows, with 𝐺∙,𝑖 for 𝑖 gene and 𝑀∙,𝑗 for 𝑗 439 

microbe: 440 

 441 

𝑅(𝑖, 𝑗) =
∑ (𝐺𝑝,𝑖−

𝑁𝑝
𝑝=1 𝐺∙,𝑖̅̅ ̅̅ )(𝑀𝑝,𝑗− 𝑀∙,𝑗̅̅ ̅̅ ̅)

√∑ (𝐺𝑝,𝑖− 𝐺∙,𝑖̅̅ ̅̅ )2𝑁𝑝
𝑝=1  √∑ (𝑀𝑝,𝑗− 𝑀∙,𝑗̅̅ ̅̅ ̅)2𝑁𝑝

𝑝=1

 442 

 443 
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Gene-microbe correlations with 𝑝-values less than 1e-5 (absolute correlation greater than 0.4) were chosen as 444 

the positive links in a training set. Negative links in the training set were defined as an absolute correlation of 445 

less than 0.05. This approach resulted in 302 positive and 650,398 negative links. A random forest algorithm 446 

was trained on this set, which can accommodate the highly unbalanced dataset as well as potentially identify 447 

non-linear links between genes and microbes. Down-sampling and up-sampling techniques were tested but did 448 

not significantly improve the model. In the final model, we adopted the upscaling technique and tested it using 449 

cross-validation. The positive dataset was upscaled to very high levels. We use 2-fold cross validation to 450 

validate the performance. Simply, we randomly select half training data to train the model, and use the 451 

remaining records to test the performance and repeat this for ten times. The AUC and AUPR were 0.994 and 452 

0.996 on average, respectively. 453 

 454 

Microbe co-abundance network 455 

The raw abundance 𝑀 and LDA microbe topic matrices 𝜑𝑀 , which represent the microbe’s weight to each 456 

topic, were generated.  457 

 458 

The correlation network between different microbes was calculated using Pearson correlation. The cutoff to 459 

define a co-abundance edge was 0.8 for R(𝜑∙,𝑚
𝑀 , 𝜑∙,𝑚

𝑀 ) and 0.3 for R(, 𝜑∙,𝑚
𝑀 . The microbe network modules, which 460 

were densely connected themselves but sparsely connected to other modules, were clustered based on 461 

between-ness [35] and the other algorithms; we also tested label propagation and fast greedy algorithms [36].  462 

 463 

We also compared the LDA topics with the microbes in the same clusters. If a microbe was the top 10 most 464 

highly contributed for a topic, then we labeled the topic number in the bracket. Some microbes may have 465 

multiple topic labels because they highly contribute to multiple topics.  466 

DATA ACCESS 467 

Sputum bulk-cell RNAseq data can be found under the bioproject SRRXXXXX and sputum single-cell RNAseq 468 

data at SRRYYYYYY.  469 
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FIGURES: 481 

Figure 1. RNAseq alignment summary for control and asthmatic sputum, showing fractions of reads 482 

that aligned to different biotypes. Alignments to the protein-coding biotype were used to generate the 483 

gene expression matrix (G), which was then deconvolved into a cell fraction matrix (F) and cell 484 

expression (E). The exogenous reads were used to generate a microbial profile matrix (M). These 485 

matrices were then related to the clinical phenotype matrix (P) for biological insight.  486 

 487 

Figure 2. Deconvolution of RNAseq human reads into cell fractions using cell signature deconvolution. A) 488 

Schematic showing the imputation of a cell fraction matrix and cell-specific expression matrix. B) Imputed cell 489 

fractions were validated using microscopy; Cell fractions were then correlated with SARP cluster for  two major 490 

cell type: (C) Machrophases.M0 and (D) Mast cell activiated.  E) the cell fraction of LM22 gene signature 491 

deconvolution are correlated with the topic distribution of samples from LDA analysis. F)  G) tSNE analysis 492 

and clustering using single cell RNAseq from Asthmatic patient and control. H) The fraction of single 493 

cells for different cell types clusters between Asthmatic patient and Controls. 494 

 495 

Figure 3. Exogenous RNAseq analysis. (A).  The correlations between microbes abundance and cell fraction 496 

based on LM22 signature (B) The correlation between microbes abundance and clinical information. (C) The 497 

microbes abundance shows clear patterns that associated with Asthmatic severity. (D) The co-abundance 498 

network and overlay with the associated topics of microbes.  499 

 500 

Figure 4. Prediction of cross-talk between microbe and gene. (A) The diagram to combine linear and LDA-501 

based non-linear algorithms to identify gene microbe linkages. (B) simple correlation to identify strong linkages 502 

between microbes and genes. Gene set over represent analysis for genes. X-axis is the -log(p-value) . (C) the 503 

importance of features (LDA topics for gene and microbes) in the RandomForest model by Gini index. The top 504 

20 associated gene in topics 8 (D) and topic 7 (E) of genes, and topic 1 (F) of microbes.  505 

 506 

Figure 5. The linkage between microbes and genes reflects the heterogeneity of different cell types. (A). 507 

Linkages between microbes and genes. (B) The linkages indicated by the cell proportion of certain types. 508 

 509 

SUPPLEMENTAL INFORMATION 510 

Figure S1:  511 

The distribution of cell fraction of sample in different group. 512 

Figure S2 513 

The heatmap between NMF component and cell fraction from LM22. 514 
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Figure S3 515 

Overall view of correlation of all the extracellular organism with clinical features. 516 

Figure S4 517 

Heatmap of the correlation of topics (gene and microbe ) with clinical information. 518 

Figure S5 519 

Co-abundance network based on correlation of abundance.\ 520 

 521 

Figure S6 522 

 523 

Top associated microbes in microbe topics 524 

 525 

Figure S7 526 

 527 

Top associated genes in gene topics 528 

 529 

Figure S8 530 

 531 

(A) The topic distribution of patient. (B) The gene enrichment analysis of top genes in topic 4. 532 

 533 

Figure S9 534 

Main pathways get involved by microbe linked genes. 535 

 536 

REFERENCES 537 

1. Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X, et al. Noninvasive analysis of the sputum 538 
transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191(10):1116-25. 539 
Epub 2015/03/13. doi: 10.1164/rccm.201408-1440OC. PubMed PMID: 25763605; PubMed Central PMCID: 540 
PMCPMC4451618. 541 
2. Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients 542 
with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874-543 
84. Epub 2015/07/30. doi: 10.1016/j.jaci.2015.05.044. PubMed PMID: 26220531; PubMed Central PMCID: 544 
PMCPMC4600429. 545 
3. Gibson PG, Girgis-Gabardo A, Morris MM, Mattoli S, Kay JM, Dolovich J, et al. Cellular characteristics 546 
of sputum from patients with asthma and chronic bronchitis. Thorax. 1989;44(9):693-9. Epub 1989/09/01. doi: 547 
10.1136/thx.44.9.693. PubMed PMID: 2588203; PubMed Central PMCID: PMCPMC462047. 548 
4. Belda J, Leigh R, Parameswaran K, O'Byrne PM, Sears MR, Hargreave FE. Induced sputum cell 549 
counts in healthy adults. Am J Respir Crit Care Med. 2000;161(2 Pt 1):475-8. Epub 2000/02/15. doi: 550 
10.1164/ajrccm.161.2.9903097. PubMed PMID: 10673188. 551 
5. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets 552 
from tissue expression profiles. Nat Methods. 2015;12(5):453-7. Epub 2015/03/31. doi: 10.1038/nmeth.3337. 553 
PubMed PMID: 25822800; PubMed Central PMCID: PMCPMC4739640. 554 
6. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 555 
2012;489(7414):57-74. Epub 2012/09/08. doi: 10.1038/nature11247. PubMed PMID: 22955616; PubMed 556 
Central PMCID: PMCPMC3439153. 557 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

15 

7. Rozowsky J, Kitchen RR, Park JJ, Galeev TR, Diao J, Warrell J, et al. exceRpt: A Comprehensive 558 
Analytic Platform for Extracellular RNA Profiling. Cell Syst. 2019;8(4):352-7 e3. Epub 2019/04/09. doi: 559 
10.1016/j.cels.2019.03.004. PubMed PMID: 30956140. 560 
8. Welling SH, Clemmensen LK, Buckley ST, Hovgaard L, Brockhoff PB, Refsgaard HH. In silico 561 
modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and 562 
random forest. Eur J Pharm Biopharm. 2015;94:152-9. Epub 2015/05/26. doi: 10.1016/j.ejpb.2015.05.012. 563 
PubMed PMID: 26004819. 564 
9. Welling SH, Refsgaard HHF, Brockhoff PB, Clemmensen LH. Forest Floor Visualizations of Random 565 
Forests. arXiv e-prints [Internet]. 2016 May 01, 2016. Available from: 566 
https://ui.adsabs.harvard.edu/abs/2016arXiv160509196W. 567 
10. Payne BA, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved 568 
questions. Biochim Biophys Acta. 2015;1847(11):1347-53. Epub 2015/06/09. doi: 569 
10.1016/j.bbabio.2015.05.022. PubMed PMID: 26050973; PubMed Central PMCID: PMCPMC4580208. 570 
11. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome 571 
project. Nature. 2007;449(7164):804-10. Epub 2007/10/19. doi: 10.1038/nature06244. PubMed PMID: 572 
17943116; PubMed Central PMCID: PMCPMC3709439. 573 
12. Essilfie AT, Simpson JL, Horvat JC, Preston JA, Dunkley ML, Foster PS, et al. Haemophilus influenzae 574 
infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog. 2011;7(10):e1002244. 575 
Epub 2011/10/15. doi: 10.1371/journal.ppat.1002244. PubMed PMID: 21998577; PubMed Central PMCID: 576 
PMCPMC3188527. 577 
13. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, et al. Eosinophilic 578 
inflammation in asthma. N Engl J Med. 1990;323(15):1033-9. Epub 1990/10/11. doi: 579 
10.1056/NEJM199010113231505. PubMed PMID: 2215562. 580 
14. Ahren IL, Eriksson E, Egesten A, Riesbeck K. Nontypeable Haemophilus influenzae activates human 581 
eosinophils through beta-glucan receptors. Am J Respir Cell Mol Biol. 2003;29(5):598-605. Epub 2003/04/12. 582 
doi: 10.1165/rcmb.2002-0138OC. PubMed PMID: 12689921. 583 
15. Galli SJ, Tsai M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and 584 
adaptive immunity. Eur J Immunol. 2010;40(7):1843-51. Epub 2010/06/29. doi: 10.1002/eji.201040559. 585 
PubMed PMID: 20583030; PubMed Central PMCID: PMCPMC3581154. 586 
16. Masur H, Rosen PP, Armstrong D. Pulmonary disease caused by Candida species. Am J Med. 587 
1977;63(6):914-25. Epub 1977/12/01. PubMed PMID: 343588. 588 
17. Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, et al. Paradigms of 589 
Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Front Physiol. 2018;9:1168. Epub 590 
2018/09/25. doi: 10.3389/fphys.2018.01168. PubMed PMID: 30246806; PubMed Central PMCID: 591 
PMCPMC6110890. 592 
18. Ascencio F, Ljungh A, Wadstrom T. Characterization of lactoferrin binding by Aeromonas hydrophila. 593 
Appl Environ Microbiol. 1992;58(1):42-7. Epub 1992/01/01. PubMed PMID: 1311545; PubMed Central PMCID: 594 
PMCPMC195170. 595 
19. Sajjan U, Keshavjee S, Forstner J. Responses of well-differentiated airway epithelial cell cultures from 596 
healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infect Immun. 597 
2004;72(7):4188-99. Epub 2004/06/24. doi: 10.1128/IAI.72.7.4188-4199.2004. PubMed PMID: 15213163; 598 
PubMed Central PMCID: PMCPMC427436. 599 
20. Park CY, Heo JN, Suk K, Lee WH. Sodium azide suppresses LPS-induced expression MCP-1 through 600 
regulating IkappaBzeta and STAT1 activities in macrophages. Cell Immunol. 2017;315:64-70. Epub 601 
2017/04/11. doi: 10.1016/j.cellimm.2017.02.007. PubMed PMID: 28391993. 602 
21. Hildebrand D, Bode KA, Riess D, Cerny D, Waldhuber A, Rommler F, et al. Granzyme A produces 603 
bioactive IL-1beta through a nonapoptotic inflammasome-independent pathway. Cell Rep. 2014;9(3):910-7. 604 
Epub 2014/12/02. doi: 10.1016/j.celrep.2014.10.003. PubMed PMID: 25437548. 605 
22. Chapman SJ, Khor CC, Vannberg FO, Rautanen A, Segal S, Moore CE, et al. NFKBIZ polymorphisms 606 
and susceptibility to pneumococcal disease in European and African populations. Genes Immun. 607 
2010;11(4):319-25. Epub 2009/10/03. doi: 10.1038/gene.2009.76. PubMed PMID: 19798075; PubMed Central 608 
PMCID: PMCPMC3051152. 609 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://ui.adsabs.harvard.edu/abs/2016arXiv160509196W
https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

16 

23. Baldwin AS, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev 610 
Immunol. 1996;14:649-83. Epub 1996/01/01. doi: 10.1146/annurev.immunol.14.1.649. PubMed PMID: 611 
8717528. 612 
24. Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. Positive and negative regulation of 613 
nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J Biol Chem. 614 
2005;280(9):7444-51. Epub 2004/12/25. doi: 10.1074/jbc.M412738200. PubMed PMID: 15618216. 615 
25. Yamazaki S, Muta T, Matsuo S, Takeshige K. Stimulus-specific induction of a novel nuclear factor-616 
kappaB regulator, IkappaB-zeta, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J Biol 617 
Chem. 2005;280(2):1678-87. Epub 2004/11/04. doi: 10.1074/jbc.M409983200. PubMed PMID: 15522867. 618 
26. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and 619 
disease. Nat Rev Immunol. 2009;9(5):313-23. Epub 2009/04/04. doi: 10.1038/nri2515. PubMed PMID: 620 
19343057; PubMed Central PMCID: PMCPMC4095778. 621 
27. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin 622 
Gastroenterol. 2015;31(1):69-75. Epub 2014/11/14. doi: 10.1097/MOG.0000000000000139. PubMed PMID: 623 
25394236; PubMed Central PMCID: PMCPMC4290017. 624 
28. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, et al. Analysis of 625 
the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011;6(2):e16384. Epub 2011/03/03. 626 
doi: 10.1371/journal.pone.0016384. PubMed PMID: 21364979; PubMed Central PMCID: PMCPMC3043049. 627 
29. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, et al. Comparison of the 628 
respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067-629 
75. Epub 2013/03/16. doi: 10.1164/rccm.201210-1913OC. PubMed PMID: 23491408; PubMed Central PMCID: 630 
PMCPMC3734620. 631 
30. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in 632 
asthmatic airways. PLoS One. 2010;5(1):e8578. Epub 2010/01/07. doi: 10.1371/journal.pone.0008578. 633 
PubMed PMID: 20052417; PubMed Central PMCID: PMCPMC2798952. 634 
31. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-635 
seq aligner. Bioinformatics. 2013;29(1):15-21. Epub 2012/10/30. doi: 10.1093/bioinformatics/bts635. PubMed 636 
PMID: 23104886; PubMed Central PMCID: PMCPMC3530905. 637 
32. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and 638 
tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(Database issue):D633-42. Epub 639 
2013/11/30. doi: 10.1093/nar/gkt1244. PubMed PMID: 24288368; PubMed Central PMCID: 640 
PMCPMC3965039. 641 
33. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. 642 
Genome Biol. 2014;15(3):R46. Epub 2014/03/04. doi: 10.1186/gb-2014-15-3-r46. PubMed PMID: 24580807; 643 
PubMed Central PMCID: PMCPMC4053813. 644 
34. Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling 645 
Analysis. PLoS Comput Biol. 2015;11(11):e1004575. Epub 2015/11/26. doi: 10.1371/journal.pcbi.1004575. 646 
PubMed PMID: 26600239; PubMed Central PMCID: PMCPMC4658017. 647 
35. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 648 
2004;69(2). PubMed PMID: WOS:000220255500019. 649 
36. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 650 
2004;70(6). PubMed PMID: WOS:000226299200018. 651 
 652 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


CELL-TYPE 
FRACTION

(Fp,f)

CLINICAL
(Cp,c)

MICROBE TOPIC

(!",$% )

CELL-TYPE 
SIGNATURES

(Sf,g)
x

MICROBE TOPIC 
FRACTION IN 

PATIENTS

(&',"% )

GENE
(Gp,g)

Control &
Asthmatic 

Patients (p)
(115 patients)

RNASeq

Fraction of reads

Np=115
MICROBE
(Mp,m)

Nc ~200 Nm ~1000

Deconvolution

Ng ~20,000

GENE-MICROBE 
LINKAGES

((),$)

Nf = 22

exogenous

human mt

human other

human protein-coding

human retained intron

Biotype

Blood

Sputum

GENE TOPIC 
FRACTION IN 

PATIENTS

(&',"* )

!+,)) !+,$%

(),$ = -(!+,)* , !+,$% )

0 100%

LDA
Correlation of /+,), 0+,$

N
g

~2
0,

00
0

Nm ~1000

R(/+,), 0+,$)

LDA-LINK

GENE TOPIC

(!",)* ) 

LDA

Np=115

Figure 1

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


!( , ) !( , )CLINICAL
(C.,c)

GENE TOPIC 
COMPONENTS

(%.,'( )

CELL-TYPE
FRACTION

(F.,f)

CELL-TYPE 
SIGNATURES 

(Sf,g)
DECONVOLUTION

• Immune cell signatures

A. Schema 

B Single cell RNAseq of sputum to identify cell types

GENE

(Gp,g)

g (~20,000)

p
CELL-TYPE 
FRACTIONS 

(Fp,f)

f (22)

F

C. Differences between scRNAseq cell types in Asthmatics and 
controls 

D

E.   cell type hematopoiesis vs topic (components)

nm
f.1
nm
f.2
nm
f.3
nm
f.4
nm
f.5
nm
f.6
nm
f.7 AC

T
Ag
e

Ag
e.D
X

Ag
e.S
X.O

nse
t
BD
R BM

I
FE
NO

FE
V1
.FV
C.p
ost
BD

FE
V1
.FV
C.p
reB
D HILHP

Y ICS

Int
ub
atio
ns

Nu
mb
er.
of.O

CS

OC
S.T
ota
l

pla
tele
ts

Tot
al.P
ack
.Ye
ars

wh
ite.
cou
nt

B.cells.memory
B.cells.naive

Dendritic.cells.activated
Dendritic.cells.resting

Eosinophils
Macrophages.M0
Macrophages.M1
Macrophages.M2

Mast.cells.activated
Mast.cells.resting

Monocytes
Neutrophils

NK.cells.activated
NK.cells.resting

Plasma.cells
T.cells.CD4.memory.activated
T.cells.CD4.memory.resting

T.cells.CD4.naive
T.cells.CD8

T.cells.follicular.helper
T.cells.gamma.delta

T.cells.regulatory..Tregs.

−1.0

−0.5

0.0

0.5

1.0
Corr

LM22

CELL-TYPE 
FRACTION

(F.,f)

●●
●●

●●●
●

● ●
●

●
●

●●●● ●●

●

●●
●●● ●●● ●● ●●●
●●

●
●

●

●

●● ●●●
●

●●●
●

●
●

● ●●●● ●

●

●

●

●

●

●●
●●

●
●

● ●● ●●●
●●

●

●

●

● ●
●

●
●●

r = 0.53, p = 1.8e−07

● ●
●

●

● ●●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

● ●
●

●● ●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●
●

●●

● ●

●

● ●

●

●

●●
●

●

●

●
●

r = 0.27, p = 0.012

●
●●

●

●● ●●
●

●●

● ●
●●

●

●

●

●

●

●

●
●
●

●●●
●●

● ●

●

●

●
●

●

● ●
● ●●

● ●

●

●

●
●

●
● ●

● ●●

●
●

●●

●

● ●● ● ●
●

●

● ● ●

●

●●●●

●

●

●

●

●

●

●● ● ● ●●

r = 0.25, p = 0.021

●● ●

●

●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●● ●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●

● ●
● ●

●●

●

●
●●

●

●

●
●

●

●

●
●

r = 0.41, p = 8e−05

Macrophages Neutrophils

Eosinophils Lymphocytes

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8

0.0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15

0.00
0.25
0.50
0.75

0.0
0.2
0.4
0.6
0.8

0.25
0.50
0.75
1.00

cibersort

cy
to

sp
in

●●
●●

●●●
●

● ●
●

●
●

●●●● ●●

●

●●
●●● ●●● ●● ●●●
●●

●
●

●

●

●● ●●●
●

●●●
●

●
●

● ●●●● ●

●

●

●

●

●

●●
●●

●
●

● ●● ●●●
●●

●

●

●

● ●
●

●
●●

r = 0.53, p = 1.8e−07

● ●
●

●

● ●●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

● ●
●

●● ●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●
●

●●

● ●

●

● ●

●

●

●●
●

●

●

●
●

r = 0.27, p = 0.012

●
●●

●

●● ●●
●

●●

● ●
●●

●

●

●

●

●

●

●
●
●

●●●
●●

● ●

●

●

●
●

●

● ●
● ●●

● ●

●

●

●
●

●
● ●

● ●●

●
●

●●

●

● ●● ● ●
●

●

● ● ●

●

●●●●

●

●

●

●

●

●

●● ● ● ●●

r = 0.25, p = 0.021

●● ●

●

●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●● ●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●

● ●
● ●

●●

●

●
●●

●

●

●
●

●

●

●
●

r = 0.41, p = 8e−05

Macrophages Neutrophils

Eosinophils Lymphocytes

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8

0.0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15

0.00
0.25
0.50
0.75

0.0
0.2
0.4
0.6
0.8

0.25
0.50
0.75
1.00

cibersort

cy
to

sp
in

M
ic

ro
sc

op
y

Cell-type fraction

VALIDATION
• Microscopy
• scRNAseq
• LDA/NMF

nm
f.1
nm
f.2
nm
f.3
nm
f.4
nm
f.5
nm
f.6
nm
f.7 AC

T
Ag
e

Ag
e.D
X

Ag
e.S
X.O

nse
t
BD
R BM

I
FE
NO

FE
V1
.FV
C.p
ost
BD

FE
V1
.FV
C.p
reB
D HILHP

Y ICS

Intu
bat
ion
s

Nu
mb
er.o

f.O
CS

OC
S.T
ota
l

pla
tele
ts

Tot
al.P

ack
.Ye
ars

wh
ite.
cou
nt

B.cells.memory
B.cells.naive

Dendritic.cells.activated
Dendritic.cells.resting

Eosinophils
Macrophages.M0
Macrophages.M1
Macrophages.M2

Mast.cells.activated
Mast.cells.resting

Monocytes
Neutrophils

NK.cells.activated
NK.cells.resting

Plasma.cells
T.cells.CD4.memory.activated
T.cells.CD4.memory.resting

T.cells.CD4.naive
T.cells.CD8

T.cells.follicular.helper
T.cells.gamma.delta

T.cells.regulatory..Tregs.

−1.0

−0.5

0.0

0.5

1.0
Corr

Figure 2

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


!( , )

!( , )

B.c
ells
.m
em
ory

B.c
ells
.na
ive

De
nd
riti
c.c
ells
.ac
tiva
ted

De
nd
riti
c.c
ells
.re
stin
g

Eo
sin
op
hils

Ma
cro
ph
ag
es
.M
0

Ma
cro
ph
ag
es
.M
1

Ma
cro
ph
ag
es
.M
2

Ma
st.
ce
lls.
ac
tiva
ted

Ma
st.
ce
lls.
res
tin
g

Mo
no
cyt
es

Ne
utr
op
hils

NK
.ce
lls.
ac
tiva
ted

NK
.ce
lls.
res
tin
g

Pla
sm
a.c
ells

T.c
ells
.CD
4.m
em
ory
.ac
tiva
ted

T.c
ells
.CD
4.m
em
ory
.re
stin
g

T.c
ells
.CD
4.n
aiv
e

T.c
ells
.CD
8

T.c
ells
.fo
llic
ula
r.h
elp
er

T.c
ells
.ga
mm
a.d
elt
a

T.c
ells
.re
gu
lat
ory
..T
reg
s.
AC
T
Ag
e

Ag
e.D
X

Ag
e.S
X.O
ns
et
BD
R
BM
I
FE
NO

FE
V1
.FV
C.p
os
tBD

FE
V1
.FV
C.p
reB
DHILHP

YICS

Int
ub
ati
on
s

Nu
mb
er.
of.
OC
S

OC
S.T
ota
l

pla
tel
ets

To
tal
.Pa
ck.
Ye
ars

wh
ite
.co
un
t

Acinetobacter
Aeromonas

Aggregatibacter
Bacillus
Candida

Capnocytophaga
Catonella

Citrobacter
Cytophaga

Delftia
Dialister

Enterobacter
Enterococcus
Escherichia

Gemella
Haemophilus

Klebsiella
Lactobacillus
Megasphaera

Methylobacterium
Micrococcus
Pandoraea
Pantoea

Porphyromonas
Prevotella

Pseudomonas
Rhizobium
Salmonella

Serratia
Sphingomonas
Staphylococcus
Streptococcus

Tannerella
Treponema
Veillonella

−1.0

−0.5

0.0

0.5

1.0
Corr

CLINICAL
(C.,c)

MICROBE
(M.,m)

CELL-TYPE 
FRACTION

(F.,f)

A B

C D

p

m

!(. , )MICROBE
(M.,m)

MICROBE TOPIC
(&.,'( )

MICROBE TOPIC
(&.,'( )HierClust( )MICROBE

(Mphylum)

Figure 3

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


Microbe-gene linkageA

C

D

E

F

Figure 4

x

Positive set

Negative set

B

GENE
(G.,g)

g (~20,000)

MICROBE
(M.,m)

m (~1000)

!( , )
.CC-BY-ND 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/


B

C
D

A Subset of the gene-microbe linkages defined by the LDA-link model

Figure 5

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765297doi: bioRxiv preprint 

https://doi.org/10.1101/765297
http://creativecommons.org/licenses/by-nd/4.0/

