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1 Behavioral data

To evaluate different models of visual working memory, we compared the quality of
model fits for a large set of behavioral data from continuous report tasks. This dataset
is compiled of 15 experiments with over 190,000 trials in total. We included avail-
able data from published continuous report experiments (either single-report or whole-
report tasks) that have the following characteristics: They test recall performance for
at least two different set sizes with a fixed delay duration, all items are presented si-
multaneously and equally likely to be tested, and the reported feature is either color
or orientation. The target item can be indicated either by a location cue or a categor-
ical color cue. The dataset for single-report tasks (Table S1) is similar to the dataset
used in a previous model comparison (van den Berg et al., 2014), but we excluded
experiments from two studies that have in the meantime been retracted, and added
several more recent studies. We also fit behavioral data from four whole-report tasks
(Table S2), in which participants had to report the feature values of all items presented
in the sample array, with the order of responses either freely chosen by the partici-
pant, or determined randomly by the experiment software (Adam et al., 2017). In the
whole-report tasks, items were always cued or selected via their location.

2 Models

2.1 General assumptions and notations

For a single trial in a continuous report task, we denote the set size of the memory
sample array with N , and the feature values of the sample items with θ = (θ1, . . . , θN).
For classical continuous report tasks with a single report, we denote the reported
feature value with ψ. For whole-report tasks, the sequence of reported feature value
is ψ = (ψ1, . . . , ψN).

Each model defines a response probability distribution p(ψ|θ) assuming that the
response is generated based on a sample item with true feature value θ. For all model
fits, we incorporate swap errors, which we found to consistently improve the quality
of fits (see Section 4.3). We assume that response distributions around the selected



No Study Feature Set Sizes Participants Trials

1 Zhang and Luck (2008) Color 1, 2, 3, 6 8 125

2 Bays et al. (2009) Color 1, 2, 4, 6 12 200

3 van den Berg et al. (2012), Exp 1 Color 1 – 8 13 216

4 van den Berg et al. (2012), Exp 2 Orientation 1 – 8 6 320

5 Rademaker et al. (2012) Orientation 3, 6 6 800

6 Bays (2014), Exp 1 Orientation 1, 2, 4, 8 8 230

7 Bays et al. (2011a), Exp 1 Orientation 1, 2, 4, 6 8 800

8 Bays et al. (2011b) Orientation 1, 6 10 50, 250

9 Bays et al. (2011b) Color 1, 6 10 50, 250

10 Gorgoraptis et al. (2011), Exp 2 Orientation 1 – 5 8 100

11 Pratte et al. (2017) Orientation 1, 2, 3, 6 12 640

Table S1: Single-report experiments used for model comparison in this study. The
Trials column denotes the number of trials each participant completed per set size.

No Feature Report Order Set Sizes Participants Trials

1 Color Free 1, 2, 3, 4, 6 22 99

2 Orientation Free 1, 2, 3, 4, 6 20 200

3 Color Random 1, 2, 3, 4, 6 17 99

4 Orientation Random 1, 2, 3, 4, 6 19 200

Table S2: Whole-report experiments used for model comparison. All experiments are
taken from Adam et al. (2017).

feature value are identical for target and non-target features, and that each non-target
feature value has a fixed probability pNT of being used as the basis for response gen-
eration, so the total proportion of swap errors increases linearly with set size (this is
of course not tenable for very large N , but suffices for studies in our dataset, N ≤ 8).
For the response ψi corresponding to a cued item θi, we then obtain the probability
distribution

p(ψi|θ) = pTp(ψi|θi) + pNT

∑
j∈{1,...,N},j 6=i

p(ψi|θj), (1)

where pT = 1− (N − 1)pNT is the probability that the response is based on the feature
value of the target item.

In the whole-report tasks with freely chosen response order, we assume for all
models that responses are ordered by precision (either expressed as the number of
samples assigned to them or as a continuous precision value), starting with the highest
precision item. We further assume that this ordering is still maintained if a swap error
occurs. We reason that the item to report is selected based on the precision with



which its reported feature value is represented, and a swap error occurs when the
location of that item is chosen incorrectly. We consider this to be more plausible than
the possibility that a location is selected first based on the precision of the associated
feature value, and then a different (lower precision) feature value from a different item
is reported.

In all the studies making up our experimental dataset, the space of reported fea-
tures was circular. We therefore used von Mises distributions (a circular analogue of
Gaussian) in the definitions of our models, and we measure precision as Fisher In-
formation (as in van den Berg et al., 2012). Our conclusions would not have been
significantly affected had we used wrapped normal distributions, or defined precision
as the inverse square of circular standard deviation (as in e.g. Bays, 2014).

2.2 Stochastic sampling model

The stochastic sampling model assumes that each memorized feature value is repre-
sented by a varying number of discrete samples with fixed precision. The free param-
eters of this model are the sample precision ω1 and the mean total number of samples
γ. The number of samples that contributes to the representation of each individual
item is drawn independently from a Poisson distribution with mean γ/N . The resulting
response distribution is then a mixture of von Mises distributions with different pre-
cisions, each corresponding to a certain number of samples and weighted with the
probability of obtaining that sample count:

p(ψ|θ) =
∞∑
k=0

PrPoisson

(
k;
γ

N

)
φ◦(ψ; θ, κ(kω1)) (2)

Here, PrPoisson is the Poisson distribution,

PrPoisson(k;λ) =
λke−λ

k!
, (3)

and φ◦ is the von Mises distribution,

φ◦(ψ; θ, κ) =
1

2πI0(κ)
eκ cos(ψ−θ). (4)

The term κ(ω) signifies the concentration parameter that yields a von Mises distribution
with precision ω. If precision is expressed as Fisher Information, the corresponding
value κ can be obtained by numerically inverting the relationship ω = κ I1(κ)

I0(κ)
. In is the

modified Bessel function of the first kind. For fitting the model to data, we only compute
the sum in the above equation over sample counts k for which PrPoisson(k; γ

N
) ≥ 10−5.

In the whole-report task with random report order, the stochastic sampling model
predicts that there are no response correlations, because the number of samples is
drawn independently for each item. The response distribution for this case is given by

p(ψ|θ) =
N∏
i=1

p(ψi|θ), (5)

where p(ψi|θ) is the probabilty distribution including swap errors as defined in Eq. 1.



In the free response order condition, responses are ordered by the number of sam-
ples that represent each item. This sorting induces positive correlations between
response errors for consecutive responses within a trial. To compute the response
probability for this condition, we determine all possible ordered sequences of sample
counts λ = (λ1, . . . , λN), λi ≥ λj ∀ i < j. The probability that each such sequence of
sample counts will be generated by the model is

Pr(λ) =

max(λ)∏
k=0

PrPoisson

(
k;
γ

N

)nk(λ)(N −∑k−1
j=0 nj(λ)

nk(λ)

)
, (6)

where nk(λ) is the number of entries in λ with λi = k. The probability distribution for a
sequence of responses (taking into account swap errors) is then

p(ψ|θ) =
∑
λ

Pr(λ)
N∏
i=1

pTφ◦(ψi; θi, κ(λiω)) + pNT

∑
j∈{1,...,N},j 6=i

φ◦(ψi; θj, κ(λiω))

 (7)

For the implementation, we again consider only sample counts k with PrPoisson(k; γ
N

) ≥
10−5, and we exclude the least likely sequences λ up to a cumulative probability of
10−3.

2.3 Fixed sampling model

The fixed sampling model assumes that a fixed number K of samples, each with a
fixed precision ω, is distributed as evenly as possible among the memory items in
each trial. The probability distribution of the response is given by

p(ψ|θ) =
K mod N

N
φ◦

(
ψ; θ, κ

(⌈
K

N

⌉
ω

))
+

(
1− K mod N

N

)
φ◦

(
ψ; θ, κ

(⌊
K

N

⌋
ω

))
(8)

For the whole-report task, we again assume that responses are ordered by sample
count. In the free response order condition, the response probability distribution is
described by

p(ψ|θ) =
N∏
i=1

p(ψi|θ) (9)

with

p(ψ|θ) =

{
φ◦
(
ψ; θ, κ

(⌈
K
N

⌉
ω
))
, if i ≤ K mod N

φ◦
(
ψ; θ, κ

(⌊
K
N

⌋
ω
))
, otherwise.

(10)

In the random response order condition, the fixed sampling model predicts negative
correlations between response errors in a single trial. We determine all possible un-
ordered sequences of sample counts λ = (λ1, . . . , λN) with

∑N
i=1 λi = K, where the

only possible values for each λi are
⌊
K
N

⌋
and

⌈
K
N

⌉
. Each such sequence will occur

with equal probability Pr(λ) =
(

N
K mod N

)
. The response probability p(ψ|θ) can then be

expressed in the same way as in Eq. 7.



2.4 Fixed sampling model with random allocation

As a variant of the fixed sampling model described above, we considered a model
in which the total number of samples, K, is fixed, but each sample is randomly and
independently assigned to one of the N memory items with equal probability. The
probability of obtaining a certain number k of samples for a single item is then given
by the binomial distribution,

PrBinom

(
k;K,

1

N

)
=

(
K

k

)(
1

N

)k(
1− 1

N

)K−k
, (11)

and the response probability distribution is:

p(ψ|θ) =
K∑
k=0

PrBinom

(
k;K,

1

N

)
φ◦(ψ; θ, κ(kω)) (12)

This model predicts correlations between response errors within a trial of the whole-
report task both in the free response order and the random response order conditions.
For the free response order condition, the possible sequences of ordered sample
counts are {λ|

∑N
i=1 λi = K,λi ≥ λj∀i < j}. For the random response order con-

dition, the set of possible sample count sequences is {λ|
∑N

i=1 λi = K}. In both cases,
we can compute the probability of each sequence as

Pr(λ) =
P̃r(λ)∑
λ′ P̃r(λ′)

(13)

with

P̃r(λ) =
N∏
i=1

(
K −

∑i−1
j=1 λj

λi

)
. (14)

The response probability p(ψ|θ) in the whole-report task can again be expressed as
in Eq. 7.

2.5 Stochastic sampling model with even allocation

A second model variant assumes that the total number of samples varies from trial to
trial (as in the stochastic sampling model), but these samples are distributed across
memory items as evenly as possible (as in the fixed sampling model). For each trial,
the total number of samples is drawn from a Poisson distribution with mean γ. The
probability distribution for a single response can then be given as weighted sum of
probabilities from the fixed sampling model with different numbers of samples k:

p(ψ|θ) =
∞∑
k=0

PrPoisson(k; γ)pfs(ψ|θ; k) (15)

The response probabilities for the whole-report task can be determined in the same
fashion as mixtures of the corresponding response probabilities in the fixed sampling
model. We note that this introduces error correlations even in the case of the free re-
sponse order condition, in which there are no correlations in the fixed sampling model.



2.6 Generalized stochastic sampling model

In the generalized stochastic sampling model, the Poisson distribution over precision
values is replaced by a negative binomial distribution with an additional discretization
parameter p. The distribution of response errors is then given by

p(ψ|θ) =
∞∑
k=0

PrNegBin

(
k;

γ

(1− p)N
, p

)
φ◦(ψ; θ, κ(kω1p)) (16)

with
PrNegBin(k; r, p) =

Γ(k + r)

k!Γ(r)
pr(1− p)k (17)

for 0 < p < 1. For fitting the model to data, we only compute the sum over sample
counts k for which PrNegBin(k; γ

(1−p)N , p) ≥ 0.5 ·10−4. We did not attempt to fit this model
to whole-report data, as the number of combinatorial possibilities quickly becomes
computationally infeasible as p gets small.

2.7 Gamma model

The Gamma model assumes that recall precision for each item is drawn independently
from a Gamma distribution with shape parameter γ

N
and scale parameter ω1. This

model constitutes the limit case of the generalized stochastic sampling model for p→ 0
(see Section 5.2), and has previously been proposed independently by van den Berg
et al. (2012) and Fougnie et al. (2012). In the formulation of van den Berg et al.,
the precision is distributed as J ∼ Gamma(J̄1/N

α, τ), which is identical to the model
described here for J̄1 = γ, ω1 = τ , and α = 1.

The response probability distribution in the Gamma model is described as a con-
tinuous mixture of von Mises distributions:

p(ψ|θ) =

∫ ∞
ω=0

pGamma

(
ω;

γ

N
, ω1

)
φ◦(ψ; θ, κ(ω))dω (18)

with
pGamma(ω, k, θ) =

1

Γ(k)θk
ωk−1e−

ω
θ , (19)

where Γ is the gamma function. For model fitting, the integral is computed numeri-
cally with 1000 possible values of ω, which cover the range of precision values with
cumulative probabilities of the gamma distribution from 10−5 to 1− 10−5.

In the whole-report task, the variable precision model predicts similar correlation
patterns as the stochastic sampling model (which likewise draws precision values in-
dependently for each item). In the random report order condition, response errors
within a trial are uncorrelated, and the precision distribution is given by

p(ψ|θ) =
N∏
i=1

p(ψi|θ). (20)



In the free report order condition, the probability distribution for a sequence of re-
sponses can be described as

p(ψ|θ) =

∫ ∞
ω1=0

· · ·
∫ ∞
ωN=0

p(ω)·

N∏
i=1

pTφ◦(ψi; θi, κ(ωi)) + pNT

∑
j∈{1,...,N},j 6=i

φ◦(ψi; θj, κ(ωi))

dω1 . . . dωN , (21)

where ω = (ω1, . . . , ωN) is the sequence of ordered precision values for the responses,
and p(ω) is the probability of obtaining such a sequence if each precision value is
drawn independently from a gamma distribution. Evaluating this equation is challeng-
ing, and in order to obtain an approximation, we discretize the range of possible pre-
cision values for each individual response into m = 12 bins of equal probability. We
can then determine the probability of obtaining a sequence of ordered precision bins
b = (b1, . . . , bN) as

Pr(b) = m−N
m∏
k=1

(
N −

∑k−1
j=0 nj(b)

nk(b)

)
. (22)

Here, nk(b) denotes the number of entries in b with bi = k, analogously to its use in
Eq. 6. The response probability for a sequence of responses can then be given as
weighted sum over all possible sequences b,

p(ψ|θ) ≈
∑
b

Pr(b)
N∏
i=1

∫ ωhigh(bi)

ω=ωlow(bi)

pGamma

(
ω;

γ

N
, ω1

)
·pTφ◦(ψi; θi, κ(ω)) + pNT

∑
j∈{1,...,N},j 6=i

φ◦(ψi; θj, κ(ω))

dω. (23)

Here, ωlow(b) and ωhigh(b) are the boundaries of the precision bin with index b. Eval-
uating this form is more feasible, since the integrals over each precision bin can be
computed independently (using the same numerical method with a total of 1000 sam-
pling points as above) and then combined.

2.8 Neural population model with heterogeneous tuning curves

We tested a variant of the neural population model that incorporates heterogeneity
in the cells’ tuning functions of the kind observed in electrophysiological recordings.
Specifically, the model takes into account that neurons differ in their minimum (base-
line) and maximum (peak) levels of activity, as well as in tuning width. The model also
relaxes the assumption that the feature space is covered homogeneously by neural
tuning curves, instead selecting neurons’ preferred values at random from a uniform
distribution. As in the original implementation of the neural population model (Bays,
2014), we assume that each of N feature values in the memory sample array is en-
coded by a different population of M neurons. The tuning curve of neuron i encoding
a feature value θ is given by a scaled von Mises distribution function plus a baseline,

fi(θ) = αi + βi exp (κi(cos (θ − ϕi)− 1)). (24)



Here, αi is the amplitude of the neuron’s baseline activity, βi is the gain of the neuron,
κi is the von Mises concentration parameter which determines the tuning width, and
ϕi is the neuron’s preferred feature value. These parameters are chosen randomly
for each simulated neuron, with the degree of interneuron variability determined by a
global heterogeneity parameter ν.

For ν = 0, the tuning parameters of all neurons are identical (with no baseline ac-
tivity and homogeneous coverage of the feature space), making the model identical to
the standard neural population model described in Bays (2014), and an exact circular
analogue of the population model described in the main manuscript. The distributions
of parameter values were chosen such that for ν = 1, the population has approximately
the heterogeneity observed in orientation-selective neurons in cortical area V1 (Ecker
et al., 2010). For ν > 1, individual neurons’ parameters vary over wider ranges than
observed in these biological populations.

Concretely, the parameters for each neuron are drawn from the following distribu-
tions:

log κi ∼ N (log κ̃, ν2) (25)
log βi ∼ N (log 1, ν2) (26)
logαi ∼ N (log (0.04νβ), ν2) (27)

ϕi ∼ N
(

2π

M
(i− 1), ν2

)
mod 2π (28)

As in previous versions of the population model, we scaled the total expected activity
of all neurons encoding all items with a population gain parameter, γ, which was fixed
across changes in set size. However, in the heterogeneous model the information ca-
pacity of a neural population varied not only as a function of γ but also all the individual
tuning parameters of all the component neurons. In order to equate populations with
different randomly-drawn tuning parameters, instead of treating γ as a free parameter
for model fitting, we instead used the expected precision of a decoded estimate as the
free parameter, and set the population gain γ to a value that would achieve it.

Specifically, we first normalized the tuning curves such that the population would
on average fire exactly one spike within the decoding time interval:

f̌i(θ) =
fi(θ)

1
2π

∑M
j=1

∫ π
−π fj(θ)dθ

(29)

The mean precision of maximum likelihood decoding from this population (assuming
full knowledge of the tuning curves) was determined by the expected Fisher Informa-
tion,

Ǐ =
1

2π

M∑
i=1

∫ π

−π

(
d log f̌i(θ)

dθ

)2

f̌i(θ)dθ. (30)

The mean decoding precision scales linearly with the number of spikes available for
decoding, so in order to achieve the desired precision Ī, we set the global gain param-
eter γ to

γ = Ī/Ǐ (31)

The spike count ri of neuron i encoding feature value θ in a trial with set size N was
then drawn from a Poisson distribution,

ri ∼ Poiss
( γ
N
f̌i(θ)

)
. (32)



The log likelihood of stimulus feature θ′ for a given set of spikes r is (up to addition by
a constant),

logL(θ′|r) =
M∑
i=1

ri log f̌i(θ
′)− f̌i(θ′). (33)

Decoded estimates were obtained as the maximum of this function, and their precision
as the width of the likelihood function measured in terms of Fisher Information.

The heterogeneous model therefore has three free (global) parameters that deter-
mine the distributions of the single neuron parameters and thereby the predicted error
distributions of decoded estimates: the median tuning curve width, κ̃, the heterogene-
ity parameter, ν, and the mean precision for a single stored item, Ī. We estimated the
response distributions for this model by sampling. For each combination of values for
the parameters κ̃, ν, and Ī on a search grid (described in Section 3), we randomly
drew 100 sets of single-neuron parameters for M = 1000 neurons1 from the distri-
butions specified in Equations 25 to 28. For each set of single-neuron parameters,
we generated a neural spiking pattern in response to 1000 randomly chosen feature
values θ, and obtained likelihood functions and maximum likelihood estimates θ̂ as de-
scribed above. The response error distribution is then approximated by a histogram
over the decoding errors, θ̂ − θ, averaged over all sets of single-neuron parameters.

3 Fitting procedure

We fit models separately to the behavioral data of each participant in each experiment
of the single-report and whole-report dataset. Data of each participant across all set
sizes was fit with a single set of parameter values. We employed two different methods
to determine the ML parameter values, namely the Nelder-Mead simplex algorithm and
grid search over the parameter space.

We used the Nelder-Mead simplex algorithm to fit all models except for the gen-
eralized stochastic model and the neural population model with heterogeneous tuning
curves, for both single-report and whole-report data. We defined a limited grid of initial
parameter values, and ran the fitting algorithm (function fminsearch in Matlab) with
each possible combination of initial values until a termination tolerance of 0.01 was
reached for both the fitted parameter values and the resulting likelihood value. Pos-
sible initial values for the sample precision ω1 were 20, 22, 24. For stochastic sampling
models and gamma model, we first defined initial values for the mean precision at
set size one, E[ω], as 22, 24, 26, then determined initial values of γ as γ = E[ω]

ω1
. For

fixed sampling models, we obtained separate fits for all integer values of K in the
range (0, 25), and selected the fit with the highest likelihood. Initial values for pNT were
0.01, 0.05, 0.1, and for α they were 2−0.5, 20, 20.5. In variants where these parameters
were not used they were fixed at pNT = 0 and α = 1, respectively.

We used the grid search to fit the generalized stochastic model (separately for dif-
ferent values of the discretization parameter p) and the neural population model with
heterogeneous tuning curves to single-report data. For the latter, likelihood values

1The precise number of neurons has very little influence on the response distributions once the
average spacing between neurons’ preferred values is significantly smaller than the tuning curve width,
and therefore we do not treat M as a free parameter in this model.



were determined by sampling, as no closed form solution is available. We also ob-
tained additional fits for the models described in the main text (stochastic sampling,
fixed sampling, random-fixed, even-stochastic, and gamma) to verify that the Nelder-
Mead simplex algorithm for these models terminated in the global rather than a local
maximum of the likelihood function. The parameter grid was spanned by 50 possible
values of each model parameter. Values for sample precision, ω1, were spaced loga-
rithmically in the range [2−4, 25], and values for mean precision, ω̄, in the range [2−2, 29].
For the fixed sampling models, the parameter K took all integer values in the range
[0, 50). The values for proportion of non-target responses, pNT, were evenly spaced
in the range [0.0, 0.14] for all models. To compute likelihood values in the grid search,
response errors were discretized into 101 evenly spaced bins for all models as well
as for the behavioral data (ensuring fair comparison between models with closed-form
likelihood function and the heterogeneous neural model which requires sampling).

In both fitting methods, we determined a maximum likelihood value L and an asso-
ciated set of parameters. For comparison between models that differed in the number
of free parameters, we computed Akaike information criterion (AIC) scores,

AIC = 2k − 2 log(L), (34)

and Bayesian information criterion (BIC) scores,

BIC = log(n)k − 2 log(L). (35)

Here, k is the number of free parameters in each model, and n is the number of data
points (number of trials in the single-report tasks, and number of individual responses
in the whole-report tasks). AIC and BIC differences for the models described in the
main text are depicted in Fig. S1A and E for single-report and whole-report data, re-
spectively. ML fit values of free parameters are reported in Tables S3 and S4.

4 Additional model comparisons

4.1 Heterogeneous population model

The stochastic sampling model is derived from a mathematical idealization of neural
population coding, in which the stimulus space is evenly covered with tuning functions
of identical width and amplitude (as in Fig. S2A). In reality, neurons selective for the
same feature in the same region of the brain vary greatly in their tuning characteristics.
To examine the impact of this heterogeneity on the precision of decoded estimates we
fit the single-report data with an extension of the standard model in which neurons var-
ied in their tuning, to a degree set by a heterogeneity parameter (ν; see Supplementary
Methods for details).

The results indicated that adding heterogeneity to the simulated population im-
proved fits to data (Fig. S2C; ∆AIC = 5.8 ± 1.5, ∆BIC = 1.0 ± 1.5, compared to model
with fixed ν = 0; ∆AIC = 8.3 ± 1.8, ∆BIC = 3.4 ± 1.7, compared to stochastic sampling
model which incorporates additional simplifications). Fig. S2B shows an illustrative set
of neural tuning functions corresponding to the mean fitted heterogeneity parameter
value (ν = 0.66 ± 0.08; note that ν = 1 was approximately matched to heterogeneity
of orientation-selective neurons in recordings from V1; other parameters: κ̃ = 1.53 ±
0.15; Ī = 18.6 ± 1.0).
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Figure S1: Model comparison for additional model variants. Mean differences in AIC
(light gray) and BIC values (dark gray) relative to the stochastic sampling model with
swap errors are shown for single-report data (A-D) and whole-report data (E-H). Better
models have lower values. Error bars indicate ± 1 SE. (A, E) Models as described in
the main text, including a fixed probability of swap errors per memory item. (B, F)
Variant of discrete sampling models with exact maximum likelihood decoding from
samples in circular feature space. (C, G) Model variants without swap errors (pNT = 0).
(D, H) Model variants with power law relationship for set size effect, with exponent α
as additional free parameter.



Model γ or K ω1 pNT α

Stochastic 13.2 ± 1.7 0.241 ± 0.044 0.0245 ± 0.0023

Fixed 4.90 ± 0.21 1.25 ± 0.13 0.0265 ± 0.0023

Random-fixed 11.4 ± 0.7 0.579 ± 0.080 0.0238 ± 0.0023

Even-stochastic 7.31 ± 1.47 2.49 ± 0.15 0.0287 ± 0.0024

Gamma 8.63 ± 1.94 5.00 ± 0.36 0.0281 ± 0.0024

full ML decoding for circular feature spaces

Stochastic 35.0 ± 6.3 0.455 ± 0.068 0.0261 ± 0.0024

Fixed 11.7 ± 0.9 1.19 ± 0.15 0.0305 ± 0.0027

Random-fixed 13.8 ± 0.8 0.908 ± 0.096 0.0262 ± 0.0024

Even-stochastic 15.9 ± 3.3 2.93 ± 0.17 0.0289 ± 0.0024

excluding swap errors

Stochastic 8.35 ± 0.81 0.525 ± 0.086

Fixed 3.67 ± 0.13 1.63 ± 0.16

Random-fixed 6.91 ± 0.34 1.03 ± 0.11

Even-stochastic 4.49 ± 0.14 2.99 ± 0.17

Gamma 3.95 ± 0.73 8.16 ± 0.62

power law for set size effects

Stochastic 8.46 ± 0.51 1.41 ± 0.10 0.0310 ± 0.0026 0.809 ± 0.031

Gamma 4.35 ± 0.37 5.60 ± 0.40 0.0339 ± 0.0026 0.809 ± 0.032

Table S3: Parameter values of ML fits for single-report data (mean ± 1 SE across
participants and experiments). Outliers with deviation from mean greater than 3 SD
were excluded (at most 4 out of 101 individual fit values for each parameter).



Model γ or K ω1 pNT α

Stochastic 4.30 ± 0.14 2.98 ± 0.26 0.0367 ± 0.0041

Fixed 2.72 ± 0.10 3.25 ± 0.31 0.0529 ± 0.0036

Random-fixed 4.21 ± 0.16 3.26 ± 0.28 0.0481 ± 0.0039

Even-stochastic 2.87 ± 0.07 6.67 ± 0.32 0.0292 ± 0.0039

Gamma 1.40 ± 0.06 23.2 ± 1.6 0.0384 ± 0.0043

full ML decoding for circular feature spaces

Stochastic 4.31 ± 0.14 3.54 ± 0.26 0.0367 ± 0.0041

Fixed 6.08 ± 0.88 3.57 ± 0.33 0.0551 ± 0.0037

Random-fixed 4.19 ± 0.17 3.86 ± 0.28 0.0491 ± 0.0040

Even-stochastic 2.87 ± 0.07 7.23 ± 0.32 0.0292 ± 0.0039

excluding swap errors

Stochastic 3.57 ± 0.11 3.48 ± 0.25

Fixed 2.42 ± 0.06 1.45 ± 0.19

Random-fixed 3.61 ± 0.12 2.27 ± 0.23

Even-stochastic 2.56 ± 0.06 6.91 ± 0.32

Gamma 1.07 ± 0.04 31.7 ± 2.1

power law for set size effects

Stochastic 7.06 ± 0.39 4.10 ± 0.21 0.0239 ± 0.0032 1.37 ± 0.03

Gamma 2.33 ± 0.12 19.5 ± 1.4 0.0258 ± 0.0034 1.38 ± 0.03

Table S4: Parameter values of ML fits for whole-report data (mean ± 1 SE across
participants and experiments). Outliers with deviation from mean greater than 3 SD
were excluded (at most 4 out of 78 individual fit values for each parameter).
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Figure S2: Population coding model with heterogeneous tuning. (A) Examples of
tuning functions in the idealized neural population underlying the stochastic sampling
model. (B) Example tuning functions corresponding to mean parameters of the fitted
heterogeneous model. (C) Results of model comparison on single-report data. The
heterogeneous model out-performed the stochastic sampling model, and the model
with Gamma-distributed precision, according to both AIC and BIC measures. (D) Dis-
tributions of precision of decoded estimates in the heterogeneous model, for different
set sizes, based on mean parameters of best fit. (E) Distributions of precision for the
stochastic sampling model with matched parameters, for comparison. (F) Distributions
of precision for the Gamma model with matched parameters.



The consequences of heterogeneity for the precision of decoded estimates is illus-
trated in Fig. S2D, again based on best-fitting parameters of the heterogeneous model.
The interneuronal variation in tuning results in variability in the precision associated
with each spike, which has the effect of making precision distributions continuous (at
least in the range of population activity levels that correspond to typical experimental
set sizes). Unlike the discrete distribution predicted by the (homogeneous) stochastic
sampling model (Fig. S2E), there is no probability of zero precision decoding. This is
because the unevenness in coverage of the stimulus space makes no spikes a more
probable response to some feature values than others, meaning it is no longer unin-
formative about the stimulus. However, at lower set sizes there is a sharp increase in
probability of very low precision estimates that could not in practice be discriminated
from zero (blue curve in Fig. S2D).

Example precision distributions from the Gamma (variable precision; Fougnie et al.,
2012; van den Berg et al., 2012) model are shown in Fig. S2F. Interestingly, het-
erogeneity provides a second putative connection between population coding and
Gamma-distributed precision, in addition to the one set out in the main text. This
is because a Gamma process (the random process whose marginal distribution at
each moment in time is a Gamma distribution) can be constructed from an infinite
superposition of different Poisson processes, varying in their rate and, inversely, in
their amplitude (i.e. Lévy jump size). So, with the right kind of heterogeneity, a pop-
ulation model with Poisson spiking could theoretically result in estimates with exactly
Gamma-distributed precision.

4.2 Full maximum likelihood decoding for circular feature spaces

The assumption that the decoding precision in sampling models increases in equal
discrete steps with the number of samples is only strictly true for certain cases. For
circular feature spaces with samples drawn from a von Mises distributions, it is only an
approximation. An exact method to compute the distribution of response errors aris-
ing from ML decoding in circular space was derived in Bays (2014) and Bays (2016).
For a given number of samples, m, that are drawn independently from the same von
Mises distribution with concentration parameter κ1 = κ(ω1), the resulting distribution of
decoding error can be described as a continuous scale mixture of von Mises distribu-
tions,

p(ψ|θ,m) =

∫
p(r|m,κ1)p(φ◦(ψ; θ, rκ1)dr (36)

with
p(r|m,κ) =

I0(κr)

(I0(κ))m
rψm(r). (37)

Here, rψm(r) is the probability density function for the resultant length r of a uniform
random walk of m steps. The distribution of response errors in each sampling model
is then a mixture of probability distributions p(ψ|θ,m), weighted with the probability of
obtaining m samples for an item.

We obtained ML fits using this method to determine response error distributions
for the stochastic sampling model, fixed sampling model, and random-fixed and even-
stochastic variants (the method is not compatible with the Gamma model, since this
model does not use discrete samples). The quality of fit was improved for all models



(Fig. S1B and F), with the largest changes for fixed sampling model and random-
fixed model fits to single-report data. However, the overall pattern of results did not
change when employing exact ML decoding instead of the simpler approximation. For
the stochastic sampling model, the change in quality of fit was minimal, supporting
our assumption that the simpler form provides a close approximation to full maximum
likelihood decoding for this model.

4.3 Excluding swap errors

We obtained ML fits of the behavioral data for all models without swap errors by keep-
ing the parameter pNT fixed at zero. The quality of fit for all models decreased sub-
stantially in this variant, independent of whether we measured it via AIC or BIC values
(which differ in how strongly they penalize additional free parameters; Fig. S1C and G).
This is consistent with previous findings that inclusion of swap errors improves model
fit (e.g. Bays et al., 2009; van den Berg et al., 2014).

4.4 Power law for set size effects

The variable precision model of van den Berg et al. (2012) proposed that the effect
of set size on mean recall precision is best explained by a power law of the form
E[ω] ∝ N−α, with a free parameter α. We added this parameter to the formulations of
the stochastic sampling model and the Gamma model (the other models assume that
a certain number of samples is distributed between all items, thus the power law is not
readily applicable). Quality of fit was improved for both models (Fig. S1 D and E), with
the stochastic sampling model still providing better quality of fit for both single-report
and whole-report datasets.

The distribution of parameter values for α in ML fits was very similar between the
two models, but differed markedly between single-report and whole-report data (Ta-
bles S3 and S4). The mean value was less than one for the former, but greater than
one in the latter, indicating an additional penalty for recall performance at higher set
sizes (beyond what would be expected by even distribution of a fixed amount of mem-
ory resources between items). This may be explained by the requirement to sequen-
tially report all items in the sample array, which increases the effective delay between
sample array and report and may cause moderate interference effects on VWM repre-
sentations for later-reported items.

5 Negative binomial distribution

In the generalized stochastic sampling model, precision follows a negative binomial
distribution,

ω

ω1p
∼ NegBin

(
ξ

1− p
, p

)
, (38)

with parameters ξ = γ
N
> 0, ω1 > 0, and 0 < p < 1. The probability of a precision value

ω with ω
ω1p
∈ Z≥0 is determined as

Pr(ω) =
Γ( ω

ω1p
+ ξ

1−p)

( ω
ω1p

)! Γ( ξ
1−p)

p
ξ

1−p (1− p)
ω
ω1p . (39)



This probability distribution has mean E[ω] = ξω1 and variance V ar[ω] = ξω1
2. Inter-

preted as a discrete sampling model, the expected number of samples per item is ξ/p
with variance ξ/p2.

5.1 Poisson distribution as limit case

The Poisson distribution is the limit case of the negative binomial distribution for p→ 1.
Using

ω

ω1p

p→1−→ ω

ω1

, (40)

and
p

a
1−p = ea

ln p
1−p

p→1−→ e−a (41)

we obtain

lim
p→1

Pr(ω) = lim
p→1

(
Γ( ω

ω1p
+ ξ

1−p)

( ω
ω1p

)! Γ( ξ
1−p)

p
ξ

1−p (1− p)
ω
ω1p

)
(42)

= lim
p→1

(
Γ( ω

ω1
+ ξ

1−p)

( ω
ω1

)! Γ( ξ
1−p)

e−ξ(1− p)
ω
ω1

)
. (43)

For ξ > 0 and ω1 > 0, we have
ξ

1−p
ω
ω1

p→1−→∞, (44)

and can apply the rule
Γ(x+ a)

Γ(x)

x/a→∞−→ xa. (45)

This yields

lim
p→1

Pr(ω) = lim
p→1

(
1

( ω
ω1

)!

(
ξ

(1− p)

) ω
ω1

e−ξ(1− p)
ω
ω1

)
(46)

=
ξ
ω
ω1 e−ξ

( ω
ω1

)!
, (47)

showing that for this limit case ω
ω1

is Poisson distributed,

ω

ω1

∼ Poisson(ξ). (48)

5.2 Gamma distribution as limit case

The continuous Gamma distribution can be shown to be the limit case of the negative
binomial distribution for p→ 0. For this case, we have

ξ

1− p
p→0−→ ξ, (49)

and we can use the limit rule

(1− p)a/p = ea
ln(1−p)

p
p→0−→ e−a. (50)



We can therefore write the limit of the negative binomial distribution as

lim
p→0

Pr(ω) = lim
p→0

(
Γ( ω

ω1p
+ ξ

1−p)

( ω
ω1p

)! Γ( ξ
1−p)

p
ξ

1−p (1− p)
ω
ω1p

)
(51)

= lim
p→0

(
Γ( ω

ω1p
+ ξ)

( ω
ω1p

)! Γ(ξ)
pξe
− ω
ω1

)
(52)

Furthermore, for any ξ > 0, we have

ω
ω1p

ξ

p→0−→∞, (53)

and we can apply the rule
Γ(x+ a)

x!

x/a→∞−→ xa−1. (54)

We obtain

lim
p→0

Pr(ω) =
1

Γ(ξ)

(
ω

ω1p

)ξ−1
pξe
− ω
ω1 (55)

= pω1
1

Γ(ξ)ωξ1
ωξ−1e

− ω
ω1 for

ω

ω1p
∈ Z≥0. (56)

We can now make the transition to the continuous probability density,

p(ω) =
1

Γ(ξ)ωξ1
ωξ−1e

− ω
ω1 , (57)

which matches the Gamma distribution with

ω ∼ Gamma(ξ, ω1). (58)
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