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Abstract

As next-generation sequencing (NGS) and liquid biopsy become more prevalent in clinic and
research, for cancer diagnosis, molecular target identification, and disease monitoring, there
is an increasing need for better methods to reduce cost and improve sensitivity and specificity
of mutation detection. Since NGS has an error rate of around 1%, it is difficult to accurately
and efficiently identify mutations with less than 1% frequency in a sample. Here we propose
a likelihood-based approach, called Low-Frequency Mutation Detector (LFMD), which
combines the advantages of duplex sequencing (DS) and bottleneck sequencing system

(BotSeqS) to maximize the utilization of duplicate sequence reads. Compared with DS, the
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new method achieves higher sensitivity (improved by ~16%), higher specificity and lower
cost (reduced by ~70%) without involving additional experimental steps, customized adapters
or molecular tags. In addition, this method can also be used to improve sensitivity and
specificity of other variant calling algorithms by making it unnecessary to remove

polymerase chain reaction (PCR) duplicates.

Introduction

At the individual level, low-frequency mutations (LFMs) are defined as mutations with allele
frequency lower than 5% or 1% in an individual’s DNA. LFMs can indicate early stages of
cancer and Alzheimer’s Disease (AD)(1), distinguish samples from people of different ages
(2), identify disease-causing variants(3), predict potential drug resistance(4), diagnose
mitochondrial disease before tri-parental in vitro fertilization(5), and track the mutational
spectrum of viral genomes, malignant lesions, and somatic tissues(4,6). To effectively
improve signal-to-noise ratio (SNR) and detect LFMs, researchers have developed methods
with stringent thresholds, complex experimental procedures(1,7), single cell sequencing(8-
11), circle sequencing(12), and more precise analytic models(2,13). The bottleneck
sequencing system(14) (BotSeqS) and duplex sequencing(15,16) (DS) utilize duplicate reads
generated by polymerase chain reaction (PCR), which are discarded by other methods, to
achieve much higher accuracy. However, current methods still have some limitations in

detecting LFMs.

Disadvantages of single cell sequencing and circle sequencing

For single cell sequencing, DNA extraction is laborious and exacting, with point mutations
and copy number biases introduced during the amplification of small amounts of fragile
DNA. To increase specificity, only variants shared by at least two cells are accepted as true
variants(11). At present, this method is not cost-efficient and cannot be used in large-scale
clinical applications because a large number of single cells need to be sequenced to identify

rare mutations.

Circle sequencing only utilizes a single strand of DNA, so its specificity is limited by the
error rate of PCR. It controls errors to a rate as low as 7.6 x 10 ° per base sequenced(12)

while DS can achieve 4 x 10™'° errors per base sequenced(15).
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Disadvantages of BotSeqS

In contrast, BotSeqS uses endogenous molecular tags to group reads from the same DNA
template and construct double-strand consensus reads. As a result, it can detect very rare
mutations (<10"®) while being cheap enough to sequence the whole human genome(14).
However, it requires highly diluted DNA templates before PCR amplification to reduce
endogenous tag conflicts and ensure sufficient sequencing of each DNA template. Thus, it
has a high specificity with poor sensitivity. Also, it discards clonal variants and small

insertions/deletions (InDels) to limit false positives.

Disadvantages of DS

Another promising method to eliminate tag conflicts is Duplex sequencing (DS), which
ligates exogenous random molecular tags (also known as unique molecular identifier, UID or
UMI) to both ends of each DNA template before PCR amplification. Although sensitive and
accurate, much sequencing data is wasted on sequence tags, fixed sequences and a large
proportion of read families that contain only one read pair, which arose from a sequencing
error on a tag. Since random molecular tags are synthesized with customized adapters, batch
effects might occur during DNA library construction. Additionally, DS only works on

targeted small genome regions(2,15) rather than on the whole genome.

Disadvantages of Tag clustering

To solve the problem induced by the errors on tags, multiple methods have been developed to
cluster similar tags(17-19), where one or two mismatches are allowed in merging two tags.
Although tag clustering does improve the sensitivity, it is still not a straightforward way to
solve the problem. Inappropriate tag clustering might occur because unstable synthesis of
random tags can result in distinct but similar tags. The performance of this approach has not

been well studied and reported yet.

A new approach
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To avoid the aforementioned problems, we present here a new, efficient approach that
combines the advantages of BotSeqS and DS. The method uses a likelihood-based
model(2,13) to dramatically reduce endogenous tag conflicts. Then it groups reads into read
families and constructs double-strand consensus reads to detect ultra-rare mutations
accurately while maximizing the utilization of non-duplicate read pairs. This simplifies the
DNA sequencing procedure, saves data and cost, achieves higher sensitivity and specificity,
and can be used in whole genome sequencing. In addition, our new method offers a statistical
solution to the problem of PCR duplication in the basic analysis pipeline of next-generation
sequencing (NGS) data and can improve sensitivity and specificity of other variant calling
algorithms without requiring specific experimental designs. As the price of sequencing is
falling, the depth and the rate of PCR duplication are rising. The method we present here
might help deal with such high depth data more accurately and efficiently.

Methodology

Intuitively, to distinguish LFMs (signal) from background PCR and sequencing errors
(noise), we need to increase the SNR. To increase SNR, we need to either increase the
frequency of mutations or reduce sequencing errors. Single cell sequencing increases the
frequency of mutations by isolating single cells from the bulk population, while BotSeqS and
DS reduce sequencing errors by identifying the major allele at each site of multiple reads

from the same DNA template. In this paper, we only focus on the latter strategy.

To group reads from the same DNA template, the simplest idea is to group properly mapped
reads with the same coordinates (i.e., chromosome, start position, and end position) because
random shearing of DNA molecules can provide natural differences, called endogenous tags,
between templates. A group of reads is called a read family. However, as the length of DNA
template is approximately determined, random shearing cannot provide enough differences to
distinguish each DNA template. Thus, it is common that two original DNA templates share
the same coordinates. If two or more DNA templates shared the same coordinates, and their
reads are grouped into a single read family, it is difficult to determine, using only their
frequencies as a guide, whether an allele is a potential error or a mutation. Thus, BotSeqS
introduced a strategy of dilution before PCR amplification to dramatically reduce the number
of DNA templates in order to reduce the probability of endogenous tag conflicts. And DS

introduced exogenous molecular tags before PCR amplification to dramatically increase the
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135  differences between templates. Thus, BotSeqS sacrifices sensitivity and DS sequences extra
136  data: the tags.

137

138  Here we introduce a third strategy to eliminate tag conflicts. It is a likelihood-based approach
139  based on an intuitive hypothesis: that if reads of two or more DNA templates group together,
140  atrue allele’s frequency in this read family is high enough to distinguish the allele from

141  background sequencing errors. The overview of the LFMD pipeline is shown in Figure 1.
142

143 Figure 1. Overview of the LFMD pipeline. The Y-shaped adapters determine read 1 (purple
144  bar) and 2 (green bar). The directions of reads determine +/- strands. So after the first cycle of
145  the PCR amplification, the Watson and Crick families are well defined. Then within a read
146  family, true alleles (green dots) and accumulated PCR errors (blue dots) are detected via the
147  likelihood-base model and given a combined error rate. Sequencing errors (red dots) are

148  eliminated. Combining single-strand consensus sequences (SSCSs) of paired read families,
149  high-quality double-strand consensus sequence (DCSs) with estimated error rates are

150  generated and used in the downstream analysis.
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155  We aim to identify alleles at each potential heterozygous position in a read family (grouped
156  according to endogenous tags). Then based on those heterozygous sites, we split the mixed
157  read family into smaller ones, and compress each one into a consensus read. Finally, we

158  detect mutations based on all consensus reads, which have much lower error rates than 0.1%.
159

160  First, we define a Watson strand as a read pair for which read 1 is the plus strand while read 2
161  is the minus strand. A Crick strand is defined as a read pair for which read 1 is the minus

162  strand while read 2 is the plus strand. The plus and minus strands are also known as the

163  forward and reverse strands according to the reference genome. Read 1 and 2 are derived
164  from raw pair-end fastq files. Thus a read family which contains Watson and Crick strand
165  reads simultaneously is an ideal read family because it is supported by both strands of the
166  original DNA template. Second, we select potential heterozygous sites which meet the

167  following criteria: 1) the minor allele is supported by both Watson and Crick reads; 2) minor
168  allele frequencies in both Watson and Crick read family are greater than approximately the
169  average sequencing error rate, often 1% or 0.1%; 3) low-quality bases (<Q20) and low

170  quality alignments (<Q30) are excluded. Finally, we calculate the genotype likelihood in the
171  Watson and Crick family independently in order to eliminate PCR errors during the first PCR
172 cycle.

173

174 At each position of a Watson or Crick read family, let X denote the sequenced base and 6 the
175  allele frequencies. Let P(x|6) be the probability mass function of the random variable X,
176  indexed by the parameter 8 = (6,,0.,0;,07)", where 8 belongs to a parameter space (. Let
177 g €{A,C,G, T}, and 6, represent the frequency of allele g at this position. Obviously, we
178  have boundary constraints for §: 6; € [0,1] and }} 6, = 1.

179

180  Assuming N reads cover this position, x; represents the base onread i € {1,2, ..., N}, and ¢;

181  denotes sequencing error of the base, we get

182
183 P(x; = g|8) = P(no sequencing error | the base is g) - P(the base is g)
184 + P(sequencing error with specific direction | the base is not g)
185 - P(the base is not g)
e.
186 =(1-¢) 9g+§‘(1—99)
187

188  So the log-likelihood function can be written as
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£(0) = z log P(x;|0) = z log ((1 —e;) b, +%(1 — Hg)>, g = x;

Thus, for each candidate allele g, under the null hypothesis Hy: 6, = 0,6 € Q, and the

alternative hypothesis Hy: 8, # 0,6 € (, the likelihood ratio test is

tg = —2{€0(9) - fl(g)} ~X12

However, as 6, = 0 lies on the boundary of the parameter space, the general likelihood ratio

test needs an adjustment to fit y#. Because the adjustment is related to calculation of a
tangent cone(20) in constrained 3-dimensional parameter space, and the computation is too
complicated and time-consuming for large scale NGS data, here we use a simplified,
straightforward adjustment(21) presented by Chen et al in 2017. (Details in Supplemental

materials)

Interestingly, we finally arrive at a general conclusion that the further adjustment of y? is not
helpful in similar cases although the asymptotic distribution we use is not perfect when N is
small (e.g., N<5). Alternative approaches might be derived in the future. We also compared
theoretical P-values with empirical P-values from Monte Carlo procedures (Figure 2),
explored the power of our model under truly and uniformly distributed sequencing errors
(Supplemental Material, Figure S1), and evaluated the accuracy of allele fraction
(Supplemental Material, Figure S2). The simulation results support the theoretical conclusion

sufficiently.

Figure 2. The comparison between theoretical and empirical P-values from Monte Carlo
procedures under truly distributed sequencing error rates. With the null hypothesis, one

million simulations were conducted.
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215
216  Because the null and alternative hypotheses have two and three free variables respectively,

217  the Chi-square distribution has 1 degree of freedom. The P-value of the allele g can then be
218  given

219 P, =1 — cdf(t,)

220

221  where cdf(x) is the cumulative density function of the y# distribution. If F,is less than a
222 given threshold a, the null hypothesis is rejected and the allele g is treated as a candidate
223 allele of the read family.

224
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Although P, cannot be interpreted as the probability that H, 4 is true and allele g is an error,
it is a proper approximation of the error rate of allele g. We only reserve alleles with F) < «
in both Watson and Crick families and substitute others with “N”. Then Watson and Crick
families are compressed into several single-strand consensus sequences (SSCSs). The SSCSs
might contain haplotype information if more than one heterozygous site is detected. Finally,
SSCSs which are consistent in both Watson and Crick families are claimed as double-strand

consensus sequences (DCSs).

For each allele on a DCS, let P,,(g) and P.(g) represent the relative error rates of the given
allele in the Watson and Crick family respectively, and let P,,.(g) denote the united error rate

of the allele. Thus,
Pyc(g) = Py(9) + F(9) — By(9)P.(9)

For a read family which proliferated from n original templates, a coalescent model can be
used to model the PCR procedure(22). The exact coalescent PCR error rate is too
complicated to be calculated quickly, so we tried to give a rough estimate. According to the
model, a PCR error proliferates and its fraction decreases exponentially with the number of
PCR cycles, m. For example, an error that occurs in the first PCR cycle would occupy half of
the PCR products, an error that occurs in the second cycle occupies a quarter, the third only
1/8, and so on. As we only need to consider PCR errors which are detectable, the coalescent
PCR error rate is defined as the probability to detect a PCR error whose frequency > 27™/n,

and it is equal to or less than

1— (1 — error rate per cycle)?" 1

Let e, (g) denote the coalescent PCR error rate and P,.,-(g) the united PCR error rate of the
double strand consensus allele. Then we get

Pyer () = n* ey (9)?

Because the PCR fidelity ranges from 10 to 107, we get P, (9)P,er(g) = 0, then the

combined base quality of the allele on the DCS is

Q(g) = —10logy, (ch(g) + Ppcr(g))
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Then Q(g) is transferred to an ASCII character, and a series of characters make a base
quality sequence for the DCS. Finally, we generate a BAM file with DCSs and their quality

sequences.

With the BAM file which contains all the high-quality DCS reads, the same approach is used
to give each allele a P-value at each genomic position which is covered by DCS reads.
Adjusted P-values (g-values) are given via the Benjamin-Hochberg procedure. The threshold
of g-values is selected according to the total number of tests conducted and false discovery

rate (FDR) which can be accepted.

A similar mathematical model was described in detail in previous papers by Ding et al(2) and
Guo et al(13). Ding et al. used this model to reliably call mutations with frequency > 4%. In
contrast, we use this model to deal with read families rather than non-duplicate reads. In a
mixed read family, most of the minor allele frequencies are larger than 4%, so the power of

the model meets our expectation.

For those reads containing InDels, the CIGAR strings in BAM files contain [ or D. It is
obvious that reads with different CIGAR strings cannot fit into one read family. Thus,
CIGAR strings can also be used as part of endogenous tags. In contrast, the soft-clipped part
of CIGAR strings cannot be ignored when considering start and end positions because low-
quality parts of reads tend to be clipped, and the coordinates after clipping are not a proper

endogenous tag for the original DNA template.

Results

Simulated data

We used Python scripts developed by the Du Novo(23) team to simulate mixed double-strand
sequencing data, which were analyzed using LFMD and DS. Although the simulation may
not be entirely realistic, the results are still useful to evaluate the performance and the
potential drawbacks of LFMD and DS. Because the underlying true mutations are known, the
true positives and false positives can be calculated. We found that DS made two false
positive rare variant calls due to mapping errors, which were not made by LFMD because it

avoids mapping errors by skipping the realignment step. In the meanwhile, LFMD is much

10
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292  more sensitive than DS according to Figure 3 and Table S1. The specificity of LFMD is
293  slightly higher than that of DS shown in Table S2.

294

295  Figure 3. The sensitivity of DS and LFMD. SNV, single nucleotide variant; INS, small

296 insertion; DEL, small deletion; AAF, alternative allele fraction.

SNV

I T e VA

/ =+ | \ J
. . / \!
3
/ o
o .
. S AN
/ — DS — DS
I — LFMD . — LFMD =
T T T T T T T T T T T
-40 -35 -30 -25 -20 -40 -35 -30 -25 -20 -40 -35 -30 -25 -20

10g10(AAF) Iog10(AAF) 10g10(AAF)
297
298

299  Mouse mtDNA

300

301 To evaluate the performance of LFMD in real data, we compared LFMD with DS on a DS
302  dataset of mouse mtDNA: SRR1613972. A comparison of DS and LFMD pipelines is shown

Sensitivity

303 in Figure S3. We controlled almost all parameters to be the same in DS and LFMD and then
304  compared the results although LFMD can achieve much higher sensitivity if we set the

305 minimum number of supporting reads in each read family as 2 (DS suggests the parameter as
306 3 to balance sensitivity and specificity). We found that mapping quality influenced the

307  performance of both methods. To reduce the influence of mapping quality, we only use all
308 unique proper mapped read pairs to call mutations. The results are shown in Table S3.

309

310 We investigated the discordant mutations one by one. The DS only mutations are all false
311  positives due to read mapping errors (MT:7G>A and MT:3418T>del) and low sequencing
312 quality (MT:5462T>QG). The mapping errors are from the following: 1) DS assigns highest
313  base quality for all bases of double-strand consensus sequence (DCS)(15) even though the
314  baseis N’ and 2) DS introduces more ‘N’ in DCS reads because the minimum proportion of
315  “true” bases in a read family is set to 0.7 by default (it can be set to 0.5 to improve

316  sensitivity).

317

11
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Among the 53 LFMD _only mutations, 2 insertions and 3 deletions are missed by DS due to
mapping errors of DCS, and 48 SNVs are not detected by DS due to three technical reasons:
1) sequencing and PCR errors on tags lead to smaller read families in DS, decreasing its
sensitivity; 2) DS discards some low complexity tags; 3) DS assumes “true” mutations should
occupy most reads (proportion >= (.7) in the reads family, although this assumption is

unreasonable considering PCR errors in the first PCR cycle.

In summary, the discordant mutations in this dataset are mainly false positives and false
negatives of DS. All LFMD_only mutations are manually checked and well supported by
read families under the same criteria of DS considering 1 or 2 sequencing and PCR errors on

tags. Therefore, LFMD achieves higher sensitivity and specificity than DS in this dataset.

Twenty-six human mtDNA samples from Prof. Kennedy'’s laboratory(1)

We compared the performance of DS and LFMD on 26 samples from Prof. Scott R.
Kennedy’s laboratory. Only unique proper mapped reads were used to detect LFMs. The
majority of LFMs were detected by both tools. Almost all LFMs detected only by DS were
false positives due to alignment errors of DCS, while LFMD outputs BAM files directly and
avoids alignment errors (Supplemental Material, Figure S3). LFMs only detected by LFMD
are supported by raw reads if considering PCR and sequencing errors on molecular tags. As a
result, LFMD is much more sensitive and accurate than DS. The improvement of sensitivity

is about 16% according to Table S4.

YH cell line

We sequenced the YH cell line (passage 19) in 8 independent experiments to evaluate the
stability of LFMD. The experimental details can be found in the Materials part. The results,
shown in Supplemental Materials, Table S5 and Figure S4, from the 8 parallel samples are
highly consistent in terms of numbers of mutations detected (range 61~68). Under the
hypothesis that true mutations should be identified from at least two samples, we detected 68
“true” mutations and the mean true positive rate (TPR) and false discovery rate (FDR) are

around 91.36% and 2.36% respectively.

ABLI data

12
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352

353  Using the duplex sequencing method in 2015, Schmitt et al. analyzed an individual with
354  chronic myeloid leukemia who relapsed after targeted therapy with the drug, Imatinib (the
355  Short Read Archive under accession SRR1799908). We analyzed this individual and found 5
356 extra LFMs. Two of them are in the coding region of the ABLI gene and change amino acids:
357  E255G and V256G. In the drug resistance database of COSMIC(24), we found that

358 E255VDK, change of the 255" amino acid, is associated with resistance to the drugs

359  Dasatinib, Imatinib, and Nilotinib, and V256L is related to resistance to the drug Imatinib.
360  Although the directions of amino acid changes, in this case, are not the same as those in the
361  database, these two additional LFMs still inferred potential resistance to the drug Imatinib
362  and provided an additional explanation for the clinical relapse of leukemia. The annotation
363  results of 5 LFMs are shown in Supplemental Materials, Table S6.

364

365  Materials

366

367  Subject recruitment and sampling

368

369 A lymphoblastoid cell line (YH cell line) established from the first Asian genome donor(25)
370  was used. Total DNA was extracted with the MagPure Buffy Coat DNA Midi KF Kit

371  (MAGEN). The DNA concentration was quantified by Qubit (Invitrogen). DNA integrity was
372  examined by agarose gel electrophoresis. The extracted DNA was kept frozen at -80°C until
373  further processing.

374

375  Mitochondrial whole genome DNA isolation

376

377  Mitochondrial DNA (mtDNA) was isolated and enriched by double/single primer set

378  amplifying the complete mitochondrial genome. The samples were isolated using a single
379  primer set (LR-PCR4) by ultra-high-fidelity Q5 DNA polymerase following the protocol of
380 the manufacturer (NEB) (Table S7).

381

382  Library construction and mitochondrial whole genome DNA sequencing

383

384  For the BGISeq-500 sequencing platform, mtDNA PCR products were fragmented directly
385 by Covaris E220 (Covaris, Brighton, UK) without purification. Sheared DNA ranging from

13
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386  150bp to 500bp without size selection was purified with an Axygen™ AxyPrep™ Mag PCR
387  Clean-Up Kit. 100 ng of sheared mtDNA was used for library construction. End-repairing
388 and A-tailing was carried out in a reaction containing 0.5 U Klenow Fragment

389 (ENZYMATICS™ P706-500), 6 U T4 DNA polymerase (ENZYMATICS™ P708-1500),
390 10 U T4 polynucleotide kinase (ENZYMATICS™ Y904-1500), 1 U rTaq DNA polymerase
391 (TAKARA™ R500Z), 5 pmol dNTPs (ENZYMATICS™ N205L), 40 pmol dATPs

392 (ENZYMATICS™ N2010-A-L), 1 X PNK buffer (ENZYMATICS™ B904) and water with
393  atotal reaction volume of 50 pl. The reaction mixture was placed in a thermocycler running
394  at 37°C for 30 minutes and heat-denatured at 65°C for 15 minutes with the heated lid at 5°C
395  above the running temperature. Adaptors with 10bp tags (Ad153-2B) were ligated to the

396 DNA fragments by T4 DNA ligase (ENZYMATICS™ L603-HC-1500) at 25°C. The ligation
397  products were PCR amplified. Twenty to twenty-four purified PCR products were pooled
398  together in equal amounts and then denatured at 95°C and ligated by T4 DNA ligase

399 (ENZYMATICS™ L603-HC-1500) at 37°C to generate a single-strand circular DNA library.
400 Pooled libraries were made into DNA Nanoballs (DNB). Each DNB was loaded into one lane
401  for sequencing.

402

403  Sequencing was performed according to the BGISeq-500 protocol (SOP AO) employing the
404  PE100 mode. For reproducibility analyses, YH cell line mtDNA was processed four times
405 following the same protocol as described above to serve as library replicates, and one of the
406 DNBs from the same cell line was sequenced twice as sequencing replicates. A total of 8

407  datasets were generated using the BGISEQ-500 platform. MtDNA sequencing was performed
408  on the BGISeq-500 with 100bp paired-end reads. The libraries were processed for high-

409  throughput sequencing with a mean depth of ~60000x.

410

411  The data that support the findings of this study have been deposited in the CNSA

412 (https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP0000297. Analysis codes
413  used in this paper can be accessed at https://github.com/RainyEricYe/LFMD.

414

415  Discussion

416

417  LFMD is still expensive for target regions >2 Mbp in size because of the need for high

418  sequencing depth. However, as the cost of sequencing continues to fall, it will become

419 increasingly practical. In order to sequence a larger region at reduced cost, the dilution step of

14


https://doi.org/10.1101/617381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617381; this version posted September 12, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

420 BotSeqS can be introduced into the LFMD pipeline. Because LFMD can deal with tag

421  conflicts, the dilution level might be decreased several magnitudes to increase the sensitivity.
422  Additional experiments will be done soon.

423

424  Only accepting random sheared DNA fragments, not working on short amplicon sequencing
425  data, and only working on pair-end sequencing data are known limitations of LFMD.

426  Moreover, LFMD’s precision is limited by the accuracy of the alignment software. Although
427  tags are excluded in the model of LFMD, LFMD still has the potential to utilize tags and deal
428  with amplicon sequencing data. The basic assumption in our model, that error rates are the
429  same in all three directions, is not close enough to reality according to experimental data at
430 present. These remain issues may be solved in the next version of LFMD.

431

432 To estimate the theoretical limit of LFMD, let read length be 100bp and the standard

433  deviation (SD) of insert size be 20bp. Furthermore, let N represent the number of position
434  families across one point. Then, N = (2 * 100) * (20 * 6) = 24000 if only considering +3 SD.
435  As the sheering of DNA is not random in the real world, it is safe to set N as 20,000. Ideally,
436 the likelihood ratio test can detect mutations whose frequency is greater than 0.2% in a read
437  family with Q30 bases. Thus, the theoretical limit of minor allele frequency is around le-7 (=
438  0.002/20000).

439

440  LFMD reduces the cost dramatically mainly because it discards tags. First, for a typical

441  100bp read, the lengths of the tags and the fixed sequences between the tag and the true

442  sequence are 12bp and Sbp respectively. So (12+5) / 100 = 17% of data are saved if we

443  discard tags directly. Second, the efficiency of target capture decreases by about 10% to 20%
444  because of the tags, according to in-house experiments. Third, LFMD can work on short read
445  data of BGISEQ and then 30% to 40% of the cost can be saved because of the cheaper

446  sequencing platform. Totally, the cost can be reduced by about 70%.

447

448  Conclusion

449

450 To eliminate endogenous tag conflicts, we use a likelihood-based model to separate the read
451  family of the minor allele from that of the major allele. Without additional experimental steps
452  and the customized adapters of DS, LFMD achieves higher sensitivity and specificity with

453  lower cost comparing with by far the best method, DS. It is a general method that can be used
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in several cutting-edge areas and its mathematical methodology can be generalized to

increase the power of other NGS tools.
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