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ABSTRACT 20 

We conducted genome sequencing to search for rare variation contributing to early onset Alzheimer’s 21 

disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 493 cases and 22 

671 controls of European ancestry. Burden testing for rare variation associated with disease was 23 

conducted using filters based on variant rarity (less than 1 in 10,000 or private), computational prediction of 24 

deleteriousness (CADD 10 or 15 thresholds), and molecular function (protein loss-of-function only, coding 25 

alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). 26 

Replication analysis was conducted on 16,871 independent cases and 15,941 independent controls. Rare 27 

variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p=6.5x10-8, genome-28 

wide corrected p=0.0037). Most of these variants were canonical loss-of-function or non-coding in 29 

predicted regulatory regions. This enrichment replicated across several cohorts of AD and FTD (replication 30 

only p=0.0071). The combined analysis odds ratio was 2.2 (95% CI 1.5–3.2) for AD and FTD. The odds 31 

ratio for qualifying non-coding variants considered independently from coding variants was 2.1 (95% CI 32 

1.2–3.9). For loss-of-function variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral 33 

sclerosis, which shares clinicopathological overlap with FTD) was 3.2 (95% CI 2.0–5.3). TET2 catalyzes 34 

DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation 35 

in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. 36 

Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex 37 

disease.  38 
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INTRODUCTION 40 

 Neurodegeneration with a clinical onset prior to the age of 65 can be devastating for patients, their 41 

families, and caregivers, imposing financial burden and hardship during a period of life when individuals are 42 

often most productive1. Early-onset neurodegenerative diseases such as early-onset Alzheimer’s disease 43 

(EOAD) and frontotemporal dementia (FTD) are typically thought of as disease forms with highly penetrant 44 

genetic contributions, and indeed both can result from Mendelian pathogenic mutations (with Mendelian 45 

causes more common in FTD)2. However, these diseases exhibit a high degree of heritability that remains 46 

unexplained by currently known genetic contributors3; 4. This suggests that additional genetic factors likely 47 

contribute to disease but have not yet been identified. Despite attempts at genome-wide association study 48 

(GWAS) of relatively sizeable cohorts, only modest association signals have been identified for FTD5 and 49 

one form of EOAD, posterior cortical atrophy6. In contrast, sequencing studies have been successful at 50 

identifying more moderately to highly penetrant contributions to disease by examining rare variation. 51 

Successes in Alzheimer’s disease (AD) include ABCA7, SORL1, and TREM2 (reviewed in 7). Similar 52 

successes for the amyotrophic lateral sclerosis (ALS)-FTD spectrum include TBK18, MFSD89, DPP6, 53 

UNC13A, and HLA-DQA210. Despite these successes, the rarity of these diseases along with the high cost 54 

of sequencing studies has resulted in limited sample sizes of patient cohorts. Furthermore, prior studies 55 

have focused on coding regions of the genome, leaving non-coding regions largely unexplored for their 56 

contribution to disease risk. 57 

Here we leveraged a large cohort of 683 patients, many of which have an early age of disease 58 

onset (<65), and 856 healthy adult controls (with no known neurological abnormalities) that have 59 

undergone genome sequencing to probe both coding and non-coding rare and predicted deleterious 60 

variants across the genome for association with disease risk. We assessed variant associations between 61 

EOAD and FTD vs. controls both separately and together (all cases versus controls), with the hypothesis 62 

that genetic pleiotropy—where variation in a single gene associates with multiple, different phenotypes—63 

may play a role, as previously described for neurodegenerative diseases11-15. 64 
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METHODS 66 

Sample selection 67 

 The majority of cases were selected from the University of California, San Francisco (UCSF) 68 

Memory and Aging Center with an intentional selection of early-onset cases when possible to maximize the 69 

likelihood of identifying genetic contributors, along with healthy older adult controls (a total of 664 cases 70 

and 102 controls, with 71 of these cases previously described in 9). All UCSF cases and controls were 71 

clinically assessed using methods described in 9. This cohort was intentionally depleted of cases with 72 

known Mendelian variants associated with neurodegenerative diseases, and any cases with known 73 

Mendelian variants identified after genome sequencing were excluded (see Results).  A small number of 74 

samples (19 cases and 21 controls) were obtained from the University of Alabama at Birmingham (UAB) 75 

from an expert clinician who employed the same diagnostic procedures (case studies described in 16). The 76 

resulting cohort was enriched for early-onset cases with a median age of presentation of 60 (range 45–84) 77 

for AD and 66 (range 29–89) for FTD. Additional neurologically healthy controls sequenced at 78 

HudsonAlpha were also included from two cohorts: a healthy aging control set from the National Institute of 79 

Mental Health (NIMH) (132 controls) and healthy unaffected parents from a childhood disease study where 80 

de novo mutations are the most common cause of disease17, making these parents reasonably 81 

representative population controls (601 controls). All participants or their surrogates provided written 82 

informed consent to participate in this study and the institutional review boards at each site approved all 83 

aspects of the study. 84 

 85 

Genome sequencing 86 

The majority of genome sequencing was performed at the HudsonAlpha Institute for Biotechnology 87 

on the Illumina HiSeq X platform (1,468 samples from UCSF, UAB, NIMH, and HudsonAlpha), while a 88 

small subset was sequenced at the New York Genome Center, also on the HiSeq X platform (71 samples 89 

from UCSF, described previously in 9). Mean depth was 34X with an average of 92% of bases covered at 90 

20X. Sequencing libraries at HudsonAlpha were prepared by Covaris shearing, end repair, adapter ligation, 91 

and PCR using standard protocols. Library concentrations were normalized using KAPA qPCR prior to 92 
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sequencing. All variants meeting either Mendelian diagnostic criteria or variants in top hits from the 93 

discovery cohort were validated by Sanger sequencing. 94 

 95 

Data quality control 96 

All sequencing reads from both sequencing centers were aligned to the hg19 reference genome 97 

with bwa-0.7.1218. BAMs were sorted and duplicates were marked with Sambamba 0.5.419. Indels were 98 

realigned, bases were recalibrated, and gVCFs were generated with GATK 3.320. Variants were called 99 

across all samples in a single batch with GATK 3.8 using the -newQual flag to minimize false negative 100 

singleton calls. The VCF was quality filtered with a genotype level requirement for 95% of sites to have a 101 

minimum GQ of 20 and DP of 10 (applied using VCFtools 0.1.1521), and a variant level filter of VQSLOD > -102 

3. The small number of missing genotypes remaining after that quality filtering step were assumed to be 103 

reference (filled with bcftools 1.6-1922) in order to avoid errors in downstream processing using the package 104 

GEMINI 0.20.223 which adds missing genotypes to non-reference counts with its burden function. Goleft 105 

indexcov 0.1.1724 was used for sex checks and samples failing sex checks were excluded. KING 2.1.225 106 

was used to check for familial relationships and related individuals (up to 4th degree relatives using IBD 107 

segment analysis) were excluded. Ancestry was elucidated by both principal component analysis using 108 

plink 1.926 compared to 1000 genomes data27 (using common variation overlapping with 1000 genomes 109 

calls) and analysis using ADMIXTURE 1.3.028 (Supplemental Figure 1), and only samples from the largest 110 

cluster (European ancestry) were retained for discovery analysis to minimize potential confounding 111 

population effects. 112 

 113 

Annotation, filtering, and burden analysis 114 

 In order to facilitate annotation and burden analysis, multi-allelic sites were split using Vt29. All 115 

variants were annotated with CADD v1.330, including all indels. SnpEff 4.3s31 was used to annotate with the 116 

GRCh37.75 gene model. Population database frequency annotations included 1000 genomes phase 3, 117 

TOPMed Bravo32 (lifted over from hg38 to hg19 using CrossMap 0.2.733), and several population database 118 

sets annotated using WGSA 0.734 including ExAC35, gnomAD36, ESP, and UK10K. Variants were also 119 

annotated with dbSNP release 15137. A final important annotation set was the union of regions called by 120 
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GenoSkyline-Plus38 as potential regulatory regions. GenoSkyline-Plus incorporates chromatin marks, DNA 121 

accessibility, RNA-seq, and DNA methylation to predict function. All tracks derived from direct human 122 

tissue sources were included (sources propagated in culture were excluded), with a total of 50 of 66 tissue 123 

and cell types described in Table S2 of38 used for annotation (see Supplemental Table 1 for included 124 

epigenome tracks in the union). 125 

Variants were filtered using SnpSift 4.3s. In addition to the quality filters described, variants were 126 

further filtered by local and population frequency, predicted deleteriousness (CADD v1.3), and 127 

segmentation for function. To enrich for rare variation, variants were pre-filtered for a maximum minor allele 128 

count of 3 (approximately 0.1% local allele frequency), and a maximum allele frequency of 1 in 10,000 in 129 

any population included in the aforementioned population databases. In addition, non-coding variants were 130 

more strictly filtered to only variants present in a GenoSkyline-Plus qualifying region as described above 131 

and required to be absent from dbSNP 151.  132 

From the initial pre-filtered file, we conducted further filtering to arrive at nine total filter conditions. 133 

First, we evaluated variants meeting either: 1 in 10,000 population cutoffs and CADD score greater than 10 134 

or 15, or: private variation and CADD score greater than 10 or 15; for a total of four conditions that include 135 

non-coding variants. We also confined to coding variants with the same allele frequency combinations and 136 

CADD cutoffs listed for four total coding-only conditions. For canonical loss-of-function, we only considered 137 

the base 1 in 10,000 allele frequency requirement and CADD 10 cutoff for a total of one canonical loss-of-138 

function condition (also note that all canonical loss-of-function variants meeting these criteria were included 139 

in the other eight filter conditions regardless of allele frequency or CADD cutoff given the known 140 

deleteriousness of canonical loss-of-function variants). We note that these are extensively overlapping test 141 

sets (See Supplemental Figure 2 for correlations), and thus often yield similar results. For example, all 142 

conditions constrained to private variation will be a subset of matched conditions with 1 in 10,000 143 

population frequency cutoffs, and all coding-only conditions are a subset of the conditions that allow rare 144 

non-coding variation.  145 

A VCF for each of the nine filtering conditions was loaded into a GEMINI 0.20.2 database23, which 146 

was used to aggregate counts of variants for each individual by gene. By default, GEMINI is constrained to 147 

coding variation, so GEMINI python scripts were edited to allow for counting of variants in non-coding 148 
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regions as well. Variants upstream or downstream (within 5kb, the SnpEff default) were also assigned to 149 

their adjacent genes. The number of qualifying individuals was the final count unit, where one or more 150 

qualifying variants in a gene for a given individual resulted in that individual having a qualifying count for 151 

that gene (i.e., if an individual had two qualifying variants, they would still only be counted once to account 152 

for the possibility of a recessive model of inheritance or negligibility of the 2nd variant if on the same allele). 153 

Individuals with more than three qualifying variants in a gene were not counted as qualifying because an 154 

excess of rare and predicted damaging variants in a single gene may be indicative of a sequencing or 155 

variant-calling error. 156 

 157 

Burden analysis statistics 158 

 In order to assess the effect of covariates for the discovery set as well as any replication sets where 159 

the necessary covariate data were available, we tested using SKAT 1.3.2.139 using the adaptive efficient 160 

re-sampling method corrected for sex, number of APOE ε4 alleles, the first four principal components from 161 

common variant PCA, and ancestral proportions from ADMIXTURE with k=5. Statistical significance was 162 

set at a corrected p-value < 0.05. Because of the three main clusters of filter conditions corresponding to 163 

case-control test sets (EOAD vs. control, FTD vs. control, or all cases vs. control) (Supplemental Figure 164 

2), we applied a correction factor of three to all protein coding genes in hg19 put forth by the HUGO Gene 165 

Nomenclature Committee (19,118 genes, Supplemental Table 2) for a correction factor for p values in the 166 

discovery analysis of 57,354. In order to allow for use of replication cohorts where covariate data was not 167 

available, we also utilized a two-sided Fisher’s exact test. SKAT and Fisher’s tests were highly correlated 168 

(Pearson’s r=0.76 of log transformed p values). 169 

 170 

Clinical rate of progression analysis 171 

Our study utilized genetic and longitudinal clinical data from the Alzheimer’s Disease Neuroimaging 172 

Initiative (ADNI) to study the clinical profiles and progression of TET2 rare variant carriers. ADNI is a multi-173 

center prospective longitudinal cohort study created to study the genetic, clinical, and imaging correlates of 174 

Alzheimer’s disease40-42, and ADNI cases are present in the Alzheimer’s Disease Sequencing Project 175 

(ADSP) replication cohort. Every study participant undergoes a thorough assessment that includes clinical 176 
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characteristics, cognitive testing, and genetic sequencing. Participants were diagnosed as either normal 177 

controls (CN), mild cognitive impairment (MCI), or Alzheimer’s disease (AD) (note that some participants 178 

progressed from MCI to AD while being followed, with the last assessment used for case designation in the 179 

replication analysis, while they may be designated as beginning at the MCI stage in the following analysis). 180 

For clinical rate of progression analysis we used the Clinical Dementia Scale Sum of Boxes Score 181 

(CDRSB)43, a broad measure of clinical progression and impairment well-validated in multiple studies44; 45. 182 

We used linear mixed-effects modeling to test whether variation in TET2 predicts longitudinal 183 

clinical progression using R version 3.5.2. We covaried for baseline age, sex, education, and CDRSB score 184 

as well as APOE !4 dose. The model was implemented as follows: ∆ CDRSB = β0 + β1Agebaseline × ∆t + 185 

β2Sexfemale × ∆t + β3Educationbaseline × ∆t + β4CDRSBbaseline × ∆t + β5APOE 4dose × ∆t + β6TET2carrier status × ∆t + 186 

(1|subject) + ε 187 

 188 

RESULTS 189 

Of the 1,539 samples in the original set, a total of 73 samples were removed from analysis after 190 

quality control. Two failed sex checks; 27 were pruned for relatedness; 12 were pruned due to an 191 

identifiable Mendelian variant (all of which were Sanger validated) meeting American College of Medical 192 

Genetics pathogenic or likely pathogenic criteria, including one C9orf72 expansion carrier from the UAB 193 

set; one control was pruned for conversion to Mild Cognitive Impairment (MCI) after enrollment; and 31 194 

cases were pruned because of phenotypic uncertainty or diagnosis of MCI or Parkinson’s disease (PD) 195 

rather than EOAD or FTD on re-evaluation after enrollment. The remaining dataset consisted of 1,466 196 

individuals: 638 cases (294 EOAD and 344 FTD) and 828 controls. Of these cases and controls, 302 were 197 

of non-European ancestry (determined by principal component and admixture analysis, Supplemental 198 

Figure 1). Non-European ancestry individuals were excluded from the discovery set to reduce 199 

heterogeneity but were retained for replication. The resultant discovery set consisted of 1,164 individuals of 200 

European ancestry: 493 cases (228 EOAD and 265 FTD) and 671 controls. All demographic available 201 

information for each sample (case category, primary clinical diagnosis, sex, age at enrollment, APOE ε4 202 

status, self-reported race/ethnicity, and principal components 1–4 and 5 ADMIXTURE coefficients) is 203 

available in Supplemental Table 3. The majority of cases were clinically diagnosed and did not have 204 
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autopsy material available for neuropathological sub-grouping at the time of analysis. Primary clinical 205 

diagnoses included as AD were logopenic variant primary progressive aphasia (29), posterior cortical 206 

atrophy (26), frontal AD (17), language AD (17), vascular AD (8), AD + dementia with Lewy bodies (DLB) 207 

(5), and AD not otherwise specified (126). Primary clinical diagnoses included as FTD were behavioral 208 

variant FTD (83), corticobasal syndrome (65), nonfluent variant primary progressive aphasia (43), FTD + 209 

ALS (20), primary supranuclear palsy (17), semantic variant primary progressive aphasia (17), argyrophilic 210 

grain disease (5), and FTD not otherwise specified (15). The expected enrichment in APOE ε4 was 211 

observed in AD cases (58% with at least one APOE ε4 allele versus 28% in controls, *p=1.8x10-16 by 212 

Fisher’s exact test), but not in FTD (28% in FTD and controls, p=0.87). 213 

 We compared EOAD vs. control, FTD vs. control, or a combined analysis of EOAD and FTD vs. 214 

control across all variant filtering conditions (see Methods). In the discovery analysis of combined burden 215 

across EOAD and FTD vs. control, with variants absent from population databases and with a CADD score 216 

> 10 (including non-coding variants in GenoSkyline-Plus regions), one gene-disease association passed 217 

the multiple comparison significance threshold: TET2 (SKAT uncorrected p=6.5x10-8, corrected p=0.0037; 218 

Table 1, model corrects for number of APOE ε4 alleles, sex, principal components 1–4, and 5 219 

ADMIXTURE ancestral proportions). Note that, while we applied a multiple correction cutoff of 57,354 220 

based on three main clusters of correlated filter conditions (Supplemental Figure 2), the p value for TET2 221 

would also pass a strict Bonferroni correction for 516,186 implicit tests (19,118 genes, 27 filter conditions) if 222 

we conservatively did not consider the correlated nature of the different filter sets (Bonferroni p=0.033). 223 

Statistical tests separately comparing EOAD vs. control and FTD vs. control did not pass the same degree 224 

of multiple testing correction but results for those comparisons are provided in Supplemental Tables 4 225 

(EOAD) and 5 (FTD) and demonstrate that the nominal enrichment level in TET2 is similar in both EOAD 226 

and FTD. No other gene reached even nominal significance (p < 1x10-5) in any filter condition, so TET2 227 

was the only gene considered for replication analysis. However, in the interest of making data from this 228 

study highly available, counts and p values for all genes assessed are provided in Supplemental Table 6. 229 

All qualifying variants in cases for TET2 were both Sanger validated and visually evaluated in the 230 

Integrative Genomics Viewer (IGV). Two variants failed Sanger validation (adjacent erroneous indel calls in 231 

a single sample) and were excluded from the variant counts in Table 1, all statistics, and in Supplemental 232 
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Table 7 where all qualifying variants in TET2 are listed. In addition, two cases had adjacent variant calls 233 

that were found to make up one variant. These were also corrected in all statistical analyses and tables. 234 

The single control with a qualifying TET2 variant did not have material available for Sanger sequencing but 235 

appeared valid in IGV (a single nucleotide variant with 8 alternate allele reads among 18 total reads). 236 

Next, we assessed potential confounding due to stratification by a QQ plot of the p-value 237 

distribution for the filter set that produced the top result and observed no genomic inflation consistent with a 238 

well-matched case-control dataset (l = 0.95, Figure 1). 239 

To help inform the types of sequencing datasets to target for replication, we assessed the variant 240 

type (coding or non-coding) and associated disease for all qualifying TET2 variants in the discovery set. 241 

Qualifying variants were observed in 11 EOAD cases, eight FTD cases, and one control. Of the 11 EOAD 242 

cases, one had depressive symptoms, one had language symptoms and possible corticobasal syndrome, 243 

one had logopenic variant primary progressive aphasia, and one had a previous diagnosis of behavioral 244 

variant FTD revised to frontal AD (seven had no additional noted phenotypes). Of the eight FTD cases, 245 

three had corticobasal syndrome (one of whom had AD symptoms and possible posterior cortical atrophy), 246 

one had FTD + ALS, and four had behavioral variant FTD (one with AD symptoms and one with seizures). 247 

Nine cases in total harbored coding variants, seven of which were canonical loss-of-function variants (four 248 

EOAD and three FTD). Because non-coding variants make up a large portion of the signal, we assessed 249 

coding and non-coding variants separately. We observed a similar level of enrichment for both coding and 250 

non-coding variants in EOAD and FTD cases when these types of variants were considered independently 251 

of one another (Figure 2A). Furthermore, the non-coding variants were prevalent in regions predicted to 252 

have regulatory function (Figure 2B). Combined with the high number of canonical loss-of-function 253 

variants, these data support a model whereby TET2 haploinsufficiency, resulting from either canonical loss-254 

of-function variation or expression-altering non-coding variation, may contribute risk to neurodegenerative 255 

disease. 256 

To replicate this finding, we used six additional cohorts (five independent, one internal) with 257 

available sequencing data from patients diagnosed with a neurodegenerative disorder and healthy controls. 258 

Based on the variants discovered in TET2, we attempted to replicate the association between aggregate 259 

rare variant burden in TET2 and disease risk using two arms: the same conditions used in discovery 260 
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applied to other genome sequencing datasets as a primary measure, and canonical loss-of-function only 261 

analysis as a secondary measure to allow for incorporation of exome sequencing datasets. We assessed 262 

three cohorts with genome sequencing data for replication using the same conditions applied in the 263 

discovery set: ADSP (the Alzheimer’s Disease Sequencing Project) (2,208 late-onset AD (LOAD) cases 264 

and 2,208 controls), the Accelerating Medicines Partnership – Alzheimer’s Disease (AMP-AD) cohort (749 265 

LOAD, 184 FTD, and 446 controls), and the non-European ancestry individuals from our cohort not 266 

assessed in the discovery set (66 EOAD, 79 FTD, and 157 controls). Assessment of these three cohorts 267 

revealed replication of the signal for TET2 overall for early- and late-onset AD and FTD combined vs. 268 

control (p=0.0071; Table 1). Although the statistics for separate analyses of EOAD vs. control and FTD vs. 269 

control did not meet significance criteria, secondary analysis of those subgroups revealed similar levels of 270 

enrichment within each distinct condition (Supplemental Table 4 (EOAD) and Supplemental Table 5 271 

(FTD)). Because of the established genetic overlap between FTD and ALS46, we also assessed variants in 272 

Project MinE47 (4,366 ALS cases and 1,832 controls) and observed a non-significant trend towards a slight 273 

enrichment in ALS cases (OR 1.3, 95% CI 1.1–2.7; Supplemental Table 5). While not a formal replication 274 

because no ALS cases were included in the discovery set, we present these findings in Supplemental 275 

Table 5 along with FTD statistics.  276 

Finally, we assessed predicted loss-of-function variants alone in all aforementioned cohorts (UCSF 277 

European discovery set, UCSF non-European replication set, ADSP, AMP-AD, Project MinE) along with 278 

exome sequencing data from a second ALS dataset8 and additional exome samples from ADSP48 for a 279 

total of seven sample sets. We observed a robust signal for association between predicted canonical loss-280 

of-function variants and disease across multiple disease cohorts (Table 2). Specifically, three of the four 281 

largest independent replication cohorts (ADSP genomes (LOAD), ADSP exomes (LOAD), and HA-Duke-282 

Stanford ALS exomes) all exhibit independent nominal replication (p<0.05). Meta-analysis of all canonical 283 

loss-of-function variants from all available cohorts (across EOAD, LOAD, FTD, and ALS) yields a p-value 284 

below commonly used exome-wide significance cutoffs (p=2.5x10-7; Table 2), and subgroup analyses of 285 

both AD and FTD–ALS vs. controls were each nominally significant (p<0.05) and suggest similar degrees 286 

of enrichment. 287 
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To assess potential clinical implications of rare variation in TET2, we queried the Alzheimer’s 288 

Disease Neuroimaging Initiative (ADNI) dataset40-42, which includes clinical rate of progression data. We 289 

used linear mixed-effects modeling to test whether qualifying rare variation (based on the discovery 290 

condition that passed multiple corrections testing) in TET2 predicts longitudinal clinical progression. We 291 

covaried for baseline age, sex, education, and CDRSB score as well as APOE !4 dose. A total of 786 292 

ADNI participants had TET2 genotypes available for analysis. There was no significant difference in the 293 

distribution of TET2 rare variant carriers by sex, APOE !4 dose, education, or baseline CDRSB score 294 

(Supplemental Table 8). There was a significant difference between TET2 rare variant carriers and non-295 

carriers by baseline age (Supplemental Table 8) but recall that baseline age is corrected for as a 296 

covariate along with sex, education, APOE !4 dose, and baseline CDRSB score. Using linear mixed effects 297 

regression, we found a significant relationship between carrying any TET2 rare variant and clinical 298 

progression as measured by change in CDRSB score (β ± SE = 0.14 ± 0.06; *p=0.03) (Figure 3). A similar 299 

finding was observed when our analyses were limited to TET2 loss-of-function variant carriers (β ± SE = 300 

0.17 ± 0.09; *p=0.04) (Supplemental Figure 3) (although we corrected for covariates for rigor, no 301 

covariates were significantly associated with TET2 loss-of-function carrier status (Supplemental Table 9)). 302 

We also explored whether rare variation in TET2 predicted changes in CDRSB and cognition (measured by 303 

Mini Mental State Exam (MMSE) score changes49) in MCI and control when analyzed separately. To 304 

maximize sample size, we limited this analysis to all TET2 variant carriers without further subdivision to 305 

loss-of-function variant carriers. When constraining the analysis to MCI, TET2 rare variant carriers (n=8) 306 

demonstrated a greater CDRSB change over time compared to noncarriers of a higher magnitude and 307 

significance compared to the pooled analysis of control, MCI and AD (β ± SE = 0.64 ± 0.12; *p=6.17x10-8) 308 

when correcting for the covariates outlined above. Of note, TET2 rare variant carriers diagnosed with MCI 309 

also demonstrated greater decreases in MMSE changes when compared to non-carriers (β ± SE = -0.47 ± 310 

0.17; *p=0.01). Within controls (n=6), there were no significant associations between TET2 variant carrier 311 

status and either CDRSB or MMSE. 312 

 313 

DISCUSSION 314 
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In this study, we identified a significant excess of rare, likely deleterious variation in TET2 as a risk 315 

factor for multiple neurodegenerative disorders, including EOAD, LOAD, FTD, and ALS. This finding is 316 

important for two main reasons. First, TET2 plays an important role in the conversion of methylation to 5-317 

hydroxymethylation, implicating dysfunction in a pathway known to be critical during aging50 and learning 318 

and memory51 in age-associated diseases like LOAD and FTD. Second, it is striking that the effect sizes in 319 

both coding and non-coding variant enrichments were comparable. This point suggests that further 320 

investigation of non-coding variation in complex disease genome sequencing studies holds potential for the 321 

identification of new contributors to disease. 322 

TET2 promotes de-methylation of DNA by catalyzing conversion of methylation to 5-323 

hydroxymethylation, and is highly expressed in brain (reviewed in52). Defined methylation changes occur 324 

with age in humans (“Horvath’s clock”, reviewed in50) and there is some evidence for an association 325 

between increased “methylation age” and disease (systematically reviewed in 53). Taken together, this 326 

raises speculation that reduced function or loss of TET2, a critical regulator in methylation processes, may 327 

have adverse age-associated effects. Evidence from mouse models further supports this idea. Specifically, 328 

promoting the conversion of methylation to 5-hydroxymethylation by either exercise-induced upregulation 329 

of TET254 or artificial overexpression of TET255 improves memory in mice by increasing neurogenesis in 330 

the dentate gyrus. Conversely, reducing TET2 in mouse hippocampus leads to reduced neurogenesis and 331 

impaired memory55, consistent with its role in promoting adult neurogenesis in mice56. Finally, reduction of 332 

TET2 in mouse primary neurons also reduced cell survival57. All of these observations are consistent with 333 

detrimental consequences of loss of TET2 function and suggest that neurons may be particularly 334 

vulnerable to these effects. Further support for a generally important role of TET enzymes comes from a 335 

preprint implicating mono- and bi-allelic loss-of-function of TET3 in childhood diseases58 (TET3 is more 336 

constrained against loss-of-function based on population database estimates35, which (along with bi-allelic 337 

contributions) could explain the earlier ages observed). In addition to general evidence for the importance 338 

of TET2 and other TET enzymes, an intriguing and more specific role for TET2 has also been proposed in 339 

a preprint implicating TET2 in microglial response, particularly around amyloid plaques59, suggesting that 340 

TET2 loss-of-function may prevent its recruitment into a protective role (similar to recent findings on 341 

TREM2 suggesting that higher secreted TREM2 levels are protective60, supporting a model where risk-342 
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conferring TREM2 variants result in loss-of-function). Finally, the human data we analyzed from ADNI is 343 

consistent with deleterious consequences of TET2 rare variants, with our observations supporting a faster 344 

rate of both general clinical decline (CDRSB) and cognitive decline (MMSE). 345 

The strongest association signal in the discovery cohort was a combined analysis across all EOAD 346 

and FTD cases together. While we recognize the drawbacks of a combined analysis across phenotypes, 347 

we argue that the benefits outweigh the drawbacks for two critical reasons beyond the increase in sample 348 

size: (1) known effects of genetic pleiotropy, and (2) the possibility of identifying shared pathways between 349 

diseases.  350 

The first reason supporting comparison across EOAD and FTD is that genetic pleiotropy—where a 351 

single locus contributes variance to multiple, different phenotypes—may play a role in neurodegenerative 352 

disease risk. Our group and others have provided support for this idea through several studies investigating 353 

multiple neurodegenerative diseases using GWAS approaches11-15. In addition to common risk variants, 354 

there is clear evidence of moderately to highly penetrant rare variation in single genes conferring risk or 355 

causality for multiple neurodegenerative diseases. First, rare variants in TREM2 confer risk for both AD61 356 

and FTD62. Second, rare variation in multiple established genes such as TBK1 and C9orf72 confer risk or 357 

are causative across the ALS-FTD spectrum63. Third, moderately penetrant common risk alleles like APOE 358 

ε4 are primarily associated with AD, but also associated with risk for Dementia with Lewy Bodies (DLB)64, 359 

FTD12, and age of onset in C9orf72 carriers65. Fourth, GBA and SNCA were first identified as risk factors 360 

for Parkinson’s disease (PD), but also confer risk for DLB64. Finally, rare pathogenic variants in MAPT 361 

typically cause FTD66; 67, but the R406W pathogenic variant has also been associated with an EOAD 362 

presentation68; 69. Furthermore, common variants near MAPT (tagging the H1 haplotype, associated with 363 

higher tau expression70) are associated with AD, PD, FTD, and ALS11; 12; 15. 364 

A second important reason to analyze across different patient populations is that performing 365 

analyses across cohorts of patients diagnosed with different neurodegenerative disorders but with partially 366 

overlapping underlying neuropathology (i.e., tau-containing protein aggregates in both AD and 367 

approximately half of FTD cases; TDP-43 containing protein aggregates in ALS, approximately half of FTD 368 

cases, and some AD cases) may identify shared dysregulated pathways, and has the potential to identify 369 

therapeutic targets with relevance across multiple neurodegenerative diseases. Indeed, our discovery that 370 
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rare variation in TET2 is associated with multiple neurodegenerative diseases suggests age-related 371 

changes in methylation may be relevant across a broad spectrum of neurodegeneration. 372 

In conclusion, we provide evidence that loss of TET2 function confers risk for EOAD, LOAD, FTD, 373 

and ALS. Specifically, we found that, in aggregate, both coding and non-coding qualifying rare variation in 374 

TET2 is associated with approximately a 2-fold risk increase across diverse populations of patients with 375 

AD, FTD, and ALS, and that canonical loss-of-function variation in TET2 is associated with approximately a 376 

3-fold risk increase for these diseases. We note that, similar to any burden test, it is impossible from 377 

aggregate enrichment values to deconvolute variable penetrance levels among disease-relevant alleles 378 

and the degree of enrichment for truly associated variation. Future work assessing the functional effects of 379 

particular alleles and their concomitant levels of risk to individual variant carriers would be helpful in this 380 

regard. Additionally, further work is required to understand the local and global mechanisms by which 381 

alterations to TET2 levels and/or function contributes to disease risk, whether this risk is anchored to 382 

TET2’s effects on aging biology, and, if so, whether rare variation in TET2 also confers risk to other age-383 

associated neurodegenerative diseases. 384 

 385 

SUPPLEMENTAL DATA DESCRIPTION 386 

Supplemental data includes three figures and nine tables. The supplemental figures and two of the 387 

supplemental tables (4,5,8,9) are provided in the Supplemental Data. Four supplemental tables are 388 

provided in an Excel file (1,2,3,7), and 1 supplemental table (6) is provided as a zipped text file. 389 

 390 
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FIGURES 686 

 687 

 688 

 689 

Figure 1: QQ plot of p-values from the discovery burden analysis of EOAD and FTD cases versus 690 

controls and Private, CADD > 10 Variants. TET2 is the top and only hit reaching statistical significance 691 

(corrected p<0.05). No genomic inflation was observed (l = 0.95). The uniform distribution and theoretical 692 

95% confidence interval based on a beta distribution is shown. Note that, in addition to passing the 693 

correction threshold, TET2 also falls well outside of theoretical random p-value distributions. 694 
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 697 

 698 

Figure 2: Qualifying non-coding variation in TET2 is enriched at a similar level as coding variation 699 

and occurs in key predicted functional regulatory regions. A. Odds ratios are shown for combined 700 

analyses (cohorts described in Table 1). Breaking out coding and non-coding variation reveals similar 701 

effect sizes and p-values. * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Fisher’s 702 

exact test. B. Non-coding variants near the TET2 transcription start site (hg19 chr4:106,066,000-703 

106,070,000) serve as an example of variant enrichment in key regions predicted to have regulatory 704 

function. GSP indicates GenoSkyline-Plus regions. 705 
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 708 

 709 

Figure 3: Longitudinal CDRSB changes in ADNI participants with qualifying TET2 rare variants. 710 

TET2 rare variant carriers show greater CDRSB changes over time compared to non-carriers after 711 

controlling for age, sex, education, APOE !4, and baseline CDRSB score (β ± SE = 0.14 ± 0.06; *p=0.03). 712 

The lines depicted illustrate CDRSB change with 95% confidence intervals in shading. ADNI – Alzheimer’s 713 

Disease Neuroimaging Initiative; CDRSB – Clinical Dementia Rating Sum of Boxes Score.714 
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TABLES 
 

Cohort Type Cohort Cases w/ Cases w/o Ctrls w/ Ctrls w/o SKAT p Corr. p FET p OR (95% CI) 

Discovery UCSF Eur. (EOAD & FTD) 19 474 1 670 6.5x10-8 3.7x10-3* 8.1x10-7 26.8 (4.2–1112) 

Replication UCSF Non-Eur. (EOAD & FTD) 7 138 1 156 0.840 NA 0.031 7.9 (1.0–358) 
Replication ADSP Genomes (LOAD) 64 2,144 36 2,172 4.6x10-4 NA 6.0x10-3 1.8 (1.2–2.8) 

Replication AMP-AD (LOAD & FTD) 15 918 7 439 0.907 NA 1.000 1.0 (0.4–3.0) 

Replication All Replication Cohorts 86 3,200 44 2,767 7.1x10-3 7.1x10-3* 4.4x10-3 1.7 (1.2–2.5) 

Combined Discovery + All Replication 105 3,674 45 3,437 8.0x10-6 NA 7.0x10-6 2.2 (1.5–3.2) 

 
Table 1: Discovery and replication for private, CADD > 10 coding and non-coding variants in TET2 (combined analysis of all cases, AD 

and FTD, vs. controls). Variants in TET2 absent from population databases and with a CADD score > 10 (including non-coding variants in 

GenoSkyline-Plus regions) in the combined analysis considering both EOAD and FTD cases vs. controls was the only qualifying gene and filter set 

in the discovery analysis to reach statistical significance. While we applied a correction factor of 57,354 based on genome wide (19,118 HGNC 

protein-coding genes) testing of three clusters of correlated filter conditions (Supplemental Figure 2), TET2 remains significant if we conservatively 

do not consider the correlated nature of the different filter sets and instead apply a strict Bonferroni correction (p = 0.033). The primary test was 

SKAT corrected for number of APOE ε4 alleles, sex, principal components 1–4, and 5 ADMIXTURE ancestral proportions. Fisher’s exact test 

yielded similar raw p values and was highly correlated with SKAT (Pearson’s r=0.76 of log-transformed p values) and is presented here for 

consistency with Table 2, where some cohorts did not have covariate data available for SKAT and therefore relied on Fisher’s exact. The main 

analyses based on pre-determined criteria are bolded and * indicates significance (p<0.05 after correction). NA = Not Applicable. Replication 

cohorts are listed individually for reference as well as combined discovery plus replication statistics. Subsets of AD only vs. control and FTD only vs. 

control are provided in Supplemental Table 4 and Supplemental Table 5, respectively. 
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Cohort Type Cohort Cases w/ Cases w/o Ctrls w/ Ctrls w/o SKAT p FET p OR (95% CI) Cases Freq. Ctrls Freq. 

Discovery UCSF Eur. (EOAD & FTD) 7 486 0 671 4.0x10-3 2.4x10-3 ∞ (2–∞) 1.42% 0.00% 

Replication UCSF Non-Eur. (EOAD & FTD) 1 144 1 156 0.058 1.000 1.1 (0.0–85.5) 0.69% 0.64% 

Replication ADSP Genomes (LOAD) 31 2,177 12 2,196 3.7x10-4 5.2x10-3 2.6 (1.3–5.6) 1.40% 0.54% 

Replication AMP-AD (LOAD & FTD) 0 933 1 445 0.215 0.323 0.0 (0.0–18.6) 0.00% 0.22% 

Replication Project MinE (ALS) 21 4,345 5 1,827 NA 0.289 1.8 (0.6–6) 0.48% 0.27% 

Replication HA-Duke-Stanford (ALS) 11 2,863 5 6,400 NA 2.0x10-3 4.9 (1.6–18.1) 0.38% 0.08% 

Replication All Rep. Cohorts (AD, FTD, ALS) 64 10,462 24 11,024 NA 8.1x10-6 2.8 (1.7–4.7) 0.61% 0.22% 

Combined Discovery + Replication 71 10,948 24 11,695 NA 2.5x10-7* 3.2 (2.0–5.3) 0.64% 0.20% 

Combined Subset AD except ADSP Exomes 35 3,216 14 3,468 2.7x10-3 1.4x10-3 2.7 (1.4–5.4) 1.08% 0.40% 

Summary Stat. Set ADSP Exomes (summary stats) 6,345 total cases 4,893 total controls 0.019 (ADSP model p value) CMAF 0.49% 

Combined Subset All FTD 4 524 2 1,272 0.921 0.065 4.9 (0.7–53.7) 0.76% 0.16% 

Combined Subset All ALS 32 7,208 10 8,227 NA 1.4x10-4 3.7 (1.8–8.3) 0.44% 0.12% 

Combined Subset All FTD & ALS 36 7,732 12 9,499 NA 3.0x10-5 3.7 (1.9–7.8) 0.46% 0.13% 

Population DBs gnomAD+TOPMed – – 284 196,035 – – – – 0.14% 

 
Table 2: Canonical loss-of-function variation in TET2 is nominally enriched in both AD and FTD-ALS. Because of the high number of 

canonical loss-of-function variants in TET2 observed in the discovery analysis, we performed a separate assessment of loss-of-function variants 

alone. Although the loss-of-function model did not pass multiple testing correction in the discovery analysis because of the low number of qualifying 

counts, TET2 was the highest ranked loss-of-function gene (lowest p-value for enrichment in cases). Note the additional inclusion of ALS exomes 

(HA-Duke-Stanford). * indicates that the combined analysis across all cases and controls (in bold) was below an arbitrary exome-wide cutoff of 

2.5x10-6 (a commonly used threshold based on correction of p<0.05 for ~20,000 genes). SKAT values could not be calculated for ALS sets (and 

thus not for summed replication and discovery+replication sets) because necessary covariate data were not available for these cohorts, although 

both ALS cohorts were independently filtered to only individuals of European ancestry. Below this combined analysis, we also present summaries 

by each disease, which achieved nominal significance (p < 0.05) for both combined analysis of all AD cases and of all FTD and ALS cases. Note 

the addition of summary statistics from ADSP exomes in this section as well. For ADSP exomes, the p-value from the VEP HIGH meta-analysis 

model is shown (publicly available from NIAGADS). For comparison, we have also listed the frequency of TET2 loss-of-function carriers in 
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population databases (gnomAD minus TOPMed set added to counts from TOPMed), which is similar to the frequencies observed in control groups 

we analyzed. All frequencies are the percentage of individuals harboring a loss-of-function variant (not minor allele frequency) except ADSP 

exomes for which cumulative minor allele frequency (CMAF) for both cases and controls is listed. 
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SUPPLEMENTAL DATA 

 

SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1: Ancestry analysis. Principal component analysis (PCA) of common variants was 

used to separate superpopulations by comparing clusters to 1000 genomes data for A. PC1 (separates AFR 

ancestry) and PC2 (separates EAS ancestry), and B. PC3 (separates SAS ancestry) and PC4 (separates AMR 

ancestry). C. The remaining samples were considered as candidates for EUR ancestry but were further pruned 

to disallow any ancestral proportion of greater than 15% by ADMIXTURE with k=5 from the 4 ancestral 

populations least enriched in EUR samples, again comparing to 1000 genomes data. The remaining samples 

are in the “UCSF Strict EUR” bin. Cases and controls are plotted as vertical and horizontal lines and cluster 

above the 1000 genomes control data in B and C, with samples pruned for non-EUR ancestry shown as 

circles. 
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Supplemental Figure 2: Cross-correlation plot of tested filter conditions. Pearson correlations were 

calculated for log transformed p values between all filter sets tested. Filter sets were positively correlated with 

one another within three main clusters emerging corresponding to case-control comparison groups. 
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Supplemental Figure 3: Longitudinal CDRSB changes in ADNI participants with TET2 loss-of-function 

variants. TET2 rare variant carriers whose changes are predicted to result in a loss-of-function variant show 

greater CDRSB changes over time compared to non-carriers after controlling for age, sex, education, APOE 

!4, and baseline CDRSB score (β ± SE = 0.17 ± 0.09; *p=0.04). The lines depicted illustrate CDRSB change 

with 95% confidence intervals in shading. ADNI – Alzheimer’s Disease Neuroimaging Initiative; CDRSB – 

Clinical Dementia Rating Sum of Boxes Score.
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SUPPLEMENTAL TABLES 

Supplemental Table 1: GenoSkyline-Plus tracks. Only tracks from tissue were included. See Excel file. 

Supplemental Table 2: Demographic information. See Excel file. 

Supplemental Table 3: List of all 19,118 hg19 HUGO Gene Nomenclature Committee (HGNC) genes tested. See Excel file. 

 

 

Cohort Type Cohort Cases w/ Cases w/o Ctrls w/ Ctrls w/o SKAT p FET p Bonf. p OR (95% CI) 

Discovery (EOAD) UCSF Eur. (EOAD) 11 217 1 670 8.1x10-4 2.2x10-6 0.071 33.8 (4.9–1453) 

Replication (EOAD) UCSF Non-Eur. (EOAD) 4 62 1 156 0.778 0.028 NA 10.0 (1.0–497) 

Replication (LOAD) ADSP Genomes (LOAD) 64 2,144 36 2,172 4.6x10-4 6.0x10-3 NA 1.8 (1.2–2.8) 

Replication (LOAD) AMP-AD (LOAD) 11 738 7 439 0.910 1.000 NA 0.9 (0.3–2.9) 

Replication (All AD) All Replication Cohorts 79 2,944 44 2,767 1.5x10-3 6.0x10-3 NA 1.7 (1.1–2.5) 

Combined (All AD) Discovery + All Replication 90 3,161 45 3,437 2.7x10-6 1.7x10-5 NA 2.2 (1.5–3.2) 

 

Supplemental Table 4: Discovery and replication for private, CADD > 10 coding and non-coding variants in TET2 (analysis of AD vs. 

controls). Related to Table 1. Note that the discovery comparison did not meet the multiple corrections cutoff of p<0.05, therefore no formal 

replication was performed, so all statistics provided here are nominal. 
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Cohort Type Cohort Cases w/ Cases w/o Ctrls w/ Ctrls w/o SKAT p FET p Bonf. p OR (95% CI) 

Discovery (FTD) UCSF Eur. (FTD) 8 257 1 670 0.098 2.6x10-4 NA 20.8 (2.8–922) 

Replication (FTD) UCSF Non-Eur. (FTD) 3 76 1 156 0.802 0.110 NA 6.1 (0.5–325) 

Replication (FTD) AMP-AD (FTD) 4 180 7 439 0.877 0.739 NA 1.4 (0.3–5.6) 

Replication (FTD) All Replication Cohorts 7 256 8 595 0.443 0.168 NA 2.0 (0.6–6.5) 

Combined (FTD) Discovery + All Replication 15 513 9 1,265 0.894 9.1x10-4 NA 4.1 (1.7–10.7) 

Replication (ALS) Project MinE (ALS) 61 4,305 20 1,812 NA 0.391 NA 1.3 (0.8–2.3) 

Combined (FTD + ALS) Combined FTD + ALS 76 4,818 29 3,077 NA 0.020 NA 1.7 (1.1–2.7) 

 

Supplemental Table 5: Discovery and replication for private, CADD > 10 coding and non-coding variants in TET2 (analysis of FTD vs. 

controls). Related to Table 1. Note that the discovery comparison did not meet the multiple corrections cutoff of p<0.05, therefore no formal 

replication was performed, so all statistics provided here are nominal. 

 

 

Supplemental Table 6: Case and control counts for all filter sets and genes for the discovery cohort. A header in this file describes how to obtain 

counts for any desired filter set and gene. See zipped text file. 

Supplemental Table 7: Qualifying variants in TET2 from all four cohorts with individual genotype data available. See Excel file. 
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Supplemental Table 8: ADNI Cohort Characteristics for Qualifying TET2 Rare Variant Carriers 

  TET2 Carrier Status   

  Non-Carrier Carrier   

N 771 15 P-value 

Age (Years; Mean ± SD) 73.2 ± 7.1 77.1 ± 6.5 0.03 

Sex (# Male (%)) 433 (56.2%) 7 (46.7%) 0.64 

APOE !4 Dose (%)     

0.81 
0 451 (58.5%) 10 (66.7%) 

1 266 (34.5%) 4 (26.7%) 

2 54 (7.0%) 1 (6.7%) 

Diagnosis (#, %)   

0.89 
CN 266 (34.5%) 6 (40.0%) 

MCI 461 (59.8%) 8 (53.3%) 

AD 44 (5.7%) 1 (6.7%) 

Education (Years; Mean ± SD) 16.1 ± 2.8 16.3 ± 2.9 0.81 

CDRSB Baseline (Mean ± SD) 1.1 ± 1.3 1.0 ± 1.2 0.64 
 

CN—Normal Control; MCI – Mild Cognitive Impairment; AD – Alzheimer’s disease; SD – Standard Deviation; CDRSB – Clinical Dementia Rating Sum of Boxes Score. 
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Supplemental Table 9: ADNI Cohort Characteristics for TET2 Loss-of-Function Carriers 

  TET2 LoF Carrier Status   

  LoF Non-Carrier LoF Carrier   

N 778 8 P-value 

Age (Years; Mean ± SD) 73.2 ± 7.1 77.7 ± 5.7 0.08 

Sex (# Male (%)) 436 (56.0%) 4 (50.0%) 1 

APOE !4 Dose (%)     

0.57 
0 455 (58.5%) 6 (75.0%) 

1 268 (34.4%) 2 (25.0%) 

2 55 (7.1%) 0 (0.0%) 

Diagnosis (#, %)   

0.61 
CN 270 (34.7%) 2 (25.0%) 

MCI 463 (59.5%) 6 (75.0%) 

AD 45 (5.8%) 0 (0.0%) 

Education (Years; Mean ± SD) 16.1 ± 2.8 16.5 ± 2.6 0.68 

CDRSB Baseline (Mean ± SD) 1.1 ± 1.3 0.9 ± 0.7 0.59 
 
CN—Normal Control; MCI – Mild Cognitive Impairment; AD – Alzheimer’s disease; SD – Standard Deviation; CDRSB – Clinical Dementia Rating Sum of Boxes Score. 
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SUPPLEMENTAL ACKNOWLEDGEMENTS 
 

ADSP: 

The Alzheimer’s Disease Sequencing Project (ADSP) is comprised of two Alzheimer’s Disease (AD) genetics 

consortia and three National Human Genome Research Institute (NHGRI) funded Large Scale Sequencing and 

Analysis Centers (LSAC). The two AD genetics consortia are the Alzheimer’s Disease Genetics Consortium 

(ADGC) funded by NIA (U01 AG032984), and the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, and Blood Institute 

(NHLBI), other National Institute of Health (NIH) institutes and other foreign governmental and non-

governmental organizations. The Discovery Phase analysis of sequence data is supported through 

UF1AG047133 (to Drs. Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr. 

Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate 

and the Discovery Extension Phase analysis is supported through U01AG052411 to Dr. Goate, U01AG052410 

to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri and Fornage. Data generation and harmonization in 

the Follow-up Phases is supported by U54AG052427 (to Drs. Schellenberg and Wang). 

The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer’s Disease Centers (ADC), the 

Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic (MAYO), Mayo 

Parkinson’s Disease controls, University of Miami, the Multi-Institutional Research in Alzheimer’s Genetic 

Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer’s Disease (NCRAD), the National 

Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA-LOAD), the Religious Orders Study 

(ROS), the Texas Alzheimer’s Research and Care Consortium (TARC), Vanderbilt University/Case Western 

Reserve University (VAN/CWRU), the Washington Heights-Inwood Columbia Aging Project (WHICAP) and the 

Washington University Sequencing Project (WUSP), the Columbia University Hispanic- Estudio Familiar de 

Influencia Genetica de Alzheimer (EFIGA), the University of Toronto (UT), and Genetic Differences (GD). 

The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) infrastructure 

grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is supported by the 

National Institute on Aging (NIA) R01 grant AG033193. The CHARGE cohorts participating in the ADSP 

include the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family study, and the Prospective 
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Dementia Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, the 

Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham Heart Study 

(FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond (FWF) grant number 

P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded by the Austrian 

Science Fund (FWF) project I904),the EU Joint Programme - Neurodegenerative Disease Research (JPND) in 

frame of the BRIDGET project (Austria, Ministry of Science) and the Medical University of Graz and the 

Steiermärkische Krankenanstalten Gesellschaft. PRODEM-Austria is supported by the Austrian Research 

Promotion agency (FFG) (Project No. 827462) and by the Austrian National Bank (Anniversary Fund, project 

15435. ARIC research is carried out as a collaborative study supported by NHLBI contracts 

(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 

HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). 

Neurocognitive data in ARIC is collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 

2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI 

examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by contracts 

HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, 

N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI 

with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional 

support was provided by R01AG023629, R01AG15928, and R01AG20098 from the NIA. FHS research is 

supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. This study was also supported by 

additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS (R01 NS017950). The 

ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by 

European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding 

from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-

F4-2007-201413 by the European Commission under the programme "Quality of Life and Management of the 

Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the 

ERF data was supported by a joint grant from the Netherlands Organization for Scientific Research and the 

Russian Foundation for Basic Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by 

Erasmus Medical Center and Erasmus University, Rotterdam, the Netherlands Organization for Health 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/759621doi: bioRxiv preprint 

https://doi.org/10.1101/759621
http://creativecommons.org/licenses/by-nc-nd/4.0/


Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of 

Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG 

XII), and the municipality of Rotterdam. Genetic data sets are also supported by the Netherlands Organization 

of Scientific Research NWO Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the 

Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; 

RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research 

(NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to 

their participants, faculty and staff. The content of these manuscripts is solely the responsibility of the authors 

and does not necessarily represent the official views of the National Institutes of Health or the U.S. Department 

of Health and Human Services. 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54 

HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome Center at the 

Uniformed Services University of the Health Sciences (U01AG057659), and the Washington University 

Genome Institute (U54HG003079). 

Biological samples and associated phenotypic data used in primary data analyses were stored at Study 

Investigators institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD, 

U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data used in primary and 

secondary data analyses were provided by Study Investigators, the NIA funded Alzheimer’s Disease Centers 

(ADCs), and the National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the National Institute 

on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University of 

Pennsylvania, funded by NIA, and at the Database for Genotypes and Phenotypes (dbGaP) funded by NIH. 

This research was supported in part by the Intramural Research Program of the National Institutes of health, 

National Library of Medicine. Contributors to the Genetic Analysis Data included Study Investigators on 

projects that were individually funded by NIA, and other NIH institutes, and by private U.S. organizations, or 

foreign governmental or nongovernmental organizations. 
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