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Abstract 87 

Genetic variation is the fuel of evolution but analysing the spatio-temporal dynamics of 88 

genetic changes in natural populations is challenging, comprehensive sampling logistically 89 

difficult, and sequencing of entire populations costly. Here we address these issues by 90 

performing the first continent-wide genomic analysis of genetic variation in European 91 

Drosophila melanogaster, based on 48 pool-sequencing samples from 32 populations. Our 92 

analyses uncover a novel pattern of major longitudinal population structure; establish 93 

previously unknown clines in inversions and transposable elements across Europe; and 94 

provide evidence for non-local, continent-wide selective sweeps that are shared among 95 

the majority of populations. We also find pronounced variation among populations in the 96 

composition of the fly microbiome and identify five new DNA viruses adding to a single 97 

example known so far for this species. Our study has important implications for the 98 

evolution and demography of D. melanogaster, an ancestrally African species that first 99 

colonized Europe before becoming cosmopolitan. 100 

 101 
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 104 

Introduction 105 

Studying the processes that create and maintain genetic variation in natural populations is 106 

fundamental to understanding the process of evolution (Dobzhansky 1970; Lewontin 1974; 107 

Kreitman 1983; Kimura 1984; Hudson et al. 1987; McDonald & Kreitman 1991; Adrian & 108 

Comeron 2013). Until recently, technological constraints have limited studies of natural 109 

genetic variation to small genomic regions and small numbers of individuals. With the 110 

development of population genomics, we can now analyse patterns of genetic variation on 111 

a genome-wide scale for large numbers of individuals, with sampling structured across 112 

space and time. As a result, we have gained fundamental new insights into evolutionary 113 

dynamics of genetic variation in natural populations (e.g., Hohenlohe et al. 2010; Cheng et 114 

al. 2012; Begun et al. 2007; Pool et al. 2012; Harpur et al. 2014; Zanini et al. 2015). 115 

Despite this recent technological progress, extensive large-scale sampling and genome 116 

sequencing of populations remains prohibitively expensive in terms of cost and labor for 117 

any individual research group. 118 

 119 

Here, we present the first comprehensive, continent-wide genomic analysis of genetic 120 

variation in European Drosophila melanogaster, based on 48 pool-sequencing samples 121 

from 32 populations collected in 2014 (Figure 1) by the European Drosophila Population 122 

Genomics Consortium (DrosEU; https://droseu.net). D. melanogaster offers several 123 

advantages for studying the relevant spatio-temporal scales of evolution: a relatively small 124 

genome, a broad geographic range, a multivoltine life history that allows sampling across 125 
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generations over short timescales, ease of sampling natural populations using 126 

standardized techniques, and a well-developed context for population genomic analysis 127 

(e.g., Powell 1997; Keller 2007; Hales et al. 2015). Importantly, this species is studied by 128 

an extensive research community, with a long history of developing shared resources 129 

(Larracuente & Roberts 2015; Bilder & Irvine 2017).  130 

 131 

The current study complements and extends previous studies of genetic variation in D. 132 

melanogaster, both from its native range in sub-Saharan Africa and from its world-wide 133 

expansion as a human commensal into Europe 10–20,000 years ago and into North 134 

America and Australia in the last few centuries (e.g., Lachaise et al. 1988; David & Capy 135 

1988; Li & Stephan 2006; Keller 2007; Sprengelmeyer et al 2018; Arguello et al. 2019; 136 

also cf. Kapopoulou et al. 2018a). The colonization of novel habitats and climate zones on 137 

multiple continents makes D. melanogaster especially powerful for studying parallel local 138 

adaptation. Previous studies of genomic variation have uncovered latitudinal clines in 139 

allele frequencies (e.g., Schmidt & Paaby 2008; Turner et al. 2008; Kolaczkowski et al. 140 

2011b; Fabian et al. 2012; Bergland et al. 2014; Machado et al. 2016; Kapun et al. 2016a), 141 

structural variants such as chromosomal inversions (reviewed in Kapun & Flatt 2019),) 142 

transposable elements (TEs) (Boussy et al. 1998; González et al. 2008; 2010), and 143 

complex phenotypes (de Jong & Bochdanovits 2003; Schmidt & Paaby 2008; Schmidt et 144 

al. 2008; Kapun et al. 2016b; Behrman et al. 2018). Thus far, sampling across these 145 

latitudinal gradients has been restricted to single transects on the east coasts of Australia 146 

and North America; in addition to parallel local adaptation, clines on these continents may 147 

be due to admixture between cohorts of flies with different colonization histories (Caracristi 148 

& Schlötterer 2003; Yukilevich & True 2008a; b; Duchen et al. 2013; Kao et al. 2015; 149 

Bergland et al. 2016). 150 
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 151 

In contrast, the population genomics of D. melanogaster on the European continent 152 

remains largely uncharacterized (Božičević et al. 2016; Pool et al. 2016; Mateo et al. 153 

2018). Because Eurasia was the first continent colonized by D. melanogaster as they 154 

migrated out of Africa, we sought to understand how this species has adapted to new 155 

habitats and climate zones in Europe, where it has been established the longest (Lachaise 156 

et al. 1988; David & Capy 1988). We analyse our data at three levels: (1) variation at 157 

single-nucleotide polymorphisms (SNPs) in nuclear and mitochondrial (mtDNA) genomes 158 

(~5.5 x 106 SNPs in total); (2) structural variation, including TE insertions and 159 

chromosomal inversions; and (3) variation in the microbiota associated with flies, including 160 

bacteria, fungi, protists, and viruses. 161 

 162 

 163 

Figure 1. The geographic distribution of population samples. Locations of all samples in the 2014 DrosEU data set. 164 
The color of the circles indicates the sampling season for each location: ten of the 32 locations were sampled at least 165 
twice, once in summer and once in fall (see Table 1 and Supplemental Table 1). Note that some of the 12 Ukrainian 166 
locations overlap in the map.  167 

 168 
 169 
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Results 170 

As part of the DrosEU consortium, we collected 48 population samples of D. melanogaster 171 

from 32 geographical locations across Europe in 2014 (Table 1; Figure 1). We performed 172 

pooled sequencing (Pool-Seq) of all 48 samples, with an average autosomal coverage 173 

≥50x (Table S1). Of the 32 locations, 10 were sampled at least once in summer and once 174 

in fall (Figure 1), allowing a preliminary analysis of seasonal change in allele frequencies 175 

on a genome-wide scale. 176 

 177 
European and other derived populations exhibit similar amounts of genetic variation 178 

For each sample, we estimated genome-wide levels of nucleotide diversity (π and 179 

Watterson’s θ, corrected for pooling; Futschik 2010; Kofler et al. 2011). We find that most 180 

European populations have similar levels of genetic variation (Table S1). Moreover, our 181 

estimates of pairwise nucleotide diversity are similar to those from derived non-African 182 

(North American and Australian) populations, whether sequenced as individuals or as 183 

pools (Figure 2 and Table S2). Thus, although European populations are considerably 184 

older than North American and Australian populations, they exhibit similar levels of DNA 185 

sequence variability. 186 

 187 

Figure 2. Genetic variation in worldwide samples. Bar plot showing the distribution of genome-wide estimates of 188 
Tajima’s π of the DrosEU and other genomic datasets (also see Table S2 and Materials and Methods) The error bar in 189 
the DrosEU dataset represent the standard deviation of π across all 48 population samples. 190 
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We next tested for associations between geographic variables and genome-wide average 191 

levels of genetic variation. We found that neither π nor θ was correlated with latitude or 192 

longitude, but both strongly decreased with altitude (Table 2). This contrasts with previous 193 

studies of flies collected from a broader range of altitudes, which found increased genetic 194 

diversity in high-elevation populations (Lian et al. 2018). Finally, we tested for a correlation 195 

between genome-wide variation and the season of collection, finding no relationship 196 

(Table 2). Together, these results suggest that there is little spatio-temporal variation 197 

among European populations in overall levels of sequence variability. 198 

 199 

For all populations, the ratio of X-linked to autosomal variation (πX/πA) was well below the 200 

value of 0.75 expected under neutrality with equal sex ratios (ranging from 0.53 to 0.66, 201 

one-sample Wilcoxon rank test, p < 0.001). These estimates are broadly consistent with 202 

those from previous studies of European and other non-African populations (e.g. 203 

Andolfatto 2001; Kauer et al. 2002; Hutter et al. 2007; Betancourt et al. 2004; Mackay et 204 

al. 2012; Langley et al. 2012). Surprisingly, the πX/πA ratio increased significantly, 205 

significantly, albeit weakly, with latitude (Spearman’s � = 0.315, p = 0.0289). This 206 

observation is at odds with a the predictions of a simple model of periodic bottlenecks 207 

leading to a lower X/A ratio in northern populations (Hutter et al. 2007; Pool & Nielsen 208 

2007), but might be consistent with stronger selection or more male-biased sex-ratios in 209 

the south as compared to the north (Charlesworth 2001; Hutter et al. 2007). 210 

 211 

Genetic variation was heterogeneous across the genome, as has been previously reported 212 

(Begun & Aquadro 1992; Mackay et al. 2012; Langley et al. 2012; Huang et al. 2014). Both 213 

π and θ were markedly reduced close to centromeric and telomeric regions (Figure 3), and 214 

strongly positively correlated with recombination rate (linear regression against fine-scale 215 
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recombination rate estimates from Comeron et al. (2012), p < 0.001; not accounting for 216 

autocorrelation; Table S3). Recombination rate explained 41–47% and 31–38% of the 217 

variation in π, for the autosomes and X chromosome, respectively. Using broad-scale 218 

recombination rate estimates (Fiston-Lavier et al. 2010) yielded a qualitatively similar, but 219 

slightly stronger correlation in autosomes and weaker in the X chromosome (Figure 3, 220 

Table S3, Figure 3 - figure supplement 1). 221 

 222 

Figure 3 with 1 supplement. Genome-wide estimates of genetic diversity and recombination rates. The distribution 223 
of Tajima’s π, Watterson’s θ and Tajima’s D (from top to bottom) in 200 kb non-overlapping windows plotted for each 224 
chromosomal arm separately. The dashed blue and green lines show estimates for 14 individuals from Rwanda and 225 
Zambia, respectively. Bold black lines depict statistics, that were averaged across all 48 samples and the upper and 226 
lower grey areas show the corresponding standard deviations for each window. Red dashed lines highlight the vertical 227 
position of a zero value. The bottom row shows log-transformed recombination rates (r) in 100 kb non-overlapping 228 
windows as obtained from Comeron et al. (2010). 229 

 230 
 231 

Figure 3 - figure supplement 1. Correlation between recombination and genetic diversity. Smooth local regression 232 
(LOESS) between recombination rate in cM/Mb (Comeron et al. 2012) and the average of the 48 samples’ genetic 233 
diversity (π) in 100 kb non-overlapping windows by chromosome arm. 234 
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In contrast to π and θ, the European populations showed major differences in mean 235 

Tajima’s D (Table S1). Tajima’s D measures deviations from neutral expectations in allele 236 

frequencies, which can be due either to selection or complex demography, with negative D 237 

indicating an excess of low-frequency variants (Tajima 1983). Approximately half of the 238 

European samples have negative D, It is possible that this result is artefactual, caused by 239 

heterogeneity in the proportion of sequencing errors among multiplexed sequencing runs. 240 

However, this is unlikely, because including sequence run as a covariate in the statistical 241 

model did not improve its fit (Supplementary File 2; Table S4). In all of these analyses, we 242 

controlled for confounding effects of spatio-temporal autocorrelations between samples by 243 

accounting for similarity among spatial neighbors (Moran’s I ≈ 0, p > 0.05 for all tests). 244 

When comparing D in European samples with ancestral African populations from Zambia 245 

and Rwanda, the values were generally lower in the European populations, possibly due to 246 

the recent range and population size expansion (Figure 3 and Table S5). Similar to genetic 247 

diversity, D was also heterogeneous across the genome. Tajima’s D was broadly reduced 248 

in the vicinity of telomeric and centromeric regions, possibly reflecting extended purifying 249 

selection or selective sweeps close to heterochromatic regions, and due to reduced 250 

recombination.  251 

 252 

Several genomic regions show signatures of continent-wide selective sweeps 253 

Genomic regions that show localized reductions in Tajima’s D are attractive candidates for 254 

having undergone recent selective sweeps. To identify such genomic regions, we used 255 

Pool-hmm (Boitard et al. 2013; Table S6A), which – like Tajima’s D – identifies candidate 256 

sweep regions via distortions in the allele frequency spectrum. Several genomic regions 257 

identified in this way coincide with previously identified, well-supported sweeps in the 258 

proximity of Hen1 (Kolaczkowski et al. 2011b), Cyp6g1 (Daborn et al. 2002), wapl 259 
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(Beisswanger et al. 2006), and around the chimeric gene CR18217 (Rogers & Hartl 2012), 260 

among others (Table S6B). These regions also showed local reductions in Tajima’s D and 261 

genetic variation, again consistent with selection (Figure 4 and Figure 4-figure supplement 262 

1 and 2). The putative sweep regions included 145 of the 232 genes previously identified 263 

using Pool-hmm in an Austrian population (Boitard et al 2012; Table S6C). Other regions 264 

identified have not previously been described as harboring sweeps; these represent 265 

potential novel targets of positive selection deserving of further investigation (Table S6A). 266 

Overall, we identified 64 genes that showed signatures of selection across all European 267 

populations analysed (Table S6D); thirty-five of them were located in regions with low 268 

Tajima’s D.  This pattern suggests the existence of continent-wide sweeps that either 269 

predate the colonization of Europe (e.g., Beisswanger et al. 2006), or that have swept 270 

across the majority of European populations more recently (Table S6D). Finally, we 271 

classified the populations according to the Köppen-Geiger climate classification (Peel et al. 272 

2007) and identified several candidate sweeps exclusive to arid, temperate or cold 273 

regions; Table S6A). For temperate climates, candidate sweep regions were enriched for 274 

functions such as ‘response to stimulus’, ‘transport’, and ‘nervous system development’; 275 

for cold climates, they were enriched for ‘vitamin and co-factor metabolic processes’ 276 

(Table S6E). In contrast, we did not find any significant GO enrichment for arid candidate 277 

sweep regions. In summary, this dataset represents a rich genomic resource for future in-278 

depth studies of selective sweeps and adaptation to different climates in Drosophila. 279 
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 280 

Figure 4 with 2 supplements. Signals of selective sweeps. The central panel shows the distribution of Tajima’s D in 50 281 
kb sliding windows with 40 kb overlap, with red and green dashed lines indicating Tajima’s D = 0 and -1, respectively. 282 
The top panel shows a detail of a genomic region on chromosomal arm 2R in the vicinity of Cyp6g1 and Hen1 283 
(highlighted in red), genes reportedly involved in pesticide resistance. This strong sweep signal is characterized by an 284 
excess of low-frequency SNP variants and overall negative Tajima’s D in all samples. Coloured solid lines depict 285 
Tajima’s D for each sample (see SI Figure 4 for color codes); the black dashed line shows Tajima’s D averaged across 286 
all samples. The bottom panel shows a region on 3L previously identified as a potential target of selection, which shows 287 
a similar strong sweep signature. Notably, both regions show strongly reduced genetic variation (Figure 4 - figure 288 
supplement 1).  289 
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 290 

 291 

Figure 4 - figure supplement 1: Genetic variation in regions of putative selective sweeps. This figure is equivalent 292 
to Figure 4 in the main text but shows the distribution of genetic variation (π) in regions with depressed Tajima’s D 293 
around the well-studied Cyp6g1 locus (A) and around a previously known candidate region on 3L (B). Similar to Tajima’s 294 
D, π was calculated in 50 kb sliding windows with 40 kb overlap. See Table S6 for more examples. A legend for the color 295 
codes of the samples can be found in Figure 4 - figure supplement 2. 296 
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 297 
Figure 4 - figure supplement 2. Legend for color code in Figure 4, Figure 4 - figure supplement 1. 298 

 299 

European populations are structured along an east-west gradient 300 

We next investigated patterns of genetic differentiation due to demographic substructure. 301 

Overall, pairwise differentiation as measured by FST was relatively low, particularly for the 302 

autosomes (autosomal FST 0.013–0.059; X-chromosome FST: 0.043–0.076; Mann-303 

Whitney-U test; p < 0.001; Table S1). The slightly elevated FST for the X chromosome is 304 

expected given its smaller effective population size (Hutter et al. 2007). One population, 305 

from Sheffield (UK), was unusually differentiated from the others (Table S1) and was 306 

excluded from analyses of neutral genetic differentiation. Despite overall low levels of 307 

among-population differentiation, European populations showed evidence of geographic 308 

substructure. To analyse this pattern in detail, we focused on SNPs most likely to reflect 309 

neutral population structure, those at 4-fold degenerate sites, in regions outside those 310 

showing signatures of selective sweeps, in regions of high recombination (r > 3cM/Mb; 311 

Comeron et al. 2011) and at least 1 Mb away from the breakpoints of common inversions. 312 
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The final filtered data set consisted of 8,727 SNPs. Within Europe, we found a weak but 313 

significant pattern of isolation by distance (IBD). That is, pairwise FST, though low overall, 314 

increased significantly with geographic distance (Mantel test; p < 0.001; r=0.65, max. FST ~ 315 

0.05; Figure 5A and Figure 5A – figure supplement 1A). 316 

 317 

  318 

Figure 5 with 1 supplement. Genetic differentiation among European populations. (A) Average FST among 319 
populations at putatively neutral sites. The centre plot shows the distribution of FST values for all 1,128 pairwise 320 
population comparisons, with the FST values for each comparison obtained from the mean across all 8,727 SNPs used in 321 
the analysis. Plots on the left and the right show population pairs in the lower (blue) and upper (red) 5% tails of the FST 322 
distribution. (B) PCA analysis of allele frequencies at the same SNPs reveals population substructuring in Europe. 323 
Hierarchical model fitting using the first four PCs showed that the populations fell into three clusters (indicated by colour), 324 
with cluster assignment of each population subsequently estimated by k-means clustering. (C) Admixture proportions for 325 
each population inferred by model-based clustering with ConStruct are highlighted as pie charts (left plot) or Structure 326 
plots (centre). The optimal number of 7 spatial layers (K) was inferred by cross-validation (right plot). 327 
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 328 

Figure 5 - figure supplement 1: Genetic differentiation among European populations. (A) Average FST for 8,727 329 
putatively neutral SNPs is significantly negatively correlated with geographic distance (red dashed line shows the linear 330 
regression)  (B) PCA-based inference of population structure similar to Figure 5B in the main text, but based on 20,008 331 
SNPs located in short introns (<60bp). (C) We tested the top 5 PC for significant associations with 8 climatic variables 332 
obtained from the WorldClim database; the two significant regressions, between PC1 and Temperature seasonality 333 
(WorldClim Biovar 4; left) and between PC1 and minimum temperature of the coldest month (WorldClim Biovar 6; right) 334 
are shown. 335 

 336 

We investigated population substructure using principal components analysis (PCA) on 337 

allele frequencies from the same set of SNPs at 4-fold degenerate sites. The first three PC 338 

axes explained >25% of the total variance (PC1: 17.88%, PC2: 5.2%, PC3: 4.7%, 339 

eigenvalues = 410, 101, and 92, respectively), with PC1 strongly correlated with longitude 340 
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and to a lesser extent with altitude (Table 2). This longitudinal stratification is expected 341 

under a simple model of IBD, as the continent extends further in longitude than latitude. As 342 

there was significant spatial autocorrelation between samples (as indicated by Moran’s 343 

test on residuals from linear regressions with PC1), we repeated the analysis with an 344 

explicit spatial error model; the association between PC1 and longitude remained 345 

significant. Like PC1, PC2 is correlated with longitude and altitude. PC3, by contrast, is not 346 

associated with any variable examined (Table 2). No major PC axes were correlated with 347 

season, indicating that there were no shared seasonal differences across samples in our 348 

data. However, based on linear regressions comparing summer and fall values of PC1 349 

(adjusted R2: 0.98; p-value < 0.001), PC2 (R2: 0.79; p-value < 0.001) and PC3 (R2: 0.93; p-350 

value < 0.001), we found very strong associations of genetic variation across seasons in 351 

the 10 locations that were sampled in summer and fall. This indicates a high degree of 352 

spatio-temporal stability in the levels of genetic variation. 353 

 354 

Hierarchical model fitting based on the first three PC axes resulted in three distinct clusters 355 

(Figure 5B) separated along PC1, supporting the notion of strong longitudinal 356 

differentiation among European populations. Importantly, these results remain qualitatively 357 

unchanged when restricting the analysis to SNPs located in short introns (< 60 bp), which 358 

are also assumed to be relatively unaffected by selection (Figure 5 – figure supplement 359 

1B; Haddrill et al. 2005; Singh et al. 2009; Parsch et al. 2010; Clemente & Vogl 2012; 360 

Lawrie et al. 2013). 361 

 362 

Model-based spatial clustering showed qualitatively similar results, with populations 363 

separated mainly by longitude (Figure 5C; using ConStruct, with K=7 spatial layers chosen 364 

based on model selection procedure via cross-validation). We could also infer levels of 365 
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admixture among populations from this analysis; population samples from eastern and 366 

northwestern Europe showed low levels of admixture, while those from central Europe 367 

appeared locally well-mixed (Figure 5C). 368 

 369 

In addition to restricted gene flow between geographic areas, local adaptation may explain 370 

population substructuring, even at neutral sites, if closely related populations tend to 371 

respond to similar selective pressures. We thus probed whether this spatial substructuring 372 

is associated with any of nineteen climatic variables, obtained from the WorldClim 373 

database (Hijmans et al. 2005). These climatic variables represent averages interpolated 374 

averages across more than 50 years of observation at the geographic coordinates 375 

corresponding to our sampling locations. Only two variables are significant after Bonferroni 376 

correction (adjusted α = 0.0026): between PC1 and ‘temperature seasonality’ (BioVar 4; 377 

Hijmans et al. 2005; R2 = 0.62, P<0.001; Figure 5 – figure supplement 1C) and between 378 

PC1 and ‘minimum temperature of the coldest month’ (R2 = 0.3, P<0.001; Figure 5 – figure 379 

supplement 1C). This suggests that the pronounced longitudinal differentiation along the 380 

European continent could at least partly be driven by the transition from oceanic to 381 

continental climate, leading to gradual changes in temperature seasonality and the 382 

severity of winter conditions which might impact demography, especially local survival. To 383 

the best of our knowledge, such strongly pronounced longitudinal structure and 384 

differentiation on a continent-wide scale has not yet been reported for D. melanogaster. 385 

 386 

Mitochondrial haplotypes also exhibit longitudinal population structure 387 

Our finding that European populations show strong longitudinal structure is also supported 388 

by an analysis of mitochondrial haplotypes. We identified two main mitochondrial 389 

haplotypes in Europe, separated by 41 mutations (G1.2 and G2.1; Figure 6A), with highly 390 
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variable frequencies among populations (Figure 6B). Qualitatively, three types of 391 

European populations can be distinguished based on these haplotypes: (1) central 392 

European populations with a high frequency (> 60%) of the G1 haplotypes, (2) Eastern 393 

European populations in summer, with a low frequency (< 40%) of G1 haplotypes, and (3) 394 

Iberian and Eastern European populations in fall, with a combined frequency of G1 395 

haplotypes between 40-60% (Figure 6 - figure supplement 1A). These results are 396 

consistent with analyses of mitochondrial haplotypes from a North American population 397 

(Cooper et al. 2015) as well as from worldwide samples (Wolff et al. 2016), which revealed 398 

a high level of haplotype diversity. 399 

 400 

Figure 6 with 1 supplement. Mitochondrial haplotypes. (A) TCS network showing the relationship of 5 common 401 
mitochondrial haplotypes; (B) estimated frequency of each mitochondrial haplotype in 48 European samples. 402 

  403 

Figure 6 - figure supplement 1. Mitochondrial haplotypes. (A) Graphical summary of the combined frequency of G1 404 
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haplotypes in Europe. Summer and Fall are represented at the top and bottom of the circles, respectively. White – no 405 
information; green, yellow and red represent a combined frequency of G1 haplotypes lower than 40%, in between 40% 406 
and 60% and higher than 60%, respectively. (B) Correlations between the combined frequency of G1 haplotypes and 407 
longitude (red diamonds for western populations below 20° and red circles for eastern populations above 20°). 408 

 409 

Mitochondrial haplotypes also showed shifts in the relative frequencies of the two 410 

haplotype classes between summer and fall, but only in 2 of 9 possible comparisons. 411 

While there was no correlation between latitude and the frequency of G1 haplotypes, we 412 

found a weak but significant negative correlation between G1 haplotypes and longitude (r2 413 

= 0.10; p < 0.05), consistent with the longitudinal east-west population structure observed 414 

for SNPs at 4-fold degenerate sites. In a subsequent analysis, we divided the dataset at 415 

20º longitude into an eastern and a western subset because in northern Europe 20º 416 

longitude corresponds to the division of two major climatic zones, temperate and cold 417 

(Peel et al. 2007). This split revealed a clear correlation between longitude and the 418 

combined frequency of G1 haplotypes, explaining as much as 50% of the variation in the 419 

western group (Figure 6 - figure supplement 1B). Similarly, in eastern populations, 420 

longitude and the combined frequency of G1 haplotypes were correlated, explaining 421 

approximately 20% of the variance (Figure 6 - figure supplement 1B). Thus, these data on 422 

mitochondrial haplotypes clearly confirm the pronounced east-west structure and 423 

differentiation among European populations of D. melanogaster. 424 

 425 

The frequency of polymorphic TEs varies with longitude and altitude  426 

To examine the population genetics of structural variants, we first focused on transposable 427 

elements (TEs). The repetitive content of the 48 samples ranged from 16% to 21% with 428 

respect to nuclear genome size (Figure 7). The vast majority of detected repeats were 429 

TEs, mostly represented by long terminal repeats (LTR) and long interspersed nuclear 430 

elements (LINE), as well as a few DNA elements (Class II). LTRs best explained total TE 431 
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content (LINE+LTR+DNA) (Pearson’s r = 0.87, p < 0.01, vs. DNA r = 0.58, p = 0.0117, and 432 

LINE r = 0.36, p < 0.01 and Figure 7- figure supplement 1A). 433 

  434 

Figure 7 with 2 supplements. Geographic patterns in structural variants. The upper panel shows stacked bar plots 435 
with the relative abundances of TEs in all 48 population samples. The proportion of each repeat class was estimated 436 
from sampled reads with dnaPipeTE (2 samples per run, 0.1X coverage per sample). The lower panel shows stacked 437 
bar plots depicting absolute frequencies of six cosmopolitan inversions in all 48 population samples. 438 

 439 

Figure 7- figure supplement 1. Transposable Elements genome content and frequency distributions. (A) 440 
Pearson’s correlations between each main TE class (LTR, LINE and DNA) and the total TE content of each pool 441 
(LTR+LINE+DNA) in kb. (B) The site frequency spectrum of TE frequencies per chromosome arm. Each dot represents 442 
the proportion of TEs in each bin per sample and a smoother geometric line had been added to highlight the trend. 443 
Lower panel is a zoom in of the above panel. 444 
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We next estimated population frequencies of 1,630 TE insertions annotated in the D. 445 

melanogaster reference genome v.6.04 using T-lex2 (Table S7, Fiston-Lavier et al. 2015). 446 

On average, 56% of the TEs annotated in the reference genome were fixed in all samples. 447 

The majority of the remaining polymorphic TEs segregated at low frequency in all samples 448 

(Figure 7 - figure supplement 1A), potentially due to the effect of purifying selection 449 

(González et al. 2008; Petrov et al. 2011; Kofler et al. 2012; Cridland et al. 2013; 450 

Blumenstiel et al. 2014). However, we also observed 142 TE insertions present at 451 

intermediate (>10% and <95%) frequencies, which might be consistent with transposition-452 

selection balance (Figure 7 - figure supplement 1B; Charlesworth et al. 1994). 453 

 454 

In each of the 48 samples, TE frequency and recombination rate were negatively 455 

correlated on a genome-wide level (Spearman rank sum test; p < 0.01), as previously 456 

reported (Bartolomé et al. 2002; Petrov et al. 2011; Kofler et al. 2012). This pattern still 457 

held when only polymorphic TEs (population frequency <95%) were analysed, although it 458 

was not statistically significant for some chromosomes and populations (Table S8). In 459 

either case, the correlation was more negative when using broad-scale (Fiston-Lavier et al. 460 

2010), rather than fine-scale (Comeron et al 2012), recombination rate estimates, 461 

indicating that broad-scale recombination patterns may best capture long-term population 462 

recombination patterns (Materials and methods, Tables S8). 463 

 464 

We further tested whether the distribution of TE frequencies among samples could be 465 

explained by geographical or temporal variables. We focused on the 141 TE insertions that 466 

showed frequency variability among samples (interquartile range, (IQR) > 10; see 467 

Materials and Methods) and were located in regions of non-zero recombination according 468 

to both fine-scale (Comeron et al. 2012), and broad-scale (Fiston-Lavier et al. (2010) 469 
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estimations. Of these, 57 TEs showed significant associations with geographical or 470 

temporal variables after multiple testing correction (Table S9). We found significant 471 

correlations of 13 TEs with longitude, 13 with altitude, five with latitude, and three with 472 

season (Table S9). In addition, the frequencies of the other 23 insertions were significantly 473 

correlated with more than one of the above-mentioned variables. These TEs were 474 

scattered along the five main chromosome arms, with the majority located inside genes 475 

(42 out of 57; Table S9).  476 

 477 

Two TE families were enriched in the 57 TE dataset: the LTR 297 family with 11 copies, 478 

and the DNA pogo family with five copies (χ2-values after Yate's correction < 0.05; Table 479 

S10). Interestingly, 14 of these 57 TEs coincide with previously identified adaptive 480 

candidate TEs, suggesting that our dataset might be enriched for adaptive insertions, 481 

several of which seem to exhibit spatial frequency clines (Table S9; Rech et al. 2019). 482 

 483 

Inversions exhibit latitudinal and longitudinal clines in Europe 484 

Another class of structural variants, chromosomal inversions, show spatial patterns in 485 

North American and Australian populations, potentially due to selection (reviewed in 486 

Kapun & Flatt 2019). In contrast to North America and Australia, inversion clines in Europe 487 

are poorly characterized (Lemeunier & Aulard 1992). Here, we examined the presence 488 

and frequency of six cosmopolitan inversions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, 489 

In(3R)Mo, In(3R)Payne) in our European samples, using a panel of inversion-specific 490 

marker SNPs (Kapun et al. 2014). All samples were polymorphic for one or more 491 

inversions (Figure 7). However, only In(2L)t segregated at substantial frequencies in most 492 

populations (average frequency = 20.2%); all other inversions were either absent or rare 493 

(average frequencies: In(2R)NS = 6.2%, In(3L)P = 4%, In(3R)C = 3.1%, In(3R)Mo =2.2%, 494 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/313759doi: bioRxiv preprint 

https://doi.org/10.1101/313759
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

In(3R)Payne = 5.7%). 495 

 496 

Despite their overall low frequencies, several inversions exhibited pronounced clinality 497 

(Table 3). In particular, we observed significant latitudinal clines for In(3L)P, In(3R)C and 498 

In(3R)Payne. Although they differed in overall frequencies, In(3L)P and In(3R)Payne 499 

showed latitudinal clines in Europe qualitatively similar to clines previously observed along 500 

the North American and Australian east coasts (Figure 7 - figure supplement 2 and Table 501 

S11, Kapun et al. 2016a), which, at least in the case of In(3R)Payne, are maintained by 502 

spatially varying selection (Kapun et al. 2016a,b; Durmaz et al. 2018; Anderson et al. 503 

2005; Umina et al. 2005; Kennington et al. 2006; Rako et al. 2006). 504 

 505 

Figure 7 - figure supplement 2. Clinal variation of the inversion In(3R)Payne across continents. Parallel frequency 506 
clines of In(3R)Payne along the latitudinal axis at the North American east coast (red) and in Europe (blue) (see also 507 
Table S11). 508 

 509 

We also detected – for the first time – longitudinal clines for In(2L)t and In(2R)NS, with 510 

both polymorphisms decreasing in frequency from east to west, a result consistent with the 511 

strong longitudinal population differentiation in Europe. In(2L)t also increased in frequency 512 

with altitude (Table 3). Except for In(3R)C, we did not find significant residual spatio-513 

temporal autocorrelation among samples for any inversion tested (Moran’s I ≈ 0, p > 0.05 514 
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for all tests; Table 3), suggesting that our analysis was not confounded by spatial 515 

autocorrelation for most of the inversions. Further studies are necessary to determine the 516 

extent to which these clines of inversion frequencies in Europe are shaped by selection.   517 

 518 

European Drosophila microbiomes contain Entomophthora, trypanosomatids and 519 

unknown DNA viruses  520 

We examined the bacterial, fungal, protist, and viral microbiota associated with D. 521 

melanogaster using the Pool-Seq data. The microbiota can affect life history traits, 522 

immunity, hormonal physiology, and metabolic homeostasis of their fly hosts (e.g., Trinder 523 

et al. 2017; Martino et al. 2017).  524 

We characterised the taxonomic origin of the non-Drosophila reads in our dataset using 525 

MGRAST, which identifies and counts short protein motifs ('features') within reads (Meyer 526 

et al. 2008). We examined 262 million reads in total and of these most were assigned to 527 

Wolbachia (mean 53.7%; Figure 8), a well-known endosymbiont of Drosophila (Werren et 528 

al. 2008). The abundance of Wolbachia protein features relative to other microbial protein 529 

features (relative abundance) varied strongly between samples, ranging from 8.8% in a 530 

sample from the UK to almost 100% in samples from Spain, Portugal, Turkey and Russia 531 

(Table S12). Similarly, Wolbachia loads varied 100-fold between samples, as estimated 532 

from the ratio of Wolbachia protein features to Drosophila protein features (Table S12). 533 
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 534 

Figure 8: Microbiome. Relative abundance of Drosophila-associated microbes as assessed by MGRAST classified 535 
shotgun sequences. Microbes had to reach at least 3% relative abundance in one of the samples to be represented 536 

 537 

Acetic acid bacteria of the genera Gluconobacter, Gluconacetobacter, and Acetobacter 538 

were the second largest group, with an average relative abundance of 34.4% among 539 

microbial protein features. Furthermore, we found evidence for the presence of several 540 

genera of Enterobacteria (Serratia, Yersinia, Klebsiella, Pantoea, Escherichia, 541 

Enterobacter, Salmonella, and Pectobacterium). Serratia occurs only at low frequencies or 542 

is absent from most of our samples, but reaches a very high relative abundance among 543 

microbial protein features in the Nicosia (Cyprus) summer collection (54.5%). This high 544 

relative abundance was accompanied by an 80x increase in Serratia bacterial load.  545 

 546 

We also detected several eukaryotic microorganisms, although they were less abundant 547 

than the bacteria. The fraction of fungal protein features, for example, is larger than 3% in 548 

only three samples (from Finland, Austria and Turkey; Table S12). Among the eukaryotic 549 

microbiota, we found trypanosomatids in 16 samples. Trypanosomatids have been 550 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/313759doi: bioRxiv preprint 

https://doi.org/10.1101/313759
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28 

previously reported to be associated with Drosophila (Wilfert et al. 2011; Chandler & 551 

James 2013; Hamilton et al. 2015), and this appeared to have been confirmed in this first 552 

systematic survey across a wide geographic range in D. melanogaster. We also found the 553 

fungal pathogen Entomophthora muscae in 14 samples (Elya C et al. 2018). 554 

Somewhat surprisingly, we found few yeast sequences. Yeasts are commonly found on 555 

rotting fruit, the main food substrate of D. melanogaster, and have been found in 556 

association with Drosophila before (Barata et al. 2012; Chandler et al. 2012). This result 557 

suggests that, although yeasts can attract flies and play a role in food choice (Becher et al. 558 

2012; Buser et al. 2014), they might not be highly prevalent in or on D. melanogaster 559 

bodies but are rather actively digested and thus not part of the microbiome. 560 

 561 

Our data also allowed us to identify DNA viruses. Only one DNA virus has been previously 562 

described for D. melanogaster (Kallithea virus; Webster et al. 2015; Palmer et al. 2018) 563 

and only two others more from other Drosophilid species (Drosophila innubila Nudivirus 564 

[Unckless 2011], Invertebrate Iridovirus 31 in D. obscura and D. immigrans [Webster et al. 565 

2016]).  566 

Here, we found six different DNA viruses, five of which are new (Table S13). 567 

Approximately two million reads came from Kallithea nudivirus (Webster et al. 2015), 568 

allowing us to assemble the first complete Kallithea genome (>300-fold coverage in the 569 

Ukrainian sample UA_Kha_14_46; Genbank accession KX130344). We also identified 570 

around 1,000 reads from a novel nudivirus closely related to both Kallithea virus and to 571 

Drosophila innubila nudivirus (Unckless 2011) in sample DK_Kar_14_41 from 572 

Karensminde, Denmark (Table S13). As the reads from this virus in our data set were 573 

insufficient to assemble the genome, we identified a publicly available dataset 574 

(SRR3939042: 27 male D. melanogaster from Esparto, California; Machado et al. 2016) 575 
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with sufficient reads to complete the genome (provisionally named “Esparto Virus”; 576 

KY608910). 577 

We further identified two novel Densoviruses (Parvoviridae). The first is a relative of Culex 578 

pipiens densovirus, provisionally named “Viltain virus”, found at 94-fold coverage in 579 

sample FR_Vil_14_07 (Viltain; KX648535). The second is “Linvill Road virus”, a relative of 580 

Dendrolimus punctatus densovirus, represented by only 300 reads here, but with high 581 

coverage in dataset SRR2396966 from a North American sample of D. simulans 582 

(KX648536; Machado et al. 2016). In addition, we detected a novel member of the 583 

Bidnaviridae family,“Vesanto virus”, a bidensovirus related to Bombyx mori densovirus 3 584 

with approximately 900-fold coverage in sample FI_Ves_14_38 (Vesanto; KX648533 and 585 

KX648534). Finally, in one sample (UA_Yal_14_16) we detected a substantial number of 586 

reads from an Entomopox-like virus, which we were unable to fully assemble (Table S13). 587 

Using a detection threshold of >0.1% of the Drosophila genome copy number, the most 588 

commonly detected viruses were Kallithea virus (30/48 of the pools) and Vesanto virus 589 

(25/48), followed by Linvill Road virus (7/48) and Viltain virus (5/48), with Esparto virus 590 

being the rarest (2/48).  591 

 592 

Discussion  593 

In recent years, large-scale population re-sequencing projects have produced major 594 

insights into the biology of both model (Mackay et al. 2012; Langley et al. 2012; Auton et 595 

al. 2015; Lack et al. 2015; Alonso-Blanco et al. 2016; Lack et al. 2016) and non-model 596 

organisms (e.g., Hohenlohe et al. 2010; Wolf et al. 2010). In particular, such massive 597 

datasets contribute greatly to our growing understanding of the processes that create and 598 

maintain genetic variation in natural populations. However, the relevant spatio-temporal 599 
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scales for population genomic analyses remain largely unknown (e.g., Guirao-Rico and 600 

González 2019). Here we have applied – for the first time – a continent-wide sampling and 601 

sequencing strategy to European populations of D. melanogaster (Figure 1), allowing us to 602 

uncover previously unknown aspects of this species’ population biology and evolutionary 603 

genetics. This is particularly important because the population genomics of this species in 604 

Europe has been poorly characterized to date. 605 

 606 

We find that European D. melanogaster populations exhibit pronounced longitudinal 607 

differentiation. We observed this pattern for a genome-wide set of SNPs at 4-fold 608 

degenerate sites, which presumably evolve neutrally (Figure 5), as well as for 609 

mitochondrial haplotypes, inversions and TEs which might be subject to spatially varying 610 

selection (Figure 6 and 7). Longitudinal differentiation might be due to the transition from 611 

oceanic to continental climate along the longitudinal axis (Figure 5-Figure 5 supplement 1). 612 

While spatial differences in climatic conditions likely play a major role in driving this 613 

pattern, we note that it is remarkably similar to that observed for human populations (e.g., 614 

Cavalli-Sforza 1966; Xiao et al. 2004; Francalacci & Sanna 2008; Novembre et al. 2008). 615 

Indeed, east-west structure has been previously found in sub-Saharan Africa populations 616 

of D. melanogaster, with the split between eastern and western African populations having 617 

occurred ~70 kya ago (Michalakis & Veuille 1996; Aulard et al. 2002; Kapopoulou et al. 618 

2018b), a period that – interestingly – coincides with a wave of human migration from 619 

eastern into western Africa (Nielsen et al. 2017). However, in contrast to the pronounced 620 

pattern observed in Europe, African east-west structure is relatively weak, explaining only 621 

~2.7% of variation, and is due to an inversion whose frequency varies longitudinally. In 622 

contrast, our demographic analyses are based on SNPs located in >1 Mb distance from 623 

the breakpoints of the most common inversions. This makes it very unlikely that the strong 624 
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longitudinal pattern we have observed is driven by inversions. 625 

 626 

Spatial patterns of differentiation were stronger for longitude than for latitude. In contrast, 627 

differentiation in North America has mainly been observed across latitude, for both neutral 628 

and adaptive polymorphisms (e.g., Machado et al. 2016; Kapun et al. 2016a; reviewed in 629 

Adrion et al. 2015). Although our present analysis showed that putatively neutral SNPs 630 

were primarily differentiated along longitude, latitudinal clines may still exist for adaptive 631 

polymorphisms. In fact, we detected latitudinal frequency clines for both inversions and 632 

TEs (Table 3 and Table S9). For the inversions In(3L)P and In(3R)Payne, the observed 633 

latitudinal clines were in qualitative agreement with parallel clines reported from North 634 

America and Australia, with the inversions decreasing in frequency as distance from the 635 

equator increases (Mettler et al. 1977; Knibb et al. 1981; Leumeunier & Aulard 1992; 636 

Fabian et al. 2012; Kapun et al. 2014; Rane et al. 2015; Kapun et al. 2016a). This pattern 637 

is widely thought to be a result of climate adaptation, with the inversions containing 638 

variants that make them better adapted to tropical or subtropical than to temperate, more 639 

seasonal climates (e.g., Kapun et al. 2016a). Several euchromatic TE insertions also 640 

showed geographic (or seasonal) patterns of variation (Table S9), indicating that they 641 

might play a role in local adaptation, particularly since many of them are located in regions 642 

where they might affect gene regulation. Further, 17 of them also show significant 643 

correlations with either geographical or temporal variables in North American populations 644 

(Lerat et al. 2019). Additionally, several inversions and TEs also exhibited longitudinal 645 

gradients.  646 

 647 

We also examined signatures of selective sweeps in our data. Several of the identified 648 

regions have previously been reported as potential targets of positive selection (Figure 4, 649 
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Table S6B and SC). However, most of these sweeps were originally identified by analysing 650 

a small number of populations (e.g. Kolaczkowski et al. 2011b; Daborn et al. 2002; Rogers 651 

& Hartl 2012). Here, we identified 64 genes (including wapl, CR18217, and mgl) which 652 

showed clear signatures of selection and which were widespread across Europe, thus 653 

strengthening the case for their adaptive significance. In addition, we found several 654 

regions with evidence of hard sweeps, some of them showing evidence of local climatic 655 

adaptation (Table S6); these candidate regions represent a valuable resource for future 656 

analyses of adaptation in European Drosophila. 657 

 658 

Finally, our continent-wide analysis of the microbiota suggests that natural populations of 659 

European D. melanogaster vary greatly in the composition and abundance of microbes 660 

and viruses over space and time. Recent work suggests that at least parts of this variation 661 

in microbiomes follows geographic patterns (Walters et al 2018, Wang et al 2019) and 662 

contribute to phenotypic differences and local adaptation among populations, especially 663 

given that there might be tight and presumably local co-evolutionary interactions between 664 

fly hosts and their endosymbionts (e.g., Haselkorn et al. 2009; Richardson et al. 2012; 665 

Staubach et al. 2013; Kriesner et al. 2016; Wang and Staubach 2018). Most notably, we 666 

discovered five new DNA viruses of D. melanogaster. Despite this species being host to a 667 

wide diversity of RNA viruses, we now have found that the DNA viruses of D. 668 

melanogaster are also widespread, for instance with Kallithea virus detected in most 669 

populations. 670 

 671 

Our study demonstrates that sampling on a continent-wide scale and pooled sequencing 672 

of a large number of natural populations can reveal fundamental and novel aspects of 673 

population biology, even for a well-studied model species such as D. melanogaster. Our 674 
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extensive sampling was feasible only due to synergistic collaboration among many 675 

research groups. Our efforts in Europe are paralleled in North America by the Dros-RTEC 676 

consortium, with whom we are collaborating to compare population genomic data across 677 

continents. Together, we have sampled both continents annually since 2014; we aim to 678 

continue to sample and sequence European and North American Drosophila populations 679 

with increasing spatio-temporal resolution in future years. With these efforts we hope to 680 

provide a rich community resource for biologists interested in molecular population 681 

genetics and adaptation genomics. 682 

 683 

Materials and methods 684 

The 2014 DrosEU dataset represents the most comprehensive spatio-temporal sampling 685 

of European D. melanogaster populations to date (Table 1). It comprises 48 samples of D. 686 

melanogaster collected from 32 geographical locations across Europe at different time 687 

points in 2014 through a joint effort of 18 research groups. Collections were mostly 688 

performed with baited traps using a standardized protocol (see Supplementary File 2).  689 

From each collection, we pooled 33–40 wild-caught males. We used males as they are 690 

more easily distinguishable morphologically from similar species than females. Despite our 691 

precautions, we identified a low level of D. simulans contamination in our sequences; we 692 

computationally filtered these sequences from the data prior to further analysis (see 693 

below).  694 

 695 

DNA extraction, library preparation and sequencing 696 

We extracted DNA from each sample after homogenization with bead beating and 697 

standard phenol/chloroform extraction. A detailed extraction protocol can be found in the 698 

Supplementary File 2. In preparation for sequencing, 500 ng of DNA from each sample 699 
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was sheared with a Covaris instrument (Duty cycle 10, intensity 5, cycles/burst 200, time 700 

30). Library preparation was performed using NEBNext Ultra DNA Lib Prep-24 and 701 

NebNext Multiplex Oligos for Illumina-24 following the manufacturer’s instructions. Each 702 

sample was sequenced as a pool (Pool-Seq; Schlötterer et al. 2014), as paired-end 703 

fragments on a Illumina NextSeq 500 sequencer at the Genomics Core Facility of Pompeu 704 

Fabra University. Samples were multiplexed in 5 batches of 10 samples, except for one 705 

batch of 8 samples (Table S1). Each multiplexed batch was sequenced on 4 lanes at ~50x 706 

raw coverage per sample. The read length was 151 bp, with a median insert size of 348 bp 707 

(range 209-454 bp). The data are available from NCBI Bioproject PRJNA388788. 708 

 709 

Mapping pipeline and variant calling 710 

Prior to mapping, we trimmed and filtered raw FASTQ reads to remove low-quality bases 711 

(minimum base PHRED quality = 18; minimum sequence length = 75 bp) and sequencing 712 

adaptors using cutadapt (v. 1.8.3; Martin 2011). We retained only pairs for which both 713 

reads fulfilled our quality criteria after trimming. FastQC analyses of trimmed and quality 714 

filtered reads showed overall high base-qualities (median range 29-35), with ~1.36% of 715 

bases lost after trimming. We used bwa mem (v. 0.7.15; Li 2013) with default parameters 716 

to map the trimmed reads. To avoid paralogous mapping, we mapped to a compound 717 

reference, consisting of the genomes of D. melanogaster (v.6.12) and common 718 

commensals and pathogens, including Saccharomyces cerevisiae (GCF_000146045.2), 719 

Wolbachia pipientis (NC_002978.6), Pseudomonas entomophila (NC_008027.1), 720 

Commensalibacter intestine (NZ_AGFR00000000.1), Acetobacter pomorum 721 

(NZ_AEUP00000000.1), Gluconobacter morbifer (NZ_AGQV00000000.1), Providencia 722 

burhodogranariea (NZ_AKKL00000000.1), Providencia alcalifaciens 723 

(NZ_AKKM01000049.1), Providencia rettgeri (NZ_AJSB00000000.1), Enterococcus 724 
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faecalis (NC_004668.1), Lactobacillus brevis (NC_008497.1), and Lactobacillus plantarum 725 

(NC_004567.2). We used Picard (v.1.109; http://picard.sourceforge.net) to remove 726 

duplicate reads and reads with a mapping quality below 20. In addition, we re-aligned 727 

sequences flanking indels with GATK (v3.4-46; McKenna et al. 2010).  728 

 729 

After mapping, we filtered reads due to D. simulans contamination, using the method of 730 

Bastide et al. (2013). To do this, we used fixed differences between D. simulans and D. 731 

melanogaster to identify reads from D. simulans. For the nine samples that had a 732 

contamination level > 1% (range 1.2 - 8.7%; Table S1), we used custom software to 733 

remove reads that mapped preferentially to the D. simulans genome (Hu et al. 2013) using 734 

competitive mapping to references from both species. After applying our decontamination 735 

pipeline, contamination levels dropped below 0.4 % for all nine samples. 736 

 737 

We used Qualimap (v. 2.2., Okonechnikov et al. 2016) to evaluate average mapping 738 

qualities per population and chromosome, which ranged from 58.3 to 58.8 (Table S1). 739 

Sequencing depth ranged from 34x to 115x for autosomes and from 17x to 59x for X-740 

chromosomes (Table S1). We then combined individual bam files from all samples into a 741 

single mpileup file using samtools (v. 1.3; Li & Durbin 2009). Due to the large number of 742 

samples, we implemented quality control criteria for all libraries jointly to call SNPs. To call 743 

SNPs, we developed custom software (PoolSNP; see Supplementary File 2; available at 744 

doi: https://doi.org/10.5061/dryad.rj1gn54) using stringent heuristic parameters: (1) 745 

minimum coverage 10x for each sample, (2) maximum coverage < 95th coverage 746 

percentile for a given chromosome and sample (to avoid paralogous regions duplicated in 747 

the sample but not in the reference), (3) for each allele, a minimum read count > 20x and a 748 

minimum read frequency > 0.001, across all samples pooled. These parameters were 749 
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optimized based on simulated Pool-Seq data to maximize true positives and minimize 750 

false positives (Supplementary File 2). We also excluded SNPs (1) for which more than 751 

20% of all samples did not fulfil the above-mentioned coverage thresholds, (2) which were 752 

located within 5 bp of an indel with a minimum count larger than 10x in all samples pooled, 753 

and (3) which were located within known TEs based on the D. melanogaster TE library 754 

v.6.10. We annotated our final set of SNPs with SNPeff (v.4.2; Cingolani et al. 2012) using 755 

the Ensembl genome annotation version BDGP6.82.  756 

 757 

Additional samples 758 

We obtained genome sequences from African flies from the Drosophila Genome Nexus 759 

(DGN; http://www.johnpool.net/genomes.html; see Table S5 for SRA accession numbers). 760 

We used data from 14 individuals from Rwanda and 40 from Siavonga (Zambia). We 761 

mapped these data as described above and built consensus sequences for each haploid 762 

sample by only considering alleles with > 0.9 allele frequencies. We converted consensus 763 

sequences to VCF and used VCFtools (Danecek et al. 2011) for downstream analyses. 764 

 765 

Genetic variation in Europe 766 

We characterized patterns of genetic variation among the 48 samples for the five major 767 

chromosomal arms (X, 2L, 2R, 3L, 3R) by estimating π, Watterson’s θ and Tajima’s D 768 

(Watterson 1975; Nei 1987; Tajima 1989), using corrections for Pool-Seq data (Kofler et 769 

al. 2011). To perform these analyses for our set of SNPs, we re-implemented the methods 770 

of Kofler et al. (2011) in Python (PoolGen; doi: https://doi.org/10.5061/dryad.rj1gn54). To 771 

calculate unbiased window-wise estimates of parameters, we used an output file of our 772 

SNP calling pipeline (PoolSNP; doi: https://doi.org/10.5061/dryad.rj1gn54), which indicates 773 

for any given site in the reference, if it passed the filtering parameters used for SNP 774 
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calling. These data allow for the calculation of the effective window-size, which is the 775 

difference between the total window-size and the number of sites that did not pass the 776 

quality criteria. Using effective windows-sizes as the denominator for the calculation of 777 

window-wise averages yields unbiased average estimates. In contrast, dividing the 778 

summed statistics in a given window by the total window-size, which is common practice in 779 

most software tools, results in an underestimation of averaged parameters. Before 780 

calculating the estimators, we subsampled the data to an even coverage of 40x for 781 

autosomes and 20x for the X-chromosome, as Watterson’s θ and Tajima’s D are sensitive 782 

to coverage variation (Korneliussen et al. 2013). We calculated chromosome-wide 783 

averages of π, θ and Tajima’s D for autosomes and X chromosomes using R (R 784 

Development Core Team 2009). We tested for correlations between these estimators and 785 

latitude, longitude, altitude, and season using a linear regression model: yi = Lat + Lon + 786 

Alt +Season + εi, where yi represents π, θ or D. We used Lat, Lon and Alt as continuous 787 

predictors (Table 1) and Season as a categorical factor with two levels, corresponding to 788 

collection dates before and after 1st September (‘summer’ and ‘fall’), respectively, following 789 

Bergland et al. (2014) and Kapun et al. (2016a). To test for residual spatio-temporal 790 

autocorrelation among the samples (Kühn & Dormann 2012), we calculated Moran’s I 791 

(Moran 1950) with the R package spdep (v.06-15., Bivand & Piras 2015) for the residuals 792 

of the above models. For this analysis, we considered samples within 10° latitude / 793 

longitude to be neighbours, based on the pairwise geographical distances between 794 

collection locations. Whenever these tests revealed significant autocorrelations indicating 795 

non-independence, we repeated the above regressions using a spatial weights matrix 796 

based on nearest neighbours as described above to test for remaining spatial patterning in 797 

residuals as implemented in spdep. We also fitted models with run ID as a random factor 798 

using the R package lme4 (v.1.1-14; see Supplementary File 2) to test for confounding 799 
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effects of variation in error rates among sequencing runs. As these models did not fit 800 

significantly better than simpler models, we excluded it from final analysis (see 801 

Supplementary File 2 and Table S3). 802 

 803 

To investigate genome-wide patterns of variation, we averaged π, θ, and D in 200 kb non-804 

overlapping windows for each sample and chromosomal arm separately and plotted the 805 

distributions in R. In addition, to investigate fine-scale deviations from neutral expectations, 806 

we also calculated Tajima’s D in 50 kb sliding windows with a step size of 10 kb. We 807 

normalized diversity statistics using log-transformation and tested for correlations between 808 

π and recombination rate for 100 kb non-overlapping windows in R and plotted these data 809 

using the ggplot2 (v.2.2.1., Wickham 2016). We used both fine-scale (Comeron et al. 810 

2012) and broad-scale (Fiston-Lavier et al. 2010) estimates of recombination rate, after 811 

converting their coordinates to reference genome v 6.  812 

 813 

To identify regions under selection, we used Pool-hmm to calculate the SFS (Site 814 

Frequency Spectrum) for each sample in the pileup format file with the following 815 

parameters –prefix (to assign a name to each sample), -n (number of chromosomes), --816 

only-spectrum (for the SFS calculation), --theta 0.005 (default), and -r 100 (subsampling of 817 

1/100 SNPs). We then split the pileups by chromosome and ran Pool-hmm with the 818 

following parameters: --prefix, -n, -k (per site transition probability between hidden states), 819 

-s (frequency spectrum file from previous step) and -e sanger (Phred quality = 33). For the 820 

18 samples for which Tajima’s D was very low, Pool-hmm identified the majority of the 821 

genome to be under selection; we thus removed those samples from our analysis. We 822 

used three different k parameters depending on the sample: k=1e-10, k=1e-30, and k=1e-40 823 

(Table S6A). For windows with significantly low Tajima’s D in euchromatic regions, we 824 
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identified genes using bedtools intersect (v2.27.1) and the D. melanogaster v6.12 825 

annotation file from Flybase (Thurmond et al 2019). For genes significant in all 826 

populations, we checked whether average Tajima’s D was among the lowest 10% per 827 

chromosome. We tested for enrichment of involvement in particular biological processes 828 

using DAVID with default parameters (Huang et al 2009).  829 

 830 

Genetic differentiation and population structure in European populations 831 

To estimate genome-wide pairwise genetic differences, we used custom software to 832 

estimate SNP-wise FST using the approach of Weir and Cockerham (1984) for all pairwise 833 

combinations of samples. For each sample, we averaged pairwise FST between that 834 

sample and the other 47 samples and ranked the 48 population samples by overall 835 

differentiation.  836 

 837 

We inferred demographic patterns by focusing on putatively neutrally evolving SNPs. For 838 

this, we used either 4-fold degenerate sites (defined using the genome sequences and the 839 

annotation features of the D. melanogaster reference genome version 6.12) or short 840 

introns (<60 bp; Haddrill et al. 2005; Singh et al. 2009; Parsch et al. 2010; Clemente & 841 

Vogl 2012; Lawrie et al. 2013). We also restricted our analyses to SNPs that were at least 842 

1 Mb distant from major chromosomal inversions (see below) and those located in 843 

genomic regions with high recombination rates (r > 3cM/Mb; Comeron et al. 2012) to 844 

minimize the effects of linkage, which may confound analyses of neutral evolution. As the 845 

Sheffield (UK) population showed unusually high differentiation from other populations, we 846 

repeated the following analyses without the Sheffield sample. To assess isolation by 847 

distance (IBD), we averaged pairwise FST values across all neutral markers. We calculated 848 

geographic distance using the haversine formula (Green & Smart 1985), which takes the 849 
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spherical curvature of the planet into account. We tested for correlations between 850 

linearized genetic differentiation (Slatkin’s distance: FST/([1-FST]) and log10-scaled 851 

geographic distance (Slatkin 1985) using Mantel tests implemented in ade4 (v.1.7-8., Dray 852 

& Dufour 2007) with 1,000,000 iterations. In addition, we plotted the 5% smallest and 853 

largest FST values from all 1,128 pairwise comparisons among the 48 population samples 854 

onto a map to visualize geographic patterns of genetic differentiation.  855 

 856 

We tested for population substructure using two different approaches. First, we performed 857 

principal component analysis (PCA) based on unscaled allele frequencies of the neutral 858 

marker SNPs, as suggested by Menozzi et al. (1978) and Novembre and Stephens (2008), 859 

using LEA (v. 1.2.0., Frichot et al. 2013). We focused on the first three principal 860 

components (PCs) and used mclust (v. 5.2., Fraley & Raftery 2012) to estimate the 861 

number of clusters via maximum likelihood and assigned population samples to clusters 862 

via k-means. In addition, we examined the first three PCs for correlations with latitude, 863 

longitude, altitude, and season using general linear models and tested for spatial 864 

autocorrelation as above. A Bonferroni-corrected α threshold (α’= 0.05/3 = 0.017) was 865 

used to correct for multiple testing.  866 

 867 

In a second, complementary approach, we inferred population delineation using model-868 

based clustering as implemented in ConStruct (v.1.0.2; Bradburd et al. 2018). In contrast 869 

to most clustering-based methods, ConStruct incorporates continuous isolation by 870 

distance to avoid inflating estimates of the number of clusters and allows estimating 871 

admixture among populations. We ran spatial models with three MCMC chains per run and 872 

10,000 iterations and compared the goodness of fit for models incorporating 1 to 10 spatial 873 

layers by cross-validation. 874 
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 875 

Mitochondrial DNA 876 

To obtain consensus mitochondrial sequences for each of the 48 European populations, 877 

we aligned reads from individual FASTQ files and replaced minor variants with the major 878 

variant using Coral (Salmela & Schröder 2011). This method prevents ambiguities from 879 

interfering with the assembly process. We assembled a genome for each population from 880 

the modified FASTQ files using SPAdes with standard parameters and k-mers of size 21, 881 

33, 55, and 77 (Bankevich et al. 2012). Mitochondrial contigs were retrieved by blastn, 882 

using the D. melanogaster NC 024511 sequence as a query and each genome assembly 883 

as the database. To avoid nuclear mitochondrial DNA segments (numts), we ensured that 884 

only contigs with a higher than average coverage of the genome were retrieved. When 885 

multiple contigs were available for the same region, the one with the highest coverage was 886 

selected. Possible contamination with D. simulans was assessed by looking for two or 887 

more consecutive sites that show the same variant as D. simulans and looking for 888 

alternative contigs for that region with similar coverage. As an additional quality control 889 

measure, we also examined the presence of pairs of sites showing four gametic types 890 

using DNAsp 6 (Rozas et al. 2017) – given that there is no recombination in mitochondrial 891 

DNA no such sites are expected. The very few sites presenting such features were 892 

rechecked by looking for alternative contigs for that region and were corrected if needed. 893 

The uncorrected raw reads for each population were mapped on top of the different 894 

consensus haplotypes using Express as implemented in Trinity (Grabherr et al. 2011). If 895 

most reads for a given population mapped to the consensus sequence derived for that 896 

population the consensus sequence was retained, otherwise it was discarded as a 897 

possible chimera between different mitochondrial haplotypes. The repetitive mitochondrial 898 

hypervariable region is difficult to assemble and was therefore not used; the mitochondrial 899 
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region was thus analysed as in Cooper et al. (2015). Mitochondrial genealogy was 900 

estimated using statistical parsimony (TCS network; Clement et al. 2000), as implemented 901 

in PopArt (http://popart.otago.ac.nz), and the surviving mitochondrial haplotypes. 902 

Frequencies of the different mitochondrial haplotypes were estimated from FPKM values 903 

using the surviving mitochondrial haplotypes and expressed as implemented in Trinity 904 

(Grabherr et al. 2011). 905 

 906 

Transposable elements  907 

To quantify transposable element (TE) abundance in each sample, we assembled and 908 

quantified repeats from unassembled sequenced reads using dnaPipeTE (v.1.2., Goubert 909 

et al. 2015). Only the left read of each pair were used. As the vast majority of high-quality 910 

trimmed reads were longer than 135 bp, we discarded reads shorter than this before 911 

sampling. Reads matching mtDNA were filtered out by mapping to the D. melanogaster 912 

reference mitochondrial genome (NC_024511.2. 1) with bowtie2 (v. 2.1.0., Langmead & 913 

Salzberg 2012). Prokaryotic sequences, including reads from symbiotic bacteria such as 914 

Wolbachia, were filtered out from the reads using the implementation of blastx vs. the non-915 

redundant protein database (nr) using DIAMOND (v. 0.8.7, Buchfink et al. 2015). To 916 

quantify TE content, we subsampled a proportion of the raw reads (after filtering) 917 

corresponding to a genome coverage of 0.1X (assuming a genome size of 175 MB), and 918 

then assembled these reads with Trinity (Grabherr et al. 2011). Due to the low coverage of 919 

the genome obtained with the subsampled reads, only repetitive DNA present in multiple 920 

copies should be fully assembled (Goubert et al. 2015). To assess the constancy of the 921 

estimates, we repeated this process with three iterations per sample, as recommended by 922 

the program guidelines. 923 

 924 
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We further estimated frequencies of TEs present in the reference genome with T-lex2 (v. 925 

2.2.2., Fiston-Lavier et al. 2015), using all annotated TEs (5,416 TEs) in version 6.04 of 926 

the D. melanogaster genome from flybase.org (Gramates et al. 2017). For 108 of these 927 

TEs, we used the corrected coordinates as described in Fiston-Lavier et al. (2015), based 928 

on the identification of target site duplications at the site of the insertion. We excluded TEs 929 

nested or flanked by other TEs (<100 bp on each side of the TE), and TEs, which are part 930 

of segmental duplications, since T-lex2 does not provide accurate frequency estimates in 931 

complex regions (Fiston-Lavier et al. 2015). We additionally excluded the INE-1 TE family, 932 

as this TE family is ancient, with 2,234 insertions in the reference genome, which appear 933 

to be mostly fixed (Kapitonov & Jurka 2003). After applying these filters, we were able to 934 

estimate frequencies of 1,630 TE insertions from 113 families from the three main orders, 935 

LTR, non-LTR, and DNA across all DrosEU samples. Because the mapper used by T-lex2 936 

to detect the presence of insertions (presence module) only accepts reads ≤127 bp, we 937 

trimmed reads longer than 100 bp into two equally sized fragments using Trimmomatic (v. 938 

0.35; Bolger et al. 2014) with the CROP and HEADCROP parameters.  939 

To avoid inaccurate TE frequency estimates due to very low numbers of reads, we only 940 

considered frequency estimates based on at least 3 reads. Despite the stringency of T-941 

lex2 to select only high-quality reads, we additionally discarded frequency estimates 942 

supported by more than 90 reads, i.e. 3 times the average coverage of the sample with the 943 

lowest coverage (CH_Cha_14_43, Table S1), in order to avoid non-uniquely mapping 944 

reads. This filtering allows to estimate TE frequencies for ~96% (92.9% to 97.8%) of the 945 

TEs in each population. For 85% of the TEs, we were able to estimate their frequencies in 946 

more than 44 out of 48 DrosEU samples.  947 

We tested for correlations between TE insertion frequencies and recombination rates 948 

using Spearman’s rank correlations as implemented in R. For SNPs, we used 949 
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recombination rates from Comeron et al. (2012) and from Fiston-Lavier et al. (2010) in 950 

non-overlapping 100 kb windows and assigned to each TE insertion the recombination 951 

rate of the corresponding window. 952 

To test for spatio-temporal variation of TE insertions, we excluded TEs with an interquartile 953 

range (IQR) < 10. We tested the population frequencies of the remaining 141 insertions for 954 

correlations with latitude, longitude, altitude, and season using generalized linear models 955 

(ANCOVA) following the method used for SNPs but with a binomial error structure in R.  956 

We further tested if significant correlations with either of the predictor variables deviated 957 

from expectations under neutral evolution. To this end, we repeated the ANCOVA 958 

analyses on 8,727 presumably neutrally evolving 4-fold degenerate sites that we described 959 

previously in the demographic analyses. Based on F-ratios obtained from the ANCOVA 960 

models for each neutral SNP and predictor, we built empirical density functions and 961 

calculated empirical p-values for each TE by integrating over the area of the curve that is 962 

delineated by the F-value specific for the given TE and the maximum F-ratio in the neutral 963 

dataset. 964 

We also tested for residual spatio-temporal autocorrelations in TE insertion frequencies, 965 

with Moran's I test (Moran 1950; Kühn & Dormann 2012). We used Bonferroni corrections 966 

to account for multiple testing (α’= 0.05/141 = 0.00035) and only considered Bonferroni-967 

corrected p-values < 0.001 to be significant. To test TE family enrichment among the 968 

significant TEs we performed a �2 test and applied Yate's correction to account for the low 969 

number of some of the cells. 970 

 971 

Inversion polymorphisms 972 

Since Pool-Seq data precludes a direct assessment of the presence and frequencies of 973 

chromosomal inversions, we indirectly estimated inversion frequencies using a panel of 974 
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approximately 400 inversion-specific marker SNPs (Kapun et al. 2014) for six 975 

cosmopolitan inversions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)Mo, In(3R)Payne). We 976 

averaged allele frequencies of these markers in each sample separately. To test for clinal 977 

variation in the frequencies of inversions, we tested for correlations with latitude, longitude, 978 

altitude and season using generalized linear models with a binomial error structure in R to 979 

account for the biallelic nature of karyotype frequencies. In addition, we Bonferroni-980 

corrected the α threshold (α’= 0.05/7 = 0.007) to account for multiple testing, accounted for 981 

residual spatio-temporal autocorrelations and tested if F-ratios of the ANCOVAs deviated 982 

from neutral expectations as explained above. 983 

 984 

Microbiome 985 

Raw sequences were trimmed, and quality filtered as described for the genomic data 986 

analysis. The remaining high-quality sequences were mapped against the D. 987 

melanogaster genome (v.6.04) including mitochondria using bbmap (v. 35; Bushnell 2016) 988 

with standard settings. The unmapped sequences were submitted to the online 989 

classification tool, MGRAST (Meyer et al. 2008) for annotation. Taxonomy information was 990 

downloaded and analysed in R (v. 3.2.3; R Development Core Team 2009) using the matR 991 

(v. 0.9; Braithwaite & Keegan) and RJSONIO (v. 1.3; Lang) packages. Metazoan 992 

sequence features were removed. For microbial load comparisons, the number of protein 993 

features identified by MGRAST for each taxon and sample was divided by the number of 994 

sequences that mapped to D. melanogaster chromosomes X, Y, 2L, 2R, 3L, 3R and 4. 995 

 996 

We also surveyed the datasets for the presence of novel DNA viruses by performing de 997 

novo assembly of the non-fly reads using SPAdes 3.9.0 (Bankevich et al. 2012) and using 998 

conceptual translations to query virus proteins from Genbank using DIAMOND ‘blastp’ 999 
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(Buchfink et al. 2015). In three cases (Kallithea virus, Vesanto virus, Viltain virus), reads 1000 

from a single sample pool were sufficient to assemble a (near) complete genome. In two 1001 

other cases, fragmentary assemblies allowed us to identify additional publicly available 1002 

datasets that contained sufficient reads to complete the genomes (Linvill Road virus, 1003 

Esparto virus; completed using SRA datasets SRR2396966 and SRR3939042, 1004 

respectively). Novel viruses were provisionally named based on the localities where they 1005 

were first detected, and the corresponding novel genome sequences were submitted to 1006 

Genbank (KX130344, KY608910, KY457233, KX648533-KX648536). To assess the 1007 

relative amount of viral DNA, unmapped (non-fly) reads from each sample pool were 1008 

mapped to repeat-masked Drosophila DNA virus genomes using bowtie2, and coverage 1009 

normalized relative t o virus genome length and the number of mapped Drosophila reads. 1010 
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Tables 1592 

Table 1. Sample information for all populations in the DrosEU dataset. Origin, collection date, season and sample size (number of 1593 

chromosomes: n) of the 48 samples in the DrosEU 2014 data set. Additional information can be found in Table S1. 1594 

ID Country Location  Coll. Date  

Number 

ID Lat (°) Lon (°) Alt (m) Season n Coll. name 

AT_Mau_14_01 Austria Mauternbach 2014-07-20 1 48.38 15.56 572 S 80 Andrea J. Betancourt 

AT_Mau_14_02 Austria Mauternbach 2014-10-19 2 48.38 15.56 572 F 80 Andrea J. Betancourt 

TR_Yes_14_03 Turkey Yesiloz 2014-08-31 3 40.23 32.26 680 S 80 Banu Sebnem Onder 

TR_Yes_14_04 Turkey Yesiloz 2014-10-23 4 40.23 32.26 680 F 80 Banu Sebnem Onder 

FR_Vil_14_05 France Viltain 2014-08-18 5 48.75 2.16 153 S 80 

Catherine Montchamp-

Moreau 

FR_Vil_14_07 France Viltain 2014-10-27 7 48.75 2.16 153 F 80 

Catherine Montchamp-

Moreau 

FR_Got_14_08 France Gotheron 2014-07-08 8 44.98 4.93 181 S 80 Cristina Vieira 

UK_She_14_09 United Kingdom Sheffield 2014-08-25 9 53.39 -1.52 100 S 80 Damiano Porcelli 

UK_Sou_14_10 United Kingdom South Queensferry 2014-07-14 10 55.97 -3.35 19 S 80 Darren Obbard 

CY_Nic_14_11 Cyprus Nicosia 2014-08-10 11 35.07 33.32 263 S 80 Eliza Argyridou 

UK_Mar_14_12 United Kingdom Market Harborough 2014-10-20 12 52.48 -0.92 80 F 80 Eran Tauber 

UK_Lut_14_13 United Kingdom Lutterworth 2014-10-20 13 52.43 -1.10 126 F 80 Eran Tauber 
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DE_Bro_14_14 Germany Broggingen 2014-06-26 14 48.22 7.82 173 S 80 Fabian Staubach 

DE_Bro_14_15 Germany Broggingen 2014-10-15 15 48.22 7.82 173 F 80 Fabian Staubach 

UA_Yal_14_16 Ukraine Yalta 2014-06-20 16 44.50 34.17 72 S 80 Iryna Kozeretska 

UA_Yal_14_18 Ukraine Yalta 2014-08-27 18 44.50 34.17 72 S 80 Iryna Kozeretska 

UA_Ode_14_19 Ukraine Odesa 2014-07-03 19 46.44 30.77 54 S 80 Iryna Kozeretska 

UA_Ode_14_20 Ukraine Odesa 2014-07-22 20 46.44 30.77 54 S 80 Iryna Kozeretska 

UA_Ode_14_21 Ukraine Odesa 2014-08-29 21 46.44 30.77 54 S 80 Iryna Kozeretska 

UA_Ode_14_22 Ukraine Odesa 2014-10-10 22 46.44 30.77 54 F 80 Iryna Kozeretska 

UA_Kyi_14_23 Ukraine Kyiv 2014-08-09 23 50.34 30.49 179 S 80 Iryna Kozeretska 

UA_Kyi_14_24 Ukraine Kyiv 2014-09-08 24 50.34 30.49 179 F 80 Iryna Kozeretska 

UA_Var_14_25 Ukraine Varva 2014-08-18 25 50.48 32.71 125 S 80 Oleksandra Protsenko 

UA_Pyr_14_26 Ukraine Pyriatyn 2014-08-20 26 50.25 32.52 114 S 80 Oleksandra Protsenko 

UA_Dro_14_27 Ukraine Drogobych 2014-08-24 27 49.33 23.50 275 S 80 Iryna Kozeretska 

UA_Cho_14_28 Ukraine Chornobyl 2014-09-13 28 51.37 30.14 121 F 80 Iryna Kozeretska 

UA_Cho_14_29 Ukraine Chornobyl Yaniv 2014-09-13 29 51.39 30.07 121 F 80 Iryna Kozeretska 

SE_Lun_14_30 Sweden Lund 2014-07-31 30 55.69 13.20 51 S 80 Jessica Abbott 

DE_Mun_14_31 Germany Munich 2014-06-19 31 48.18 11.61 520 S 80 John Parsch 

DE_Mun_14_32 Germany Munich 2014-09-03 32 48.18 11.61 520 F 80 John Parsch 

PT_Rec_14_33 Portugal Recarei 2014-09-26 33 41.15 -8.41 175 F 80 Jorge Vieira 
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ES_Gim_14_34 Spain Gimenells (Lleida) 2014-10-20 34 41.62 0.62 173 F 80 Lain Guio 

ES_Gim_14_35 Spain Gimenells (Lleida) 2014-08-13 35 41.62 0.62 173 S 80 Lain Guio 

FI_Aka_14_36 Finland Akaa 2014-07-25 36 61.10 23.52 88 S 80 Maaria Kankare 

FI_Aka_14_37 Finland Akaa 2014-08-27 37 61.10 23.52 88 S 80 Maaria Kankare 

FI_Ves_14_38 Finland Vesanto 2014-07-26 38 62.55 26.24 121 S 66 Maaria Kankare 

DK_Kar_14_39 Denmark Karensminde 2014-09-01 39 55.95 10.21 15 F 80 Mads Fristrup Schou 

DK_Kar_14_41 Denmark Karensminde 2014-11-25 41 55.95 10.21 15 F 80 Mads Fristrup Schou 

CH_Cha_14_42 Switzerland Chalet à Gobet 2014-07-24 42 46.57 6.70 872 S 80 Martin Kapun 

CH_Cha_14_43 Switzerland Chalet à Gobet 2014-10-05 43 46.57 6.70 872 F 80 Martin Kapun 

AT_See_14_44 Austria Seeboden 2014-08-17 44 46.81 13.51 591 S 80 Martin Kapun 

UA_Kha_14_45 Ukraine Kharkiv 2014-07-26 45 49.82 36.05 141 S 80 Svitlana Serga 

UA_Kha_14_46 Ukraine Kharkiv 2014-09-14 46 49.82 36.05 141 F 80 Svitlana Serga 

UA_Cho_14_47 Ukraine 

Chornobyl 

Applegarden 2014-09-13 47 51.27 30.22 121 F 80 Svitlana Serga 

UA_Cho_14_48 Ukraine Chornobyl Polisske 2014-09-13 48 51.28 29.39 121 F 70 Svitlana Serga 

UA_Kyi_14_49 Ukraine Kyiv 2014-10-11 49 50.34 30.49 179 F 80 Svitlana Serga 

UA_Uma_14_50 Ukraine Uman 2014-10-01 50 48.75 30.21 214 F 80 Svitlana Serga 

RU_Val_14_51 Russia Valday 2014-08-17 51 57.98 33.24 217 S 80 Elena Pasyukova 
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Table 2. Clinality of genetic variation and population structure. Effects of geographic variables and/or seasonality on genome-wide 1596 

average levels of diversity (π, θ and Tajima’s D; top rows) and on the first three axes of a PCA based on allele frequencies at neutrally 1597 

evolving sites (bottom rows). The values represent F-ratios from general linear models. Bold type indicates F-ratios that are significant 1598 

after Bonferroni correction (adjusted α’=0.0055). Asterisks in parentheses indicate significance when accounting for spatial 1599 

autocorrelation by spatial error models. These models were only calculated when Moran’s I test, as shown in the last column, was 1600 

significant. *p < 0.05; **p < 0.01; ***p < 0.001.  1601 

Factor Latitude Longitude Altitude Season Moran's I 

π(X) 4.11* 1.62 15.23*** 1.65 0.86 

π(Aut) 0.91 2.54 27.18*** 0.16 -0.86 

θ(X) 2.65 1.31 15.54*** 2.22 0.24 

θ(Aut) 0.48 1.44 13.66*** 0.37 -1.13 

D(X) 0.02 0.38 5.93* 3.26 -2.08 

D(Aut) 0.09 0.76 5.33* 0.71 -1.45 

PC1 0.06 120.72***(***) 5.35*(*) 2.53 4.15*** 

PC2 3.5 10.22** 15.21*** 1.97 -1.96 

PC3 0.14 0.11 0.01 1.29 0.22 
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Table 3. Clinality and/or seasonality of chromosomal inversions. The values represent F-ratios from generalized linear models with 1603 

a binomial error structure to account for frequency data. Bold type indicates deviance values that were significant after Bonferroni 1604 

correction (adjusted α’=0.0071). Stars in parentheses indicate significance when accounting for spatial autocorrelation by spatial error 1605 

models. These models were only calculated when Moran’s I test, as shown in the last column, was significant. *p < 0.05; **p < 0.01; ***p 1606 

< 0.001 1607 

 1608 

Factor Latitude Longitude Altitude Season Moran's I 

In(2L)t 2.2 10.09** 43.94*** 0.89 -0.92 

In(2R)NS 0.25 14.43*** 2.88 2.43 1.25 

In(3L)P 21.78*** 2.82 0.62 3.6 -1.61 

In(3R)C 18.5***(***) 0.75 1.42 0.04 2.79** 

In(3R)Mo 0.3 0.09 0.35 0.03 -0.9 

In(3R)Payne 43.47*** 0.66 1.69 1.55 -0.89 
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Supplementary Files 1610 

Supplementary File 1.  Supplementary Tables. 1611 

This file contains the 13 supplementary tables mention in the text. 1612 

Supplementary File 2. Additional methods.  1613 

This file contains the additional methods mention in the text.  1614 
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