
5 

 

extinction rates were often not fixed, with periods of higher and periods of lower rates (mostly 

positive varex and varcol indicating that the variance in the length of presence and absence periods 

is higher than expected, Fig. 1c-d). Finally, while DE assumes species independence, covariance 

was significantly positive in 79.6% of the datasets, and never significantly negative (Fig. 1e). 

Qualitatively similar results were found at the level of single communities within datasets. 

 

Figure 1 – Histograms presenting the distributions of statistics quantifying the deviations 

from the predictions (limited changes in richness and composition, dsrel (a) and dj (b), 

respectively) and the assumptions (fixed extinction and colonization rates: varex (c) and varcol (d) 

respectively; independent species: average covariance (e)). In each panel, the upper histogram 

with gray background presents the dataset-level distribution, while the other histograms are at a 

community-level within the four largest datasets. Significant results are highlighted in the 

histogram with a darker color, and their percent of the total results is presented to the right. The 

expected value for all statistics is zero, marked with a red dashed line.  
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Standardized regression models for dsrel vs. assumptions 

Coeff. Dataset level N.P. Fish Konza Prairie Skagerrak Fish N.A. Birds 

cov̅̅ ̅̅̅ 0.686 *** 0.745 *** 0.444 *** 0.651 *** 0.755 *** 

varex 0.079 0.056 -0.089 * 0.174 ** 0.077 *** 

varcol 0.071 -0.021 0.218 *** 0.096 0.09 *** 

DFE 46 468 497 215 3530 

R2 0.474 0.559 0.251 0.451 0.618 

Standardized regression models for dj vs. assumptions 

Coeff. Dataset level N.P. Fish Konza Prairie Skagerrak Fish N.A. Birds 

cov̅̅ ̅̅̅ 0.181 0.197 *** 0.553 *** 0.045 0.255 *** 

varex 0.026 0.035 0.035 -0.054 0.113 *** 

varcol 0.126 0.045 0.177 *** 0.083 0.06 ** 

DFE 46 468 497 215 3530 

R2 0.057 0.046 0.322 0.007 0.098 

Table 1 – Regression models explaining the variation in dsrel, excessive richness changes, 

and dj, excessive compositional changes. The explanatory variables are the statistics quantifying 

deviations from DE assumptions - varex and varcol, quantifying deviations from uniform rates 

extinction and colonization rates, respectively, and average covariance, varcol. We present the 

standardized regression coefficients, the degrees of freedom of the errors and the coefficient of 

determination. *: P < 0.05, **: P < 0.01, ***: P < 0.001. Results are presented at the dataset level 

(in bold), and for single communities within the four largest datasets.  
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The larger changes then expected in richness and composition could arise from the non-

uniformity of rates and/or from species dependence. To identify the cause, we regressed the 

statistics of deviations from the predictions (dsrel and dj) against the statistics of deviations from 

the assumptions. We found that dsrel is strongly correlated with 𝑐𝑜𝑣̅̅ ̅̅ ̅ at the dataset and 

community levels (Table 1, Fig. 2), while the association with varex and varcol is much weaker, 

and often non-significant. Moreover, the effect of 𝑐𝑜𝑣̅̅ ̅̅ ̅ is considerably stronger for longer time 

series (Fig. 2, Table S1). Explaining the variation in excessive compositional changes proved to 

be more difficult, probably because of their small magnitude. While dj is not significantly 

associated with any explanatory variables at the dataset levels, for three of the large datasets, 

community-level dj is associated primarily with 𝑐𝑜𝑣̅̅ ̅̅ ̅ (Table 1). Similar results were obtained for 

more complex models (Table S1).  

 

 

Figure 2 –effect of average covariance on excessive changes in richness, dsrel, subdivided 

according to the length of the time series. Both variables are standardized. Results are presented 
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at the dataset level (left, centered), as well as for single communities within the four largest 

datasets.  Length categories are as follows: short time series are < 14 years for the dataset level 

analysis, < 20 years for Konza Prairie, < 30 for Skagerrak and < 15 for the N.A. Birds. Long 

time series are ≥ 25 years for the dataset level analysis, ≥ 30 years for Konza Prairie, ≥ 70 years 

for Skagerrak and ≥ 30 for the N.A birds. The N.P fish dataset is not divided because the lengths 

of it time series are 10-12 years.  

 

Large changes in richness could be due to long-term trends or year to year variation 

(“noise”). To identify the nature of these changes, we quantified for each community the 

magnitude of noise and of the linear trend in richness. A regression of dsrel against these 

measures (Table 2) revealed that both trend and noise have a comparable contribution to the 

variation in richness changes (similar regression coefficients), but for different datasets their 

relative importance varies.  

 

Standardized regression models for dsrel vs. trend and noise 

Coeff. Dataset level N.P. Fish Konza Prairie Skagerrak Fish N.A. Birds 

length 0.564 *** 0.007 0.359 *** 0.389 *** 0.515 *** 

noise 0.685 *** 0.556 *** 0.549 *** 0.438 *** 0.507 *** 

trend 0.426 *** 0.489 *** 0.214 *** 0.742 *** 0.763 ** 

length*noise 0.279 *** 0.098 *** 0.165 *** 0.058 0.052 *** 

length*trend 0.128 *** 0.045 0.158 *** 0.28 ** 0.377 *** 

DFE 44 466 495 213 3528 

R2 0.89 0.589 0.689 0.367 0.6 

Table 2 – Regression models explaining the variation in dsrel, excessive richness changes, 

using the statistics quantifying noise (SD of normalized year to year changes in richness) and 

trend (normalized Theil-Sen statistic), as well as their interactions with time series length. See 
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methods for a detailed account of how these measures are calculated. We present the 

standardized regression coefficients, the degrees of freedom of the errors and the coefficient of 

determination. *: P < 0.05, **: P < 0.01, ***: P < 0.001. Both noise and trends contribute to 

large richness changes.  

 

Not many generalities about the dynamics of ecological communities are known. To address 

this limitation, we have performed one of the most extensive tests ever performed in ecology of 

the ability of dynamic models to explain observed dynamics. We found that species richness 

indeed undergoes larger changes then expected under DE in multiple ecosystems worldwide. 

While previous works have focused primarily on trends, we have shown that year to year 

variation in richness (“noise”) has a similar strong contribution to excessive richness changes. 

Unlike previous studies using similar data21 only a minority of communities showed excessive 

compositional changes. For a comparison of the methodologies used, see ref. 29. While we 

expected that communities undergoing large richness changes would also show large 

compositional changes, this is not the case. We attribute this surprising result to the very large 

year-to-year compositional variation, with roughly 50% species turnover between consecutive 

years in many datasets. This is probably the result of extensive sampling errors across multiple 

datasets.  

Our results shed light on the role of niche assembly beyond basic dispersal assembly 

processes. Both classical and contemporary studies of community assembly in space have 

revealed a prevalence of negative associations between species, with many pairs of species co-

occurring less than expected by chance8,9,11. This has been interpreted as evidence for the 

possible importance of competition in shaping communities, along with other evidence, 

including experiments12,14. However, while classical assembly studies tested whether static co-

occurrence patterns in space resemble a random pattern, our approach is to examine the 

assembly process in action, testing if it resembles a random dispersal assembly process.  

Given these results on negative associations, we expected that the arrival of one species would 

often increase the probability its competitors would go extinct, inducing negative average 

covariance between species. Surprisingly, this case is extremely rare in our data, where average 

covariance is almost exclusively positive. We interpret this as evidence that intra-specific 
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competition is less important in shaping assembly dynamics (at least for species with 

intermediate abundance, for which changes are observed and are part of the analysis) then 

similar response of species to environmental changes (see appendix 1). This similar response to 

environmental changes, and not the non-uniformity of rates at the single species level, is the 

main driver of the large changes that are observed in richness and composition, as communities 

with higher covariance also have higher dsrel (and dj, to a lesser extent).  

More work is needed to relate these excessive changes to specific drivers. Unlike previous 

works21,23 we do not believe that such excessive changes can be necessarily interpreted as 

evidence for anthropogenic effects. This is because similar responses of species to the 

environment changes, which drive excessive changes, are generally expected in cases when the 

niches of species overlap, regardless of the causes of the environmental change.  

Overall, we found that dispersal assembly alone is insufficient to explain the observed 

dynamics in ecological communities worldwide, and niche assembly processes play an important 

role. However, contrary to the expectation that niches buffer changes in composition and 

diversity4,13,14, we found that niches lead to synchrony in the dynamics of different species, 

which in turn leads to large temporal changes in richness and composition. This finding is in line 

with results on abundance changes16,26,27 and extinctions28 being driven by niches. We believe 

that in the face of the large pressure that ecological communities worldwide are undergoing, a 

synthetic view of the effect of ecological niches on community dynamics is crucial, and our work 

adds a piece to this puzzle. 
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Methods 

Methodology for testing the Dynamic Equilibrium (DE) model 

The properties of our newly developed methodology were studied in depth in ref. 29 of the 

main text. The methodology gets as an input a table of community composition (at a presence-

absence level) over regular time intervals (without loss of generality we use the term “years”). 

The output is the values (effect size) and significance of a set of statistics that compare different 

aspects of community dynamics to the predictions and assumptions of DE. The two components 

of the approach are therefore the summary statistics and the null model to which they are 

compared. We use five statistics, one for each of the assumptions and predictions, and the 

Presence-Absence Redistribution wIthin periodS (PARIS) null model. 

The PARIS null model 

The aim of the model is generating synthetic community time series of community 

composition that resemble the original time-series, but adhere to the assumptions of DE, namely, 

species independence and uniform colonization and extinction rates. This is done by the 

following algorithm, that is applied to single-species time series of presence-absence through 

time.  

The PARIS algorithm preserves the initial state (presence or absence), the total number of 

years of presence and the total number of years of absence, the number of colonization and 

extinction events as well as the total number of periods of presence and periods of absence. The 

only thing that can change is the duration of these periods. Consider there were y years of 

presence in the empirical time series, separated into s periods by extinction events (that initiate 

periods of absence). The algorithm will choose s - 1 out of y - 1 years without replacement, 

simultaneously. Then, the events are assigned to happen after the chosen years. The analogous 

procedure is applied for periods of absence being separated by colonization events. If there was 

only one period of presence or absence, it will remain as in the original data in all resamples. 

Missing years are removed before the algorithm is applied and then are put back at their original 

timing. 
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For example, assume the original time series is [1 1 1 0 0 0 1 1 0 1], where “1” stands for a 

year of presence and “0” stands for a year of absence. There are six years of presence within 

three periods and four years of absence within two periods, so two extinction events and one 

colonization events should be assigned. For example, choosing extinction to occur after the 1st 

and 2nd years of presence and colonization to occur after the 2nd year of absence will lead to the 

following synthetic time series: [1 0 0 1 0 0 1 1 1 1]. 

This algorithm generates independent time-series since it is applied to different species 

independently. Moreover, it generates events that are characteristic of a process with uniform 

rates (see ref. 29). Hence, it satisfies the assumptions of DE and can be used to generate multiple 

synthetic time series that “force” these assumptions on the data. An important property of the 

null model is that it preserves the initial state of the community, as well as the final state (the 

presence and absence of each species in the first and final year in the data).  

The statistics used to test DE 

Each of the following statistics quantifies the deviation from DE in some aspect of the 

dynamics. They are constructed so that their mean if DE is true is zero. 

To examine the magnitude of changes in richness, we use the statistic dsrel, which quantifies 

the normalized magnitude of temporal changes in species richness, beyond the expectation of 

DE: 

(eq. 1)  𝑑𝑠𝑟𝑒𝑙 =
max(𝑆(𝑘)𝑜𝑏𝑠)−min(𝑆(𝑘)𝑜𝑏𝑠) −max(𝑆(𝑘)𝑛𝑢𝑙𝑙)−min(𝑆(𝑘)𝑛𝑢𝑙𝑙) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

�̅�
. 

In other words, for the observed time series of species richness, 𝑆𝑜𝑏𝑠, we compute the 

change between the maximal richness and the minimal richness observed. The same change is 

then computed for every synthetic time-series generated by the null model, 𝑆𝑛𝑢𝑙𝑙. Finally, the 

average change under the null (the expected change) is subtracted from the observed change, and 

this is normalized by the average richness in the time series 𝑆̅ to ensure comparability between 

different studies. 

Under the PARIS null model, richness in the first and last year in every randomization 

precisely equals the observed values. For this reason, it is useful to perform the calculation of 
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dsrel for the “central” part of the time series, after “cutting” a proportion k of the years on both 

sides in the empirical data as well as in the randomizations. We used k = 0.06, so 0.06 of the total 

years (rounded up) will be “cut” on both sides for the calculation of dsrel. We performed a 

sensitivity analysis and found that using k = 0 would result in qualitatively similar (although 

weaker) results. 

The statistic dj quantifies the magnitude of temporal changes in composition, beyond the 

expectation of DE: 

(eq. 2)  𝑑𝑗 = max(𝐽𝑒𝑚𝑝 − 𝐽𝑛𝑢𝑙𝑙
̅̅ ̅̅ ̅̅ ) − 𝛿 

(eq. 3)  𝛿 =  max(𝐽𝑛𝑢𝑙𝑙 − 𝐽𝑛𝑢𝑙𝑙
̅̅ ̅̅ ̅̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

J is a curve describing the jaccard dissimilarity of each year w.r.t the first year. 𝐽𝑒𝑚𝑝 is this 

curve for the empirical data, while 𝐽𝑛𝑢𝑙𝑙 is computed for a singe realization of the null model. 

Hence, eq. 2 computes the difference between 𝐽𝑒𝑚𝑝 and the expected 𝐽𝑛𝑢𝑙𝑙  in the year when this 

difference is maximal. Since some deviations from the expected 𝐽𝑛𝑢𝑙𝑙 will occur even under DE, 

we subtract the quantity 𝛿, to ensure that dj will have a mean of 0 under DE. 𝛿 is the expected 

maximal deviation of a stochastic realization of the null model 𝐽𝑛𝑢𝑙𝑙 from the expected 𝐽𝑛𝑢𝑙𝑙. 

To test the assumptions of uniformity in colonization and extinction rates, we use the 

statistics varcol and varex, respectively. These statistics are based on comparing the variance in 

the duration of absence and presence periods to the expectation under the null. For each species 

with two or more periods of presence or absence, we compute the variance in their durations 

(separately for presence and absence) and then standardize it using the null model. These 

standardized variances are then averaged over species: 

(eq. 4)  𝑣𝑎𝑟𝑒𝑥 =
1

𝑆𝑝′
∑

𝑣𝑝
𝑖−𝜇𝑣𝑝

𝑖

𝜎𝑣𝑝
𝑖

𝑖  , 

(eq. 5)  𝑣𝑎𝑟𝑐𝑜𝑙 =
1

𝑆𝑎′
∑

𝑣𝑎
𝑖−𝜇𝑣𝑎

𝑖

𝜎𝑣𝑎
𝑖

𝑖 , 

Where 𝑣𝑝
𝑖 and 𝑣𝑎

𝑖 are the observed variances in the durations of presence and absence for 

species i, respectively; 𝜇𝑣𝑝
𝑖
 and 𝜇𝑣𝑎

𝑖
 are the expected variances in the durations of presence and 

absence for species i, respectively; and 𝜎𝑣𝑝
𝑖
 and 𝜎𝑣𝑎

𝑖
 are the SD of the variances in the durations 
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of presence and absence for species i, respectively, where the expectation and SD are calculated 

over resamples. These values are averaged over all species that have at least two events of 

presence or absence, respectively, 𝑆𝑝′ and 𝑆𝑎′.  

To test species independence, we computed the covariance between every pair of species 

time-series, and averaged over the pairs.  

All these statistics are expected to have a mean of zero under DE. A small exception is 

average covariance, which may have a positive value if the community initially is far from 

equilibrium. For all statistics except dj, a two-sided test is performed by comparing the observed 

statistics to a distribution of the statistic in 2·104 randomizations and computing the p values. For 

dj the test is one sided. 

At the dataset level, the values of the statistics are averaged over the communities within the 

dataset. For studies with > 200 communities, the significance of the deviation of this average 

from 0 is tested simply using a t test. For datasets with fewer communities, the randomization-

produced statistics are recorded for each community separately. The test is performed by 

comparing the observed average statistic to the distribution of averaged (over communities) 

randomized statistics. For example, if a dataset consists of 10 communities, we first compute the 

average dj (or other statistic). We then compute and record 2·104 randomization-generated djs 

for each of the communities. Now we average the randomized statistics over the communities, to 

get 2·104 average djs, that will serve as the null distribution for the test. 

Properties of the methodology and interpretation 

We have shown in ref 29. that the methodology generally has a type I error as predefined (α 

= 0.05 used in all our analyses). Moreover, it is reasonably robust to missing years, incomplete 

detection and false detection of species. 

Several important comments regarding the interpretation of the output are in order. Since the 

PARIS null model fixes the initial state of the community, the methodology will not detect a 

deviation from DE if the community admits DE dynamics but the initial state is far from 

equilibrium. Furthermore, this methodology only considers species that are observed, and only 

those who have some colonization and extinction events contribute to the statistics. For this 
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reason, the methodology will not detect cases when some species are never observed because of 

filtering (biotic or a-biotic), or the effect of very common or extremely rare species that never go 

extinct or are barely observed.  

Assembly of the database and data filtering 

Our analyses are performed on tables of species by years, with information on presence and 

absence for each species at every year in a given site (community). For the analysis to make 

sense, we require that the data will be consistent in space (from a single site or locality), 

seasonality (every year the sampling is performed in the same months) and sampling effort. To 

achieve these goals, we assembled data from three sources: the newly published BioTIME 

database1, the Breeding Bird Survey (BBS)2 and further references that were available in 

previous publications3,4 but were not included in the open version of BioTIME. A full list of 

these additional studies is included in table S3. A limited version of the BBS (300 sites) is 

included in the BioTIME but was discarded in favor of the full data (3533 sites included). 

Following the recommendations of our methodological analysis29, we set the following 

quality criteria for all our data: we use data that has a timespan of at least 10 years, no more then 

0.15 of which can be missing years (years when data is not available), and we required that at 

least 20 species have been observed sometime during the survey period. 

In all cases, at most one community time-series is produced for a group of organisms 

(defined taxonomically or ecologically) in each site. Further details on the data gathering and 

cleaning are provided below according to the source of the data. The Matlab code for these 

analyses is included in the online appendix. A map presenting all datasets and communities is 

presented in Fig. S2. 

BioTIME 

After downloading the database in CSV format (on 2/11/2018) We used the following 

algorithm to obtain time series that indeed satisfy our requirements. First, we discarded all 

studies with less then 10 years of time span and less than 20 species overall, all studies that had 

treatments and the BBS (study 195). next, for every study, we searched for unique sites. If data 

on plots was available, we treated every plot as a site and discarded every plot that had more then 
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one latitude-longitude coordinate. If data on plots was not available (‘NA’), we considered every 

latitude-longitude coordinate as a site. 

Some of the studies have no information on the season when sampling was performed. For 

these studies, we searched for the longest sequence of years that satisfies the quality conditions 

(timespan ≥ 10 years, ≤ 0.15 missing years, ≥ 20 species overall). If several such sequences were 

found with the same time span, we chose the sequence with the smallest number of missing 

years, and if several of these sequences had the same number of missing years, we (arbitrarily) 

chose the one with the earlier beginning. Sites without any time series satisfying our 

requirements were not used. 

If data on sampling month was available, we wanted to make sure that the season of 

sampling is as consistent between years as possible. As a result, some records done in “a-typical” 

months, and some years lacking “typical” months would have to be discarded. Consequently, we 

had to balance between having time series with a longer time span in terms of years and having 

time series that include more months. This was achieved using the following algorithm. 

We begin by constructing a binary table of years x months, indicating whether there is any 

data available for a given year-month combination. Then, the table is extended so that a year-

month combination is coded as ‘available’ if one month before or after has any data. This is done 

to ignore small inconsistencies in sampling period. Next, we search for “good months” that are 

consistently sampled through the survey, that is, data for them is available for > 

thresh_good_month of the years. We used the value thresh_good_month = 0.9. Any year that has 

no data for a “good month” is discarded. 

Next, we consider every one of the 122 – 1 combinations of months. For each such 

combination, we find the number of months with available data, m, and the length of the ‘best’ 

sequence of years having these months, y. The ‘best’ sequence is found by finding the longest 

sequences satisfying the quality criteria (timespan ≥ 10 years, ≤ 0.15 missing years). Among 

them, the first among those with the fewest missing years is chosen. Now, the ‘value’ of each 

combination of months is calculated as y·mv, where v regulates the ‘value’ of a month w.r.t. a 

year. Since we need long sequences to have more power, we used v = 0.3. For example, this 

leads to 50 years with 5 months being better then 40 years with 10 months but worse than 40 

years with 11 months. We find the combination of years and months that has the highest value 
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and discard all data that does not belong to this combination. If no such combination with 

enough years, non-missing years and species is found, the entire site is discarded. This completes 

the selection of data for a single site. 

Another issue that must be considered is that some sites have more then one ‘sample’ per 

site-year combination, and different years typically have different numbers of samples. In this 

case it is possible to subsample the data to the lowest number of samples per year (i.e. perform a 

rarefaction, as recommended by ref 1). However, this procedure may introduce some spatial 

variability (because the interpretation of ‘sample’ is different in different studies, e.g. in some 

studies it represents depth), or extra seasonality, complicating the interpretation of the results. 

Hence, while we used the rarefaction procedure in our preliminary analyses, getting qualitatively 

similar results, for our final analysis we discarded all sites that had more then one sample per 

year-site combination. The only exception was the Konza Prairie dataset, where this process 

would lead us to discard 92% out of the 500 sites in this unique dataset. Hence, for Konza Prairie 

we indeed rarefied the data. 

Table S4 presents all the BioTIME datasets we included in the analysis. 

North American Breeding Bird Survey 

The BBS is the largest single dataset of community dynamics in the world, yet it is 

notoriously famous for possible sampling errors5-8. In particular, changes in observer are known 

to sometimes xause different estimates6,7. However, we could address this problem using the 

available information2 on the unique observer code of each observer.  

The following algorithm was used for this task. Considering the records in a single site 

(BBS route), we search from the longest (all the data) to the shortest sequence of years for 

sequences satisfying the quality conditions (timespan ≥ 10 years, ≤ 0.15 missing years, ≥ 20 

species overall), and where there is no evidence that changes in observer correspond to larger 

changes in richness or composition (the latter are quantified using Jaccard dissimilarity). To 

examine the effects of observer changes on changes in richness and composition, we use a one 

sided t test (with α = .05). We compare the magnitude of (absolute) changes in consecutive pairs 

of years when the observer changes to consecutive pairs when the observer remains the same. If 
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this test is significant for either richness or compositional changes, this sequence of years is not 

used. 

Once, for a given length of the time series, some satisfactory sequences are found, the 

algorithm picks the first (with the earlier start date) among the sequences with the least missing 

year. If no suitable sequence is found for a given length of time, the algorithm will look for 

shorter and shorter sequences sequentially, and if no suitable time series is found of the minimal 

length (10 years), the site will be discarded. The same years may therefore be considered in 

multiple runs of the algorithm searching for sequences, but eventually each BBS route will 

produce at most one time series. 

More datasets gathered 

We found several references used in recent meta analyses3,4 that were not included in the 

public version of the BioTIME. They were added to the database, and their details are available 

in table S2. 

Calculating normalized measures of noise and trends 

Our aim was quantifying long-term trends and short-term fluctuations in richness, using 

normalized measures that would enhance comparison of communities with different richness. 

To quantify trends at the community level we used the absolute value of the Theil-Sen 

statistic, normalized by the average richness in a community. The advantage of this statistic is 

that it is relatively robust to noise, making it inherently more independent of the noise measures. 

We took the absolute value because we were only interested in the magnitude of trends. At the 

dataset level we averaged this statistic over the communities that are members of the dataset.  

The natural choice to quantify the magnitude of short-term richness fluctuations (“noise”) is 

the standard deviation of year-to-year richness changes: 

(eq. 6)   SD(St+1 – St ).  

However, this statistic may require normalization, since it may depend on St. In the 

population dynamics literature, it is known that if all the individuals in a population respond 

synchronously to environmental fluctuations, then changes in abundance would scale with initial 

abundance (a.k.a. environmental stochasticity). On the other hand, if individuals undergo birth 
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and death independently, changes would scale with the square root of initial abundance (a.k.a. 

demographic stochasticity)9,10. For a simple diffusion process, the magnitude of changes in the 

location of a random walker is independent of its location. We tried to classify our data roughly 

into these categories using the scheme suggested by ref. 11. For that aim, considering a set of 

richness time-series, we first computed the average change in every time series, 𝑀 = 𝑆𝑡+1 − 𝑆𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

We then plotted the dependence of squared changes after subtracting the average, 

(𝑆𝑡+1 − 𝑆𝑡 − 𝑀)2 on 𝑆𝑡 for all the time series in the set. Next, we estimated the regression 

equation 

(eq. 7)    E(𝑆𝑡+1 − 𝑆𝑡 − 𝑀)2 = 𝑎𝑆𝑡
𝑏, 

where E is the expectation operator (see results in table S3). If b ~ 0, then richness 

changes do not scale with initial richness and there is no need to normalize richness changes (as 

in eq. 6). If b ~ 1, richness changes should be normalized by √𝑆𝑡 (in analogy to demographic 

stochasticity), so the normalized measure for the magnitude of fluctuations would be  

(eq. 8)  SD((St+1 – St )/√𝑆𝑡). 

 If b ~ 2, richness changes should be normalized by St (in analogy to environmental 

stochasticity), so the normalized measure for the magnitude of richness changes would be: 

(eq. 9)   SD((St+1 – St )/St). 

The analysis was performed at the dataset level as well as at the community level for the 

four largest datasets. At the dataset level, we pooled together all the richness changes from all the 

communities except for the BBS (since these communities strongly affected the result), and 

estimated b. Then, for each of the four largest datasets, we separately pooled the richness 

changes and performed the regression to estimate b.  

We found that for all the communities together, b ~ 1. Hence, for the dataset level analysis, 

we used eq. 8 as the measure for the magnitude of year to year fluctuations in richness in each 

community. These values were then averaged over the communities that are members of the 

dataset. For the community level analysis, we found b only a little larger than 0 for all datasets 

but the Konza Prairie, where b was close to two. Hence, we used eq. 9 to quantify the magnitude 
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of richness changes for the communities within the Konza Prairie dataset, and eq. 6 for 

communities in the other datasets. See table S3 for the results of the fits of eq. 7. 

While estimating fluctuation scaling is challenged by deterministic effects (part of the 

changes are due to the deterministic dynamics), sampling errors etc., so our results are only 

suggestive, we believe that our attempts to use different normalizations, getting similar results, 

can be considered an effective robustness check.  
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Supplementary materials 

Appendix 1: interpreting covariance patterns between species 

One of our main results was the predominance of positive average covariance in the 

presence-absence time series in ecological communities across the globe. We further found that 

changes in richness and composition are largely determined by the level of this covariance. Here 

we theoretically investigate the possible mechanistic drivers of this pattern.  

Negative average temporal covariance between species can be depicted as species replacing 

each other through time, with the arrival of some corresponding to an increase in the extinction 

of others. Our intuition suggests that such negative covariance is the result of competitive 

interactions or different responses to environmental changes. On the other hand, positive 

covariance or synchrony can be viewed as species arriving and going extinct simultaneously, 

with the presence of some species increasing the probability others will be present. We believe 

this could stem from facilitative interactions or similar response to environmental changes. 

Consequently, we suggest that the overall covariance in a community can indicate which are the 

dominant process in determining the observed patterns of colonization and extinction, and, 

accordingly, changes in richness and composition.  

Most of the datasets we studied consist of relatively similar species in terms of trophic level, 

taxon and size, making us believe that the interactions among them are primarily competitive. 

Therefore, the net positive effect that we found indicates that competition and different responses 

to environmental changes (causing negative covariance) are less important than similar response 
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to environmental changes (causing positive covariance) in shaping observed community 

dynamics. This intuition should of course be tested. For that aim, we used simulations of 

population dynamics models that incorporate competition, immigration and temporal 

environmental vitiation and covariation. Our aim was to study how the strength of competitive 

interactions and the degree of similarity in the response to environmental variation affect the 

average covariance in presence-absence time series. 

We ran simulations of a stochastic, discrete-time multispecies Ricker model1,2. In this 

model, the expected population of species i at time t+1, 𝑁𝑖,𝑡+1, is: 

(eq. S1)  E(𝑁𝑖,𝑡+1) = 𝑁𝑖,𝑡exp (𝑟𝑖
𝐾𝑖−𝑁𝑖,𝑡−∑ 𝛼𝑖𝑗𝑁𝑗,𝑡𝑗≠𝑖

𝐾𝑖
+ 𝜀𝑖,𝑡) , 

where 𝑟𝑖 and 𝐾𝑖 are the growth rate and carrying capacity of species i, respectively, 𝛼𝑖𝑗 is the 

per capita effect of an individual of species j on the growth of species i, representing inter-

specific interactions, and 𝜀𝑖,𝑡 represents stochastic fluctuations in the growth rate due to 

environmental changes. 𝜀𝑖,𝑡 is normally distributed with a mean of 0, variance of 𝜎𝑒
2 and the 

covariance between every pair of species is assumed to be C, representing the degree to which 

species respond similarly to environmental variation. 

While eq. S1 represents the expected population of species i at time t, the actual population 

size is drawn from a Poisson distribution: 𝑁𝑖,𝑡+1~Poisson(E(𝑁𝑖,𝑡+1)). This introduces 

demographic stochasticity, that is, random variation between individuals in demography, as well 

as the discreteness of individual, which allows species to go stochastically extinct. Finally, after 

the local demography step described above, we introduce a single immigrant per time step, who 

is chosen uniformly from the Sreg species available in the species pool. 

The simulations were initialized with one individual of each of the species in the pool. Then 

they were run for 105 time steps, and the first 2∙103 time steps were considered equilibration time 

and removed. The covariance matrix of the presence-absence time series was then computed. 

This allowed us to calculate the average of the off-diagonal elements, representing the 

covariance between pairs of species, averaged over pairs. This is precisely the statistic we 

consider in the main text. 
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We present in Fig. S1 results for the following parameters. We assumed that the pool 

consists of 20 species, each with ri = 0.1 and K = 1000. The 𝛼𝑖𝑗s are drawn from a normal 

distribution with mean �̅� and SD of 𝜎𝛼, and negative values are transformed into positive ones 

by taking their absolute values. This results in purely competitive dynamics. We took 𝜎𝛼 to be 

0.05 and considered values of �̅� between 0 and 0.5 (in steps of 0.05), controlling the magnitude 

of competitive interactions. We considered 𝜎𝑒
2 = 0.3, and C to be 0 to 0.3 (in steps of 0.05). The 

extreme values, C = 0 and C = 𝜎𝑒
2 , represent scenarios of fully independent and full 

synchronous responses to environmental variation, respectively.   

We found that when competitive interactions are strong and environmental covariance is 

low, the average covariance in presence-absence is negative, albeit only slightly lower than zero 

(Fig S1). This is to be expected, since, mathematically, there are tight limits on how negatively a 

set of random variables can be correlated. On the other hand, when interactions are weak and 

environmental covariation is high, average covariance tends to be positive. Other parameters are 

in the middle between these cases, with more covariation and less competition generally leading 

to more positive covariance in presence-absence. These qualitative conclusions also hold in other 

parameter regimes we examined.  

These results lead us to believe that the positive covariance we found in the data is indeed 

the signature of similar response of species to environmental variation overwhelming 

competition in generating community covariance patterns. This does not imply, however, that 

competitive interactions are weak in absolute terms, and they can still strongly affect overall 

richness and composition. Yet, our results demonstrate that the changes in richness and 

composition, that are associated with average covariance, are primarily governed by similar 

responses to environmental changes. While we examined a very specific model, recent works 

have shown for a similar model (continuous-time Lotka-Volterra) that many “macroscopic” 

patterns of communities are fully determined by a few parameters. In particular, these parameters 

are the variances of intra-specific and inter-specific interactions, the mean strength of inter-

specific interactions, and their symmetry (does i affect j in the same manner j affects i?)3,4, which 

are analogous to many of the parameters that we have considered. Moreover, these works have 

shown that many more complex models essentially map into this simple model for a single 
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trophic level. This makes us believe that despite the simplicity of our model, the qualitative 

results can be generalized for many ecological communities. 

 

Figure S1 – Contour plot of the combined effect of mean interactions strength (�̅�, Y axis) 

and environmental covariance (C, X axis) on the average covariance in the presence-absence 

time series of species.  
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Supplementary figures and tables 

Standardized regression models for dsrel vs. assumptions 

Coeff. 

Dataset 

level N.P. Fish Konza Prairie Skagerrak Fish N.A. Birds 

cov̅̅ ̅̅̅ 0.842 *** 0.777 *** 0.542 *** 1.044 *** 0.86 *** 

varex -0.238 0.029 -0.078 * 0.089 -0.037 ** 

varcol -0.243 -0.034 -0.067 * -0.013 -0.034 * 

Length 

0.515 ** 0.052 0.718 *** 0.303 *** 0.243 

*** 

cov̅̅ ̅̅̅* 

varex 

0.007 0.063 * 0.036 -0.021 -0.119 

*** 

cov̅̅ ̅̅̅* 

varcol 

-0.168 -0.007 -0.064 * -0.096 -0.101 

*** 

cov̅̅ ̅̅̅*le

ngth 

0.557 ** 0.106 *** 0.292 *** 0.507 *** 0.312 

*** 

DFE 42 464 493 211 3526 

R2 0.726 0.586 0.717 0.527 0.672 

Standardized regression models for dj vs. assumptions 

Coeff. 

Dataset 

level N.P. Fish 

Konza 

Prairie 

Skagerrak 

Fish 

N.A. 

Birds 

cov̅̅ ̅̅̅ 

0.26 0.21 *** 0.559 *** 0.169 0.273 

*** 

varex -0.135 0.036 -0.053 -0.03 0.059 ** 

varcol -0.046 0.051 0.098 * 0.103 0.011 
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Length 

0.305 0.003 0.134 ** -0.027 0.114 

*** 

cov̅̅ ̅̅̅* 

varex 

-0.013 -0.017 -0.084 * 0.134 0.011 

cov̅̅ ̅̅̅* 

varcol 

-0.1 -0.036 -0.035 -0.149 -0.11 *** 

cov̅̅ ̅̅̅*le

ngth 

0.189 0.059 -0.023 0.14 0.014 

DFE 42 464 493 211 3526 

R2 0.103 0.053 0.348 0.033 0.112 

Table S1 – More complex regression models explaining the variation in dsrel, excessive 

richness changes, and dj, excessive compositional changes, using the statistics quantifying 

deviations from DE assumptions. These models include interactions between average covariance 

and rate non-uniformity statistics as well as the length of the time series and its interaction with 

average covariance. We present the standardized regression coefficients, the degrees of freedom 

of the errors and the coefficient of determination. *: P < 0.05, **: P < 0.01, ***: P < 0.001. 

Results are presented at the dataset level (in bold), as well as for single communities within the 

four largest datasets. dsrel is strongly and positively associated with covariance, and much less 

with the rate-uniformity statistics. dj is less well explained, but for the single studies it is 

associated with covariance as well.  
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Study name Ref. Link Organisms  Communities Comments Lat Lon 

The long-term study of the fish 

and crustacean community of the 

Bristol Channel 

5 http://www.pisces-

conservation.com/ 

Fish 1 Only data on fish 

used 

51.2 -3.1 

Jornada experimental range – 

plant cover 

6 https://jornada.nmsu.edu/con

tent/jornada-experimental-

range-permanent-quadrat-

chart-data-beginning-1915-

plant-cover 

Plants 1  32.500 -106.80 

Jornada experimental range – 

plant density 

6 https://jornada.nmsu.edu/conten

t/jornada-experimental-range-

permanent-quadrat-chart-data-

beginning-1915-plant-density 

Plants 1  32.500 -106.80 

Eastern Wood Breeding Bird 

Data 

7 https://onlinelibrary.wiley.com/

doi/pdf/10.1002/978047099959

2.app2 

Birds 1 Years when some 

species were not 

counted were 

discarded 

51.2964 -0.3835 

Long-term monitoring of 

mammals in the face of biotic and 

abiotic influences at a semiarid 

site in north-central Chile 

8 http://www.esapubs.org/archive

/ecol/E094/084/metadata.php 

Mammals 1 Merged to one 

community table 

-30.681 -71.66 

Long-Term Data from Fields 

Recovering after Sugarcane, 

9 https://www.hindawi.com/journ

als/dpis/2013/468973/ 

Plants 6  0.03 -78.5 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/766790doi: bioRxiv preprint 

http://www.pisces-conservation.com/
http://www.pisces-conservation.com/
https://jornada.nmsu.edu/content/jornada-experimental-range-permanent-quadrat-chart-data-beginning-1915-plant-cover
https://jornada.nmsu.edu/content/jornada-experimental-range-permanent-quadrat-chart-data-beginning-1915-plant-cover
https://jornada.nmsu.edu/content/jornada-experimental-range-permanent-quadrat-chart-data-beginning-1915-plant-cover
https://jornada.nmsu.edu/content/jornada-experimental-range-permanent-quadrat-chart-data-beginning-1915-plant-cover
https://jornada.nmsu.edu/content/jornada-experimental-range-permanent-quadrat-chart-data-beginning-1915-plant-cover
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470999592.app2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470999592.app2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470999592.app2
https://www.hindawi.com/journals/dpis/2013/468973/
https://www.hindawi.com/journals/dpis/2013/468973/
https://doi.org/10.1101/766790


 

31 

 

Banana, and Pasture Cultivation 

in Ecuador 

Thirty years of permanent 

vegetation plots, Mount St. 

Helens, Washington 

10 http://esapubs.org/archive/ecol/

E091/152/metadata.htm 

Plants 1  46.220 -122.20 

Species interactions during 

succession in the western cascade 

range of Oregon, 1990 to present 

11 http://andlter.forestry.oregonstat

e.edu/data/abstract.aspx?dbcode

=TP103 

Plants 1  44.174 -122.25 

Table S2 – List of datasets gathered from the references of previous meta-analyses that were not included in the open version of 

BioTIME. 

 

 All data 

excluding BBS  

NP Fish Konza Prairie Skagerrak Fish BBS 

b in model 

E(𝑆𝑡+1 − 𝑆𝑡 − 𝑀)2 =

𝑎𝑆𝑡
𝑏 

1.106 ± 0.042 -0.1085  ± 0.1010 1.705 ± 0.088 0.2609 ± 0.0841 0.2144 ± 0.0452 

R2 of y = a*x^b 0.0975 0.0006 0.0727 0.0021 0.0012 

Table S3 – Results of the fits of squared changes in species richness (after removing the average change) vs. initial richness. The 

results are presented for all the data pulled together, excluding the BBS, as well as for the data of four large datasets pulled together. 

95% confidence intervals for the power, b, are presented along with the coefficient of determination of the model. 
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Figure S2 – map of all communities (small purple dots) and datasets (red circles) use in our analysis. For the datasets, the central 

coordinate is presented. 
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BioTIME 

STUDY_ID 

Number of 

communities 

Average 

length 

(years) 

Name Organisms Habitat Ref. Lat. Lon. 

18 21 22.95 Mapped quadrats in sagebrush 

steppe long-term data for 

analyzing demographic rates and 

plant to plant interactions 

sagebrush steppe 

plants 

Sagebrush 

steppe 

 

12 44.33 -112.33 

33 1 17 Long-term phytoplankton 

community dynamics in the 

Western English Channel 

phytoplankton Seaweed beds 13 50.25 -4.217 

39 1 46 Bird community dynamics in a 

temperate deciduous forest Long-

term trends at Hubbard Brook 

Birds  Deciduous 

forest 

14 43.91 -71.75 

46 1 52 Skokholm Bird Observatory Birds Woodland 15 51.698 -5.277 

58 2 17 Avian populations long-term 

monitoring dataset. San Juan. 

Puerto Rico Luquillo Long Term 

Ecological Research Site 

Database Grid points bird counts 

DBAS 23 

Birds Tropical and 

subtropical 

dry broadleaf 

forests 

16 18.19 -65.43 

59 2 26 Long-term monitoring and 

experimental manipulation of a 

rodents Urban / 

Desert 

17 30.3226 -103.501 
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Chihuahuan Desert ecosystem 

near Portal. Arizona. USA 

78 3 16.66 IOW Macrozoobenthos 

monitoring Baltic Sea (1980-

2005) (EurOBIS) 

macrozoobenthos Estuarine and 

coastal waters 

18 56.72964 18.2363

6 

85 6 11 North Sea observations of 

Crustacea. Polychaeta. 

Echinodermata. Mollusca and 

some other groups between 1986 

and 2003 

Marine 

invertebrates 

Tidal flats 19 53.60478 4.24810

7 

163 471 11.81 North Pacific Groundfish 

Observer (North Pacific Research 

Board) 

mainly benthos Estuarine and 

coastal waters 

20 56.5 -168.15 

229 9 18 Upper Little Tennessee River 

Biomonitoring Program Database 

- LTWA Biomonitoring Database 

Fish Small river 

ecosystems 

21  35.13816 -

83.3855 

271 32 13.41 Santa Barbara Coastal LTER Fish Rocky 

subtidal 

22, 

23, 

24 

34.30565 -

119.875 

272 28 13.54 Santa Barbara Coastal LTER Echinodermata 

Cnidaria 

Mollusca 

Rocky 

subtidal 

22, 

23, 

24 

34.30554 -

119.876 
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Annelida 

Chordata Porifera 

273 1 14 Santa Barbara Coastal LTER Echinodermata 

Mollusca 

Arthropoda 

Cnidaria 

Rocky 

subtidal 

22, 

23, 

24 

34.30554 -

119.876 

274 37 13.65 Santa Barbara Coastal LTER Cnidaria 

Chordata 

Arthropoda 

Rhodophyta 

Ectoprocta 

Phaeophyta 

Entoprocta 

Chlorophyta 

Mollusca 

Rocky 

subtidal 

22, 

23, 

24 

34.30565 -

119.875 

301 8 18 Konza LTER grasshopper 

monitoring.  Konza Prairie 

LTER. KS 

Grasshoppers Temperate 

grasslands, 

savannas and 

shrublands 

25 39.106 -96.611 

313 7 18 Successional Dynamics on a 

Resampled Chronosequence 

Grasshoppers Savanna/ 

Tallgrass 

prairie 

26 45.4 -93.2 
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Core Old Field Grasshopper 

Sampling 

319 1 15 Effects of rangeland management 

on community dynamics of 

herpetofauna to the tallgrass 

prairie 

Herpetofauna Tallgrass 

prairie 

27 37.25 -

96.7167 

339 1 57 Species trends turnover and 

composition of a woodland bird 

community in southern Sweden 

during a period of 57 years. 

Birds Forest 

 

28 55.71667 13.3333

3 

355 500 24.3 Plant Species Composition on 

Selected Watersheds at Konza 

Prairie 

Plants Prairie 29 39.08333 -

96.5833 

359 2 12 SBC LTER Reef Kelp Forest 

Community Dynamics Fish 

abundance 

Fish Temperate 

shelf and sea 

22 34.30891 -

119.874 

360 7 39.86 Bialowieza National Park bird 

assemblage 

Birds Forest 30 52.71667 24.2666

6 

361 1 22 A long-term bird population 

study in an Appalachian spruce 

forest 

Birds Forest 31 38.61 -

79.8347 
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363 1 37 The 37-year dynamics of a 

subalpine bird community with 

special emphasis on the influence 

of environmental temperature 

and Epirrita autumnata cycles. 

Birds Forest 32 65.96806 16.3166

6 

374 2 11 Monitoring site 1000 Shorebird 

Survey 

Shorebirds Tidal flats 33 35.96125 136.046

1 

379 1 10 Calafuria Low-shore Intertidal 

Dataset (1991-2014) 

Marine 

invertebrates 

Intertidal 34 43.46937 10.3359

6 

413 1 50 Bird populations in east central 

Illinois. Fluctuations variations 

and development over a half-

century 

Birds Woodland 35 39.98333 -88.65 

414 1 53 Bird populations in east central 

Illinois. Fluctuations variations 

and development over a half-

century 

Birds Woodland 35 39.98333 -88.65 

418 3 12 Long-term Monitoring of the 

Great Barrier reef 

Fish Reef 36 -19.4136 149.044

7 

420 3 20.33 Species composition and 

population fluctuations of alpine 

bird communities during 38 years 

Birds Alpine 37 67.077 17.435 
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in the Scandinavian mountain 

range 

428 218 48.70 Long term monitoring of fish 

abundances from coastal 

SKagerrak 

Fish Oceanic water 38 58.95856 9.76815

2 

439 1 13 Long-term dynamics of bird 

populations in pine forests of 

Ilmen Nature Reserve during the 

breeding period individuals / 

km2 

Birds Forest 39 54.50408 60.294 

440 1 13 Long-term dynamics of bird 

populations in pine-birch forests 

of Ilmen Nature Reserve during 

the breeding period individuals / 

km2 

Birds Forest 39 54.50408 60.294 

441 1 13 Long-term dynamics of bird 

populations in birch forests of 

Ilmen Nature Reserve during the 

breeding period individuals / 

km2 

Birds Forest 39 54.50408 60.294 
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469 16 20.38 A multi-decade time series of 

kelp forest community structure 

at the California Channel Islands. 

Benthos Kelp forest 40 33.851 -119.6 

473 26 12.58 Fourteen years of mapped 

permanent quadrats in a northern 

mixed prairie 

grasses Northern 

mixed prairie 

41 46.317 -105.8 

475 1 13 Structure and dynamics of a 

passerine bird community in a 

spruce-dominated boreal forest 

Birds Boreal forest 

 

42 63.417 10.5 

478 1 37 Long term study of the stream 

ecosystems in the Breitenbach 

Insects Central 

European 

streams 

43 50.67 9.6289 

483 5 24 ITEX Dataset 5 - Teberda 

(Malaya Alpine-Snowbed and 

Geranium Hedysarum Meadow) 

plants Alpine 44 43.27 41.41 

497 19 25.89 ITEX Dataset 19 - Teberda 

(Festuca Varia Grassland, 

Malaya Alpine Lichen-Heath) 

plants Alpine 44 43.27 41.42 

499 1 12 Macrobenthos monitoring at 

long-term monitoring stations in 

the Belgian part of the North Sea 

between 1979 and 1999 

Macrobenthos Coastal 

habitats 

45 51.485 2.8953 
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Table S4 – the datasets from BioTIME used for the analysis, along with the number of communities they consist of and their 

average timespan.  
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