1	Ciprofloxacin facilitates the transfer of XDR plasmids from commensal E. coli into	
2	epidemic fluoroquinolone-resistant Shigella sonnei	
3		
4	Pham Thanh Duy ¹ , To Nguyen Thi Nguyen ¹ , Duong Vu Thuy ¹ , Hao Chung The ¹ ,	
5	Felicity Alcock ² , Christine Boinett ¹ , Ho Ngoc Dan Thanh ¹ , Ha Thanh Tuyen ¹ , Guy E. Thwaites ^{1,3} ,	
6	Maia A Rabaa ^{1,3\Box} and Stephen Baker ^{1,4,\Box,*}	
7		
8	¹ The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University	
9	Clinical Research Unit, Ho Chi Minh City, Vietnam	
10	² Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle	
11	University, Newcastle upon Tyne, United Kingdom	
12	³ Centre for Tropical Medicine, Oxford University, Oxford, United Kingdom	
13	⁴ The Department of Medicine, University of Cambridge, Cambridge, United Kingdom	
14		
15	$^{\Box}$ Joint senior authors	
16	*Corresponding author: Stephen Baker, sbaker@oucru.org	
17		
18	Running title	
19	XDR Shigella sonnei in Vietnam	
20		
21	Key words	
22	Shigella; fluoroquinolones; ESBL; multi-drug resistance; diarrheal disease; antimicrobial	
23	resistance	
24		
25		
26		
27		

28 Abstract

29 The global dissemination of a ciprofloxacin-resistant (cipR) S. sonnei clone outlines the mobility 30 of this important agent of diarrheal disease, and threatens the utility of ciprofloxacin as a first-line 31 antimicrobial for shigellosis. Here, we aimed to track the emergence of cipR S. sonnei in Vietnam 32 to understand how novel antimicrobial resistant (AMR) Shigella clones become established in 33 new locations. From 2014 to 2016, we isolated and genome sequenced 79 S. sonnei from children 34 hospitalized with dysenteric diarrhea in southern Vietnam. The novel cipR S. sonnei clone 35 displaced the resident ciprofloxacin-susceptible lineage while acquiring resistance against third-36 generation cephalosporins, macrolides, and aminoglycosides. This process was not the result of a 37 single clonal expansion, as we identified at least thirteen independent acquisitions of ESBL-38 encoding plasmids. The frequency and diversity of the variable AMR repertoire in an expanding 39 clonal background of S. sonnei is unprecedented and we speculated that it was facilitated by 40 horizontal gene transfer from commensal organisms in the human gut. Consequently, we 41 characterized non-Shigella Enterobacteriaceae from Shigella-infected and healthy children by 42 shotgun metagenomics. We identified a wide array of AMR genes and plasmids in the 43 commensal Enterobacteriaceae, including an E. coli isolated from a Shigella-infected child with an identical ESBL plasmid to that characterized in the infecting S. sonnei. We confirmed that 44 45 these AMR plasmids could be exchanged between commensal E. coli and S. sonnei and found 46 that supplementation of ciprofloxacin into the conjugation media significantly increased the 47 conjugation frequency of IncI/bla_{CTX-M-15}, IncB/O/bla_{CTX-M-27} and IncF/bla_{CTX-M-27} plasmids. In a 48 setting with high antimicrobial use and a high prevalence of AMR commensals, cipR S. sonnei 49 may be propelled towards pan-resistance by adherence to outdated international treatment 50 guidelines. Our work highlights the role of the gut microbiota in transferring resistance plasmids 51 into enteric pathogens and provides essential data to restrict the use of ciprofloxacin globally.

52

53 Introduction

54	Shigella is one of the leading bacterial agents of diarrhea globally; responsible for >165 million
55	diarrheal episodes annually, shigellosis principally affects children in low- to middle-income
56	countries (LMICs) ¹ . Correspondingly, it has been estimated that shigellosis is responsible for
57	28,000-48,000 deaths in children aged <5 years annually ² . In 2014, the Global Enteric
58	Multicenter Study (GEMS) identified Shigella as one of the top four pathogens associated with
59	moderate-to-severe diarrheal disease in young children in sub-Saharan Africa and South Asia ³ .
60	
61	The genus Shigella comprises of four species: S. flexneri, S. sonnei, S. dysenteriae, and S. boydii,
62	but the current international Shigella landscape is dominated by S. flexneri and S. sonnei. Of these
63	two species, S. sonnei is increasingly being isolated, replacing S. flexneri as the predominant
64	Shigella species in many LMICs in Asia, Latin America, and the Middle East ⁴ . Unlike other
65	Shigella, S. sonnei exists as a single serotype and has a population structure encompassing five
66	lineages, of which lineage III successfully disseminated globally from the 1970s onwards. A key
67	event facilitating the success of this lineage was the acquisition of a multi-drug resistance (MDR)
68	phenotype, which distinguishes this population ^{5,6} . Antimicrobials are important for Shigella
69	treatment and disease control, and the World Health Organization (WHO) currently recommends
70	ciprofloxacin (fluoroquinolone) as a first-line treatment, followed by pivmecillinam (beta-
71	lactam), ceftriaxone (cephalosporin), and azithromycin (macrolide) as alternatives ⁷ .
72	
73	Fluoroquinolones are well-tolerated and were highly effective for shigellosis until resistance
74	began to emerge in the early 2000s with sporadic cases of ciprofloxacin-resistant (cipR) S.
75	dysenteriae, S. flexneri, and S. boydii being detected in India, Nepal, Pakistan, China, and
76	Vietnam ^{8–11} . Concurrently, S. sonnei with reduced susceptibility to fluoroquinolones became
77	common across Asia ⁶ , and fully cipR S. sonnei were characterized in India and Nepal soon after
	012

78 ^{9,12}. These organisms carried the classical chromosomal point mutations in the quinolone

79	resistance determining regions (QRDRs) at codon 83 (serine to leucine) and codon 87 (aspartic
80	acid to glycine/asparagine) in gyrA, and at codon 80 (serine to isoleucine) in parC 11,12 . From
81	2010 onwards, cipR S. sonnei emerged as a major global health concern, becoming widely
82	distributed through international travel and ensuing domestic transmission $^{13-15}$. To date, cipR S.
83	sonnei has been reported in children across Asia ^{16,17} , as well as homeless individuals and men-
84	who-have-sex-with-men (MSM) in Canada, the US, Taiwan, and the UK ^{14,18–20} . Of further
85	concern is the observation that cipR S. sonnei have the ability to acquire resistance to second-line
86	alternative drugs such as ceftriaxone ²¹ , which further limits alternative treatment options.
87	
88	Our previous work demonstrated that all cipR S. sonnei globally were clonal and emerged once
89	from a single lineage that likely arose in South Asia ²² . Here, we describe the expansion of a
90	single lineage III clade of cipR S. sonnei by providing phylo-temporal insights into its extant
91	clonal dynamics using clinical samples obtained from children admitted to three paediatric
92	facilities in Ho Chi Minh City (HCMC) between 2014 and 2016. We observe replacement of the
93	resident ciprofloxacin susceptible (cipS) clone by the novel cipR lineage, as well as the
94	concurrent and independent acquisition of a diverse range of resistance plasmids, which lead to
95	MDR and XDR phenotypes. Through a detailed analysis of the plasmid content from commensal
96	E. coli and S. sonnei isolated from a single patient and a series of conjugation experiments, we
97	provide compelling evidence that ciprofloxacin exposure influences the de novo acquisition of
98	MDR and XDR plasmids. Our data suggest that following the current international guidelines for
99	Shigella therapy may lead to these cipR variants becoming resistant to alternative antimicrobials.
100	
101	Methods
102	Study Design
103	The S. sonnei used in this study were isolated during a 2-year observational study conducted at

104 three tertiary hospitals (Children's Hospital 1, Children's Hospital 2, and the Hospital for

105	Tropical Diseases) in HCMC, Vietnam, between May 2014 and April 2016, as previously
106	described (Supplementary Table 1) 23 . In brief, children aged <16 years admitted to one of the
107	three study hospitals with diarrhea (defined as ≥ 3 passages of loose stools within 24 hours) and
108	>1 loose stool containing blood and/or mucus were recruited. A fecal sample was collected and
109	processed within 24 hours after enrolment. All hospitalized patients received standard of care
110	treatment at each of the study sites. Treatment and clinical outcomes (e.g. patient recovery status
111	(three days after enrolment) and duration of hospital stay) were recorded by clinical staff at the
112	study sites. For the phylogenetic analyses, we additionally included two cipR S. sonnei isolated
113	from children attending the Hospital for Tropical Diseases in HCMC in October 2013.
114	
115	Ethical approval was provided by the ethics committees of all three participating hospitals in
116	HCMC and the University of Oxford Tropical Research Ethics Committee (OxTREC No.1045-
117	13). Written consent from parents or legal guardians of all participants was obtained prior to
118	enrolment.
119	
120	Microbiological methods
121	Fecal samples were inoculated onto MacConkey agar (MC agar; Oxoid) and xylose-lysine-
122	deoxycholate agar (XLD agar, Oxoid) and incubated at 37°C. Non-lactose fermenting colonies
123	grown on MC agar and/or XLD agar were sub-cultured on nutrient agar and identified
124	biochemically (API20E, Biomerieux). Serological identification was performed by slide
125	agglutination with somatic (O) antigen grouping sera following the manufacturer's
126	recommendations (Denka Seiken). Additionally, colony sweeps from MC agar were collected and
127	suspended in 20% glycerol and stored at -80°C for further characterization.
128	
129	Antimicrobial susceptibility testing was initially performed by the Kirby-Bauer disc diffusion

130 method against ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline,

131 nalidixic acid, ciprofloxacin, azithromycin, gentamicin, amikacin, imipenem, and ceftriaxone. 132 Subsequently, minimal inhibitory concentrations (MICs) against ciprofloxacin, azithromycin, 133 gentamicin, and ceftriaxone were measured using the E-test (AB Biodisk), according to the 134 manufacturer's instructions. All antimicrobial testing was performed on Mueller-Hinton agar and susceptibility criteria were interpreted following the CLSI 2016 guidelines ¹⁵. MDR was defined 135 136 as acquired non-susceptibility to at least one agent in three or more antimicrobial categories; 137 XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial 138 categories (i.e. bacterial isolates remain susceptible to only one or two categories)²⁴. Detection of 139 Extended Spectrum Beta Lactamase (ESBL) activity was performed for all isolates that were 140 resistant to ceftriaxone using the combination disc method (cefotaxime, 30µg; ceftazidime, 30µg; 141 with and without clavulanic acid, $10\mu g$). ESBL-producing organisms were defined as those 142 exhibiting a >5mm increase in the size of the zone of inhibition for the beta-lactamase inhibitor 143 combinations in comparison to a third-generation cephalosporin without the beta-lactamase 144 inhibitor.

145

146 Isolation of commensal bacteria

147 For the purposes of this study we defined commensal organisms as organisms isolated from the 148 stool samples of children thought not to be associated with the observed episode of diarrheal 149 disease. In children with and without *Shigella* infections (i.e. symptomatic and asymptomatic 150 children), non-Shigella organisms grown on MC plates were considered to be commensals. 151 Colony sweeps from MC agar from *Shigella*-infected children were serially diluted and plated 152 onto the MC agar without antimicrobial selection. All single colonies with a different color and 153 morphology from that of S. sonnei were harvested, identified and homogenized in 20% glycerol. 154 Subsequently, DNA was extracted from these commensal bacteria by boiling and was then 155 subjected to qualitative real-time PCR with primers and probes specific for Shigella to detect if these samples were contaminated with Shigella²⁵. To determine the AMR gene and plasmid 156

157	diversity in human commensal bacteria, we also included a subset of commensal bacteria
158	recovered from the rectal swabs of 18 healthy children enrolled in a longitudinal cohort study
159	with active surveillance for diarrheal disease in HCMC between 2014 and 2016 ²⁶ .
160	
161	Whole genome sequencing (WGS)
162	Genomic DNA from S. sonnei isolates and commensal bacteria was extracted using the Wizard
163	Genomic DNA Extraction Kit (Promega, Wisconsin, USA) following the manufacturer's
164	recommendations. 50ng of genomic DNA from each sample was subjected to library construction
165	using a Nextera kit, followed by whole genome sequencing on an Illumina MiSeq platform
166	(Illumina, CA, USA) to generate 150 bp paired-end reads. Raw sequence data are available in the
167	European Nucleotide Archive (project: PRJEB30967).
168	
169	SNP calling for <i>S. sonnei</i> was performed as previously described ⁶ . In brief, raw Illumina reads
170	were mapped against S. sonnei reference genome Ss046 chromosome (accession number
171	NC_007382) and virulence plasmid pSs046 (NC_007385.1) using SMALT version 0.7.4
172	(http://www.sanger.ac.uk/resources/software/smalt/). SNPs were called against the reference
173	sequence and filtered using SAMtools ²⁷ . The allele at each locus in each isolate was determined
174	by reference to the consensus base in that genome using SAMtools mpileup and removal of low
175	confidence alleles with consensus base quality ≤ 20 , read depth ≤ 5 or a heterozygous base call.
176	SNPs occurring in non-conserved regions including prophages or repetitive sequences were
177	removed. Subsequently, Gubbins ²⁸ was used to identify recombinant regions from the whole
178	genome alignment produced by SNP-calling isolates, and SNPs detected within these regions
179	were also removed, resulting in a final set of 1,219 chromosomal SNPs.
180	
181	
182	

183 Phylogenetic analyses

184 The best-fit evolutionary model for the SNP alignment of all S. sonnei isolates was determined based on the Bayesian Information Criterion in iModelTest implemented in IO-TREE software ²⁹. 185 186 A maximum likelihood phylogeny was subsequently reconstructed using IQ-TREE under the 187 best-fit model (TVM). Support for the maximum likelihood tree was assessed via 1,000 pseudo-188 replicates. To explore the temporal signal in the data, the relationship between genetic divergence and date of sampling was estimated by using TempEst³⁰ to perform a linear regression analysis 189 190 of root-to-tip distances, taken from the maximum likelihood tree, against the year of isolation 191 (Supplemental Figure 1). Temporal phylogenetic inference was then performed using Bayesian Markov Chain Monte Carlo (MCMC) implemented in BEAST software (version 1.8.4)³¹. For 192 193 BEAST analysis, we first identified best-fit model combinations by performing multiple BEAST 194 runs using the TVM nucleotide substitution model with constant, exponential growth or Bayesian skyline ³² demographic models, in combination with either a strict or a relaxed molecular clock 195 196 (uncorrelated lognormal distribution)³³. For each BEAST run, path sampling and stepping-stone 197 sampling approaches ^{34,35} were used to obtain the marginal likelihood estimates for model 198 comparison. Bayes factor (the ratio of marginal likelihoods of two models) comparisons indicated 199 that the TVM substitution model with a relaxed lognormal molecular clock and Bayesian skyline 200 demographic model was the best fit to the data (Bayes factor >200). The standard deviation (SD) 201 of inferred substitution rates across branches was 0.3 (95% highest posterior probability (HPD) = 202 (0.14-0.47), providing additional support for a relaxed molecular clock. For the final analyses, we 203 performed three independent runs with the best-fit model using a continuous 150 million 204 generation MCMC chain with samples taken every 15,000 generations, and parameter 205 convergence (indicated by effective sample size values >500) was assessed in Tracer (version 206 1.7). LogCombiner (version 1.8) was used to combine triplicate runs, with removal of $10 \Box \%$ 207 burn-in.

208

209 Resistome analysis of S. sonnei and commensal enterobacteria

210	From raw Illumina reads of S. sonnei and commensal enterobacteria Short Read Sequence Typer-
211	SRST2 ³⁶ was used to identify the acquired resistance genes and their precise alleles using the
212	ARG-Annot database ³⁷ , as well as the plasmid replicons using the PlasmidFinder database ³⁸ .
213	Multilocus sequence typing (MLST) of IncI plasmids ³⁹ was also determined using SRST2. Raw
214	Illumina reads were de novo assembled using Velvet, with the parameters optimized by Velvet
215	Optimizer ⁴⁰ . Contigs <300 bp in size were discarded from further analyses and assembled
216	contigs were annotated with Prokka 41 . For the assembled sequences of <i>S. sonnei</i> , ABACAS 42
217	was used to map all the contigs against a concatenated reference sequence containing S . sonnei
218	Ss046 chromosome (NC_007382), virulence plasmid pSs046 (NC_007385.1) and three small
219	plasmids commonly found in S. sonnei belonging to global lineage III: spA (NC_009345.1), spB
220	(NC_009346.1), spC (NC_009347.1). The unmapped assembled sequences presumably
221	containing the <i>bla</i> CTX-M/mphA plasmid were subjected to manual investigation using BLASTN
222	searching with the plasmid sequences available in GenBank, and comparative analysis was
223	performed and visualized using ACT ⁴³ . For the assembled sequences of commensal bacteria
224	carrying IncI and IncB/O plasmids, ABACAS was used to map contigs against full-length
225	sequences of IncI and IncB/O plasmids identified in cipR S. sonnei and sequence comparisons
226	were visualized using ACT. Nucleotide sequence homology between the mapped contigs and
227	reference plasmid was subsequently identified using BLASTN. Taxonomic labels of each pooled
228	sample of commensal bacteria were assigned using Kraken, a k-mer based classification tool ⁴⁴ .
229	

230 Plasmid profiling

Crude plasmid extractions from all *S. sonnei* isolates was performed using a modified Kado and
 Liu method ⁴⁵. The resulting plasmid DNA was subjected to electrophoresis in 0.7 % agarose gel
 at 90 V for 3 hours, stained with ethidium bromide and photographed. *E. coli* strain 39R861

containing four plasmids with known sizes (7 kb, 36 kb, 63 kb, and 147 kb) was used as a marker.
Plasmid profiles were compared using Bionumerics v5.1 software (Applied Maths, Austin, TX).

236

237 ESBL plasmid digestion and sequencing

238 E. coli transconjugants resulting from conjugation between an ESBL-positive S. sonnei isolate

and E. coli J53 (sodium azide resistance) were subjected to plasmid extraction using a plasmid

240 Midi kit (Qiagen). For plasmid digestion, 500ng of each extracted plasmid DNA was digested

241 with EcoRI enzyme (10 U/µl) (Fermentas), followed by electrophoresis on 0.8% agarose gel at

242 100V for 4 hours with 1 kb plus DNA ladder (Invitrogen). Plasmid restriction patterns were

compared, and cluster analysis was performed using the UPGMA method and Jukes-Cantor

correction using Bionumerics v5.1 software. For plasmid sequencing, 50ng of each plasmid DNA

245 was subjected to library construction with a Nextera kit and sequenced using the MiSeq Illumina

246 platform to generate 2x250 bp paired-end reads. *De novo* assembly was subsequently performed

using SPADES v3.11 46 and assembled contigs were annotated using Prokka v1.11 41 .

248

249 Nanopore sequencing

250 Plasmid DNA extracted from the commensal *E. coli* carrying the Incl/blaCTX-M-15 plasmid was

initially sequenced using Illumina MiSeq to generate 2x250bp paired-end reads (accession

number: ERS3050916). However, the *de novo* assembly failed to produce a complete plasmid

sequence. To improve the plasmid assembly, we then performed a single run on a MinION to

254 generate longer reads. For MinION library preparation and sequencing, we used the rapid 1D

255 sequencing kit SQK-RAD001 (Oxford Nanopore Technologies, Oxford, UK), following the

256 manufacturer's recommendations. We used the MinION Mk1 sequencer, FLO-MIN106 flow cell

and MinKNOW software v1.1.20 for sequencing, and protocol script

258 NC_48Hr_Sequencing_Run_FLO-MIN106_SQK-RAD001_plus_Basecaller.py for local base-

calling. MinION reads were converted from fast5 to fastq format using the script fast52fastq.py.

260	SPADES version 3.11 was subsequently used to produce a hybrid assembly of MinION data and
261	Illumina data. Raw MinION reads were deposited in ENA (accession number: ERS3050922).

262

263 Bacterial conjugation

264 Bacterial conjugation was first performed between each of the 40 *bla*_{CTX-M}/*mphA*-carrying *S*.

sonnei isolates associated with all the plasmid acquisitions and E. coli J53 (sodium azide

- resistant) by combining equal volumes (5mL) of overnight Luria-Bertani (LB) cultures. Bacteria
- were conjugated for 12 hours in LB broth at 37°C and *E. coli* transconjugants were selected on
- 268 medium containing sodium azide (100 mg/l) plus ceftriaxone (6 mg/l) or sodium azide (100 mg/l)
- 269 plus azithromycin (24 mg/l). To measure plasmid transfer from commensal *E. coli* to cipR *S*.
- 270 sonnei and investigate the effect of ciprofloxacin on the conjugation efficiency, we first screened
- 271 commensal *E. coli* isolates for ESBL activity and ciprofloxacin susceptibility from the pooled
- colony sweeps on MC agar. Subsequently, bacterial conjugation was performed between each of
- the 13 cipS ESBL-positive commensal *E. coli* isolates (donor) and the cipR ESBL-negative *S.*
- sonnei 03-0520 (recipient) in LB broth with and without supplementation of ciprofloxacin (0.25,
- 275 0.5, 0.75 x MIC of the donor organism). Successful transconjugants were selected on MC agar
- 276 containing ciprofloxacin (4 mg/l) and ceftriaxone (6 mg/l). For all conjugation experiments, the
- 277 conjugation frequency was calculated as the number of transconjugants per recipient cell.
- 278

279 Results

- 280 The development of an XDR phenotype in ciprofloxacin-resistant Shigella sonnei
- 281 Between January 2014 and July 2016, we isolated 79 S. sonnei from children hospitalized with
- dysenteric diarrhea in our study sites; 75.9% (60/79) of these were cipR. A time-scaled
- 283 phylogenetic reconstruction demonstrated that all except one cipR S. sonnei comprised a distinct
- 284 clade, which was distantly related to the ciprofloxacin-susceptible (cipS) isolates (Figure 1). The
- 285 most recent common ancestor (MRCA) of the cipR clade in Vietnam was estimated to date back

286	to late 2008 (95% HPD; 2007.1 – 2010.3) – several years prior to the first known cases of cipR S.
287	sonnei in Vietnam, which was detected in HCMC in October 2013. The phylogeny depicted a
288	clonal expansion from a single cipR organism that we have previously shown to have originated
289	in South Asia and disseminated internationally ²² . All organisms within the cipR clade were
290	classical triple mutants (gyrA-S83L, gyrA-D87G, and parC-S80I) conferring high-level
291	ciprofloxacin resistance (MIC $\ge 8 \mu g/ml$). Conversely, isolates belonging to the resident cipS S.
292	sonnei clade harbored only a single mutation in gyrA (either S83L (16 isolates) or D87Y (4
293	isolates)).
294	
295	Using BEAST, we estimated the median substitution rate of the S. sonnei population to be
296	8.2×10^{-7} substitutions base ⁻¹ year ⁻¹ (95% highest posterior density (HPD); 5.9×10^{-7} to 10.8×10^{-7}),
297	which is comparable to previous estimates of the mutation rate within the resident cipS S. sonnei
298	population in Vietnam ⁴⁷ . Additionally, the cipR isolates exhibited a substantially lower median
299	pairwise SNP distance (15 SNPs, IQR: 10-20 SNPs) than the resident cipS S. sonnei isolates (96
300	SNPs, IQR: 69-111 SNPs), providing strong evidence of a more recent importation or expansion.
301	These data suggest that cipR S. sonnei underwent a rapid clonal expansion and successfully
302	persisted, displacing the resident cipS S. sonnei as the dominant S. sonnei lineage circulating in
303	the human population of southern Vietnam.
304	
305	During the sampling period, the proportion of cipR S. sonnei increased significantly from 60.7%
306	(17/28) in 2014 to 93.8% (15/16) in 2016 (p=0.01; Chi-squared test). Almost all isolates carried

307 AMR genes on a chromosomally integrated class II integron (*dfrA1*, *sat-2A*) and a small spA

308 plasmid (*strAB*, *sulII*, *tetAR*) encoding resistance to tetracycline, streptomycin, and co-

309 trimoxazole. Notably, during their circulation in southern Vietnam, the cipR S. sonnei acquired

310 resistance to further important antimicrobial classes, including third-generation cephalosporins,

311 macrolides, and aminoglycosides, consequently creating XDR variants. In 2014, the proportion of

312	co-resistance against ceftriaxone, ceftriaxone-azithromycin, and ceftriaxone-azithromycin-
313	gentamicin was 59% (10/17), 11.8% (2/17), and 5.9% (1/17), respectively. These respective
314	proportions increased to 87% (13/15), 47% (7/15), and 40% (6/15) in 2016.
315	
316	Our analyses show that co-resistance in cipR S. sonnei was generated by sustained and
317	independent acquisitions of ESBL-encoding plasmids (plasmid acquisition events, herein referred
318	to as PAs, Figure 1). These plasmids carried differing variants of the bla_{CTX-M} gene and/or $mphA$.
319	Notably, this phenomenon was not characterized by selection of the same plasmid/clone
320	combination; we identified at least thirteen independent acquisitions of ESBL-encoding plasmids
321	across the phylogenetic tree (Figure 1). Plasmids of incompatibility groups IncB/O and IncI were
322	the most common vehicles associated with $bla_{\text{CTX-M}}$.
323	
324	More specifically, we found that IncB/O plasmids were independently acquired on at least seven
325	occasions; these plasmids carried an array of ESBL genes, including $bla_{CTX-M-55}$ (PA3, 5, 16),
326	bla _{CTX-M-14} (PA10, 12), bla _{CTX-M-15} (PA1), and bla _{CTX-M-24} (PA13). Critically, in 6/7 IncB/O PAs,
327	the <i>bla</i> _{CTX-M} gene was associated with <i>mphA</i> and <i>acc6-IIa</i> genes, leading to an XDR phenotype
328	additionally encompassing resistance to third-generation cephalosporins, macrolides, and
329	aminoglycosides. Similarly, IncI plasmids were acquired on four independent occasions and
330	carried only a $bla_{\text{CTX-M}}$ gene ($bla_{\text{CTX-M-15}}$ (PA9) and $bla_{\text{CTX-M-55}}$ (PA6, 11, 15)). Furthermore,
331	<i>bla</i> _{CTX-M} genes were acquired on IncFI (<i>bla</i> _{CTX-M14} (PA7)) and IncAnco3 (<i>bla</i> _{CTX-M-15} (PA14))
332	plasmid backbones. Three cipR non-ESBL isolates also acquired an mphA gene associated with
333	IncFII (PA4, 8) and IncK (PA2) plasmids.
334	
335	The acquisition of a resistance plasmid was sporadically followed by continued circulation and
336	geographical expansion of the resistant clone, as observed for the IncB/O/bla _{CTX-M-55} (PA3),

- 337 IncB/O/bla_{CTX-M-55}-mphA-aac6-IIa (PA16), IncI/bla_{CTX-M-55} (PA6), and IncI/bla_{CTX-M-15} plasmids

338	(PA9) (Figure 1). The inferred time from the most recent common ancestor to the youngest
339	isolate in each resistant clone was estimated to be at least three years. We also detected the loss of
340	IncB/O plasmids on two occasions, suggesting a potential lack of IncB/O plasmid stability in
341	comparison to the IncI plasmids.
342	
343	The structure of XDR plasmids in ciprofloxacin-resistant Shigella sonnei
344	We assessed the plasmid content of all S. sonnei isolates by comparing the banding patterns of
345	crude undigested plasmid extracts. Our data showed that all cipR isolates exhibited a distinct
346	plasmid profile from that of the resident Vietnamese S. sonnei isolates (Supplementary Figure 2).
347	Additionally, all cipR S. sonnei isolates carrying bla _{CTX-M} and/or mphA consistently harbored a
348	large (90 kb to 110 kb) plasmid. An analysis of the EcoRI digestion profiles of these ESBL-
349	encoding plasmids showed two major independent clusters, consistent with IncI and IncB/O
350	plasmid backbones (Figure 2A). Notably, the genetic structure within each plasmid group
351	appeared to be highly conserved, with the IncI and IncB/O plasmids sharing \sim 70% and \sim 60%
352	similarity in their respective restriction patterns.
353	
354	Additional plasmid sequencing and comparative analyses found that the IncI plasmids, acquired
355	on four occasions (PA6, 9, 11, 15), shared a conserved backbone of ~84 kb (coverage: 80-100%,
356	nucleotide identity: 99-100%). This conserved region contained typical structures associated with
357	self-transmissible IncI plasmids, including a type IV pil operon (pilI-PilV), traABC regulatory
358	genes, the <i>tra/trb</i> type IV secretion system genes, the origin of transfer (<i>oriT</i> including <i>nikA</i> and
359	nikB), and conjugal leading region (ssb, psiA-psiB, parB homolog, ardA). The IncI/bla _{CTX-M-15}
360	plasmid belonged to sequence type 16 (ST16) and was nearly identical to the previously
361	described S. sonnei IncI plasmid pKHSB1 (accession number: NC_020991), which has been
362	maintained in the resident Vietnamese S. sonnei population since 2006 ⁴⁷ . Alternatively, the
363	Incl/bla _{CTX-M-55} plasmids belonged to ST167 (one allele different from ST16) and did not harbor

the Tn3 transposon-mediated IS*ecp1-bla*CTX-M-15, but had an insertion of IS*ecp1-bla*CTX-M55 between *yagA* and *yafB* (Figure 2B).

366

367 The IncB/O plasmids, acquired on seven occasions (PA1, 3, 5, 10, 12, 13, 16), also shared a 368 conserved genetic structure of ~90 kb (coverage: 75-100%, nucleotide identity 99-100%) (Figure 369 2D). In comparison to plasmid sequences in GenBank, our IncB/O plasmid backbone shared the 370 highest similarity with IncB/O plasmids from an E. coli (pECAZ161, accession number: 371 CP19011), a S. flexneri (pSF150802, accession number: CP030917.1) and an S. sonnei (p866, 372 accession number: CO022673.1); the overall synteny ranged from 72% to 94%, with 99% 373 sequence identity. The IncB/O plasmid backbone contained comparable conjugative IncI plasmid 374 modules; however, the *pil* operon (~12 kb) exhibited extremely low sequence identity to that of 375 the IncI plasmid (coverage 1%, identity 78%) (Figure 2C). The size of IncB/O plasmids varied 376 from 95 kb to 110kb, depending on the complement of resistance gene cassettes. These plasmids 377 carried a wide range of *bla*_{CTX-M} mobile elements, including IS*ecp1*-IS5-*bla*_{CTX-M-55}, IS66-*bla*_{CTX-} 378 M-55-orf-tnpA, ISecp1-bla_{CTX-M-15}-orf-tnpA, IS5-bla_{CTX-M-14}-ISecp1, and ISecp1b-bla_{CTX-M-24}. 379 Additionally, these IncB/O plasmids also contained other transposable elements associated with 380 mphA (IS6-mphA-mrx-mphr) and aac6-IIa (IS4-aac6-IIa-tmrB) adjacent to bla_{CTX-M}-carrying 381 elements. One IncB/O plasmid additionally carried the ermB gene associated with the ISCR3 382 family (ISCR3-groEL-ermB-ermC).

383

Aside from the two main IncI and IncB/O plasmid groups, one cipR *S. sonnei* isolate had gained a
 *bla*_{CTX-M-14}-carrying IncFI plasmid, which was identical to a previously described plasmid

386 (pEG356) from a Vietnamese S. sonnei isolate (accession number: FN594520); a further isolate

387 acquired a phage-like IncAnco3 plasmid carrying *bla*_{CTX-M-15}; three other isolates gained IncK and

388 IncFII plasmids carrying the *mphA* gene cassette. The IncAnco3, IncK, and IncFII plasmids were

389 most similar to described *E. coli* plasmids in GenBank, including pAnco1 (accession number:

390	KY515224.1, coverage 91%	. identity 98%), pEC1107	(accession number: MG601057.1,

coverage 78%, identity 94%), and pEC105 (accession number: AY458016.1, coverage 59%,
identity 100%), respectively.

- 393

394 Commensal E. coli as a source of ESBL-encoding plasmids for ciprofloxacin-resistant Shigella

395 sonnei in the human gut

396 Given the diversity of the AMR plasmids observed in cipR S. sonnei, their similarity to E. coli

397 plasmids, and the fact that humans are the only natural reservoir for *S. sonnei*, we speculated that

398 these plasmids had been transferred from commensal *E. coli* into *S. sonnei* during infection.

399 Consequently, we performed additional characterization of AMR genes and plasmid diversity in

400 commensal Enterobacteriaceae isolated from the same fecal samples that contained S. sonnei and

401 from rectal swabs taken from healthy children. Metagenomic sequencing of these mixed bacterial

402 populations (lacking *Shigella*) from MC plates indicated that *E. coli* was the most commonly

403 isolated commensal Enterobacteriaceae (47/48 pooled colonies), followed by Klebsiella

404 *pneumoniae* (7/48 pooled colonies) and *Enterobacter cloacae* (1/48 pooled colonies).

405

406 The resulting sequence data identified a substantial quantity of AMR genes and plasmid

407 backbones in the commensal Enterobacteriaceae (Supplementary Figure 3 and Figure 3A). We

408 observed a particularly high prevalence of CipR commensal Enterobacteriaceae; this has been

409 observed previously and is considered to be associated with sustained antimicrobial exposure and

410 competition in the gastrointestinal tract ⁴⁸. Furthermore, a number of different AMR determinants

411 were found to be present in both the commensal bacteria and the cipR S. sonnei. For example,

412 *bla*_{CTX-M}, *mphA*, *aac3-IIa*, and *ermB* were found to be present in cipR S. *sonnei* and 92% (44/48),

413 75% (36/48), 52% (25/48), and 38% (18/48) of pooled commensal Enterobacteriaceae,

414 respectively (Figure 3A). IncF (IncFII, IncFIA, IncFIB, and IncFIC) plasmids were found to be

415 the most prevalent replicon types in the commensal Enterobacteriaceae. However, we additionally

416 identified IncI and IncB/O plasmids in commensal *E. coli* from the fecal samples of three children
417 infected with *S. sonnei* and three healthy children, respectively.

418

419	We next aimed to identify comparable plasmid structures between E. coli and S. sonnei. The
420	IncB/O plasmids found in commensal E. coli from three healthy children (subjects 22889, 22959,
421	and 22274) exhibited high levels of sequence similarity to the IncB/O plasmid backbone acquired
422	by cipR S. sonnei (coverage/identity: 76/99%, 94/99%, and 99/97%; respectively). Similarly,
423	among the three commensal E. coli samples carrying IncI plasmids, we identified an IncI plasmid
424	from a commensal <i>E. coli</i> without a Tn3 transposon-mediated <i>bla</i> _{CTX-M-15} , which displayed high
425	sequence similarity (coverage 81%, identity 98%) to an IncI plasmid from cipR S. sonnei. More
426	significantly, a commensal E. coli originating from a patient infected with a cipR S. sonnei (01-
427	0123) carried an analogous IncI/bla _{CTX-M-15} plasmid. We isolated a single ESBL-producing
428	commensal E. coli from this MC plate and subjected the plasmid to long read Nanopore
429	sequencing. The sequencing resulted in a 90,786 bp circularized plasmid sequence, harboring
430	$bla_{\text{CTX-M-15}}$ and bla_{TEM1} on a Tn3 transposon. The raw IncI plasmid sequence from the
431	corresponding cipR S. sonnei 01-0123 was mapped against the commensal E. coli plasmid
432	sequence and produced a plasmid with 100% coverage (mean mapping coverage: 15, standard
433	deviation: 7). The assembled plasmid contigs from cipR S. sonnei 01-0123 shared 100% sequence
434	identity (Figure 3B). These data and the location of this organism on the phylogenetic tree
435	suggest that this resistance plasmid was potentially transferred in vivo between commensal E. coli
436	and cipR S. sonnei 01-0123 in the gut of the child.
437	

438 Ciprofloxacin increases the conjugation frequency of ESBL plasmids between commensal

439 Escherichia coli and ciprofloxacin-resistant Shigella sonnei

440 Our data illustrates that commensal *E. coli* are an important reservoir of AMR genes and may be

441 transferred to S. sonnei in vivo. Furthermore, the high diversity of AMR plasmids observed here

442	in a single S. sonnei lineage is atypical and has not been previously observed in a geographically
443	restricted clonal expansion. The reason for this observation is unclear but we suspect is associated
444	with the combination of a permissive circulating clone, exposure to fluoroquinolones, and a wide
445	variety of AMR plasmids in the resident commensal population. We also observed that the
446	majority of S. sonnei infected children (85%, 67/79) were treated with ciprofloxacin, an
447	antimicrobial agent that can trigger the SOS response and promote horizontal gene transfer in
448	bacteria ⁴⁹⁻⁵⁴ . Consequently, we hypothesized that this array of resistance plasmids was associated
449	with a cipR phenotype and that ciprofloxacin treatment may facilitate plasmid transfer in vivo.
450	
451	To test this hypothesis, we first identified cipS/ESBL+ commensal E. coli donors and attempted
452	to mobilize these plasmids into a cipR/ESBL- S. sonnei recipient. Screening identified that the
453	majority of commensal E. coli (35/48) recovered from the MC plate sweeps were both
454	cipR/ESBL+. The remaining 13 commensal <i>E. coli</i> isolates were cipS (MIC \leq 1 mg/L)/ESBL+;
455	nine were derived from children infected with S. sonnei and four from healthy children. ESBL
456	plasmids from 9/13 of the commensal E. coli could be conjugated into the cipR/ESBL-S. sonnei.
457	The conjugation frequencies were high, ranging from $4x10^{-7}$ to $1.6x10^{-3}$ /recipient cells. The
458	supplementation of 0.25x MIC ciprofloxacin into the conjugation media did not have a significant
459	effect on the frequency of plasmid transfer. However, when the conjugation media was
460	supplemented with 0.5x MIC ciprofloxacin (of the cipS E. coli donor), 4/9 commensal E. coli
461	(22784, 01-0123, 02-1936, and 22959) demonstrated respective increases in conjugation
462	frequencies of ESBL plasmids to cipR S. sonnei of 3, 6, 11, and 36-fold, in comparison to media
463	without ciprofloxacin (Figure 4). These respective conjugation frequencies increased to 4, 10, 25
464	and 42-fold when the concentration of ciprofloxacin was increased to 0.75x MIC. Additionally, a
465	single commensal E. coli isolate (22978) exhibited a 7-fold increase in conjugation frequency in

466 medium supplemented with 0.75x MIC ciprofloxacin, despite this effect not being observed in
467 media containing 0.5x MIC ciprofloxacin.

468

- 469 Plasmid sequencing demonstrated that *E. coli* 01-0123 (ciprofloxacin MIC: 0.25 mg/L) carried an
- 470 Incl/bla_{CTX-M-15} plasmid (as described above). E. coli 02-1936 (ciprofloxacin MIC: 0.016 mg/L)
- 471 and 22784 (ciprofloxacin MIC: 0.38 mg/L) carried IncF/bla_{CTX-M-27} plasmids that shared high
- similarity to the IncF plasmid pC15 in Genbank (accession number: AY458016, ~ 92 kb)
- 473 (coverage: 75% and 85%, identity: 99% and 98%, respectively). E. coli 22959 (ciprofloxacin
- 474 MIC: 0.38 mg/L) harbored an IncB/O/ *bla*_{CTX-M-27} plasmid exhibiting high genetic similarity to the
- 475 IncB/O plasmid acquired by cipR S. sonnei as described above (coverage 94%, identity 99%). E.
- 476 *coli* 22978 (ciprofloxacin MIC: 0.5 mg/L) carried an IncF/*bla*_{CTX-M-27} similar to the IncF plasmid
- 477 pDA33135 in Genbank (accession number: CP029577.1, ~ 139 kb) (coverage 94%, identity

478 99%).

479

480 Discussion

481 Since its introduction in the 1980s, ciprofloxacin has become one of the most commonly used antimicrobials worldwide due to its low cost and clinical effectiveness against a wide range of 482 483 Gram-positive and Gram-negative bacterial infections. The extensive use of ciprofloxacin in 484 humans and animals inevitably led to a rapid increase in reduced susceptibility to ciprofloxacin in both Gram-negative and Gram-positive bacteria during the 1990s⁵⁵. Since the turn of the century, 485 486 multiple cipR clones in various pathogenic species/serotypes have emerged and spread 487 successfully in various countries, with many eventually disseminating internationally. Organisms with internationally successful cipR clones include Salmonella Typhi⁵⁶ and Shigella dysenteriae 488 type 1⁵⁷ in South Asia, and methicillin-resistant *Staphylococcus aureus* ST22⁵⁸, ST131-H30 489 clone of E. coli 58, Salmonella Kentucky ST198 60, Clostridium difficile 027 61, Shigella sonnei 22 490 and E. coli ST1193⁶²⁻⁶⁵. Tracking the global transmission and local establishment of these 491

492	clinically important clones through routine surveillance, particularly with the integration of
493	genomics, has become essential for guiding public health control strategy and clinical practice.
494	Here, by decoding the genomic sequences of S. sonnei isolated in Vietnam between 2014 and
495	2016, we provide unparalleled insight into the local clonal establishment and AMR dynamics of
496	cipR S. sonnei as it entered a new human population. Our work outlines the progression and co-
497	circulation of multiple XDR S. sonnei clones in Vietnam, some of which have gained resistance
498	to all antimicrobial therapies currently recommended by WHO for the treatment of Shigella.
499	
500	Although the cipR S. sonnei sublineage Central Asia III has spread internationally, the
501	development of XDR within this lineage has not been reported previously. S. sonnei are highly
502	efficient at spreading internationally; therefore, the identification and pervasiveness of AMR in
503	these organisms means that future investigations should monitor their international circulation to
504	provide early warning for public health authorities and healthcare providers. More specifically,
505	the emergence and expansion of cipR XDR S. sonnei clones associated with ISecp1-bla _{CTX-M-55}
506	raises a major concern regarding the epidemic potential of this novel CTX-M ESBL variant in S.
507	sonnei 66-68. A significant burden of shigellosis, high prevalence of AMR among Gram-negative
508	commensal bacteria, and the purchasing of antimicrobials in the community may be factors
509	contributing to the emergence and maintenance of XDR S. sonnei in Vietnam.
510	
511	We describe multiple different plasmid structures in the cipR S. sonnei population, distinguishing
512	their dynamics from those of the resident S. sonnei population, which underwent a clonal

513 expansion characterized by a single plasmid structure 47 . In most cases when a *mphA/bla*_{CTX-M}

514 plasmid was acquired, the plasmids appeared not to become established in the population. This

515 observation suggests that these structures could have a sustained fitness disadvantage in the

- 516 absence of antimicrobial pressure. Conversely, the successful maintenance of four independent
- 517 XDR S. sonnei clones warrants further investigation into their potential fitness, plasmid stability,

518 and future evolutionary trajectories. Additionally, the selected IncB/O and IncI ESBL-encoding 519 conjugative plasmids acquired and maintained by cipR S. sonnei suggest plasmid preferences in 520 this species. Incl and IncB/O plasmids belong to the Incl-complex (Incl, IncB/O, IncK, IncZ), which have comparable antisense RNA plasmid replication control mechanisms ⁶⁹. Our results 521 522 concur with previous reports that proposed a commonality of IncI-complex plasmids associated 523 with the *bla*_{CTX-M} element in S. sonnei from countries at various stages of economic development ^{21,47,70–74}. The reasons for these specific plasmid-host combinations remain elusive; however, we 524 525 found that IncI and IncB/O plasmids displayed the highest *in vitro* conjugation efficiencies 526 compared to other ESBL-encoding plasmids. Moreover, the IncB/O plasmid group was found to 527 be the second most commonly identified plasmid group in commensal and pathogenic E. coli 528 from humans and animals ⁷⁵, while the conjugative IncI group was can also be highly prevalent in commensal bacteria from infants ⁷⁶. The regular sampling of these plasmids by cipR S. sonnei 529 530 could be attributed to several factors, including the close genetic relatedness between Shigella and 531 E. coli, the propensity of S. sonnei to acquire AMR plasmids, and the circulation of highly 532 transmissible AMR plasmids in commensal E. coli. To combat the emergence and circulation of 533 AMR Gram-negative bacteria, a better understanding of plasmid-host interactions, plasmid 534 stability, and the role of plasmids in the fitness of cipR S. sonnei are now critical. 535 536 The routine acquisition of a wide variety of ESBL-encoding plasmids by cipR S. sonnei reflects 537 extensive interspecies gene flow from a substantial local gene pool, possibly as a result of 538 bacterial response to selective pressures exerted by widespread and largely uncontrolled 539 antimicrobial use. These plasmids appear to originate from bacterial hosts that share the same 540 ecological niche as S. sonnei. We performed WGS of selected commensal bacteria from fecal

samples infected with *S. sonnei* and from healthy children and identified an extensive range of

- 542 AMR genes/plasmids that conferred resistance to all antimicrobial classes in these commensal
- 543 organisms. This diversity included the IncI and IncB/O plasmids that had been routinely acquired

544	by cipR S. sonnei. We also provide evidence for <i>in vivo</i> $IncI/bla_{CTX-M-15}$ plasmid transfer between
545	commensal E. coli and cipR S. sonnei in a single patient; however, we cannot resolve the
546	directionality of plasmid movement or discount the role of other components of the human
547	microbiome as the original donor of this plasmid. Potential plasmid transfer between commensal
548	Gram-negative bacteria and <i>Shigella</i> spp. in the human gut has been suggested previously ^{77,78} .
549	The large biomass of Enterobacteriaceae in the human gastrointestinal tract and the apparent
550	common circulation of IncI and IncB/O plasmids in commensal bacteria in the gastrointestinal
551	tracts of Vietnamese children suggests that the direction of plasmid transfer is more likely to be
552	from commensal bacteria (potentially E. coli) to S. sonnei.
553	
554	We additionally aimed to assess the role of ciprofloxacin in facilitating the transfer of ESBL-
555	encoding plasmids from commensal bacteria to cipR S. sonnei. Our data show that exposure to
556	sub-[inhibitory concentrations to ciprofloxacin may facilitate the transfer of ESBL-encoding
557	plasmids between commensal E. coli and cipR S. sonnei. As the majority of commensal E. coli
558	were cipR, our results suggest that horizontal plasmid transfer between cipR Gram-negative
559	organisms and Shigella may occur at higher frequencies in the presence of increasing
560	ciprofloxacin concentrations. Our observations question the effect of ciprofloxacin on the
561	composition of commensal bacterial and transfer dynamics of AMR determinants in the human
562	gut during and after treatment. In the clinical study in which the S. sonnei described here were
563	isolated, the majority of S. sonnei infected children (85%, 67/79) were treated empirically with
564	ciprofloxacin. We found that the clinical outcomes (duration of hospitalization) between children
565	infected with cipR (51 cases) versus cipS S. sonnei (16 cases) were comparable (median 4 days
566	(IQR: 3-6.5 days) versus 3 days (IQR: 2-4)) ⁷⁹ . Additionally, four cases (three infected with cipR
567	S. sonnei) did not receive antimicrobial treatment but still recovered in a similar time period.
568	These supporting data call for a re-evaluation of the necessity and benefit of treating children
569	with S. sonnei dysentery with ciprofloxacin. Treatment with fluoroquinolones in the absence of

570	appropriate diagnostics and susceptibility testing could potentially select for the maintenance and			
571	transn	transmission of XDR S. sonnei and promote horizontal plasmid transfer between commensal		
572	bacter	bacteria and S. sonnei.		
573				
574	In cor	clusion, multiple XDR clones of S. sonnei have emerged and are co-circulating in Vietnam.		
575	Comn	nensal E. coli in the gastrointestinal tract of Vietnamese children display an exceptionally		
576	high c	legree of diversity in AMR genes and plasmid composition, and our evidence suggests these		
577	are the	e most likely reservoir for the maintenance and transfer of MDR plasmids to cipR S. sonnei.		
578	Our data further suggest in vivo plasmid transfer between commensal E. coli and cipR S. sonnei			
579	during infection, which is likely facilitated by the presence of sub-MIC concentrations of			
580	ciprofloxacin. We advocate for the continued surveillance of XDR S. sonnei in Vietnam and a			
581	suggest a urgent re-evaluation of the empirical use of ciprofloxacin for a range of gastrointestinal			
582	infect	ions.		
583				
584	Refer	ences		
585	1	Kotloff KL, Winickoff JP, Ivanoff B, et al. Global burden of Shigella infections:		
586		Implications for vaccine development and implementation of control strategies. Bull		
587		World Health Organ 1999; 77 : 651–66.		
588	2	Lanata CF, Fischer-Walker CL, Olascoaga AC, et al. Global causes of diarrheal disease		
589		mortality in children. PLoS One 2013; 8: e72788.		
590	3	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease		
591		in infants and young children in developing countries (the Global Enteric Multicenter		
592		Study, GEMS): a prospective, case-control study. Lancet 2013; 382: 209-22.		
593	4	Thompson CN, Duy PT, Baker S. The rising dominance of Shigella sonnei: An		
594		intercontinental shift in the etiology of bacillary dysentery. PLoS Negl. Trop. Dis. 2015; 9.		
595		DOI:10.1371/journal.pntd.0003708.		

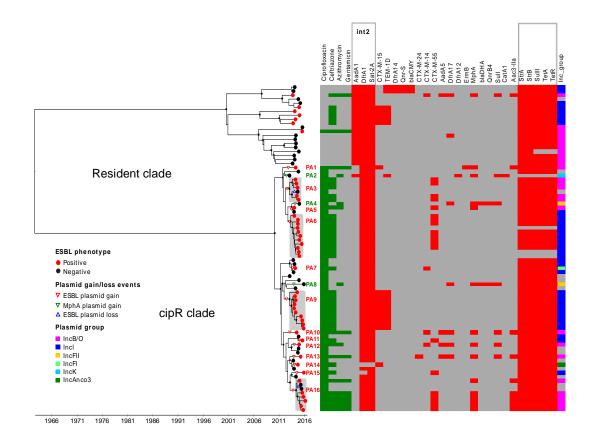
- 596 5 Baker KS, Campos J, Pichel M, et al. Whole genome sequencing of Shigella sonnei
- 597 through PulseNet Latin America and Caribbean: advancing global surveillance of
- 598 foodborne illnesses. *Clin Microbiol Infect* 2017; **23**: 845–53.
- 599 6 Holt KE, Baker S, Weill F-X, et al. Shigella sonnei genome sequencing and phylogenetic
- analysis indicate recent global dissemination from Europe. 2012; 44.
- 601 DOI:10.1038/ng.2369.
- D. Legros, D. Legros. Guidelines for the control of shigellosis, including epidemics due to
 Shigella dysenteriae type 1. *World Health* 2005; : 1–70.
- 8 Pazhani GP, Ramamurthy T, Mitra U, Bhattacharya SK, Niyogi SK. Species diversity and
- antimicrobial resistance of Shigella spp. isolated between 2001 and 2004 from
- 606 hospitalized children with diarrhoea in Kolkata (Calcutta), India. *Epidemiol Infect* 2005;
- **133**: 1089–95.
- Shakya G, Acharya J, Adhikari S, Rijal N. Shigellosis in Nepal: 13 years review of
 nationwide surveillance. *J Health Popul Nutr* 2016; **35**: 36.
- 610 10 Von Seidlein L, Deok RK, Ali M, *et al.* A multicentre study of Shigella diarrhoea in six
 611 Asian countries: Disease burden, clinical manifestations, and microbiology. *PLoS Med*
- 612 2006; **3**: 1556–69.
- 613 11 Pazhani GP, Niyogi SK, Singh AK, et al. Molecular characterization of multidrug-
- resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. *J Med Microbiol* 2008; **57**: 856–63.
- 616 12 Rajpara N, Nair M, Chowdhury G, *et al.* Molecular analysis of multidrug resistance in
- 617 clinical isolates of *Shigella* spp. from 2001-2010 in Kolkata, India: role of integrons,
- 618 plasmids, and topoisomerase mutations. *Infect Drug Resist* 2018; Volume 11: 87–102.
- 619 13 De Lappe N, O'Connor J, Garvey P, McKeown P, Cormican M. Ciprofloxacin-resistant
 620 Shigella sonnei associated with travel to India. *Emerg Infect Dis* 2015; 21: 894–6.

621

622	14	Bowen A, Hurd J, Hoover C, et al. Importation and Domestic Transmission of Shigella
623		sonnei Resistant to Ciprofloxacin - United States, May 2014-February 2015. MMWR
624		Morb Mortal Wkly Rep 2015; 64: 318–20.
625	15	Nüesch-Inderbinen M, Heini N, Zurfluh K, Althaus D, Hächler H, Stephan R. Shigella
626		antimicrobial drug resistance mechanisms, 2004–2014. Emerg Infect Dis 2016; 22: 1083–
627		5.
628	16	Ruekit S, Wangchuk S, Dorji T, et al. Molecular characterization and PCR-based replicon
629		typing of multidrug resistant Shigella sonnei isolates from an outbreak in Thimphu,
630		Bhutan. BMC Res Notes 2014; 7. DOI:10.1186/1756-0500-7-95.
631	17	Kim JS, Kim JJ, Kim SJ, et al. Outbreak of ciprofloxacin-resistant Shigella sonnei
632		associated with travel to Vietnam, Republic of Korea. Emerg Infect Dis 2015; 21: 1247-
633		50.
634	18	Gaudreau C, Ratnayake R, Pilon PA, Gagnon S, Roger M, Levesque S. Ciprofloxacin-
635		resistant Shigella sonnei among men who have sex with men, Canada, 2010. Emerg Infect
636		<i>Dis</i> 2011; 17 : 1747–50
637	19	Chiou CS, Izumiya H, Kawamura M, et al. The worldwide spread of ciprofloxacin-
638		resistant Shigella sonnei among HIV-infected men who have sex with men, Taiwan. Clin
639		Microbiol Infect 2016; 22: 383.e11–383.e16.
640	20	Baker KS, Dallman TJ, Field N, et al. Genomic epidemiology of Shigella in the United
641		Kingdom shows transmission of pathogen sublineages and determinants of antimicrobial
642		resistance. Sci Rep 2018; 8: 1–8.
643	21	Bodhidatta L, Thanh TH, Thanh DP, et al. Introduction and establishment of
644		fluoroquinolone-resistant Shigella sonnei into Bhutan. Microb Genomics 2015; 1.
645		DOI:10.1099/mgen.0.000042.
646	22	Chung The H, Rabaa MA, Pham Thanh D, et al. South Asia as a Reservoir for the Global
647		Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study. PLoS Med

648		2016; 13 : 1–12.
649	23	Duong VT, Tuyen HT, Van Minh P, et al. No Clinical benefit of empirical antimicrobial
650		therapy for pediatric diarrhea in a high-usage, high-resistance setting. Clin Infect Dis
651		2018; 66 : 504–11.
652	24	Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-
653		resistant and pandrug-resistant bacteria: An international expert proposal for interim
654		standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-81.
655	25	Thiem VD, Sethabutr O, Von Seidlein L, et al. Detection of Shigella by a PCR Assay
656		Targeting the ipaH Gene Suggests Increased Prevalence of Shigellosis in Nha Trang,
657		Vietnam. J Clin Microbiol 2004; 42 : 2031–5.
658	26	Thompson CN, Anders KL, Nhi LTQ, et al. A cohort study to define the age-specific
659		incidence and risk factors of Shigella diarrhoeal infections in Vietnamese children: A
660		study protocol. BMC Public Health 2014; 14. DOI:10.1186/1471-2458-14-1289.
661	27	Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and
662		SAMtools. Bioinformatics 2009; 25: 2078–9.
663	28	Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of
664		recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;
665		43 : e15.
666	29	Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective
667		stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;
668		32 : 268–74.
669	30	Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of
670		heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016; 2:
671		vew007.
672	31	Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.
673		BMC Evol Biol 2007; 7. DOI:10.1186/1471-2148-7-214.

674	32	Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian Coalescent Inference of Past
675		Population Dynamics from Molecular Sequences. DOI:10.1093/molbev/msi103.
676	33	Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed Phylogenetics and Dating
677		with Confidence. DOI:10.1371/journal.pbio.0040088.
678	34	Xie W, Lewis PO, Fan Y, Kuo L, Chen MH. Improving marginal likelihood estimation for
679		bayesian phylogenetic model selection. Syst Biol 2011; 60: 150-60.
680	35	Lartillot N, Philippe H. Computing Bayes factors using thermodynamic integration. Syst
681		<i>Biol</i> 2006; 55 : 195–207.
682	36	Inouye M, Dashnow H, Raven L-A, et al. SRST2: Rapid genomic surveillance for public
683		health and hospital microbiology labs. Genome Med 2014; 6: 90.
684	37	Gupta SK, Padmanabhan BR, Diene SM, et al. ARG-annot, a new bioinformatic tool to
685		discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother
686		2014; 58 : 212–20.
687	38	Carattoli A, Zankari E, Garciá-Fernández A, et al. In Silico detection and typing of
688		plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents
689		<i>Chemother</i> 2014; 58 : 3895–903.
690	39	García-Fernández A, Chiaretto G, Bertini A, et al. Multilocus sequence typing of IncI1
691		plasmids carrying extended-spectrum β -lactamases in Escherichia coli and Salmonella of
692		human and animal origin. J Antimicrob Chemother 2008; 61: 1229–33.
693	40	Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de
694		Bruijn graphs. Genome Res 2008; 18: 821–9.
695	41	Seemann T. Prokka: Rapid prokaryotic genome annotation. <i>Bioinformatics</i> 2014; 30:
696		2068–9.
697	42	Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: Algorithm-based
698		automatic contiguation of assembled sequences. Bioinformatics 2009; 25: 1968-9.
699	43	Carver T, Berriman M, Tivey A, et al. Artemis and ACT: Viewing, annotating and


700		comparing sequences stored in a relational database. <i>Bioinformatics</i> 2008; 24: 2672–6.
701	44	Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using
702		exact alignments. Genome Biol 2014; 15. DOI:10.1186/gb-2014-15-3-r46.
703	45	CI Kado AND ST. Liu. Rapid Procedure for Detection and Isolation of Large and Small
704		Plasmids. <i>J Bacteriol</i> 1981; 145 : 1365–73.
705	46	Bankevich A, Nurk S, Antipov D, et al. SPAdes: A New Genome Assembly Algorithm
706		and Its Applications to Single-Cell Sequencing. J Comput Biol 2012; 19: 455–77.
707	47	Holt KE, Thieu Nga TV, Thanh DP, et al. Tracking the establishment of local endemic
708		populations of an emergent enteric pathogen. Proc Natl Acad Sci USA 2013; 110:
709		17522–7.
710	48	Nhi LTQ, Tuyen HT, Trung PD, et al. Excess body weight and age associated with the
711		carriage of fluoroquinolone and third-generation cephalosporin resistance genes in
712		commensal escherichia coli from a cohort of urban vietnamese children. J Med Microbiol
713		2018; 67 : 1457–66.
714	49	Bearson BL, Brunelle BW. Fluoroquinolone induction of phage-mediated gene transfer in
715		multidrug-resistant Salmonella. Int J Antimicrob Agents 2015; 46: 201-4.
716	50	Hastings PJ, Rosenberg SM, Slack A. Antibiotic-induced lateral transfer of antibiotic
717		resistance. Trends Microbiol. 2004; 12: 401–4.
718	51	Qin T, Kang H, Ma P, Li P, Huang L, Gu B. SOS response and its regulation on the
719		fluoroquinolone resistance. Ann Transl Med 2015; 3: 358.
720	52	Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS
721		response and promotes antibiotic resistance development through integron activation.
722		<i>PLoS Genet</i> 2010; 6 : 1–10.
723	53	Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penadés JR. Antibiotic-induced SOS
724		response promotes horizontal dissemination of pathogenicity island-encoded virulence
725		factors in staphylococci. Mol Microbiol 2005; 56: 836–44.

726	54	Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of
727		antibiotic resistance genes. Nature 2004; 427: 72–4.
728	55	Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical
729		use. Interdiscip Perspect Infect Dis 2012; 2012. DOI:10.1155/2012/976273
730	56	Thanh DP, Karkey A, Dongol S, et al. A novel ciprofloxacin-resistant subclade of h58.
731		Salmonella typhi is associated with fluoroquinolone treatment failure. <i>Elife</i> 2016; 5.
732		DOI:10.7554/eLife.14003.
733	57	Talukder KA, Khajanchi BK, Islam MA, et al. Genetic relatedness of ciprofloxacin-
734		resistant Shigella dysenteriae type 1 strains isolated in south Asia. J Antimicrob
735		<i>Chemother</i> 2004; 54 : 730–4.
736	58	Holden MTG, Hsu L-Y, Kurt K, et al. A genomic portrait of the emergence, evolution,
737		and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res
738		2013; 23 : 653–64.
739	59	Banerjee R, Johnson JR. A new clone sweeps clean: The enigmatic emergence of
740		Escherichia coli sequence type 131. Antimicrob. Agents Chemother. 2014; 58: 4997-
741		5004.
742	60	Le Hello S, Bekhit A, Granier SA, et al. The global establishment of a highly-
743		fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front
744		Microbiol 2013; 4. DOI:10.3389/fmicb.2013.00395.
745	61	He M, Miyajima F, Roberts P, et al. Emergence and global spread of epidemic healthcare-
746		associated Clostridium difficile. Nat Genet 2013; 45: 109-13
747	62	Xia L, Liu Y, Xia S, et al. Prevalence of ST1193 clone and IncI1/ST16 plasmid in E-coli
748		isolates carrying blaCTX-M-55gene from urinary tract infections patients in China. Sci
749		<i>Rep</i> 2017; 7 . DOI:10.1038/srep44866.
750	63	Kim Y, Oh T, Nam YS, Cho SY, Lee HJ. Prevalence of ST131 and ST1193 among
751		bloodstream isolates of Escherichia coli not susceptible to ciprofloxacin in a tertiary care

752		university hospital in korea, 2013-2014. Clin Lab 2017; 63: 1541-3.
753	64	Wu J, Lan F, Lu Y, He Q, Li B. Molecular characteristics of ST1193 clone among
754		phylogenetic group B2 Non-ST131 fluoroquinolone-resistant Escherichia coli. Front
755		Microbiol 2017; 8. DOI:10.3389/fmicb.2017.02294.
756	65	Tchesnokova VL, Rechkina E, Larson L, et al. Rapid and Extensive Expansion in the U.S.
757		of a New Multidrug-Resistant Escherichia coli Clonal Group, Sequence Type ST1193.
758		<i>Clin Infect Dis</i> 2018; : 2016–9.
759	66	Zurita J, Ortega-Paredes D, Barba P. First description of Shigella sonnei harboring
760		blaCTX-M-55 outside Asia. J Microbiol Biotechnol 2016; 26: 2224–7.
761	67	Lee W, Chung HS, Lee H, <i>et al.</i> CTX-M-55-type extended-spectrum β -lactamase-
762		producing Shigella sonnei isolated from a Korean patient who had travelled to China. Ann
763		<i>Lab Med</i> 2013; 33 : 141–4.
764	68	Qu F, Ying Z, Zhang C, et al. Plasmid-encoding extended-spectrum β-lactamase CTX-M-
765		55 in a clinical Shigella sonnei strain, China. <i>Future Microbiol</i> 2014; 9 : 1143–50.
766	69	Praszkier J, Pittard AJ. Control of replication in I-complex plasmids. Plasmid. 2005; 53:
767		97–112.
768	70	Allué-Guardia A, Koenig SSK, Quirós P, Muniesa M, Bono JL, Eppinger M. Closed
769		genome and comparative phylogenetic analysis of the clinical multidrug resistant Shigella
770		sonnei strain 866. Genome Biol Evol 2018. DOI:10.1093/gbe/evy168.
771	71	Folster JP, Pecic G, Krueger A, et al. Identification and characterization of CTX-M-
772		producing Shigella isolates in the United States. Antimicrob. Agents Chemother. 2010;
773		54 : 2269–70.
774	72	Ma Q, Xu X, Luo M, et al. A waterborne outbreak of shigella sonnei with resistance to
775		azithromycin and third-generation cephalosporins in China in 2015. Antimicrob Agents
776		Chemother 2017; 61. DOI:10.1128/AAC.00308-17.
777	73	Seral C, Rojo-Bezares B, Garrido A, Gude MJ, Sáenz Y, Castillo FJ. Characterisation of a

778		CTX-M-15-producing Shigella sonnei in a Spanish patient who had not travelled abroad.
779		Enferm Infecc Microbiol Clin 2012; : 2011–3
780	74	Kim JS, Kim J, Jeon SE, et al. Complete nucleotide sequence of the IncI1 plasmid
781		pSH4469 encoding CTX-M-15 extended-spectrum β -lactamase in a clinical isolate of
782		Shigella sonnei from an outbreak in the Republic of Korea. Int J Antimicrob Agents 2014;
783		44 : 533–7.
784	75	Johnson TJ, Wannemuehler YM, Johnson SJ, et al. Plasmid replicon typing of commensal
785		and pathogenic Escherichia coli isolates. Appl Environ Microbiol 2007; 73: 1976-83.
786	76	Ravi A. Characterization of the infant gut microbiota mobilome. 2017.
787		http://hdl.handle.net/11250/2497973.
788	77	Bratoeva MP, John JF. In vivo R-plasmid transfer in a patient with a mixed infection of
789		shigella dysentery. Epidemiol Infect 1994; 112: 247-52.
790	78	Rashid H, Rahman M. Possible transfer of plasmid mediated third generation
791		cephalosporin resistance between Escherichia coli and Shigella sonnei in the human gut.
792		Infect Genet Evol 2015; 30 : 15–8.
793	79	Duong VT, Tuyen HT, Van Minh P, et al. No Clinical benefit of empirical antimicrobial
794		therapy for pediatric diarrhea in a high-usage, high-resistance setting. Clin Infect Dis
795		2018; 66 : 504–11.
796		
797	Ackn	owledgements
798	This v	vork was funded by Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the
799	Royal	Society, to SB (100087/Z/12/Z) and an Oak Leader Fellowship to DPT.
800		
801	Autho	or contributions
802	PTD,	MAR and SB designed the study. PTD performed in data analysis and interpretation of the
803	results under the scientific guidance of MAR and SB. PTD drafted and edited the paper, with	

- 804 MAR and SB revising and structuring the paper. TNTN, HCT, CB, FA, HNDT, and HTT
- 805 performed laboratory work and generated the data for analysis. DVT recruited patients and
- 806 performed the clinical work required for the study. HCT, CB, and GET contributed to the editing
- 807 of the paper. All authors read and approved the final draft.
- 808
- 809 Additional information
- 810 None
- 811
- 812 **Competing interests**
- 813 None

Figure 1. The temporal phylogenetic structure of Shigella sonnei in Vietnam, 2014 and 2016

Maximum clade credibility phylogeny showing two distinct clades corresponding to the resident and the cipR *S. sonnei* populations. The black asterisks indicate posterior probability support \geq 70% on internal nodes. The red circles at terminal leaves highlight the ESBL-positive isolates. Triangles indicate plasmid gain/loss events. Sixteen plasmid acquisitions (PAs) were reconstructed across the tree and designated as PA1-PA16. The columns on the right correspond to: the resistance phenotype to key antimicrobials (green), the presence of AMR genes (red), and the presence of different plasmid groups (multiple colors), respectively.

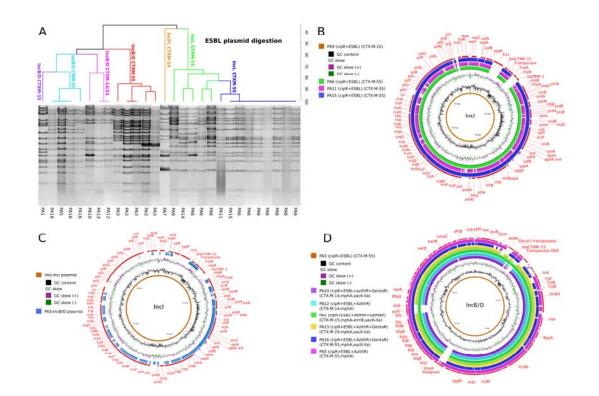
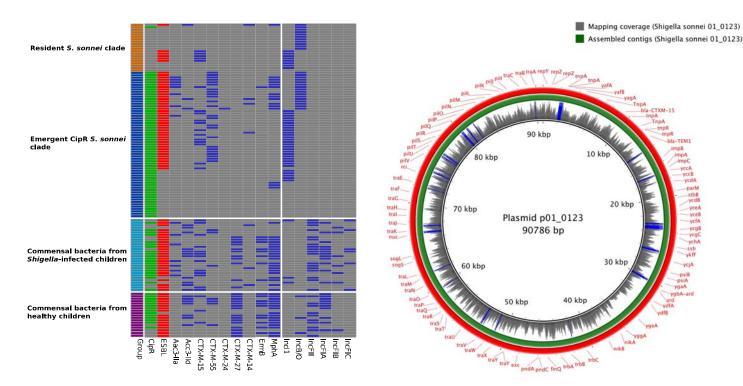
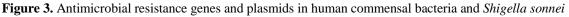
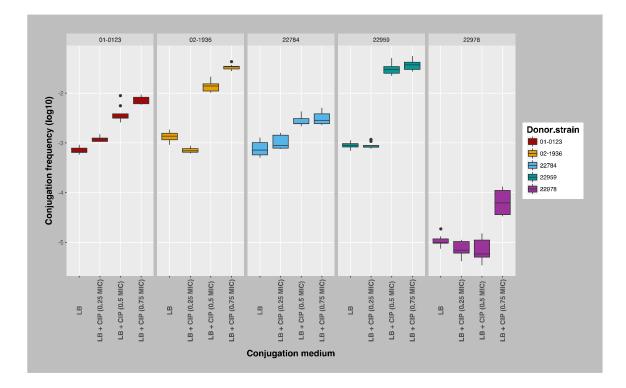
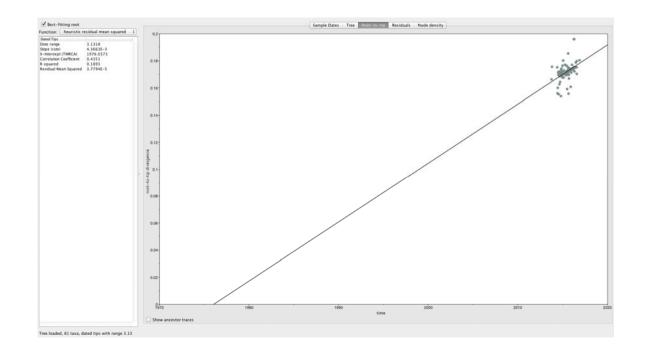
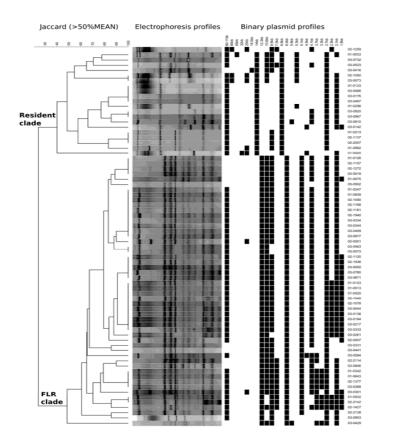




Figure 2. The Diversity of ESBL-encoding plasmids in ciprofloxacin-resistant Shigella sonnei

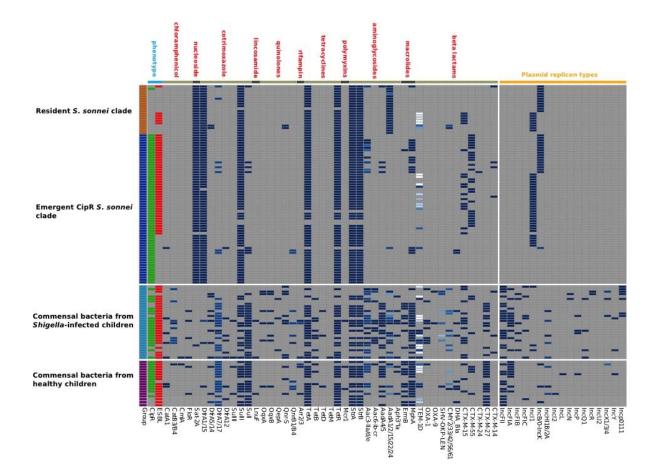
A) Dendrogram showing the similarities in restriction digestion patterns of ESBL-encoding plasmids associated with independent plasmid acquisitions.
B) BLAST comparisons of IncI plasmids associated with four independent acquisitions (PA6, 9, 11, 15). The central circle is the full reference sequence of the IncI plasmid associated with PA9, with similarity between the reference sequence and other IncI plasmids shown as concentric rings. C) BLASTN comparison between IncI and IncB/O plasmid structures, in which the central circle is the IncI plasmid (PA9). D) BLAST comparisons of IncB/O plasmids associated with PA3, with seven independent acquisitions (PA1, 3, 5, 10, 12, 13, 16). The central circle is the full reference sequence of the IncB/O plasmid associated with PA3, with similarity between the reference and other IncB/O plasmid associated with PA3, with

A) The first column highlights the four different sample types. Fecal/rectal swab cultures with ciprofloxacin-resistant and ESBL-producing isolates are highlighted in green and red (second and third columns, respectively). The remaining columns show the presence of key antimicrobial resistance genes and plasmid groups (blue) in commensal bacteria and *S. sonnei*. B) The central circle is the full sequence of plasmid p01-0123 assembled from Nanopore sequences of commensal *E. coli*. The next ring shows the depth of coverage from raw Illumina reads of ciprofloxacin-resistant *Shigella sonnei* strain 01-0123 mapped onto the central reference sequence. Graph height is proportional to the number of reads mapping at each nucleotide position in the reference genome from 0 to 30x coverage. Regions with plasmid coverage greater than 30x are shown as solid blue bands. The green ring shows the BLASTN comparison between assembled sequences of *Shigella sonnei* strain 01-0123 and the central reference sequence. The red ring indicates the gene annotations of the central reference sequence.


Figure 4. The Conjugation efficiency of ESBL-encoding plasmids from human commensal *E. coli* to ciprofloxacin-resistant *Shigella sonnei* with and without supplementation with ciprofloxacin

Boxplots showing the conjugation frequencies (log10) between five commensal *E. coli* isolates and cipR *S. sonnei* strain 03-0520 with and without supplementing conjugation media with 0.25x, 0.5x, and 0.75x MIC of the donor cipS commensal *E. coli*. Each conjugation experiment was performed in triplicate in each condition.


Supplementary Figure 1. Root-to-tip regression for the maximum likelihood tree of Shigella sonnei in Vietnam, 2014 and 2016

Each point on the plot corresponds to a measurement of genetic distance from the inferred root to each tip in the tree. The solid line is the regression line fitted using the ordinary least squares method. The slope of the line is a crude estimate of the evolutionary rate, the x-intercept corresponds to the time to the most recent common ancestor, and the R^2 value measures the degree of clock-like behavior.

Supplementary Figure 2. Plasmid profiling of Shigella sonnei in Vietnam, 2014 and 2016

Dendrogram shows the difference in plasmid electrophoresis patterns between the resident *S. sonnei* clade and the cipR *S. sonnei* clade in Vietnam. Cluster analysis was performed with Bionumerics by using the Jaccard coefficient and the unweighted pair group mathematical average (UPGMA) clustering algorithm.

Supplementary Figure 3. Distribution of antimicrobial resistance genes and plasmid groups in *Shigella sonnei* and human commensal bacteria The first column highlights the four different isolate types in different colors. Fecal/rectal swab cultures with ciprofloxacin-resistant and ESBL-producing isolates are highlighted in green and red (second and third columns, respectively). The remaining columns show the distribution of all antimicrobial resistance genes and plasmid groups identified in commensal bacteria and *S. sonnei*. AMR genes are grouped together based on the class of antimicrobial agents to which they are resistant, with different variants of an antimicrobial resistant gene shown in different shades of blue.