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Abstract  
Deep learning is transforming the ability of life scientists to extract information from images. These techniques 
have better accuracy than conventional approaches and enable previously impossible analyses. As the capability of 
deep learning methods expands, they are increasingly being applied to large imaging datasets. The computational 
demands of deep learning present a significant barrier to large-scale image analysis. To meet this challenge, we 
have developed DeepCell 2.0, a platform for deploying deep learning models on large imaging datasets (>105-
megapixel images) in the cloud. This software enables the turnkey deployment of a Kubernetes cluster on all 
commonly used operating systems. By using a microservice architecture, our platform matches computational 
operations with their hardware requirements to reduce operating costs. Further, it scales computational resources 
to meet demand, drastically reducing the time necessary for analysis of large datasets. A thorough analysis of costs 
demonstrates that cloud computing is economically competitive for this application. By treating hardware 
infrastructure as software, this work foreshadows a new generation of software packages for biology in which 
computational resources are a dynamically allocated resource. 
 
Introduction  
Recent advances in imaging—both in optics and in fluorescent probes—are transforming the study of living 
matter. It is now possible to study cellular function on length scales that span from single molecules1 to whole 
organisms2 with imaging. Concurrent with these advances have come drastic improvements in our ability to 
computationally extract information from images. Chief among these new tools is deep learning, a set of machine 
learning tools that can learn effective representation from data in a supervised or unsupervised manner. These 
methods are more accurate than prior approaches3 and can automate the image classification and image 
segmentation tasks that have formed the bedrock of single-cell analysis3. Their ability to extract latent information 
from images has also enabled previously unforeseen analyses of cellular function and behavior. Recent 
applications include interpreting imaging-based screens4 (image classification), quantifying the behavior of 
individual immune cells in the tumor microenvironment5,6 (image segmentation), improving the resolution of 
images7 (extracting latent information), and predicting fluorescence images directly from bright field images8 
(extracting latent information). 

As the capabilities of deep learning grow, these models are increasingly being used throughout the life sciences on 
imaging datasets both small and large. This new reality presents several challenges. Deep learning is a data- and 
compute-intensive method; new applications often require new training datasets, while developing new deep 
learning models requires specialized hardware. As these challenges are being met, the remaining challenges 
increasingly revolve around deployment and scale. Timely inference of deep learning models requires hardware 
acceleration via graphical processing units (GPUs). However, complete analysis pipelines require both deep 
learning and conventional computer-vision operations. This constraint means that the single-workstation model 
for analysis is inefficient. Further, modern imaging experiments can produce large (>105-megapixel images) 
datasets; the turnaround time for analysis is increasingly becoming a bottleneck for imaging-based discovery. 

To meet this challenge, we have developed DeepCell 2.0, a cloud computing platform for deploying deep learning 
models on imaging datasets. While the target application of this software is single-cell analysis of large live-cell 
imaging6 and cell atlas datasets5, it represents a fundamental shift from how software for biological data analysis is 
traditionally written. Rather than viewing hardware as a fixed resource, we view it instead as a resource that can 
be allocated dynamically. In this paradigm, the computational resources requested can scale with the dataset size 
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so that the analysis time remains small even for large datasets. The tradeoff for this feature is that the marginal 
cost of compute resources is no longer fixed, as is the case for on-premise computing. Although scaling computing 
power with demand while minimizing cost is a relatively new constraint for scientific software, it is a common 
problem for cloud-native web platforms that experience large amounts of web traffic. By drawing an equivalence 
between web traffic and units of data, it becomes possible to repurpose the technology that underlies scalable web 
platforms and harness it to accelerate data analysis. 

While the advances described here borrow heavily from recent trends in cloud-native software development, 
adaptations are necessary to tailor the software to the needs of life scientists9. The most important of these 
adaptations is decentralization. Control of the underlying hardware for most cloud-native software is centralized; 
one organization manages software deployment while users interact with the software through web browsers. 
While this model can significantly enhance the user experience when applied to data analysis, as has been the case 
with BLAST10 and similar bioinformatics software, there are limitations. For example, analysis of large datasets by 
single users can impair responsiveness for other users. Further, this model requires users to share their data with 
the managing organization, raising issues of data ownership and privacy. These concerns become even more 
pressing in a world where data are becoming increasingly intertwined with software11. Much like modern 
blockchain technologies12, DeepCell 2.0 circumvents these issues by enabling decentralized control. On-premise 
computing is the classic model for decentralized control of hardware, but it lacks the scalability of cloud 
computing. Here, we obtain the best of both worlds by treating the hardware configuration itself as software. This 
abstraction, which is enabled by the Kubernetes engine, allows users to configure and manage their own software 
deployments and retain control of their data. The tradeoff for this feature is that users must pay their own 
hardware costs. As described below, this cost is manageable. 

Software architecture 
We developed DeepCell 2.0 to operate on Google Cloud using the Google Kubernetes Engine (GKE); a full 
description of the software architecture is shown in Figure 1a. Here we highlight some of the features of our work 
that are enabled by or are unique to deep learning and cloud computing. 

Containerization. To create stability and scalability, we have separated our software into separate modules: the 
kiosk configures and initiates the cloud deployment13, the autoscaler scales compute resources14, the front end is 
our web-based user interface15, redis is a database that manages incoming data16, the redis consumer shuttles data 
to the appropriate task and performs conventional data-processing operations17, the training module trains new 
models with training data18, and TensorFlow-serving processes data with deep learning models19. Each of these 
modules live within a Docker container. We followed the design principle of one process per container to enhance 
security and resilience while accelerating the development lifecycle. 

Cluster and container orchestration through Kubernetes. DeepCell 2.0 uses the Kubernetes engine and its associated 
package manager, Helm, to manage both compute resources and deployment of the containers that comprise 
DeepCell 2.0. Kubernetes performs several key functions: it organizes containers into functional units called pods 
(in our architecture most pods consist of one container), it requisitions compute nodes (both with and without 
GPUs) from the cloud, it assigns the appropriate pods to each node, it scales the number of nodes to meet demand, 
and it allows for internal communication between containers within the deployment. This architecture marshals 
significantly more compute resources for large analysis tasks than is possible from a single machine image. 

Infrastructure as code. Cloud computing requires users to specify the configuration of the compute resources 
requested from the cloud. Details of this configuration for each compute node include CPU type, memory size, and 
the presence of a hardware accelerator. The ability to simultaneously requisition different types of nodes provides 
the opportunity to efficiently match hardware resources with the compute task. While cloud-computing platforms 
provide a user interface for configuring and managing a deployment, we have opted to use an infrastructure as 
code paradigm for dynamically configuring the compute resources requisitioned from the cloud20. In this paradigm, 
the configurations of each type of compute node are stored in yaml files. Users can change details about the 
deployment (e.g. what GPU type to use) through a graphical user interface; these changes are reflected in the 
updated yaml files. The yaml files are read by the Kubernetes engine to determine the types of compute nodes that 
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are available for the cloud deployment. Infrastructure as code also allows us to share all aspects of DeepCell 2.0—
both the source code and the requisite hardware—with end users. 

Pre-emptible instances. To decrease the cost of analyzing large datasets, we configured DeepCell 2.0 to request pre-
emptible GPU instances. While pre-emptible instances can be interrupted, they are 4 times cheaper than regular 
instances and are suitable for large inference tasks. 

Resource allocation. Complete computer-vision solutions for cellular image analysis typically require a hybrid of 
conventional and deep learning methods to achieve a production-ready solution6,21–23. We have chosen to separate 
the conventional and deep learning operations so that they run on different nodes, which allows us to use 
hardware acceleration for deep learning while ensuring conventional operations are only run on less expensive 
hardware. 

Horizontal pod autoscaling. DeepCell 2.0 utilizes horizontal pod autoscaling to scale the Kubernetes cluster to meet 
analysis demand. We based our scaling policy on the utilization of our most expensive resource, GPU nodes. This 
policy requisitions additional GPU nodes to decrease their collective utilization while, at the same time, increasing 
the number of consumers to drive the utilization of existing GPU nodes. The full policy is described in the 
Supplemental Information. 

Logging and Monitoring. DeepCell 2.0 uses Prometheus24 to monitor cluster performance metrics and the ELK 
stack25 (Elasticsearch, Logstash, and Kibana) to enable logging throughout the Kubernetes cluster. Robust logging 
facilitates development, while metric collection provides the real-time data needed for horizontal pod autoscaling. 
Additionally, these metrics enable extensive benchmarking of cluster performance and cost. 

Inter-service communication with gRPC. Because large amounts of imaging data are shuttled between services 
during analysis tasks, communication between services needs to be efficient. While REST APIs are common 
communication mechanisms26 that present data in a human readable format, the need for interpretability can 
reduce the efficiency of data transfer. Because DeepCell 2.0 was designed to maximize data throughput, we use 
gRPC27 as an alternative means of communicating between services. 

Continuous integration/continuous deployment. We use Travis CI28 to implement continuous 
integration/continuous deployment. This tool allows changes to the code base to be reflected in a deployment 
provided that the modifications pass existing unit tests. This strategy enables developers to rapidly implement new 
features and to deploy novel workflows in DeepCell 2.0. 

Algorithmic modularization. One advantage of deep learning is the ability to package algorithmic functionality into 
deployable units. Deep learning models with distinct functionalities, such as extracting latent information or 
performing image segmentation, can be treated as distinct computational modules. The presence of these models 
within the same ecosystem allows for novel analysis workflows that involve chaining different models together 
(Figure 1b). New algorithms can be added to the ecosystem by exporting the underlying deep learning model to a 
cloud bucket. The scalability inherent in DeepCell 2.0 allows for deployment of these workflows on large imaging 
datasets. 

User interface. We have created a simple drag-and-drop user interface from React29, Babel30, and Webpack31, which 
enables users to process data through a web browser. Trained models are stored in a cloud bucket where they can 
be accessed for inference. Processed data can be downloaded for further analysis in programs like Fiji32 or 
interacted with in Jupyter notebooks. Alternatively, users can submit data to the Kubernetes cluster directly using 
Python code. 

Benchmarking 
The three factors that predominantly control analysis speed are data transfer rates, model inference speed, and 
cluster size. With infinite compute resources, the analysis speed will be bottlenecked by how quickly data can be 
moved into the cloud; a 100 Gbps (12,500 MB/s) ethernet connection translates to 12,500 images per second 
(assuming each image contains 1 million pixels and has 8-bit precision). This rate decreases for slower connections 
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but is markedly faster than the inference speed offered by a single GPU (~6 megapixel-scale images per second on 
NVIDIA V100 GPUs). The large image sizes (>1 megapixel) common in biology preclude extensive batching during 
inference due to memory constraints. Model inference speed can be effectively increased by increasing the number 
of GPUs performing inference. The relationship between data transfer, model inference, and cluster size is 
described further in the Supplemental Information. 

To test DeepCell 2.0’s performance, we carried out an extensive set of benchmarking studies (Figure 2); the full 

dataset is included in the Supplemental Information. To perform benchmarking, we created a benchmarking pod 

that generated zip files containing 100 images and submitted them for processing at a set rate. By changing this 

rate, we simulated different upload speeds. Our image-analysis routine consisted of performing single-cell 

segmentation using a deep watershed approach22,23, which requires both deep learning and conventional 

processing steps and reveals the relative impact of different computational operations on inference speed and cost. 

While we benchmarked scalability using the deep watershed approach, we note that this software can (and has) 

been adapted to deploy a variety of deep learning methods, including RetinaNet33 and Mask-RCNN34, on biological 

imaging data. During benchmarking, we varied the maximum number of images processed (10K, 100K, 1M) and 

the maximum number of GPUs (1, 4, and 8). We also tracked the amount and type of each computational resource 

in service, the amount of time required to perform each step, and the total cost incurred during deployment. 

Overall, this benchmarking demonstrated that cloud computing enables rapid and cost-effective large-scale cellular 
image analysis with deep learning (Figure 2). For upload speeds common at academic institutions (~250 Mbps), 
datasets consisting of 105 1-megapixel images can be analyzed with a typical deep learning model in ~90 min for 
~USD$10 with a 4-GPU cluster. This cost is dominated by the price of GPU computing, which we anticipate will 
decrease with time as specialized inference hardware becomes available in the cloud. Surprisingly, we found a 
financial advantage for recruiting several GPUs to work on large tasks; this advantage arises because increased 
speed decreases the time that non-GPU resources are online. With larger clusters (>8 GPUs), one can analyze 
datasets of >106 megapixel-scale images on the timescale of hours. 

Discussion 
Just as deep learning is transforming the analysis of biological data, advances in methods for cloud-native software 
development have the potential to transform the relationship between compute and software in biological data 
analysis. The degree of abstraction enabled by these advances is changing not just what software can do, but what 
scientists consider to be software. The rise of deep learning has meant that developing training data and machine 
learning code are now both essential components of software development. Similarly, Kubernetes enables one to 
treat computational infrastructure as software. Here, we exploit this abstraction to dynamically allocate 
computational resources, thereby scale compute resources to the size of the data analysis task. This strategy 
controls costs while driving rapid analysis of large datasets. Further, by treating compute as software, we can share 
the entire software stack—both software and hardware—with end users, leading to decentralized control of 
compute while ensuring access to state-of-the-art deep learning models. Critically, training data must remain open, 
not siloed. Overall, DeepCell 2.0 establishes that any novel deep learning method can be deployed on large imaging 
datasets in a scalable fashion. While we anticipate that this work will significantly empower large-scale image 
analysis, we believe that the paradigm of treating compute as both a dynamic resource and as software will find 
widespread use throughout the life and physical sciences. 

Data and Source code 
All data that were used to generate the figures in this paper are available at http://www.deepcell.org/data and at 
http://github.com/vanvalenlab/deepcell-tf under the deepcell.datasets module. A persistent deployment of the 
software described here can be accessed at http://www.deepcell.org. All source code is under a modified Apache 
license and is available at http://www.github.com/vanvalenlab. Detailed instructions are available at 
http://deepcell.readthedocs.io/. 
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Figures 

 
 
Figure 1: Cloud computing enables large-scale cellular image analysis with deep learning. (a) The software 
architecture of DeepCell 2.0. Blue lines signify flow of data while black lines signify flow of compute resources. 
Users begin by starting the kiosk container and specifying the parameters (user credentials, GPU type, etc.) of the 
cloud deployment. These parameters are used by Kubernetes to construct the cloud deployment and to assign pods 
(collections of containers) to their appropriate node. Some nodes can host multiple pods if appropriate. Trained 
models are stored in a cloud bucket and are available for inference. Uploaded data are placed in a cloud bucket, 
triggering the creation of an entry into a Redis queue. A data consumer communicates with the database and 
manages the analysis of a single data item. This communication includes submitting data to a deep learning model 
server and applying conventional computer-vision operations. Distinct data consumers can be written for specific 
workflows. Processed data are downloaded for further analysis. A custom autoscaling module monitors the Redis 
database to trigger 0-to-1 scaling of GPU nodes and TensorFlow serving. Once active, Kubernetes’ innate horizontal 
pod autoscaling capability monitors GPU utilization and dynamically adjusts the number of compute nodes and 
active pods to meet the data-analysis demand. (b) By hosting models on a centralized model server, DeepCell 2.0 
allows for novel analysis workflows that require chaining multiple models. Here, we used a model that predicts 
images of cell nuclei from brightfield images and fed the output to a model that performs nuclear segmentation. 
This workflow removes the need for a fluorescent nuclear marker in live-cell imaging experiments, while the 
software infrastructure allows for scalable deployment on large imaging datasets. 
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Figure 2: Benchmarking of DeepCell 2.0. (a) Contributions of data transfer, TensorFlow-serving latency, and post 
processing to the total runtime for individual images. These histograms denote the time required for each process 
during benchmarking for a 4GPU cluster with a 240 Mbps upload speed. For our tested model, latency from 
TensorFlow serving dominates the total processing time. Oscillations with a period of ~20 s arise from restarts. 
Despite considerable response time per-image, the high throughput of TensorFlow serving enables large-scale 
image analysis. (b) Total processing time for large imaging datasets. By scaling the cluster size dynamically to meet 
the data analysis demand, DeepCell 2.0 significantly reduces the time necessary to process large imaging datasets. 
Datasets consisting of 106 megapixel-scale images can be processed in several hours. An analysis of the tradeoff 
between cluster size and upload speed appears in the Supplemental Information. Error bars in (b) and (c) 
represent the standard deviation. (c) Cost as a function of cluster size. While the cost of GPU nodes is considerable, 
it is mitigated by using pre-emptible instances for GPU inference. We see negligible differences in cost between 
small and large clusters to analyze large imaging datasets. Details of our benchmarking calculations appear in the 
Supplemental Information. 
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Supplemental Information 

Cell lines and culturing. We used the mammalian cell lines NIH-3T3, HeLa-S3, HEK 293, and RAW 264.7 to collect 
training data for nuclear segmentation and the cell lines NIH-3T3 and RAW 264.7 to collect training data for 
augmented microscopy. All cell lines were acquired from ATCC. The cells have not been authenticated and were not 
tested for mycoplasma contamination. 

Mammalian cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen or Caisson) 
supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 μg/mL streptomycin (Gibco or Caisson), 
and either 10% fetal bovine serum (Omega Scientific or Thermo Fisher; HeLa-S3 cells) or 10% calf serum 
(Colorado Serum Company; NIH-3T3 cells). Cells were incubated at 37 °C in a humidified 5% CO2 atmosphere. 
When 70-80% confluent, cells were passaged and seeded onto fibronectin-coated, glass-bottom, 96-well plates 
(Thermo Fisher) at 10,000-20,000 cells/well. Seeded cells were incubated for 1-2 h to allow cells to adhere to the 
bottom of the well before imaging. 

Collection of training data. For fluorescence nuclear imaging, mammalian cells were seeded onto fibronectin 
(Sigma, 10 g/mL) -coated glass bottom 96-well plates (Nunc) and allowed to attach overnight. Medium was 
removed and replaced with imaging medium (FluoroBrite DMEM (Invitrogen) supplemented with 10 mM Hepes 
pH 7.4, 1% fetal bovine serum, 2 mM L-glutamine) at least 1 h before imaging. Cells without a genetically encoded 
nuclear marker were incubated with 50 ng/mL Hoechst 33342 (Sigma) before imaging. Cells were imaged with 
either a Nikon Ti-E or Nikon Ti2 fluorescence microscope with environmental control (37 °C, 5% CO2) and 
controlled by Micro-Manager or Nikon Elements. Images were acquired with a 20x objective (40x for RAW 264.7 
cells) and either an Andor Neo 5.5 CMOS camera with 2x2 binning or a Photometrics Prime 95B CMOS camera with 
2x2 binning. All data were scaled so that pixels had the same physical dimension prior to training. 

For our augmented microscopy training dataset, which consisted of brightfield and fluorescence nuclear images, 
cells were imaged on a Nikon Eclipse Ti-2 fluorescence microscope with environmental control (37 °C, 5% CO2) at 
20x and 40x for NIH-3T3 and RAW264.7 cells, respectively. Nuclei were labeled with Hoescht 33342. Each dataset 
was generated by collecting a fluorescence image in the focal plane as well as a z-stack of phase images (0.25 µm 
slices, ±7.5 µm from focal center). Images were collected on a Photometrics Prime 95B CMOS camera with no 
binning. 
 
Autoscaling policy. We developed novel scaling policies for the redis consumer and TensorFlow (TF)-serving pods. 

The TF-serving pod processes images with deep learning models, while the data-consumer pod feeds data into TF 

serving. The scaling of these two pods is linked, as the data-consumer pods drive utilization of the TF-serving pods. 

We observed that while data-consumer pods can bottleneck inference speed, having too many data-consumer pods 

present at once results in an effective “denial of service” attack on the TF-serving pods. 

To optimally scale both pods, we use autoscaling policies that are based on GPU utilization and work demand. 

Because of the distributed nature of our task, we use horizontal pod autoscaling (more nodes) to scale our cluster 

as opposed to vertical pod autoscaling (bigger nodes). Our metrics, available through Prometheus, provide the 

information necessary for scaling. Horizontal pod autoscaling in Kubernetes works by defining a metric and a 

target for a given pod. If the metric, measured over a given time period, is larger than the target, then the pod is 

scaled up; if it is smaller, then it is scaled down. The target number of pods is given by 𝑁𝑝𝑜𝑑𝑠 = 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑑𝑠
𝑚𝑒𝑡𝑟𝑖𝑐

𝑡𝑎𝑟𝑔𝑒𝑡
. 

Typical metrics are based on resource utilization: if utilization is too high (metric > target), then the pod needs to 

be larger. If it is too low (metric < target), then the pod needs to smaller. For the TF-serving pod, we set our metric 

to be GPU utilization, which ranges from 0% to 100%, and the target to be 70%. For the data-consumer pod, we set 

our metric to be 

𝑚𝑒𝑡𝑟𝑖𝑐 = {

0 𝑖𝑓 𝑇𝐹 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑝𝑜𝑑𝑠 = 0

𝑚𝑖𝑛 (
100−𝐺𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

100
,

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑘𝑒𝑦𝑠

#𝑟𝑒𝑑𝑖𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑜𝑑𝑠
)  𝑖𝑓 

#𝑟𝑒𝑑𝑖𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑜𝑑𝑠

#𝑇𝐹 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑝𝑜𝑑𝑠
<  150

𝑒𝑙𝑠𝑒 0.135

. 
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The target for this metric is set to be 0.15 for several reasons. First, the goal of this scaling policy is to create 

enough data consumers to efficiently drive the TF-serving pod; tying scaling criteria to the GPU utilization 

effectively achieves this goal. Second, because we have consumers of different types, care must be taken to ensure 

that scaling is also sensitive to the amount of work, in order to ensure that new processing tasks are assigned 

consumers. The work metric measures how much work has built up in the queue; if the amount of work to do is 

high, then the scaling policy overrides the GPU utilization-based metric to scale up the pod.  

Model architecture and training. The code for every model is available at https://www.github.com/deepcell-tf 
under the deepcell.model_zoo module. We used feature-nets extensively in this work for benchmarking. Feature-

nets are a deep learning model architecture for general-purpose image segmentation. We previously used various 

feature-nets for nuclear segmentation in 2D cell culture images6, 3D confocal images of brain tissue35, and 2D 

multiplexed ion beam imaging datasets5. This architecture has also been applied to single-cell segmentation of 

bacteria6 and yeast36. The key feature of this architecture is its ability to treat the deep learning model’s receptive 

field—the length scale over which it pays attention—as a tunable variable. Our prior work revealed that deep 

learning models work best when the receptive field size is matched to the feature size of a given dataset37. This 

intuition has been valid for both feature-nets and object detection-based approaches like Mask-RCNN (data not 

shown). Given the diversity in cellular morphologies across the domains of life, we believe that feature-nets are a 

good starting point for cell biologists seeking to apply deep learning to new datasets. 

We trained three models for this work. The first model was a feature-net for 2D image segmentation using a deep 

watershed approach with a 41-pixel receptive field for benchmarking. This model was trained in a fully 

convolutional fashion using stochastic gradient descent with momentum of 0.9, a learning rate of 0.01, weight 

decay of 10-6, and an L2 regularization strength of 10-5 for 5 epochs on a NVIDIA V100 graphics card. A dataset 

consisting of ~300,000 cell nuclei annotations was used for training. 

For nuclear segmentation of brightfield images, we trained two models. The first of these models transforms 

brightfield images into nuclear images. We used a modified 3D feature-net with a 41-pixel receptive field where 

dilated max pooling layers are replaced with 2D convolutional layers with kernel size 2 and an equivalent dilation 

rate. This model was trained in a fully convolutional fashion for using stochastic gradient descent with momentum 

with a learning rate of 0.01, momentum of 0.9, weight decay of 10-6, and an L2 regularization strength of 10-5 for 5 

epochs on a NVIDIA V100 graphics card. A dataset consisting of matched brightfield image stacks and fluorescent 

nuclear images was used for training. 

The second model for brightfield images was a modified RetinaMask38 model for nuclear segmentation. 

RetinaMask generates instance masks in a fashion similar to Mask-RCNN but uses single-shot detection like 

RetinaNet33 rather than feature proposals39 to identify objects. We used a ResNet50 backbone and the P2, P3, and 

P4 feature pyramid layers for object detection. We also used custom anchor sizes of 8, 16, and 32 pixels for each of 

these layers. This model was trained using the Adam optimization algorithm40 with a learning rate of 10-5, clipnorm 

of 0.001, batch size of 4, and L2 regularization strength of 10-5 for 16 epochs on a NVIDIA V100 graphics card. A 

dataset consisting of ~300,000 cell nuclei annotations was used for training. 

Relationship between data transfer rates, inference speeds, and cluster size. Data transfer poses a fundamental limit 

to how quickly data can be analyzed. A cluster that is operating efficiently processes data at the same rate that the 

data enter. Given a data transfer speed d and a single model with an inference speed of s, this leads to the equation 

𝑑 = 𝑁𝐺𝑃𝑈𝑠, 

where NGPU, the number of GPUs in the cluster, is effectively the cluster size. A plot of this optimal cluster size as a 

function of model inference speed for various upload speeds is shown below. 
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Figure S1: Optimal cluster size as a function of model inference speed and data upload speeds. 

Benchmarking details. For benchmarking, data were gathered using the kiosk-benchmarking repo 

(github.com/vanvalenlab/kiosk-benchmarking). All runs of 10,000 or 100,000 images were done in triplicate. 

Runs of 1,000,000 images were run a single time. All data in Figure 2a of the main text were derived from 

timestamps taken from redis-consumer pods within the cluster. Data Transfer Times from Figure 2a of the main 

text were calculated by doubling the sum of the time it took a redis-consumer pod to download a raw image from 

the storage bucket and then upload the resulting image to the storage bucket. This calculation may mildly 

underestimate the total time a given image spends in transit in the cluster, since the image must go through several 

transfer steps:  

1) Upload to storage bucket as part of a zip file. 

2) Download of zip file from storage bucket by zip-consumer pod. 

3) Upload of individual raw image to storage bucket from zip-consumer pod. 

4) Download of individual raw image from storage bucket by redis-consumer pod. 

5) Upload of individual predicted image to storage bucket from redis-consumer pod. 

6) Download of individual predicted image from storage bucket to zip-consumer pod. 

7) Upload of zipped batch of predicted images to storage bucket from zip-consumer pod. 

8) Download of zipped batch of predicted images from storage bucket by client. 

Our methodology accounts reasonably for steps 3-6, but not steps 1-2 and 7-8. TF Serving Response Times in 

Figure 2a of the main text were the amount of time redis-consumer pods had to wait for a response from TF-

serving pods. Postprocessing Times in Figure 2a of the main text were the amount of time that a redis-consumer 

pod was occupied carrying out post-processing computations on the results received from TF-serving pods. In 

Figure 2b of the main text, Number of GPUs refers to the maximum number of GPUs available to a cluster, whether 

the cluster ever scaled up to the point where that number of GPUs was being utilized simultaneously. NVIDIA 

Tesla-V100 GPUs were used in all benchmarking runs. In Figure 2c of the main text, costs were computed following 

methodology documented in the vanvalenlab/kiosk-benchmarking repository. 
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Benchmarking data. All data from our benchmarking are shown below. Each run was performed in triplicate, 

except for the 1M image runs, which were performed once. 

 

 

Figure S2: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the 

time required to process a single image. Data for clusters with 1 GPU are shown.  
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Figure S3: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the 

time required to process a single image. Data for clusters with a maximum of 4 GPUs are shown.  
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Figure S4: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the 

time required to process a single image. Data for clusters with a maximum of 8 GPUs are shown. 
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Figure S5: Cloud computation cost across all benchmarking runs with 2.4 Gbps upload speed. 
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Figure S6: Cloud computation cost across all benchmarking runs with 240 Mbps upload speed. 
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