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Abstract

Despite their widespread applications, single-cell RNA-sequencing (scRNA-seq) ex-

periments are still plagued by batch effects and dropout events. Although the completely

randomized experimental design has frequently been advocated to control for batch

effects, it is rarely implemented in real applications due to time and budget constraints.

Here, we mathematically prove that under two more flexible and realistic experimental

designs—the “reference panel” and the “chain-type” designs—true biological variability

can also be separated from batch effects. We develop Batch effects correction with

Unknown Subtypes for scRNA-seq data (BUSseq), which is an interpretable Bayesian

hierarchical model that closely follows the data-generating mechanism of scRNA-seq

experiments. BUSseq can simultaneously correct batch effects, cluster cell types, impute

missing data caused by dropout events, and detect differentially expressed genes without

requiring a preliminary normalization step. We demonstrate that BUSseq outperforms

existing methods with simulated and real data.

Keywords: Batch effects; Experimental design; Single-cell RNA-seq experiments; Model-
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INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) technologies enable the measurement of the tran-

scriptome of individual cells, which provides unprecedented opportunities to discover cell types

and understand cellular heterogeneity (Bacher and Kendziorski, 2016). However, like the

other high-throughput technologies (Irizarry et al., 2005; Leek et al., 2010; Taub et al., 2010),

scRNA-seq experiments can suffer from severe batch effects (Hicks et al., 2018). Moreover,

compared to bulk RNA-seq data, which measure the average gene expression levels of a cell

population, scRNA-seq data can have an excessive number of zeros that result from dropout

events—that is, the expressions of some genes are not detected even though they are actually

expressed in the cell due to amplification failure prior to sequencing (Kharchenko et al., 2014).

Consequently, despite the widespread adoption of scRNA-seq experiments, the design of a

valid scRNA-seq experiment that allows the batch effects to be removed, the biological cell

types to be discovered, and the missing data to be imputed remains an open problem.

One of the major tasks of scRNA-seq experiments is to identify cell types for a population

of cells (Bacher and Kendziorski, 2016). The cell type of each individual cell is unknown and

is often the target of inference. Classic batch effects correction methods, such as Combat

(Johnson et al., 2007) and SVA (Leek and Storey, 2007; Leek, 2014), are designed for bulk

experiments and require knowledge of the subtype information of each sample a prior. For

scRNA-seq data, this subtype information corresponds to the cell type of each individual

cell. Clearly, these methods are thus infeasible for scRNA-seq data. Alternatively, if one has

knowledge of a set of control genes whose expression levels are constant across cell types,

then it is possible to apply RUV (Risso et al., 2014; Jacob et al., 2015). However, selecting

control genes is often difficult for scRNA-seq experiments.

To jointly cluster samples across batches, Huo et al. (2016) proposed MetaSparseKmeans.

Unfortunately, MetaSparseKmeans requires all subtypes to be present in each batch. Suppose

that we conduct scRNA-seq experiments for blood samples from a healthy individual and a

leukemia patient, one person per batch. Although we can anticipate that the two batches will

share T cells and B cells, we do not expect that the healthy individual will have cancer cells

as the leukemia patient. Therefore, MetaSparseKmeans is not applicable to scRNA-seq data.

The mutual nearest neighbors (MNN) (Haghverdi et al., 2018) approach allows each
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batch to contain some but not all cell types. However, MNN requires that “the batch effect

is almost orthogonal to the biological subspaces” and “the batch-effect variation is much

smaller than the biological-effect variation between different cell types” (Haghverdi et al.,

2018). These are very strong assumptions and cannot be validated at the design stage of the

experiments. Scanorama (Hie et al., 2019) generalizes MNN, first reducing dimensions using

randomized singular value decomposition (SVD) and then efficiently searching for nearest

neighbors across all datasets using locality sensitive hashing. As Scanorama builds upon

MNN, it relies on the same strong assumptions as MNN. Seurat adopts canonical correlation

analysis (CCA) to identify shared variations across batches and treats them as shared cell

types (Butler et al., 2018). The latest version of Seurat, Seurat 3.0, also applies MNN to

the low dimensional representation learned by CCA to identify cells that are likely to belong

to the same cell types in different batches (Stuart et al., 2019). LIGER (Welch et al., 2019)

adopts integrative non-negative matrix factorization (iNMF), as opposed to CCA, to identify

data-specific and shared factors. However, if some batches share certain technical noises, for

example when each patient is measured by several batches, CCA and iNMF can mistake

the technical variability as biological variability of interest. Recently, Luo and Wei (2019)

developed BUS, a hierarchical model that is able to simultaneously cluster samples across

multiple batches and correct for severe batch effects for microarray data. In addition, Luo

and Wei (2019) mathematically showed flexible experimental designs under which batch

effects can be corrected when subtype information is unknown. However, as is the case for

MNN, Scanorama, Seurat and LIGER, BUS does not consider features unique to scRNA-seq

data, such as the count nature of the data, over-dispersion (Vallejos et al., 2015), dropout

events (Kharchenko et al., 2014), or cell-specific size factors (Wang et al., 2018).

ZIFA (Pierson and Yau, 2015) and ZINB-WaVE (Risso et al., 2018) are two factor models

that account for dropout events. As factor models are only approximations to the true

mixture distributions of distinct cell types, they lose statistical efficiency. scVI (Lopez et al.,

2018) models the mean expression levels and dropout rates more flexibly via neural networks.

However, none of these authors discuss the experimental designs under which their methods

are applicable. Nevertheless, it is crucial to understand the conditions under which biological

variability can be separated from technical artifacts. Obviously, for completely confounded

designs—for example one in which batch 1 measures cell type 1 and 2, whereas batch 2
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measures cell type 3 and 4—no method is applicable.

Here, we propose Batch Effects Correction with Unknown Subtypes for scRNA-seq data

(BUSseq), an interpretable hierarchical model that simultaneously corrects batch effects,

clusters cell types, and takes care of the count data nature, the overdispersion, the dropout

events, and the cell-specific size factors of scRNA-seq data. Despite the cell-specific size factors

and the dropout rates, we can mathematically prove that the same experimental designs

under which batch effects can be corrected when the subtype information is unknown for bulk

experiments (Luo and Wei, 2019) are also valid for scRNA-seq experiments. Specifically, in

addition to the commonly advocated completely randomized design (Bacher and Kendziorski,

2016; Baran-Gale et al., 2017; Hicks et al., 2018; Dal and Di, 2018), in which each batch

measures all cell types, it is also legitimate to conduct scRNA-seq experiments following the

“reference panel” design and the “chain-type” design, which allow some cell types to be missing

from some batches. We demonstrate that BUSseq outperforms the existing approaches in

both simulation data and real applications. We envision that the proposed experimental

designs will be able to guide biomedical researchers and help them to design better scRNA-seq

experiments.

RESULTS

BUSseq is an interpretable hierarchical model for scRNA-seq

In this work, we develop a hierarchical model BUSseq that closely mimics the data generating

procedure of scRNA-seq experiments (Figure 1 and Methods). Given that we have measured

B batches of cells each with a sample size of nb, let us denote the underlying gene expression

level of gene g in cell i of batch b as Xbig. Xbig follows a negative binomial distribution with

mean expression level µbig and a gene-specific and batch-specific overdispersion parameter φbg.

The mean expression level is determined by the cell type Wbi with the cell type effect βgk,

the log-scale baseline expression level αg, the location batch effect νbg, and the cell-specific

size factor δbi. The cell-specific size factor δbi characterizes the impact of cell size, library size

and sequencing depth. It is of note that the cell type Wbi of each individual cell is unknown

and is our target of inference. Therefore, we assume that a cell on batch b
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comes from cell type k with probability P (Wbi = k) = πbk and the proportions of cell types

(πb1, · · · , πbK) vary among batches.

Unfortunately, it is not always possible to observe the expression level Xbig. Without

dropout (Zbig = 0), we can directly observe Ybig = Xbig. However, if a dropout event occurs

(Zbig = 1), then we observe Ybig = 0 instead of the true level Ybig = Xbig. It has been

noted that highly expressed genes are less-likely to suffer from dropout events (Kharchenko

et al., 2014). We thus model the dependence of the dropout rate P (Zbig = 1|Xbig) on the

expression level using a logistic regression with batch-specific intercept γb0 and odds ratio

γb1. Noteworthy, BUSseq includes the negative binomial distribution without zero inflation

as a special case. When all cells are from a single cell type and the cell-specific size factor

δbi is estimated a priori according to spike-in genes, BUSseq can reduce to a form similar to

BASiCS (Vallejos et al., 2015).

We only observe Ybig for all cells in the B batches and the total G genes. We conduct

statistical inference under the Bayesian framework and develop a Markov chain Monte Carlo

(MCMC) algorithm (Robert and Casella, 2013). Based on the parameter estimates, we can

learn the cell type for each individual cell, impute the missing underlying expression levels

Xbig for dropout events, and identify genes that are differentially expressed among cell types.

Moreover, our algorithm can automatically detect the total number of cell types K that

exists in the dataset according to the Bayesian information criterion (BIC) (Schwarz et al.,

1978). BUSseq also provides a batch-effect corrected version of count data, which can be

used for downstream analysis as if all of the data were measured in a single batch.

Valid experimental designs for scRNA-seq experiments

If a study design is completely confounded, as shown in Figure 2(a), then no method can

separate biological variability from technical artifacts, because different combinations of

batch-effect and cell-type-effect values can lead to the same probabilistic distribution for the

observed data, which in statistics is termed a non-identifiable model. Formally, a model is

said to be identifiable if each probability distribution can arise from only one set of parameter

values (Casella and Berger, 2002). Statistical inference is impossible for non-identifiable

models because two sets of distinct parameter values can give rise to the same probabilistic

function. We prove that the BUSseq model is identifiable under conditions that are very
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Figure 2: Various types of experimental designs. Each subpanel represents three batches with
genes in rows and cells in columns; and each color indicates a cell type. (a) A confounded
design. Batch 1 assays cells from cell types 1 and 2; batch 2 profiles cells from cell types 3
and 4; and batch 3 only contains cells from cell type 4. (b) The complete setting design.
Each batch assays cells from all of the four cell types, although the cellular compositions
vary across batches. (c) The reference panel design. Batch 1 contains cells from all of the
cell types, and all the other batches have at least two cell types. (d) The chain-type design.
Every two consecutive batches share two cell types. Batch 1 and Batch 2 share cell types 2
and 3; Batch 2 and Batch 3 share cell types 3 and 4 (see also Figure S1).

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/533372doi: bioRxiv preprint 

https://doi.org/10.1101/533372
http://creativecommons.org/licenses/by-nc-nd/4.0/


easily met. It is thus applicable to a wide range of experimental designs.

For the “complete setting,” in which each batch measures all of the cell types (Figure

2(b)), BUSseq is identifiable as long as: (I) the odds ratio γb1s in the logistic regressions

for the dropout rates are negative for all of the batches, (II) every two cell types have more

than one differentially expressed gene, and (III) the ratios of mean expression levels between

two cell types ( exp(β1k)
exp(β1k̃)

, · · · , exp(βGk)
exp(βGk̃)

) are different for each cell-type pair (k, k̃) (see Theorem

1 in Methods and its proof in Supplementary Information). Condition (I) requires that the

highly expressed genes are less likely to have dropout events, which is routinely observed for

scRNA-seq data (Kharchenko et al., 2014). Condition (II) always holds in reality. Because

scRNA-seq experiments measure the whole transcriptome of a cell, condition (III) is also

always met in real data. For example, if there exists one gene g such that for any two distinct

cell-type pairs (k1, k2) and (k3, k4) their mean expression levels ratios
exp(βgk1 )

exp(βgk2 )
and

exp(βgk3 )

exp(βgk4 )

are not the same, then condition (III) is already satisfied.

The commonly advocated completely randomized experimental design falls into the

“complete setting,” whereas the latter further relaxes the assumption implied by the former

that the cell-type proportions are almost the same for all batches. The identical composition

of the cell population within each batch is a crucial requirement for traditional batch effects

correction methods developed for bulk experiments such as Combat (Haghverdi et al., 2018).

In contrast, BUSseq is not limited to this balanced design constraint and is applicable to not

only the completely randomized design but also the general complete setting design.

Ideally, we would wish to adopt completely randomized experimental designs. However,

in reality, it is always very challenging to implement complete randomization due to time

and budget constraints. For example, when we recruit patients sequentially, we often have

to conduct scRNA-seq experiments patient-by-patient rather than randomize the cells from

all of the patients to each batch, and the patients may not have the same set of cell types.

Fortunately, we can prove that BUSseq also applies to two sets of flexible experimental

designs, which allow cell types to be measured in only some but not all of the batches.

Assuming that conditions (I)-(III) are satisfied, if there exists one batch that contains

cells from all cell types and the other batches have at least two cell types (Figure 2(c)),

then BUSseq can tease out the batch effects and identify the true biological variability (see

Theorem 2 in Methods and its proof in Supplementary Information). We call this setting the
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“reference panel design.”

Sometimes, it can still be difficult to obtain a reference batch that collects all cell types.

In this case, we can turn to the chain-type design, which requires every two consecutive

batches to share two cell types (Figure 2(a)). Under the chain-type design, given that

conditions (I)-(III) hold, BUSseq is also identifiable and can estimate the parameters well

(see Theorem 3 in Methods and its proof in Supplementary Information).

A special case of the chain-type design is when two common cell types are shared by all of

the batches, which is frequently encountered in real applications. For instance, when blood

samples are assayed, even if we perform scRNA-seq experiment patient-by-patient with one

patient per batch, we know a priori that each batch will contain at least both T cells and B

cells, thus satisfying the requirement of the chain-type design.

The key insight is that despite batch effects, differences between cell types remain constant

across batches. The differences between a pair of cell types allow us to distinguish batch

effects from biological variability for those batches that measure both cell types. Once batch

effects have been identified, we can conduct joint clustering across batches with batch effects

removed. In fact, BUSseq can separate batch effects from cell type effects under more general

designs beyond the easily understood and commonly encountered reference panel design and

chain-type design. If we regard each batch as a node in a graph and connect two nodes with

an edge if the two batches share at least two cell types, then BUSseq is identifiable as long as

the resulting graph is connected (see Theorem 4 in Methods and its proof in Supplementary

Information).

For scRNA-seq data, dropout rates depend on the underlying expression levels. Such

missing data mechanism is called missing not at random (MNAR) in statistics. It is very

challenging to establish identifiability for MNAR. Miao et al. (2016) showed that for many cases

even when both the outcome distribution and the missing data mechanism have parametric

forms, the model can be nonidentifiable. However, fortunately, despite the dropout events

and the cell-specific size factors, by creating a set of functions similar to the probability

generating function, we can still arrive at the same experimental designs as those for the bulk

experiments (Luo and Wei, 2019) under which batch effects can be removed and cell types

can be discovered. The reference panel design and the chain-type design liberalize researchers

from the ideal but often unrealistic requirement of the completely randomized design.
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BUSseq accurately estimates the parameters and imputes the miss-

ing data

We first evaluate the performance of BUSseq via a simulation study. We simulate a dataset

with four batches and a total of five cell types under the chain-type design (Figures 3(a-d)).

Every two consecutive batches share at least two cell types, but none of the batches contains

all of the cell types. The sample sizes for each batch are (n1, n2, n3, n4) = (300, 300, 200, 200),

and there are a total of 3,000 genes. The magnitude of the batch effects, cell type effects, the

dropout rates, and the cell-specific size factors are chosen to mimic real data scenarios (see

Figure 4(a) and Data Availability). Figure 3(d) shows that the observed data suffer from

severe batch effects and dropout events. This is also illustrated by the t-SNE plot (Figure

4(c)). The dropout rates for the four batches are 26.79%, 24.53%, 28.36% and 31.29%, with

the corresponding total zero proportions given by 44.13%, 48.85%, 53.07% and 61.38%.

BUSseq correctly identifies the presence of five cell types among the cells (Figure 3(e)).

Moreover, despite the dropout events, BUSseq accurately estimates the cell type effects βgks

(Figures 3(a) and (f)), the batch effects νbgs (Figures 3(b) and (g)), and the cell-specific

size factors δbis (Figure 3(j)). When controlling the Bayesian False Discovery Rate (FDR)

at 0.05 (Newton et al., 2004; Peterson et al., 2015), we identify all intrinsic genes that

differentiate cell types with the true FDR being 0.020 (Methods). The total running time

of BUSseq for a given cell type number K using 8 cores of two 3.4GHz Intel Gold 6128

processors was 1.01 hours.

In the simulation study, we know the underlying expression levels Xbigs. Therefore, we

can compare them with our inferred expression levels X̂bigs based the observed data Ybigs

which are subject to dropout events. Figures 3(h) demonstrate that BUSseq can learn the

underlying expression levels well. This success arises because BUSseq uses an integrative

model to borrow strengths both across genes and across cells from all batches. As a result,

BUSseq can achieve accurate estimation and imputation despite the dropout events.

Combat offers a version of data that have been adjusted for batch effects (Johnson et al.,

2007). Here, we also provide batch-effects-corrected count data based on quantile matching

(Methods). The adjusted count data no longer suffer from batch effects and dropout events,

and they even do not need further cell-specific normalization (Figure 3(i)).
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Therefore, they can be treated as if measured in a single batch for downstream analysis.

BUSseq outperforms existing methods in batch effects correction

and cell type clustering

We benchmarked BUSseq with the state-of-the-art methods for batch effects correction for

scRNA-seq data—LIGER (Welch et al., 2019), MNN (Haghverdi et al., 2018), Scanorama

(Hie et al., 2019), scVI (Lopez et al., 2018), Seurat (Stuart et al., 2019) and ZINB-WaVE

(Risso et al., 2018). The adjusted Rand index (ARI) measures the consistency between two

clustering results and is between zero and one, a higher value indicating better consistency.

The ARI between the inferred cell types Ŵbis by BUSseq and the true underlying cell types

Wbis is one. Thus, BUSseq can perfectly recover the true cell type of each cell. In comparison,

we apply each of the compared methods to the dataset and then perform their own clustering

approaches (Methods). The ARI is able to compare the consistency of two clustering results

even if the numbers of clusters differ, therefore, we choose the number of cell types by the

default approach of each method rather than set it to a common number. The resulting ARIs

are 0.837 for LIGER, 0.654 for MNN, 0.521 for Scanorama, 0.480 for scVI, 0.632 for Seurat

and 0.571 for ZINB-WaVE. Moreover, the t-SNE plots (Figure 4(c-d)) show that only

BUSseq can perfectly cluster the cells by cell types rather than batches. We also calculated

the Silhouette score for each cell for each compared method. A high Silhouette score indicates

that the cell is well matched to its own cluster and separated from neighboring clusters.

Figure 4(b) shows that BUSseq gives the best segregated clusters.

BUSseq outperforms existing methods on hematopoietic data

We re-analyzed the two hematopoietic datasets previously studied by Haghverdi et al. (2018),

one profiled by the SMART-seq2 protocol for a population of hematopoietic stem and

progenitor cells (HSPC) from 12-week-old female mice (Nestorowa et al., 2016) and another

assayed by the massively parallel single-cell RNA-sequencing (MARS-seq) protocol for myeloid

progenitors from 6- to 8-week-old female mice (Paul et al., 2015). Although the two datasets

were generated in two different laboratories (Figure 5(a)), both datasets have cell-type label

for each cell that is annotated according to the expression levels of marker genes
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(Paul et al., 2015; Haghverdi et al., 2018) from fluorescence-activated cell sorting (FACS)

(Methods).

In order to compare BUSseq with existing methods, we compute the ARI between the

clustering of each method and the FACS labels. The resulting ARIs are 0.582 for BUSseq,

0.307 for LIGER, 0.575 for MNN, 0.518 for Scanorama, 0.197 for scVI, 0.266 for Seurat and

0.348 for ZINB-WaVE. BUSseq thus outperforms all of the other methods in being consistent

with FACS labeling. BUSseq also has Silhouette coefficients that are comparable to those

of MNN, which are better than those of all the other methods (Figure S2). Furthermore,

t-SNE plots confirm that BUSseq performs the best in segregating cells into different cell

types (Figure 5(b)).

Specifically, BUSseq learns 6 cell types from the dataset. According to the FACS labels

(Methods), Cluster 2, Cluster 5, and Cluster 6 correspond to the common myeloid progenitors

(CMP), megakaryocyte-erythrocyte progenitors (MEP) and granulocyte-monocyte progenitors

(GMP), respectively (Figure 5(c) and Figure 6(a-c)). Cluster 1 is composed of long-term

hematopoietic stem and progenitor cells (LTHSC) and multi-potent progenitors (MPP). These

are cells from the early stage of differentiation. Cluster 4 consists of a mixture of MEP and

CMP, while Cluster 3 is dominated by cells labeled as “other”. Comparison between the

subpanel for BUSseq in Figure 5(c) and Figure 6(b) indicates that Cluster 4 are cells from

an intermediate cell type between CMP and MEP. In particular, according to Figure 6(e),

the marker genes Apoe and Gata2 are highly expressed in Cluster 4 but not in CMP (Cluster

2) and MEP (Cluster 6), and the marker gene Ctse is expressed in MEP (Cluster 6) but not

in Cluster 4 and CMP (Cluster 2). Therefore, cells in Cluster 4 do form a unique group with

distinct expression patterns. This intermediate cell stage between CMP and GMP is missed

by all of the other methods considered. Moreover, we find that well known B-cell lineage

genes (Herman et al., 2018), Ebf1, Vpreb1, Vpreb3, and Igll1, are highly expressed in Cluster

3, but not in the other clusters (Figure 6 (c, e)). To identify Cluster 3, which is dominated

by cells labeled as “other” by Nestorowa et al. (2016), we map the mean expression profile of

each cluster learned by BUSseq to the Haemopedia RNA-seq dataset (Choi et al., 2018). It

turns out that Cluster 3 aligns well to common lymphoid progenitors (CLP) that give rise to

T-lineage cells, B-lineage cells and natural killer cells (Figure 6(d)). Therefore, Cluster 3

represents cells that differentiate from lymphoid-primed multipotent progenitors (LMPP)
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(Paul et al., 2015). Once again, all the other methods fail to identify these cells as a separate

group. Thus, although BUSseq does not assume any temporal ordering between cell types, it

is able to preserve the differentiation trajectories (Figure 6(a-b)); although BUSseq assumes

each cell belongs to one cell type, it is capable of capturing the subtle changes across cell types

and within a cell type due to continuous processes such as development and differentiation.

We further inspect the functions of the intrinsic genes that distinguish different cell types.

BUSseq detects 1419 intrinsic genes at the Bayesian FDR cutoff of 0.05 (Methods). The gene

set enrichment analysis (Huang et al., 2009) shows that 51 KEGG pathways (Kanehisa and

Goto, 2000) are enriched among the intrinsic genes (p-values < 0.05). The highest ranked

pathway is the Hematopoietic Cell Lineage Pathway, which corresponds to the exact biological

process studied in the two datasets. Among the remaining 50 pathways, thirteen are related

to the immune system, and another nine are associated with cell growth and differentiation

(Supplementary Table S1). Therefore, the pathway analysis demonstrates that BUSseq is

able to capture the underlying true biological variability, even if the batch effects are severe,

as shown in Figure 4(a) and Figure 5(a).

BUSseq outperforms existing method on pancreas data

We further studied the four scRNA-seq datasets of human pancreas cells analyzed in Haghverdi

et al. (2018), two profiled by CEL-seq2 protocol (Grün et al., 2016; Lawlor et al., 2017)

and two assayed by SMART-seq2 protocol (Segerstolpe et al., 2016; Lawlor et al., 2017).

These cells were isolated from deceased organ donors with and without type 2 diabetes. We

obtained 7,095 cells after quality control (Methods) and treated each dataset as a batch

following Haghverdi et al. (2018).

For the two datasets profiled by the SMART-seq2 protocol, Segerstolpe et al. (2016)

and Lawlor et al. (2017) provide cell-type labels; for the other two datastes assayed by the

CEL-seq2 protocol, Haghverdi et al. (2018) provide the cell-type labels based on the marker

genes in the original publications (Grün et al., 2016; Lawlor et al., 2017). We can thus

compare the clustering results from each batch effects correction method with the labeled

cell types (Figure 7(a,b)). The pancreas is highly heterogeneous and consists of two major

categories of cells: islet cells and non-islet cells. Islet cells include alpha, beta, gamma, and
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delta cells, while non-islet cells include acinar and ductal cells. BUSseq identifies a total

of eight cell types: five for islet cells, two for non-islet cells and one for the labeled “other”

cells. Specifically, the five islet cell types identified by BUSseq correspond to three groups of

alpha cells, a group of beta cells, and a group of delta and gamma cells. The two non-islet

cell types identified by BUSseq correspond exactly to the acinar and ductal cells. Compared

to all of the other methods, BUSseq gives the best separation between islet and non-islet

cells, as well as the best segregation within islet cells. In particular, the median silhouette

coefficient by BUSseq is higher than that of any other method (Figure 7(c)).

The ARIs of all methods are 0.608 for BUSseq, 0.542 for LIGER, 0.279 for MNN, 0.527

for Scanorama, 0.282 for scVI, 0.287 for Seurat and 0.380 for ZINB-WaVE. Thus, BUSseq

outperforms all of the other methods in being consistent with the cell-type labels according

to marker genes. In Figure 7(d), the locally high expression levels of marker genes for each

cell type show that BUSseq correctly clusters cells according to their biological cell types.

BUSseq identifies 426 intrinsic genes at the Bayesian FDR cutoff of 0.05 (Methods). We

conducted the gene set enrichment analysis (Huang et al., 2009) on the KEGG pathway

database (Kanehisa and Goto, 2000). There are 14 enriched pathways (p-values < 0.05).

Among them, three pathways are diabetes pathways; two are pancreatic and insulin secretion

pathways; and another two pathways are related to metabolism (Supplementary Table

S2). Recall that the four datasets assayed pancreas cells from type 2 diabetes and healthy

individuals, therefore, the pathway analysis once again confirms that BUSseq provides

biologically and clinically valid cell typing.

Discussion

For the completely randomized experimental design, it seems that “everyone is talking, but

no one is listening.” Due to time and budget constraints, it is always difficult to implement

a completely randomized design in practice. Consequently, researchers often pretend to

be blind to the issue when carrying out their scRNA-seq experiments. In this paper, we

mathematically prove and empirically show that under the more realistic reference panel and

chain-type designs, batch effects can also be adjusted for scRNA-seq experiments. We hope

that our results will alarm researchers of confounded experimental designs and encourage
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them to implement valid designs for scRNA-seq experiments in real applications.

BUSseq provides one-stop services. In contrast, most existing methods are multi-stage

approaches—clustering can only be performed after the batch effects have been corrected and

the differential expressed genes can only be called after the cells have been clustered. The

major issue with multi-stage methods is that uncertainties in the previous stages are often

ignored. For instance, when cells have been first clustered into different cell types and then

differential gene expression identification is conducted, the clustering results are taken as if

they were the underlying truth. As the clustering results may be prone to errors in practice,

this can lead to false positives and false negatives. In contrast, BUSseq simultaneously

corrects batch effects, clusters cell types, imputes missing data, and identifies intrinsic genes

that differentiate cell types. BUSseq thus accounts for all uncertainties and fully exploits

the information embedded in the data. As a result, BUSseq is able to capture more subtle

changes between cell types, such as the cluster corresponding to LMPP lineage that is missed

by all the state-of-the-art methods.

BUSseq is computationally efficient. For both our simulated data and real data with

thousands of cells, the MCMC algorithm for BUSseq always converges within 5,000 iterations.

The computational complexity of BUSseq is O(
∑B

b=1 nbGK), which is both linear in the

number of batches B and in the number of cell type K. Moreover, most steps of the MCMC

algorithm for BUSseq are parallelizable. Therefore, using graphics processing unit (GPU)

computing and cloud computing, we can expect that BUSseq will scale well, even with a

larger number of cells.

Practical and valid experimental designs are urgently required for scRNA-seq experiments.

We envision that the flexible reference panel and the chain-type designs will be widely adopted

in scRNA-seq experiments and BUSseq will greatly facilitate the analysis of scRNA-seq data.
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METHODS

BUSseq model

The hierarchical model of BUSseq can be summarized as:

Pr(Wbi = k) = πbk,

K∑
k=1

πbk = 1;

Xbig|Wbi = k ∼ NB(µbig, φbg), log(µbig) = αg + βgk + νbg + δbi;

Zbig|Xbig = xbig ∼ Bernoulli(pbig), log(
pbig

1− pbig
) = γb0 + γb1xbig;

Ybig = Xbig|Zbig = 0, Ybig = 0|Zbig = 1. (1)

Collectively, Y = {Ybig}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb are the observed data; the underlying expression

levels X = {Xbig}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb , the dropout indicators Z = {Zbig}g=1,··· ,G

b=1,··· ,B;i=1,··· ,nb and the

cell type indicators W = {Wbi}b=1,··· ,B;i=1,··· ,nb are all missing data; the log-scale baseline

gene expression levels α = {αg}g=1,··· ,G, the cell type effects β = {βgk}g=1,··· ,G
k=2,··· ,K , the location

batch effects ν = {νbg}g=1,··· ,G
b=2,··· ,B , the overdispersion parameters φ = {φbg}g=1,··· ,G

b=1,··· ,B , the cell-

specific size factors ∆ = {δbi}i=2,··· ,nb
b=1,··· ,B , the dropout parameters Γ = {γb0, γb1}b=1,··· ,B and

the cell compositions π = {πbk}k=1,··· ,K
b=1,··· ,B are the parameters. Without loss of generality, for

model identifiability, we assume that the first batch is the reference batch measured without

batch effects with ν1g = 0 for every gene and the first cell type is the baseline cell type

with βg1 = 0 for every gene. Similarly, we take the cell-specific size factor δb1 = 0 for the

first cell of each batch. We gather all the parameters as Θ = {α,β,ν,φ,∆,Γ,π}. Let

fNB(x;µ, φ) = Cφ+x−1
x ( µ

µ+φ
)x( φ

µ+φ
)φ denote the probability mass function of the negative

binomial distribution NB(µ, φ), where Cn
k is the binomial coefficient, then the complete data

likelihood function equals to:

Lc(Θ|y,x, z,w) =
B∏
b=1

nb∏
i=1

K∏
k=1

{πbk
G∏
g=1

[I(ybig = xbig(1− zbig))
exp[(γb0 + γb1xbig)zbig]

1 + exp(γb0 + γb1xbig)

· fNB(xbig; exp(αg + βgk + νbg + δbi), φbg)]}I(wbi=k) (2)
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Consequently, the observed data likelihood function becomes

Lo(Θ|y) =
B∏
b=1

nb∏
i=1

[
K∑
k=1

πbk

G∏
g=1

Pr(Ybig = ybig|Θ)], (3)

Pr(Ybig = ybig|Θ) =


∑∞

x=1
exp(γb0+γb1x)

1+exp(γb0+γb1x)
fNB(x; exp(αg + βgk + νbg + δbi), φbg)

+fNB(0; exp(αg + βgk + νbg + δbi), φbg) ybig = 0,

1
1+exp(γb0+γb1ybig)

fNB(ybig; exp(αg + βgk + νbg + δbi), φbg) ybig > 0.

Experimental designs

By creating a set of functions similar to the probability generating function, we prove

that BUSseq is identifiable, in other words, if two sets of parameters are different, then

their probability distribution functions for the observed data are different, for not only the

“complete setting” but also the “reference panel” and the “chain-type” designs (see the proofs

in the Supplementary Information).

Theorem 1. (The Complete Setting)

If πbk > 0 for every batch b and cell type k, given that (I) γb1 < 0 for every b, (II) for any

two cell types k1 and k2, there exist at least two differentially expressed genes g1 and g2—

βg1k1 6= βg1k2 and βg2k1 6= βg2k2, and (III) for any two distinct cell-type pairs (k1, k2) 6= (k3, k4),

their differences in cell-type effects are not the same βk1 − βk2 6= βk3 − βk4, then BUSseq is

identifiable (up to label switching) in the sense that Lo(Θ|y) = Lo(Θ
∗|y) for any y implies

that πbk = π∗bρ(k), (γb0, γb1) = (γ∗b0, γ
∗
b1), αg +βgk = α∗g +β∗gρ(k), νgb = ν∗gb, δbi = δ∗bi and φbg = φ∗bg

for every gene g and batch b, where ρ is a permutation of {1, 2, · · · , K}.

In the following, we denote the cell types that are present in batch b as Cb and count the

number of cell types existing in batch b as Kb = |Cb|.

Theorem 2. (The Reference Panel Design)

If there are a total of K cell types ∪Bb=1Cb = {1, 2, · · · , K}, Kb ≥ 2 for every batch b, and

there exists a batch b̃ such that it contains all of the cell types Cb̃ = {1, 2, · · · , K}, then given

that conditions (I)-(III) hold, BUSseq is identifiable (up to label switching).

Theorem 3. (The Chain-type Design)

If there are a total of K cell types ∪Bb=1Cb = {1, 2, · · · , K} and every two consecutive batches
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share at least two cell types |Cb ∩ Cb−1| ≥ 2 for all b ≥ 2, then given that conditions (I)-(III)

hold, BUSseq is identifiable (up to label switching).

Therefore, even for the “reference panel” and “chain-type” designs that do not assay

all cell types in each batch, batch effects can be removed; cell types can be clustered; and

missing data due to dropout events can be imputed. Both the reference panel design and the

chain-type design belong to the more general connected design.

Theorem 4. (The Connected Design)

We define a batch graph G = (V,E). Each node b ∈ V represents a batch. There is an edge

e ∈ E between two nodes b1 and b2 if and only if batches b1 and b2 share at least two cell types.

If the batch graph is connected and conditions (I)-(III) hold, then BUSseq is identifiable (up

to label switching).

Statistical inference

We conduct the statistical inference under the Bayesian framework. We assign independent

priors to each component of Θ as follows: πb = (πb1, · · · , πbK) ∼ Dirichlet(ξ, · · · , ξ), 1 ≤ b ≤

B; γb0 ∼ N(0, σ2
z0), 1 ≤ b ≤ B;−γb1 ∼ Gamma(aγ, bγ), 1 ≤ b ≤ B;αg ∼ N(ma, σ

2
a), 1 ≤ g ≤

G; νbg ∼ N(mc, σ
2
c ), 2 ≤ b ≤ B, g = 1, · · · , G; δbi ∼ N(md, σ

2
d), 1 ≤ b ≤ B, 2 ≤ i ≤ nb;φbg ∼

Gamma(κ, τ), 1 ≤ b ≤ B, 1 ≤ g ≤ G.

We are interested in detecting genes that differentiate cell types. Therefore, we impose a

spike-and-slab prior (George and McCulloch, 1993) using a normal mixture to the cell-type

effect βgk. The spike component concentrates on zero with a small variance τ 2
β0, whereas the

slab component tends to deviate from zero, thus having a larger variance τ 2
β1. We introduce

another latent variable Lgk to indicate which component βgk comes from. Lgk = 0 if gene g is

not differentially expressed between cell type k and cell type one, and Lgk = 1, otherwise.

We further define Dg =
∑K

k=2 Lgk. If Dg > 0, then the expression level of gene g does not

stay the same across cell types. Following Huo et al. (2016), we call such genes intrinsic

genes, which are able to differentiate cell types. To control for multiple hypothesis testing,

we let Lgk ∼ Bernoulli(p) and assign a conjugate prior Beta(ap, bp) to p. We set τβ1 to a

large number and let τβ0 follow an inverse-gamma prior Inv −Gamma(aτ , bτ ) with a small

prior mean.
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We develop an MCMC algorithm to sample from the posterior distribution (Supplementary

Information). After the burn-in period, we take the mean of the posterior samples to estimate

γb, αg, βgk, νbg, δbi and φbg and use the mode of posterior samples of Wbi to infer the cell type

for each cell.

When inferring the differential expression indicator Lgk, we control the Bayesian false

discovery rate (FDR) (Newton et al., 2004; Peterson et al., 2015) defined as

FDR(κ) =

∑G
g=1

∑K
k=2 ξgkI(ξgk ≤ κ)∑G

g=1

∑K
k=2 I(ξgk ≤ κ)

, (4)

where ξgk = Pr(Lgk = 0|y) is the posterior marginal probability that gene g is not differentially

expressed between cell type k and cell type one, which can be estimated by the T posterior

samples L
(t)
gk s collected after the burn-in period as 1

T

∑T
t=1(1− L(t)

gk ). Given a control level α

such as 0.1, we search for the largest κ0 ≤ 0.5 such that the estimated F̂DR(κ) based on ξ̂gks

is smaller than α and declare L̂gk = 1 if ξ̂gk ≤ κ0. The upper bound 0.5 for κ0 (Peterson et al.,

2015) prevents us from calling differentially expressed genes with small posterior probability

Pr(Lgk = 1|y). Consequently, we identify the genes with D̂g =
∑K

k=2 L̂gk > 0 as the intrinsic

genes.

BUSseq allows the user to input the total number of cell types K according to prior

knowledge. When K is unknown, BUSseq selects the number of cell types K̂ such that it

achieves the minimum BIC.

BIC(K) = −2Lo(Θ̂|y) + [K(B +G) + 2B + (2B − 1)G+
B∑
b=1

(nb − 1)] · log(
B∑
b=1

nbG), (5)

Batch-effects-corrected values

To facilitate further downstream analysis, we also provide a version of count data X̃ =

{X̃big}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb for which the batch effects are removed and the biological variability is

retained. We develop a quantile matching approach based on inverse sampling. Specifically,

given the fitted model and the inferred underlying expression level x̂big, we first sample ubig

from Unif [FNB(x̂big−1; exp(α̂g+β̂gŵbi+ν̂bg+δ̂bi), φ̂bg), FNB(x̂big; exp(α̂g+β̂gŵbi+ν̂bg+δ̂bi), φ̂bg)]

where FNB(·;µ, r) denotes the cumulative distribution function of a negative binomial distri-
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bution with mean µ and overdispersion parameter r. Next, we calculate the uthbig quantile of

NB(exp(α̂g + β̂gŵbi), φ̂1g) as the corrected value x̃big.

The corrected data X̃ are not only protected from batch effects but also impute the

missing data due to dropout events. Moreover, further cell-specific normalization is not

needed. Meanwhile, the biological variability is retained thanks to the quantile transformation

and sampling step. Therefore, we can directly perform downstream analysis on X̃.

The benchmarked methods

To ensure a fair comparison, we follow the preprocessing steps of each of the methods

used for benchmarking according to their original publications. LIGER (Welch et al.,

2019) normalizes the raw read count of each cell by the cell’s total read counts (see https:

//github.com/MacoskoLab/liger). MNN (Haghverdi et al., 2018) takes the first batch as the

reference batch and normalizes the other batches to adjust for difference in sequencing depths

(see https://github.com/MarioniLab/MNN2017). Scanorama (Hie et al., 2019) conducts L2-

normalization in the preprocessing steps (see https://github.com/brianhie/scanorama).

Seurat (Stuart et al., 2019) log-transforms and scales the observed read count data (see

https://satijalab.org/seurat/). scVI (Lopez et al., 2018) and ZINB-WaVE (Risso et al.,

2018) directly work on the raw read count data (see https://github.com/YosefLab/scVI

and https://github.com/drisso/zinbwave, respectively). For BUSseq, we run the MCMC

algorithm for 4,000, 8,000 and 8,000 iterations for the simulated data, the hematopoietic study

and the pancreas study, respectively. In each case, we treat the first half of all the iterations as

the burn-in period and use the posterior samples collected from the second half for statistical

inference. Please see https://github.com/songfd2018/BUSseq-1.0_implementation for

the specification of hyperparameters used in this manuscript.

Processing of the real datasets

For the two hematopoietic datasets, we downloaded the read count matrix of the 1,920

cells profiled by Paul et al. (2015) and the 2,729 cells labeled as myeloid progenitor cells by

Nestorowa et al. (2016) from the NCBI Gene Expression Omnibus (GEO) with the accession

numbers GSE72857 and GSE81682. Following Brennecke et al. (2013), we sorted the genes
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according to their adjusted variance-mean ratio of expression levels in both datasets separately

and focused on the 3,470 genes that are highly variable in both datasets.

Two of the pancreas datasets profiled by the CEL-seq2 platform were downloaded from

GEO with accession number GSE80176 (Grün et al., 2016) and GSE86473 (Lawlor et al.,

2017). The two datasets assayed by the SMART-seq2 platform were obtained from GSE85241

(Muraro et al., 2016) and from ArrayExpress accession number E-MATB-5061 (Segerstolpe

et al., 2016). Following Haghverdi et al. (2018), we excluded cells with low library sizes

(< 100, 000 reads), low numbers of expressed genes (> 40% total counts from ribosomal RNA

genes), or high ERCC content (> 20% of total counts from spike-in transcripts) resulting in

7,095 cells. We selected the 2,480 highly variable genes shared by the four datasets according

to Brennecke et al. (2013) by sorting the ratio of variance and mean expression level after

adjusting technical noise with the variances of spike-in transcripts. The cell types of the two

datasets profiled by the CEL-seq2 platform were labeled according to Lawlor et al. (2017)

and Grün et al. (2016), with the GCG gene marking alpha islets, INS for beta islets, SST for

delta islets, PPY for gamma islets, PRSS1 for acinar cells, and KRT19 for ductal cells. The

cell types of the other two datasets assayed by the SMART-seq2 platform were provided in

their metadata.

Assignment of FACS cell type labels to learned clusters

In the two real data examples, we first identify the cell type of each individual cell according

to FACS labeling. Then, for each cluster learned by BUSseq, we calculate the proportion

of labeled cell types. If a cell type accounts for more than one-third of the cells in a given

cluster, we assign this cell type to the cluster. Although a cluster may be assigned more than

one cell type, most identified clusters by BUSseq are dominated by only one cell type.

Mapping clusters to Haemopedia

Haemopedia is a database of gene expression profiles from diverse types of haematopoietic

cells (Choi et al., 2018). It collected flow sorted cell populations from healthy mice. To

understand Cluster 3 learned by BUSseq for the hematopoietic data, which is dominated

by cells classified as “other” according to the FACS labeling, we mapped the cluster means
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learned by BUSseq to the Haemopedia RNA-seq dataset.

We first applied TMM normalization (Robinson and Oshlack, 2010) to all the samples

in the Haemopedia RNA-seq dataset. Then, we extracted 7 types of hematopoietic stem

and progenitor cells from Haemopedia, including Lin−Sca-1+c-Kit+ (LSK) cells, short-term

hematopoietic stem cells (STHSC), MPP, CLP, CMP, MEP and GMP. Each selected cell

type had two RNA-seq samples in Haemopedia, so we averaged over the two replicates for

each cell type. Further, we added one to the normalized expression levels as a pseudo read

count to handle genes with zero read count and log-transformed the data. Finally, we scaled

the data across the 7 cell types for each gene. To be comparable, we transformed the cluster

mean learned by BUSseq as mgk = log(1 + exp(αg + βgk)) for gene g in the cluster k and

scaled mgk across all cell types as well. Finally, we calculated the correlation between the

cluster means inferred by BUSseq and the reference expression profiles in Haemopedia for 37

marker genes. The 37 marker genes were retrieved from Paul et al. (2015) (31 maker genes

for HSPC) and Herman et al. (2018) (6 maker genes for LMPP).

Silhouette coefficient

To evaluate the separation of different cell types after correction, we calculate the silhouette

coefficient of each cell using the R package cluster (Kaufman and Rousseeuw, 2009). We

regard each cell type, either the truth known in the simulation study or the labeling according

to FACS, as a cluster. Let a(i) be the average distance of cell i to all the other cells assigned

to the same cluster as cell i, and let b(i) be the average distance of cell i to all cells in the

neighboring cluster, i.e., the cluster with the lowest average distance to cell i’s cluster. The

silhouette coefficient for cell i is defined as:

s(i) =
b(i)− a(i)

min(a(i), b(i))

The silhouette coefficient s(i) ranges from -1 to 1. The larger the values of s(i), the closer

cell i is to cells in the same cluster than cells in other clusters. We calculate the silhouette

coefficient according to the t-SNE coordinates obtained from the corrected count data matrix

(BUSseq and MNN) or from low-dimensional representations (LIGER, Scanorama, scVI,

Seurat and ZINBWaVE).
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Implementation of pathway analysis

To identify the biological functions of the intrinsic genes, we conduct gene set enrichment

analysis for the intrinsic genes on KEGG pathways using DAVID (Huang et al., 2009). We

control the Expression Analysis Systematic Explorer Score, a modified version of Fisher exact

p-value, at the level of 0.05 to identify enriched pathways.

Software availability

The C++ source code of BUSseq is available on GitHub (https://github.com/songfd2018/

BUSseq-1.0). All codes for producing results and figures in this manuscript are also available

on Github (https://github.com/songfd2018/BUSseq-1.0_implementation).

Data availability

The published data sets used in this manuscript are available through the following accession

numbers: SMART-seq2 platform hematopoietic data with GEO GSE81682 by Nestorowa et al.

(2016); MARS-seq platform hematopoietic data with GEO GSE72857 by Paul et al. (2015);

CEL-seq platform pancreas data with GEO GSE81076 by Grün et al. (2016); CEL-seq2

platform pancreas data with GEO GSE85241 by Muraro et al. (2016); SMART-seq2 platform

pancreas data with GEO GSE86473 by Lawlor et al. (2017); and SMART-seq2 platform

pancreas data with ArrayExpress E-MTAB-5061 by Segerstolpe et al. (2016).

The parameter settings for the simulation study and the simulated data are available on

Github (https://github.com/songfd2018/BUSseq-1.0_implementation).
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Supplementary Information

Proofs for Theorem 1 to 4

Lemma 1. Let FG be the family of G(≥ 2)-dimensional multivariate distribution with the

probability mass function for y = (y1, · · · , yG) as

fG(y|γ,φ,µ) =
G∏
g=1

{[ 1

1 + exp(γ0 + γ1yg)
fNB(yg;µg, φg)]

1(yg>0) (6)

· [
∞∑
x=1

exp(γ0 + γ1x)

1 + exp(γ0 + γ1x)
fNB(x;µg, φg) + fNB(0;µg, φg)]

1(yg=0)}

such that γ1 < 0 and for any two distinct elements fGk1 = fG(y|γk1 ,φk1 ,µk1) ∈ F
G, fGk2 =

fG(y|γk2 ,φk2 ,µk2) ∈ F
G, there exist at least two dimensions g1 and g2 with µg1k1 6= µg1k2 and

µg2k1 6= µg2k2, then the class of all finite mixtures of FG is identifiable (up to label switching).

Proof. We reparameterize (µg, φg) as (pg, φg) such that pg = µg
µg+φg

for all g = 1, 2, · · · , G.

Consequently, the identifiability with respect to (γ,φ,µ) is equivalent to that with respect

to (γ,φ,p). With a little bit abuse of notations, we still use fG(y|γ,φ,p) to indicate the

probability mass function of the new parameterization hereafter. Suppose that the finite

mixture of FG is not identifiable, then we have two different representations of the probability

mass function h(y) of the same finite mixtures:

h(y) =
K∑
k=1

πkf
G(y|γ,φ,pk) =

L∑
l=1

ξlf
G(y|δ,ψ, rl). (7)

where the tuples (γ,φ,pk) for k = 1, 2, · · · , K are mutually distinct, and so are the tuples

(δ,ψ, rl) for l = 1, 2, · · · , L.

We define a total ordering (�) of FG. For fG1 , f
G
2 ∈ FG, fG1 � fG2 if:

(i) there exists a g ≥ 1 such that for all j < g, pj1 = pj2 and φj1 = φj2 but pg1 > pg2;

(ii) or there exists a g such that for all j < g, pj1 = pj2 and φj1 = φj2 as well as pg1 = pg2
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but φg1 > φg2;

(iii) or p1 = p2 and φ1 = φ2 but γ11 < γ21 ;

(iv) or p1 = p2,φ1 = φ2 and γ11 = γ21 but γ10 ≤ γ20.

Without loss of generality, we assume that fG(y|γ,φ,p1) � fG(y|δ,ψ, r1) and the mixture

components on both sides of (7) are ordered:

fG(y|γ,φ,p1) � fG(y|γ,φ,p2) � · · · � fG(y|γ,φ,pK),

fG(y|δ,ψ, r1) � fG(y|δ,ψ, r2) � · · · � fG(y|δ,ψ, rL).

For k = 1, we use mathematical induction to prove that for every G0 ∈ {1, 2, · · · , G},

rj1 = pj1, φj = ψj,∀j ∈ {1, 2, · · · , G0}, (*)

and there exist a KG0 and an LG0 such that
KG0∑
k=1

πkf
G−G0(y−G0

|γ,φ−G0
,p−G0,k) =

LG0∑
l=1

ξlf
G−G0(y−G0

|δ,ψ−G0
, r−G0,l), (**)

where the subscript −G0 denotes that the first G0 entries in the original vectors

are excluded. Specifically, y−G0
= (yG0+1, yG0+2, · · · , yG)T .

We first prove Equations (*) and (**) hold for G0 = 1. We define a linear mapping that

maps a probability distribution of FG to a function that shares a similar spirit as a probabil-

ity generating function M1 : fG(y) ∈ FG → Φ1(t1,y−1) ∈ G1 such that M1(f
G(y)) =

Φ1(t1,y−1) =
∑∞

y1=1 f
G(y|γ,φ,p)ty11 =

∑∞
y1=1 f

1(y1|γ, φ1, p1)t
y1
1 · fG−1(y−1|γ,φ−1,p−1).

Notice that Φ1(t1,y−1) does not include the term of y1 = 0, that is, f 1(0|γ, φ1, p1)t
0
1 ·

fG−1(y−1|γ,φ−1,p−1). Specifically, we denote Φ1k(t1,y−1) = M1(fG(y|γ,φ,pk)) and Ψ1l(t1,y−1) =

M1(fG(y|δ,ψ, rl)) ∈ G1 for k = 1, 2, · · · , K and l = 1, 2, · · · , L. It is noteworthy that M1 is

a linear mapping so that if applying M1 to both sides of Equation (7), then we have

K∑
k=1

πkΦ1k(t1,y−1) =
L∑
l=1

ξlΨ1l(t1,y−1). (8)

More specifically,
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Φ1k(t1,y−1) =
∞∑
y1=1

1

1 + exp(γ0 + γ1y1)
Cφ1+y1−1
y1

(p1k)
y1(1− p1k)

φ1(t1)y1 · fG−1(y−1|γ,φ−1,p−1,k)

= [(
1− p1k

1− p1kt1
)φ1 −R1k(t1)] · fG−1(y−1|γ,φ−1,p−1,k), (9)

where R1k(t1) = (1− p1k)
φ1 +

∑∞
y1=1

exp(γ0+γ1y1)
1+exp(γ0+γ1y1)

Cφ1+y1−1
y1

(p1kt1)y1(1− p1k)
φ1 is the residual

part. Let t1 → 1
p11
, because γ1 < 0 so that p1kexp(γ1)

p11
< p1k

p11
≤ 1, we have

lim
t1→ 1

p11

R1k(t1) ≤ (1− p1k)
φ1 + lim

t1→ 1
p11

∞∑
y1=1

exp(γ0 + γ1y1)Cφ1+y1−1
y1

(p1kt1)y1(1− p1k)
φ1

= [1− exp(γ0)](1− p1k)
φ1 + exp(γ0)(

1− p1k

1− p1kexp(γ1)/p11

)φ1 <∞, (10)

Similarly, Ψ1l(t1,y−1) =
∑∞

y1=1 f
G(y|δ,ψ, rl)ty11 = [( 1−r1l

1−r1lt1
)ψ1−S1l(t1)]·fG−1(y−1|δ,ψ−1, r−1,l),

S1l(t1) = (1− r1l)
ψ1 +

∞∑
y1=1

exp(δ0 + δ1y1)Cψ1+y1−1
y1

(r1lt1)y1(1− r1l)
ψ1

≤ [1− exp(δ0)](1− r1l)
ψ1 + exp(δ0)(

1− r1l

1− r1lexp(δ1)t1
)ψ1 (11)

As t1 → 1
p11
, because r1lexp(γ1)

p11
< r1l

p11
≤ r11

p11
≤ 1, we have limt1→ 1

p11

S1l(t1) <∞.

Notice that fG(y|γ,φ,p1) � fG(y|δ,ψ, r1) implies r11 < p11 or r11 = p11, ψ1 ≤ φ1. Accord-

ing to (10) and (11), we have

lim
t1→ 1

p11

Ψ1l(t1,y−1)

Φ11(t1,y−1)
= lim

t1→ 1
p11

( 1−r1l
1−r1lt1

)ψ1 − S1l(t1)

( 1−p11
1−p11t1 )φ1 −R11(t1)

·
fG−1(y−1|δ,ψ−1, r−1,l)

fG−1(y−1|γ,φ−1,p−1,1)

=
fG−1(y−1|δ,ψ−1, r−1,l)

fG−1(y−1|γ,φ−1,p−1,1)
· lim
t1→ 1

p11

( 1−r1l
1−r1lt1

)ψ1(1− p11t1)φ1 − S1l(t1)(1− p11t1)φ1

(1− p11)φ1 −R11(t1)(1− p11t1)φ1

=


fG−1(y−1|δ,ψ−1,r−1,l)

fG−1(y−1|γ,φ−1,p−1,1)
, if r1l = p11, ψ1 = φ1

0 , if r1l = p11, ψ1 < φ1

0 , if r1l < p11

(12)

If r11 < p11 or r11 = p11, ψ1 < φ1, then dividing Φ11(t1,y−1) on both sides of Equation (8)

and let t1 → 1
p11

, we have
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lim
t1→ 1

p11

K∑
k=1

πk
Φ1k(t1,y−1)

Φ11(t1,y−1)
≥ lim

t1→ 1
p11

π1

Φ11(t1,y−1)

Φ11(t1,y−1)
= π1 > 0 = lim

t1→ 1
p11

L∑
l=1

ξl
Ψ1l(t1,y−1)

Φ11(t1,y−1)
,

which contradicts with Equation (7). Thus, r11 = p11 and ψ1 = φ1, which means Equation

(*) holds. Similar to Equation (12), we have

lim
t1→ 1

p11

Φ1k(t1,y−1)

Φ11(t1,y−1)
=


fG−1(y−1|γ,φ−1,p−1,k)

fG−1(y−1|γ,φ−1,p−1,1)
, if p1k = p11

0 , if p1k < p11

Moreover, there exists a K1 ≤ K such that p1k = p11 for k = 1, 2, · · · , K1 but p1k < p11 for

k = K1 + 1, · · · , K. There also exists an L1 ≤ L such that r1l = p11 for l = 1, 2, · · · , L1

but r1l < p11 for l = L1 + 1, · · · , L. p11 = p11 and r11 = p11, therefore, K1 ≥ 1 and L1 ≥ 1.

Dividing Φ11(t1,y−1) on both sides of Equation (8) and let t1 → 1
p11

, we have

K1∑
k=1

πk
Φ1k(t1,y−1)

Φ11(t1,y−1)
=

L1∑
l=1

ξl
Ψ1l(t1,y−1)

Φ11(t1,y−1)

⇒
K1∑
k=1

πkf
G−1(y−1|γ,φ−1,p−1,k) =

L1∑
l=1

ξlf
G−1(y−1|δ,ψ−1, r−1,l). (13)

Thus, we have proven that Equation (**) holds.

Now let us assume that Equations (*) and (**) hold for for G0 = g. In other words,

pj1 = rj1, φj = ψj for all j = 1, 2, · · · , g and there are Kg ≥ 1 and Lg ≥ 1 such that
Kg∑
k=1

πkf
G−g(y−g|γ,φ−g,p−g,k) =

Lg∑
l=1

ξlf
G−g(y−g|δ,ψ−g, r−g,l). (14)

Let G0 = g + 1. Similar to M1, we define a linear map Mg+1 : FG−g → Gg+1 such that

Mg+1(fG−g(y−g|γ,φ−g,p−g)) = Φg+1(tg+1,y−(g+1)) =
∑∞

yg+1=1 f
G−g(y−g|γ,φ−g,p−g)t

yg+1

g+1 =

∑∞
yg+1=1 f

1(yg+1|γ, φg+1, pg+1)t
yg+1

g+1 · fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1)). Consequently,

Mg+1(fG−g(y−g|γ,φ−g,p−g,k)) = Φg+1,k(tg+1,y−(g+1))

= [(
1− pg+1,k

1− pg+1,ktg+1

)φg+1 −Rg+1,k(tg+1)] · fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),k), k = 1, · · · , Kg;
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Mg+1(fG−g(y−g|δ,ψ−g, r−g,l)) = Ψg+1,l(tg+1,y−(g+1))

= [(
1− rg+1,l

1− pg+1,ltg+1

)ψg+1 − Sg+1,l(tg+1)] · fG−(g+1)(y−(g+1)|δ,ψ−(g+1), r−(g+1),l), l = 1, · · · , Lg.

If we apply Mg+1 to both sides of Equation (14), then we have
Kg∑
k=1

πkΦg+1,k(tg+1,y−(g+1)) =

Lg∑
l=1

ξlΨg+1,l(tg+1,y−(g+1)). (15)

Notice that given pj1 = rj1, φj = ψj for all j = 1, 2, · · · , g, fG(y|γ,φ,p1) � fG(y|δ,ψ, r1)

implies rg+1,1 < pg+1,1 or rg+1,1 = pg+1,1, ψg+1 ≤ φg+1. Similar to Equation (12), we have

lim
tg+1→ 1

pg+1,1

Ψg+1,l(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))

= lim
tg+1→ 1

pg+1,1

(
1−rg+1,l

1−rg+1,ltg+1
)ψg+1 − Sg+1,l(tg+1)

( 1−pg+1,1

1−pg+1,1tg+1
)φg+1 −Rg+1,1(tg+1)

·
fG−(g+1)(y−(g+1)|δ,ψ−(g+1), r−(g+1),l)

fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),1)

=
fG−(g+1)(y−(g+1)|δ,ψ−(g+1), r−(g+1),l)

fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),1)
· lim
tg+1→ 1

pg+1,1

(
1−rg+1,l

1−rg+1,ltg+1
)ψg+1 − Sg+1,l(tg+1)

( 1−pg+1,1

1−pg+1,1tg+1
)φg+1 −Rg+1,1(tg+1)

=


fG−(g+1)(y−(g+1)|δ,ψ−(g+1),r−(g+1),l)

fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),1)
, if rg+1,l = pg+1,1, ψg+1 = φg+1

0 , if rg+1,l = pg+1,1, ψg+1 < φg+1

0 , if rg+1,l < pg+1,1

(16)

If rg+1,l < pg+1,1 or rg+1,l = pg+1,1, ψg+1 < φg+1, then dividing Φg+1,1(tg+1,y−(g+1)) on both

sides of Equation (15) and letting tg+1 → 1
pg+1,1

, we have

lim
tg+1→ 1

pg+1,1

Kg∑
k=1

πk
Φg+1,k(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))
≥ lim

tg+1→ 1
pg+1,1

π1

Φg+1,1(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))
= π1

> 0 = lim
tg+1→ 1

pg+1,1

Lg∑
l=1

ξl
Ψg+1,l(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))
, (17)

which contradicts with (14). Thus, rg+1,l = pg+1,1 and ψg+1 = φg+1, which means that

Equation (∗) holds. Similar to Equation (16), for k = 1, 2, · · · , Kg, we have

lim
tg+1→ 1

pg+1,1

Φg+1,k(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))
=


fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),k)

fG−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),1)
, if pg+1,k = pg+1,1

0 , if pg+1,k < pg+1,1
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Further, there exists a Kg+1 ≤ Kg such that pg+1,k = pg+1,1 for k = 1, 2, · · · , Kg+1 but

pg+1,k < pg+1,1 for k = Kg+1 + 1, Kg+1 + 2, · · · , Kg. There also exists an Lg+1 ≤ Lg such

that rg+1,l = pg+1,1 for l = 1, 2, · · · , Lg+1 but rg+1,l < pg+1,1 for l = Lg+1 + 1, Lg+1 +

2, · · · , Lg. pg+1,1 = pg+1,1 and pg+1,1 = rg+1,1, therefore, Kg+1 ≥ 1 and Lg+1 ≥ 1. Dividing

Φg+1,1(tg+1,y−(g+1)) on both sides of Equation (15) and letting tg+1 → 1
pg+1,1

, we have,

Kg+1∑
k=1

πk
Φg+1,k(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))
=

Lg+1∑
l=1

ξl
Ψg+1,l(tg+1,y−(g+1))

Φg+1,1(tg+1,y−(g+1))

⇒
Kg+1∑
k=1

πkf
G−(g+1)(y−(g+1)|γ,φ−(g+1),p−(g+1),k) =

Lg+1∑
l=1

ξlf
G−(g+1)(y−(g+1)|δ,ψ−(g+1), r−(g+1),l),

so Equation (**) holds for G0 = g + 1.

Consequently, by mathematical induction, we have shown that Equations (*) and (**) hold

for any G0 ∈ {1, · · · , G}, which implies that p1 = r1 and φ = ψ.

For G0 = G and G0 = G− 1, Equation (**) gives

KG∑
k=1

πk =

LG∑
l=1

ξl, (18)

KG−1∑
k=1

πkf
1(yG|γ, φG, pGk) =

LG−1∑
l=1

ξlf
1(yG|δ, φG, rGl). (19)

For any two distinct elements fG(y|γ,φ,p1) and fG(y|γ,φ,pk), k = 2, 3, · · · , KG−2, because

there exist at least two different dimensions and pg1 = pgk with g = 1, 2, · · · , G− 2, pG−1,k 6=

pG−1,1 and pGk 6= pG1. Therefore, KG = KG−1 = 1. Similarly, we have LG = LG−1 = 1. Thus,

Equation (18) and (19) turn to

π1 = ξ1

f 1(yG|γ, φG, pG1) = f 1(yG|δ, φG, rG1), ∀yG ∈ N. (20)
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Plugging yG = 1 and yG = 2 into Equation (20), we have

1

1 + exp(γ0 + γ1)
CφG

1 pG1(1− pG1)φG =
1

1 + exp(δ0 + δ1)
CφG

1 pG1(1− pG1)φG

1

1 + exp(γ0 + 2γ1)
CφG+1

2 p2
G1(1− pG1)φG =

1

1 + exp(δ0 + 2δ1)
CφG+1

2 p2
G1(1− pG1)φG ,

therefore γ = δ.

Plugging γ = δ,φ = ψ,p1 = r1 and π1 = ξ1 into Equation (7), we have

K∑
k=2

πkf
G(y|γ,φ,pk) =

L∑
l=2

ξlf
G(y|γ,φ, rl) (21)

Similarly, we can apply mathematical induction to prove that pk = rk and πk = ξk

sequentially for k = 2, 3, · · · ,min{K,L}. Finally, if K 6= L, without loss of generality, let

us assume that K > L, then
∑K

k=L+1 πk = 1−
∑L

k=1 πk = 1−
∑L

l=1 ξl = 0, which contradicts

with πk > 0 for all k = 1, 2, · · · , K. Thus, K = L,γ = δ,φ = ψ,π = ξ and pk = rk for all

k = 1, 2, · · · , K. Therefore, the class of all finite mixtures of FG is identifiable.

Theorem 1

Proof. Let Y b ∈ Nnb×G denote the data from batch b and collect Y = {Y b, 1 ≤ b ≤

B} and mbik = exp(α + βk + νb + δbi1), then the marginal distribution for f(Y b|Θ) =∏nb
i=1[

∑K
k=1 πbkf

G(yb|γb,φb,mbik)] with fG(yb|γb,φb,mbik) ∈ FG reduces to a mixture of

G-dimensional zero-inflated negative binomial (ZINB) model on batch b. Therefore, we

can view the BUSseq model as a combination of B ZINB models with the constraints that

β
(1)
k = · · · = β

(B)
k = βk for each k and α(1) = · · · = α(B) = α.

According to conditions (I)-(III), Lemma 1 and Teicher (1967), the ZINB model for batch

b is identifiable up to label switching in the sense that f(Y b|Θ) = f(Y b|Θ∗) for any Y b

implies that πbk = π∗bρb(k),γb = γ∗b ,α + βk + νb + δbi1 = log(mbik) = log(m∗biρb(k)) =

α∗ + β∗ρb(k) + ν∗b + δ∗bi1 and φb = φ∗b for a permutation ρb of {1, 2, · · · , K}, where 1 denotes

a vector of one with length G.

We first prove that the permutation ρb is the same for all of the batches. Recall that we

take the first cell type as the reference cell type with β1 = 0. Therefore, the ratio of mean
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expression levels between cell type k and cell type one is

mbik

mbi1

=
m∗biρb(k)

m∗biρb(1)

⇒ exp(βk) = exp(β∗ρb(k) − β∗ρb(1)) (22)

Notice the left hand side of Equation (22) is invariant to the batch indicator b, and therefore

β∗ρb(k) − β∗ρb(1) = β∗ρ1(k) − β∗ρ1(1) for every k. By condition (III), ρb = ρ1 for every b.

Let us then compare log(mb1k) with log(m11k). Because ν1 = ν∗1 = 0 and δb1 = δ∗b1 = 0, we

have

α+ βk = α∗ + β∗ρ(k),α+ βk + νb = α∗ + β∗ρ(k) + ν∗b . (23)

Thus, we have proven νb = ν∗b .

Next we compare log(mbik) with log(mb1k) for each batch. Then, we have

α+ βk + νb = α∗ + β∗ρ(k) + νb,α+ βk + νb + δbi1 = α∗ + β∗ρ(k) + νb + δ∗bi1. (24)

Consequently, δbi = δ∗bi for any cell i in any batch. Therefore, BUSseq is identifiable (up to

label switching).

Theorem 2

Proof. In the reference panel design, any batch b shares at least two cell types with the first

batch. If we compare the two distinct cell types k1 and k2 shared by batch b and batch one

in terms of the log-scale mean expression levels, respectively, then we have

α+ βk1 + νb + δbi1 = α∗ + β∗ρb(k1) + ν∗b + δ∗bi1,

α+ βk2 + νb + δbi1 = α∗ + β∗ρb(k2) + ν∗b + δ∗bi1,

⇒βk1 − βk2 = β∗ρb(k1) − β∗ρb(k2),

α+ βk1 + δ1i1 = α∗ + β∗ρ1(k1) + δ∗1i1,

α+ βk2 + δ1i1 = α∗ + β∗ρ1(k2) + δ∗1i1.

⇒βk1 − βk2 = β∗ρ1(k1) − β∗ρ1(k2).

Further, according to condition (III), βk1 − βk2 = β∗ρb(k1) − β∗ρb(k2) = β∗ρ1(k1) − β∗ρ1(k2) implies

that ρb(k) = ρ1(k) for each cell type k ∈ Cb (b ≥ 2).

Finally, similar to Equations (23) and (24), for a shared cell type k between batch b and
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batch one, we have

α+ βk = α∗ + β∗ρ1(k)

α+ βk + νb = α∗ + β∗ρb(k) + ν∗b

α+ βk + νb + δbi1 = α∗ + β∗ρb(k) + ν∗b + δ∗bi1.

Thus, ρb(k) = ρ1(k) for each k ∈ Cb (b ≥ 2) implies that νb = ν∗b and δbi = δ∗bi.

Theorem 3

Proof. Our objective is to prove that for any two distinct batches b and b̃, ρb(k) = ρb̃(k) holds

for any cell type k ∈ Cb
⋂
Cb̃ shared by these two batches.

First, we prove that ρb(k) = ρb−1(k) for the shared cell types k ∈ Cb
⋂
Cb−1, 2 ≤ b ≤ B in

any two consecutive batches. Notice that |Cb ∩ Cb−1| ≥ 2, so for any two shared cell types k1

and k2 between batch b and batch b− 1, we have

α+ βk1 + νb + δbi1 = α∗ + β∗ρb(k1) + ν∗b + δ∗bi1,

α+ βk2 + νb + δbi1 = α∗ + β∗ρb(k2) + ν∗b + δ∗bi1,

⇒βk1 − βk2 = β∗ρb(k1) − β∗ρb(k2)

α+ βk1 + νb−1 + δb−1,i1 = α∗ + β∗ρb−1(k1) + ν∗b−1 + δ∗b−1,i1,

α+ βk2 + νb−1 + δb−1,i1 = α∗ + β∗ρb−1(k2) + ν∗b−1 + δ∗b−1,i1.

⇒βk1 − βk2 = β∗ρb−1(k1) − β∗ρb−1(k2)

Further, according to condition (III), βk1 − βk2 = β∗ρb(k1) − β∗ρb(k2) = β∗ρb−1(k1) − β∗ρb−1(k2)

implies that ρb(k) = ρb−1(k) for 2 ≤ b ≤ B, k ∈ Cb
⋂
Cb−1.

Consequently, for a cell type k ∈ Cb
⋂
Cb−1 shared by two consecutive batches b and b− 1,

similar to Equation (23), we have

α+ βk + νb−1 = α∗ + β∗ρb−1(k) + ν∗b−1

α+ βk + νb = α∗ + β∗ρb(k) + ν∗b

⇒ νb − νb−1 = ν∗b − ν∗b−1.

Because ν1 = ν∗1 = 0, νb =
∑b

j=2(νj − νj−1) =
∑b

j=2(ν∗j − ν∗j−1) = ν∗b . Moreover, similar to

Equation (24), we have δbi = δ∗bi for each cell i of each batch b.

Now for any two distinct batches b and b̃, we can directly compare the mean expression levels
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of their shared cell type k ∈ Cb
⋂
Cb̃:

α+ βk + νb + δbi1 = α∗ + β∗ρb(k) + νb + δbi1

α+ βk + ν b̃ + δb̃i1 = α∗ + β∗ρb̃(k) + ν b̃ + δb̃i1

⇒ β∗ρb(k) = β∗ρb̃(k)

Consequently, we have proven Theorem 3.

Theorem 4

Proof. Our object is to prove that for any two distinct batches b and b̃, ρb(k) = ρb̃(k) holds

for any cell type k ∈ Cb
⋂
Cb̃ shared by these two batches. At the same time, νb = ν∗b and

δbi = δ∗bi for each cell i in batch b.

For any two connected batches (b1, b2), we have |Cb1 ∩ Cb2| ≥ 2. Thus, for any two shared

cell types k1, k2 ∈ Cb1 ∩ Cb2 , we have

α+ βk1 + νb1 + δb1,i1 = α∗ + β∗ρb1 (k1) + ν∗b1 + δ∗b1,i1,

α+ βk2 + νb1 + δb1,i1 = α∗ + β∗ρb1 (k2) + ν∗b1 + δ∗b1,i1,

⇒βk1 − βk2 = β∗ρb1 (k1) − β∗ρb1 (k2)

α+ βk1 + νb2 + δb2,i1 = α∗ + β∗ρb2 (k1) + ν∗b2 + δ∗b2,i1,

α+ βk2 + νb2 + δb2,i1 = α∗ + β∗ρb2 (k2) + ν∗b2 + δ∗b2,i1.

⇒βk1 − βk2 = β∗ρb2 (k1) − β∗ρb2 (k2)

Further, according to condition (III), βk1 − βk2 = β∗ρb1 (k1) − β∗ρb1 (k2) = β∗ρb2 (k1) − β∗ρb2 (k2)

implies that ρb1(k) = ρb2(k) for k ∈ Cb1
⋂
Cb2 .

Consequently, for a cell type k ∈ Cb1
⋂
Cb2 shared by two connected batches b1 and b2, similar

to Equation (23), we have

α+ βk + νb1 = α∗ + β∗ρb1 (k) + ν∗b1

α+ βk + νb2 = α∗ + β∗ρb2 (k) + ν∗b2

⇒ νb1 − ν∗b1 = νb2 − ν∗b2 .

Because of the connectivity of the batch graph G, we can find a path (1, b1, b2, · · · , bk, b), k ≤

B − 2 between any batch b and the first batch in the batch graph G such that νb − ν∗b =

νbk − ν∗bk = · · · = νb1 − ν∗b1 = ν1 − ν∗1. Notice that ν1 = ν∗1 = 0, so we have νb = ν∗b .

Moreover, similar to Equation (24), we have δbi = δ∗bi for each cell i in the batch b.
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Now for any two distinct batches b and b̃, we can directly compare the mean expression levels

of their shared cell type k ∈ Cb
⋂
Cb̃:

α+ βk + νb + δbi1 = α∗ + β∗ρb(k) + νb + δbi1

α+ βk + ν b̃ + δb̃i1 = α∗ + β∗ρb̃(k) + ν b̃ + δb̃i1

⇒ β∗ρb(k) = β∗ρb̃(k),

which implies that ρb(k) = ρb̃(k) according to condition (II). Consequently, we have proven

Theorem 4.

Diagram of batch graphs

Figure S1: The batch graphs for the experiment designs in Figure 2. (a) The confounded
design. (b) The complete setting design. (c) The reference panel design. (d) The chain-type
design.

The Markov chain Monte Carlo (MCMC) Algorithm for BUSseq

To conduct posterior inference, we develop an MCMC algorithm to draw samples from the

posterior distribution. At iteration t:
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1. Update z
[t]
big and x

[t]
big sequentially for (b, i, g), if ybig = 0:

z
[t]
big

 = 1 , if x
[t−1]
big > 0;

∼ Bernoulli(
exp(γ

[t−1]
b0 )

1+exp(γ
[t−1]
b0 )

) , if x
[t−1]
big = 0.

x
[t]
big


= 0 , if z

[t]
big = 0;

∝ exp(γ
[t−1]
b0 +γ

[t−1]
b1 x

[t]
big)

1+exp(γ
[t−1]
b0 +γ

[t−1]
b1 x

[t]
big)

Γ(φ
[t−1]
bg +x

[t]
big)(µ

[t−1]
big )

x
[t]
big

Γ(x
[t]
big)(φ

[t−1]
bg +µ

[t−1]
big )

φ
[t−1]
bg

+x
[t]
big

, if z
[t]
big = 1.

where µ
[t−1]
big = exp(α

[t−1]
g + β

[t−1]

gw
[t−1]
bi

+ ν
[t−1]
bg + δ

[t−1]
bi ), and Γ(·) represents the Gamma

function.

When z
[t]
big = 1, we incorporate a Metropolis-Hasting (MH) step (Hastings, 1970). We

sample x∗big from the proposal distribution NB(µ
[t−1]
big , φ

[t−1]
bg ) and accept the proposal

with probability

ρ =
1 + exp(−γ[t−1]

b0 − γ[t−1]
b1 x

[t−1]
big )

1 + exp(−γ[t−1]
b0 − γ[t−1]

b1 x∗big)
.

On the other hand, if ybig > 0, then z
[t]
big = 0 and x

[t]
big = ybig.

2. Update γ
[t]
b0 and γ

[t]
b1 sequentially. Because

L(γ
[t]
b ) ∝

nb∏
i=1

G∏
g=1

exp[(γ
[t]
b1x

[t]
big + γ

[t]
b0)z

[t]
big]

1 + exp(γ
[t]
b1x

[t]
big + γ

[t]
b0)
· exp(−(γ

[t]
b0)2

2σ2
z0

) · (−γ[t]
b1)aγ−1exp(bγγ

[t]
b1),

we update γb0 by an MH step with the symmetric proposal distribution g(γ∗b0|γ
[t−1]
b0 ) ∼

N(γ
[t−1]
b0 , σ2

MH). Consequently, the acceptance rate is

ρ =
L(γ∗b0|−)

L(γ
[t−1]
b0 |−)

=

nb∏
i=1

G∏
g=1

exp(γ∗b0z
[t]
big)[1 + exp(γ

[t−1]
b1 x

[t]
big + γ

[t−1]
b0 )]

exp(γ
[t−1]
b0 z

[t]
big)[1 + exp(γ

[t−1]
b1 x

[t]
big + γ∗b0)]

· exp(−(γ∗b0)2 − (γ
[t−1]
b0 )2

2σ2
z0

).

To update γb1, we incorporate an MH step with the proposal distribution g(−γ∗b1|γ
[t−1]
b1 ) ∼
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Gamma(−10γ
[t−1]
b1 , 10), and the acceptance rate being

ρ =
L(γ∗b1|−)

L(γ
[t−1]
b1 |−)

=

nb∏
i=1

G∏
g=1

exp(γ∗b1x
[t]
bigz

[t]
big)[1 + exp(γ

[t−1]
b1 x

[t]
big + γ

[t]
b0)]

exp(γ
[t−1]
b1 x

[t]
bigz

[t]
big)[1 + exp(γ∗b1x

[t]
big + γ

[t]
b0)]

· (−γ[t−1]
b1 )−aγ−10γ∗b110−10γ∗b1Γ(−10γ

[t−1]
b1 )

(−γ∗b1)−aγ−10γ
[t−1]
b1 10−10γ

[t−1]
b1 Γ(−10γ∗b1)

exp[(10− bγ)(γ[t−1]
b1 − γ∗b1)].

3. For each gene g, we use an MH step to update αg. Specifically, we let the proposal

distribution be the symmetric g(α∗g|α
[t−1]
g ) ∼ N(α

[t−1]
g , σ2

MH) and the acceptance rate

be:

ρ =
L(α∗g|−)

L(α
[t−1]
g |−)

=
B∏
b=1

nb∏
i=1

exp((α∗g − α[t−1]
g )x

[t]
big)(

φ
[t−1]
bg + exp(α

[t−1]
g + β

[t−1]

gw
[t−1]
bi

+ ν
[t−1]
bg + δ

[t−1]
bi )

φ
[t−1]
bg + exp(α∗g + β

[t−1]

gw
[t−1]
bi

+ ν
[t−1]
bg + δ

[t−1]
bi )

)φ
[t−1]
bg +x

[t]
big

· exp(−
(α∗g)

2 − (α
[t−1]
g )2

2σ2
a

).

4. For each gene g and for 2 ≤ k ≤ K, we sample the indicator L
[t]
gk from:

L
[t]
gk ∼ Bernoulli(

p[t−1]N(β
[t−1]
gk ; 0, (τ

[t−1]
β1 )2)

p[t−1]N(β
[t−1]
gk ; 0, (τ

[t−1]
β1 )2) + (1− p[t−1])N(β

[t−1]
gk ; 0, τ 2

β0)
).

5. Update the inclusion probability p[t] for L
[t]
gks by sampling:

p[t] ∼ Beta(
G∑
g=1

K∑
k=2

L
[t]
gk + ap, G(K − 1)−

G∑
g=1

K∑
k=2

L
[t]
gk + bp).

6. Update the variance of the spike component of the spike-and-slab prior (τ
[t]
β0)

2 by
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sampling:

(τ
[t]
β0)2 ∼ Inv −Gamma(aτ +

1

2
#{(g, k) : L

[t]
gk = 0, 1 ≤ g ≤ G, 2 ≤ k ≤ K},

bτ +
1

2

G∑
g=1

K∑
k=2

I(L
[t]
gk = 0) · (β[t−1]

gk )2),

where #{·} represents the number of elements in the set, and I(·) denotes the indicator

function.

7. To update β
[t]
gk for cell type two to K and each gene g, we use an MH step with the

symmetric proposal distribution g(β∗gk|β
[t−1]
gk ) ∼ N(β

[t−1]
gk , σ2

MH) and the acceptance rate

ρ =
L(β∗gk|−)

L(β
[t−1]
gk |−)

=
∏

(b,i):w
[t−1]
bi =k

exp((β∗gk − β
[t−1]
gk )x

[t]
big)(

φ
[t−1]
bg + exp(α

[t]
g + β

[t−1]
gk + ν

[t−1]
bg + δ

[t−1]
bi )

φ
[t−1]
bg + exp(α

[t]
g + β∗gk + ν

[t−1]
bg + δ

[t−1]
bi )

)φ
[t−1]
bg +x

[t]
big

· exp(−
(β∗gk)

2 − (β
[t−1]
gk )2

2(τ
[t]

βL
[t]
gk

)2
).

8. Update ν
[t]
bg by an MH step with the symmetric proposal distribution g(ν∗bg|ν

[t−1]
bg ) ∼

N(ν
[t−1]
bg , σ2

MH) and the acceptance rate

ρ =
L(ν∗bg|−)

L(ν
[t−1]
bg |−)

=

nb∏
i=1

exp((ν∗bg − ν
[t−1]
bg )x

[t]
big)(

φ
[t−1]
bg + exp(α

[t]
g + β

[t]
gk + ν

[t−1]
bg + δ

[t−1]
bi )

φ
[t−1]
bg + exp(α

[t]
g + β

[t]
gk + ν∗bg + δ

[t−1]
bi )

)φ
[t−1]
bg +x

[t]
big

· exp(−
(ν∗bg)

2 − (ν
[t−1]
bg )2

2σ2
c

).

9. Update δ
[t]
bi by an MH step with the symmetric proposal distribution g(δ∗bi|δ

[t−1]
bi ) ∼
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N(δ
[t−1]
bi , σ2

MH) and the acceptance rate

ρ =
L(δ∗bi|−)

L(δ
[t−1]
bi |−)

=
G∏
g=1

exp((δ∗bi − δ
[t−1]
bi )x

[t]
big)(

φ
[t−1]
bg + exp(α

[t]
g + β

[t]
gk + ν

[t]
bg + δ

[t−1]
bi )

φ
[t−1]
bg + exp(α

[t]
g + β

[t]
gk + ν

[t]
bg + δ∗bi)

)φ
[t−1]
bg +x

[t]
big

· exp(−(δ∗bi)
2 − (δ

[t−1]
bi )2

2σ2
d

).

10. Update φ
[t]
bg by an MH step with the proposal distribution g(φ∗bg|φ

[t−1]
bg ) ∼ Gamma(φ

[t−1]
bg , 1)

and the acceptance rate

ρ =
L(φ∗bg)g(φ

[t−1]
bg |φ∗bg)

L(φ
[t−1]
bg )g(φ∗bg|φ

[t−1]
bg )

=

nb∏
i=1

[
Γ(φ∗bg + x

[t]
big)(φ

∗
bg)

φ∗bg

Γ(φ∗bg)(φ
∗
bg + η

[t]
big)

φ∗bg+x
[t]
big

·
Γ(φ

[t−1]
bg )(φ

[t−1]
bg + η

[t]
big)

φ
[t−1]
bg +x

[t]
big

Γ(φ
[t−1]
bg + x

[t]
big)(φ

[t−1]
bg )φ

[t−1]
bg

]

·
(φ∗bg)

κ−1

(φ
[t−1]
bg )κ−1

exp(−τ(φ∗bg − φ
[t−1]
bg ))

(φ
[t−1]
bg )φ

∗
bg−1Γ(φ

[t−1]
bg )

(φ∗bg)
φ
[t−1]
bg −1Γ(φ∗bg)

exp(φ∗bg − φ
[t−1]
bg ),

where η
[t]
big = exp(α

[t]
g + β

[t]

gw
[t−1]
bi

+ ν
[t]
bg + δ

[t]
bi ) denotes the mean gene expression level for

gene g in cell i of batch b.

11. The conditional posterior distribution for the cell type indicator w
[t]
bi of cell i in batch b is:

Pr(w
[t]
bi = k|−) ∝ π

[t−1]
bk

G∏
g=1

exp[(α
[t]
g + β

[t]
gk + ν

[t]
bg + δ

[t]
bi )x

[t]
big]

(exp(α
[t]
g + β

[t]
gk + ν

[t]
bg + δ

[t]
bi ) + φ

[t]
bg)

x
[t]
big+φ

[t]
bg

.

We implement an MH step with the symmetric proposal distribution Pr(w
[t]
bi =

k∗|w[t−1]
bi = k) ∼Multinomial(1; 1

K
, · · · , 1

K
) and the acceptance rate

ρ =
Pr(w

[t]
bi = k∗|−)

Pr(w
[t]
bi = k|−)

=
π

[t−1]
bk∗

π
[t−1]
bk

G∏
g=1

exp[(β
[t]
gk∗ − β

[t]
gk)x

[t]
big](

exp(α
[t]
g + β

[t]
gk + ν

[t]
bg + δ

[t]
bi ) + φ

[t]
bg

exp(α
[t]
g + β

[t]
gk∗ + ν

[t]
bg + δ

[t]
bi ) + φ

[t]
bg

)φ
[t]
bg .
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12. Update π
[t]
b by sampling from the Dirichlet distribution

Dir(ξ +

nb∑
i=1

1(w
[t]
bi = 1), ξ +

nb∑
i=1

1(w
[t]
bi = 2), · · · , ξ +

nb∑
i=1

1(w
[t]
bi = K)).

The Markov chain of the MCMC algorithm can get stuck in the local modes of the

posterior distribution for a long period of time. In principle, we can further incorporate the

Metropolis coupled MCMC algorithm (Altekar et al., 2004) to jump out of the local modes

more easily. In practice, we recommend running multiple chains with different initial values

and then choosing the chain that gives the largest value of the observed data likelihood to

conduct the posterior inference. According to our experiences, we can usually achieve good

posterior estimations with five Markov chains each with a different initial value by randomly

sampling a seed from 1 to 10,000.

Comparison of the silhouette coefficients in the hematopoietic study

Figure S2: The boxplots of silhouette coefficients for all of the compared methods in the
hematopoietic study.

Pathway analysis
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Ranking Pathway p values Category
1 Hematopoietic cell lineage 1.73× 10−14

2 Cytokine-cytokine receptor interaction 1.84× 10−12 Cell growth and differentiation
3 Cell adhesion molecules (CAMs) 3.29× 10−9 Immune system
4 Leukocyte transendothelial migration 1.54× 10−6 Immune system
5 Primary immunodeficiency 6.75× 10−6 Immune system
6 Rap1 signaling pathway 3.44× 10−5 Cell growth and differentiation
7 Transcriptional misregulation in cancer 4.23× 10−5

8 Rheumatoid arthritis 6.59× 10−5

9 Pathways in cancer 1.15× 10−4

10 Tuberculosis 1.40× 10−4

11 Malaria 3.02× 10−4

12 Toll-like receptor signaling pathway 3.60× 10−4

13 Staphylococcus aureus infection 4.53× 10−4

14 PI3K-Akt signaling pathway 5.53× 10−4 Cell growth and differentiation
15 Osteoclast differentiation 9.74× 10−4 Cell growth and differentiation
16 T cell receptor signaling pathway 9.96× 10−4 Immune system
17 Intestinal immune network for IgA production 1.43× 10−3 Immune system
18 Leishmaniasis 1.44× 10−3 Immune system
19 Platelet activation 1.62× 10−3

20 NF-kappa B signaling pathway 1.65× 10−3 Immune system
21 Asthma 2.13× 10−3

22 Jak-STAT signaling pathway 2.61× 10−3 Cell growth and differentiation
23 B cell receptor signaling pathway 3.34× 10−3 Immune system
24 ECM-receptor interaction 3.99× 10−3 Cell growth and differentiation
25 Neuroactive ligand-receptor interaction 4.05× 10−3

26 Ras signaling pathway 4.93× 10−3 Cell growth and differentiation
27 Pertussis 5.48× 10−3

28 Inflammatory bowel disease (IBD) 6.51× 10−3 Immune system
29 Thyroid hormone signaling pathway 9.06× 10−3

30 Phagosome 9.51× 10−3 Immune system
31 Mineral absorption 1.09× 10−2

32 Amoebiasis 1.17× 10−2

33 Focal adhesion 1.43× 10−2 Cell growth and differentiation
34 Glycosphingolipid biosynthesis - lacto and neolacto series 1.49× 10−2

35 p53 signaling pathway 1.67× 10−2

36 Calcium signaling pathway 1.70× 10−2

37 Fc epsilon RI signaling pathway 1.86× 10−2

38 Natural killer cell mediated cytotoxicity 1.98× 10−2 Immune system
39 Proteoglycans in cancer 2.02× 10−2

40 Chemokine signaling pathway 2.40× 10−2 Immune system
41 Gastric acid secretion 2.74× 10−2

42 ABC transporters 2.82× 10−2

43 HIF-1 signaling pathway 3.25× 10−2

44 Chagas disease (American trypanosomiasis) 3.50× 10−2

45 Retrograde endocannabinoid signaling 3.50× 10−2

46 NOD-like receptor signaling pathway 3.63× 10−2 Immune system
47 Aldosterone-regulated sodium reabsorption 3.77× 10−2

48 Sphingolipid signaling pathway 3.87× 10−2

49 Progesterone-mediated oocyte maturation 4.41× 10−2

50 MAPK signaling pathway 4.58× 10−2 Cell growth and differentiation
51 Carbohydrate digestion and absorption 4.76× 10−2

Supplementary Table S1: The 51 KEGG pathways (p-value < 0.05 (Huang et al., 2009))
significantly enriched among the intrinsic genes identified by BUSseq from the hematopoietic
data.
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Ranking Pathway p values
1 Maturity onset diabetes of the young 9.09× 10−9 Diabetes
2 Pancreatic secretion 6.42× 10−7 Protein Secretion
3 Insulin secretion 1.58× 10−6 Protein Secretion
4 Protein digestion and absorption 1.89× 10−3 Metabolism
5 ECM-receptor interaction 7.08× 10−3

6 Type II diabetes mellitus 7.63× 10−3 Diabetes
7 Morphine addiction 8.99× 10−3

8 Proteoglycans in cancer 1.44× 10−2

9 Dopaminergic synapse 1.76× 10−2

10 GABAergic synapse 2.24× 10−2

11 Type I diabetes mellitus 2.26× 10−2 Diabetes
12 Tight junction 2.48× 10−2

13 Drug metabolism - cytochrome P450 3.08× 10−2 Metabolism
14 Focal adhesion 4.07× 10−2

Supplementary Table S2: The 14 KEGG pathways (p-value< 0.05 (Huang et al., 2009) )
significantly enriched among the intrinsic genes identified by BUSseq from the pancreatic
data.
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